

## Example Sheet #1

Course webpage: https://www.math.uni-hamburg.de/home/loewe/Lent2019/TST\_L19.html

## Example Classes.

- #1. Monday 4 February, 3:30-5pm, MR5.
- #2. Monday 18 February, 3:30–5pm, MR5.
- #3. Monday 4 March, 3:30–5pm, MR5.
- #4. TBD; probably Thursday 14 March.

You hand in your work at the beginning of the Example Class.

- 1. Let  $(M, \in) \models \mathsf{ZFC}$  and refer to the natural numbers of M by the usual symbols 0, 1, etc. Consider the (non-transitive) set  $A := M \setminus \{1\}$ . In class, we saw that  $(A, \in) \models \neg \mathsf{Extensionality}$ . Check the other axioms of  $\mathsf{ZFC}$  for their validity in  $(A, \in)$ .
- 2. We called a formula  $\Delta_0$  if it is in the closure of the quantifier-free formulas under the operations  $\varphi \mapsto \neg \varphi$ ,  $(\varphi, \psi) \mapsto \varphi \wedge \psi$ ,  $(\varphi, \psi) \mapsto \varphi \vee \psi$ ,  $(\varphi, \psi) \mapsto \varphi \rightarrow \psi$ ,  $\varphi \mapsto \exists x (x \in y \wedge \varphi)$ , and  $\varphi \mapsto \forall x (x \in y \rightarrow \varphi)$ . Check whether the following formulas are  $\Delta_0$  and give an argument for your answer:
  - (a)  $\exists x (\forall z (\neg z \in x) \land x \in y);$
  - (b)  $(x = y) \lor (z \in x);$
  - (c)  $\forall x (x \in y \to x \in z);$
  - (d)  $\exists x (x \in y \land \neg x \in z);$
  - (e)  $\exists x (x \in y \land \neg (\exists z (z \in y \land (z \in x \lor y \in x))))).$
- 3. Let T be any  $\mathcal{L}_{\in}$ -theory. We called a formula  $\Delta_0^T$  if the theory T proves that it is equivalent to a  $\Delta_0$  formula. Show that the following concepts can be expressed by  $\Delta_0^T$ -formulas for a reasonable choice of T; also, indicate what T you choose and why.
  - (a)  $z = \{x, y\};$
  - (b) z = (x, y);
  - (c)  $z = y \times y;$
  - (d) z is a function;
  - (e) z is a group;
  - (f) z is a linear order;
  - (g) z is a set with exactly two elements.

- 4. The Minimanoff rank is defined by  $\rho(x) := \min\{\alpha; x \in \mathbf{V}_{\alpha+1}\}$ . Show that for any ordinals  $\alpha \leq \beta$ , the following hold:
  - (a)  $\mathbf{V}_{\alpha}$  is transitive;
  - (b)  $\mathbf{V}_{\alpha} \subseteq \mathbf{V}_{\beta};$
  - (c) if  $x \in y$ , then  $\varrho(x) < \varrho(y)$ ;
  - (d)  $\varrho(x) := \sup\{\varrho(y) + 1; y \in x\};$
  - (e)  $\alpha = \{ \gamma \in \mathbf{V}_{\alpha} ; \gamma \text{ is an ordinal} \}.$
- 5. Suppose that  $\lambda > \omega$  is a limit ordinal. Show that
  - (a)  $(\mathbf{V}_{\lambda}, \in) \models \text{Union};$
  - (b)  $(\mathbf{V}_{\lambda}, \in) \models$  Separation;
  - (c)  $(\mathbf{V}_{\lambda}, \in) \models \mathsf{PowerSet}.$
- 6. Give a concrete example of a wellorder  $(X, R) \in \mathbf{V}_{\omega+\omega}$  that is not isomorphic to an ordinal  $\alpha \in \mathbf{V}_{\omega+\omega}$ .
- 7. We said that a cardinal  $\kappa$  is regular if there is no partition  $\kappa = \bigcup_{\beta \in I} A_{\beta}$  with  $|I| < \kappa$  and  $|A_{\beta}| < \kappa$  for all  $\beta \in I$ .

Let  $\kappa$  be an arbitrary cardinal and define  $cf(\kappa)$  to be the least cardinal  $\lambda$  such that there is a partition  $\kappa = \bigcup_{\beta \in I} A_{\beta}$  with  $|I| = \lambda$  and  $|A_{\beta}| < \kappa$  for all  $\beta \in I$ .

Show that  $cf(\kappa)$  is a regular cardinal.

- 8. A cardinal  $\kappa$  is called an *aleph fixed point* if  $\aleph_{\kappa} = \kappa$ . Show in ZFC that there is an aleph fixed point  $\kappa$  such that  $cf(\kappa) = \aleph_0$ .
- 9. Show that if  $\kappa$  is inaccessible, then  $\mathbf{V}_{\kappa} = \mathbf{H}_{\kappa}$ . What can you say about the converse?
- 10. As usual, work inside a model  $(M, \in) \models \mathsf{ZFC}$ . Suppose that  $A \subseteq M$  is transitive and  $(A, \in) \models \mathsf{ZFC}$ . Suppose that M and A disagree about the value of  $\aleph_1$ , i.e., there is a countable ordinal  $\alpha$  such that  $(A, \in) \models ``\alpha$  is the first uncountable cardinal". Show that there is some  $x \subseteq \mathbb{N}$  such that  $x \notin A$ .
- 11. As usual, work inside a model  $(M, \in) \models \mathsf{ZFC}$ . Let  $\Phi(x)$  be the formula expressing "x is an inaccessible cardinal", let  $\mathsf{IC} := \exists x \Phi(x)$ , and let  $\lambda$  be a limit ordinal.
  - (a) Show that  $\Phi$  is absolute between  $\mathbf{V}_{\lambda}$  and M.
  - (b) Show that if  $\kappa$  is the least inaccessible cardinal, then  $\mathbf{V}_{\kappa} \models \mathsf{ZFC} + \neg \mathsf{IC}$ .
  - (c) Give a proof of  $\mathsf{ZFC} \nvDash \mathsf{IC}$  that does not use Gödel's Incompleteness Theorem.
  - (d) Show that ZFC + IC does not prove that there are two inaccessible cardinals.
- 12. Work in ZFC + IC and show that there is a cardinal  $\lambda$  with  $cf(\lambda) = \aleph_0$  such that  $\mathbf{V}_{\lambda} \models ZFC$ . (*Hint.* Define  $\lambda$  as a countable union by recursion and use the Tarski-Vaught criterion to show that  $\mathbf{V}_{\lambda} \prec \mathbf{V}_{\kappa}$  where  $\kappa$  is the inaccessible cardinal.)