

Example Sheet #3

Example Classes.

- #1. Thursday 1 February, 3–4pm, MR13.
- #2. Thursday 15 February, 3–4pm, MR20.
- #3. Thursday 1 March, 3–4pm, MR21.
- #4. Wednesday 14 March, 3–4pm, MR21.

You hand in your work at the beginning of the Example Class.

- (23) Assume that $\mathsf{ZFC} + \mathsf{IC}$ is consistent and show that the following theory is consistent: $\mathsf{ZFC} +$ "there are ordinals $\alpha < \beta < \aleph_1$ such that $\mathbf{L}_{\alpha} \models \mathsf{ZFC}$, $\mathbf{L}_{\beta} \models \mathsf{ZFC}$ and $\mathbf{L}_{\beta} \models `\alpha$ is countable` ".
- (24) Let x be any transitive set and define by transfinite recursion:

$$\mathbf{L}_{0}(x) := x,$$

$$\mathbf{L}_{\alpha+1}(x) := \mathcal{D}(\mathbf{L}_{\alpha}(x)),$$

$$\mathbf{L}_{\lambda}(x) := \bigcup_{\alpha < \lambda} \mathbf{L}_{\alpha}(x) \text{ (for } \lambda \text{ limit)}$$

As usual, we define $\mathbf{L}(x) := \bigcup_{\alpha \in \text{Ord}} \mathbf{L}_{\alpha}(x)$ and write $\mathbf{V} = \mathbf{L}(x)$ for the formula $\forall x \exists \alpha (x \in \mathbf{L}_{\alpha}(x))$ (note that this is a formula with the parameter x). Show that

- (a) for each α , \mathbf{L}_{α} is transitive,
- (b) if x is countable and $\alpha \ge \omega$, then $|\mathbf{L}_{\alpha}(x)| = |\alpha|$,
- (25) Let x be any transitive set. Show that there is a formula Φ such that the following holds: if M is transitive, $x \in M$, and $(M, \in) \models \Phi$, then there is a limit ordinal λ such that $M = \mathbf{L}_{\lambda}(x)$.
- (26) Suppose that $x \subseteq \mathbb{N}$ and prove the Condensation Lemma for $\mathbf{L}(x)$:

Suppose $\mathbf{V} = \mathbf{L}(x)$ and that $A \subseteq \mathbb{N}$. Then there is $\lambda < \omega_1$ such that $A \in \mathbf{L}_{\lambda}(x)$.

Conclude that $\mathbf{L}(x)$ satisfies CH (and also GCH). If $x \subseteq \kappa$ for some uncountable cardinal κ , what bound does the proof of the condensation lemma give and what can you say about the size of 2^{\aleph_0} in $\mathbf{L}(x)$?

(27) Assume that for all $x \subseteq \mathbb{N}$, we have that $\aleph_1^{\mathbf{L}(x)}$ is countable. Show that $\mathbf{L} \models ``\aleph_1^{\mathbf{V}}$ is inaccessible".

- (28) Let (\mathbb{P}, \leq) be a partial order and $p \in \mathbb{P}$. Show that
 - (a) if D is dense below p and $r \leq p$, then D is dense below r;
 - (b) if $\{r; D \text{ is dense below } r\}$ is dense below p, then D is dense below p.
- (29) We say that G is \mathbb{P} -antichain generic over M if for every maximal \mathbb{P} -antichain $A \in M$, we have $A \cap G \neq \emptyset$. We call a set B a \mathbb{P} -bar if for every $p \in \mathbb{P}$ there is a $b \in B$ such that p and b are compatible. We say that G is \mathbb{P} -bar generic over M if for every \mathbb{P} -bar $B \in M$ we have that $B \cap G \neq \emptyset$.
 - Let $\mathbb{P} \in M$, and G be a filter over \mathbb{P} . Show that the following are equivalent:
 - (i) G is \mathbb{P} -generic over M,
 - (ii) G is \mathbb{P} -antichain generic over M, and
 - (iii) G is \mathbb{P} -bar generic over M.
- (30) Let M be a transitive model of set theory, and $x, y \in M$. Define (in M) a partial order by $\mathbb{P}_{x,y} := \{p; p: \operatorname{dom}(p) \to 2 \text{ and } \operatorname{dom}(p) \text{ is a finite subset of } x \times y\}$ and $p \leq q$ if $p \supseteq q$. Show that if there is a $\mathbb{P}_{x,y}$ -generic filter over M, then there is an injection from x to $\wp(y)$.
- (31) Let μ be Lebesgue measure on the real line \mathbb{R} . Consider $\mathbb{P}_{\varepsilon} := \{G \subseteq \mathbb{R}; G \text{ is open and} \mu(G) < \varepsilon\}$. Suppose that $\{N_{\alpha}; \alpha < \kappa\}$ is any family of Lebesgue null sets. Find a family \mathcal{D} of κ -many dense sets in \mathbb{P}_{ε} such that the following holds:

If G is \mathbb{P}_{ε} -generic for \mathcal{D} , then there is an open set G with $\mu(G) < \varepsilon$ such that $\bigcup_{\alpha \leq \kappa} N_{\alpha} \subseteq G$.

- (32) Let M be a transitive model of set theory and $(\mathbb{P}, \leq, \mathbf{1}) \in M$ be a partial order. Suppose $\sigma, \tau \in M^{\mathbb{P}}$ and that D is a filter on \mathbb{P} . Show that $\operatorname{val}(\sigma \cup \tau, D) = \operatorname{val}(\sigma, D) \cup \operatorname{val}(\tau, D)$.
- (33) Let *M* be a transitive model of set theory, $(\mathbb{P}, \leq, \mathbf{1}) \in M$ be a partial order, and $x \in M$. Define $\operatorname{can}(x) := \{(\operatorname{can}(y), p); y \in x \land p \in \mathbb{P}\}$. Show that if *D* is a filter, then $\operatorname{val}(\operatorname{can}(x), D) = x$.
- (34) Let M be a transitive model of set theory and $(\mathbb{P}, \leq, \mathbf{1}) \in M$ be a partial order. Assume that $\tau \in M^{\mathbb{P}}$ and that D is a filter on \mathbb{P} . Define

$$\pi := \{ (\varrho, p) \, ; \, \exists (\sigma, q) \in \tau \exists r(\varrho, r) \in \sigma \land p \le r \land p \le q \}$$

and show that $val(\pi, D) = \bigcup val(\tau, D)$. Conclude that M[D] satisfies the Union axiom.