

Example Sheet #1

Example Classes.

- #1. Thursday 1 February, 3–4pm, MR21.
- #2. Thursday 15 February, 3–4pm, MR13.
- #3. Thursday 1 March, 3–4pm, MR21.
- #4. Wednesday 14 March, 3–4pm, MR21.

You hand in your work at the beginning of the Example Class.

- 1. A cardinal κ is called an *aleph fixed point* if $\aleph_{\kappa} = \kappa$. Let μ be any regular cardinal. Show in ZFC that there is an aleph fixed point κ such that $cf(\kappa) = \mu$.
- 2. The von Neumann hierarchy is defined by the following transfinite recursion:

$$\mathbf{V}_0 := \varnothing, \\
 \mathbf{V}_{\alpha+1} := \wp(\mathbf{V}_{\alpha}), \text{ and} \\
 \mathbf{V}_{\lambda} := \bigcup_{\alpha < \lambda} \mathbf{V}_{\alpha} \text{ (for limit ordinals } \lambda).$$

The *Mirimanoff rank* is defined by $\rho(x) := \min\{\alpha; x \in \mathbf{V}_{\alpha+1}\}$. Show that for any ordinals $\alpha \leq \beta$, the following hold:

- (a) \mathbf{V}_{α} is transitive;
- (b) $\mathbf{V}_{\alpha} \subseteq \mathbf{V}_{\beta};$
- (c) if $x \in y$, then $\varrho(x) < \varrho(y)$;
- (d) $\rho(x) := \sup\{\rho(y) + 1; y \in x\};$
- (e) $\alpha = \{ \gamma \in \mathbf{V}_{\alpha} ; \gamma \text{ is an ordinal} \}.$

3. Suppose that $\lambda > \omega$ is a limit ordinal. Show that

- (a) $(\mathbf{V}_{\lambda}, \in) \models \text{Union};$
- (b) $(\mathbf{V}_{\lambda}, \in) \models$ Separation;
- (c) $(\mathbf{V}_{\lambda}, \in) \models \mathsf{PowerSet.}$
- 4. The representation theorem for wellorders says that every wellorder is isomorphic to a unique ordinal. This is a theorem proved in ZF, using the Axiom of Replacement. Give a concrete example of a wellorder $(X, R) \in \mathbf{V}_{\omega+\omega}$ that is not isomorphic to an ordinal $\alpha \in \mathbf{V}_{\omega+\omega}$.

5. Let γ be an ordinal such that $\mathbf{V}_{\gamma} \models \mathsf{ZFC}$. Show that γ is a cardinal. (We called cardinals like this worldly cardinals.)

(*Note:* In order to violate Replacement, it is not enough to find $x \in \mathbf{V}_{\gamma}$ and a surjection from x onto γ . The surjection has to be definable!)

6. Let λ be a limit ordinal. We say that $C \subseteq \lambda$ is *closed* if for every α , if $C \cap \alpha$ is cofinal in α , then $\alpha \in C$. We say that C is *closed unbounded* or *club* in λ if it is closed and cofinal in λ .

Suppose that κ is an inaccessible cardinal and show that the set $\{\lambda < \kappa; \lambda \text{ is a worldly cardinal}\}$ is club in κ .

- 7. We called a formula Δ_0 if it is in the closure of the quantifier-free formulas under the operations $\varphi \mapsto \neg \varphi, (\varphi, \psi) \mapsto \varphi \wedge \psi, (\varphi, \psi) \mapsto \varphi \vee \psi, (\varphi, \psi) \mapsto \varphi \rightarrow \psi$, and $\varphi \mapsto \exists x (x \in y \land \varphi)$. Check whether the following formulas are Δ_0 and give an argument for your answer:
 - (a) $\exists x (\forall z (\neg z \in x) \land x \in y);$
 - (b) $(x = y) \lor (z \in x);$
 - (c) $\forall x (x \in y \to x \in z);$
 - (d) $\exists x (x \in y \land \neg x \in z);$
 - (e) $\exists x (x \in y \land \neg (\exists z (z \in y \land (z \in x \lor y \in x))))).$
- 8. Let T be any \mathcal{L}_{\in} -theory. We called a formula Δ_0^T if the theory T proves that it is equivalent to a Δ_0 formula. Show that the following concepts can be expressed by Δ_0^T -formulas for a reasonable choice of T; also, indicate what T you choose and why.
 - (a) $z = \{x, y\};$
 - (b) z = (x, y);
 - (c) $z = y \times y;$
 - (d) z is a function;
 - (e) z is a group;
 - (f) z is a linear order;
 - (g) z is a set with exactly two elements.
- 9. Let $\Phi(x)$ be the formula expressing "x is an inaccessible cardinal" and let λ be a limit ordinal. Show that Φ is absolute for \mathbf{V}_{λ} .
- 10. We write 2IC for the statement "there are $\kappa < \lambda$ that are both inaccessible". Show that the theory ZFC + IC does not prove 2IC.
- 11. Work in ZFC + IC and show that there is no formula Φ such that
 - (a) $\Phi(x)$ holds if and only if x is a worldly cardinal and
 - (b) Φ is absolute for transitive models of ZFC.

(*Hint.* Construct a transitive model that cannot contain any worldly cardinals, but some of its ordinals satisfy Φ .)