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What do Language, Music and Image have in common?
E.g.:

Language:
"List the sales of products in 2003"

Music:

...
Image:

At first sight very little...



How do we perceive Language, Music and Image?

Inherent to all forms of perception:

A structuring process in groups, subgroups, sub-subgroups, etc.

It is virtually impossible not to perceive structure

(People even assign structure to noise...)



How do we perceive Language, Music and Image?

Inherent to all forms of perception:

A structuring process in groups, subgroups, sub-subgroups, etc.

It is virtually impossible not to perceive structure

(People even assign structure to noise...)

In music, grouping structure is typically respresented as:



Grouping Structure in Music

The musical piece as a whole forms a group

A group consists of subgroups which are recursively built up
out of smaller subgroups, up to the smallest unit (e.g. a pitch)

Grouping structure represents how parts combine into a whole



Grouping Structure in Language
Groups in language form a tree structure (Wundt 1880):
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Grouping Structure in Language
Groups in language form a tree structure (Wundt 1880):

List   the   sales   of   products   in   2003

Grouping structure in different representations (Chomsky 1956):
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List  the  sales  of  products  in  2003



Grouping Structure  =  Tree Structure

is equivalent (isomorphic) with:



Also Visual Groups form a Tree Structure

According to Wertheimer (1923) the visual input

is assigned the following structure:

Perceptual structuring forms the link between low-level segmentation
and higher-level interpretation algorithms



Perceptual Structure = Tree Structure
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Relatively Uncontroversial:
There exists one representation for structural perception for all
modalities



Perceptual Structure = Tree Structure

List   the   sales   of   products   in   2003

V DT N P N P N

NP PP PP

NP

NP

S

         

Relatively Uncontroversial:
There exists one representation for structural perception for all
modalities

Very Controversial:
There exists one model that predicts the perceived structure in
language, music en vision



Additional Problem: Perception is Ambiguous
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The same input can be assigned several structures: ambiguity



Ambiguity is not just a problem

Average sentence from Wall Street Journal has more than one
million different possible tree structures (Charniak 1999)

Adding semantics makes the problem even worse!
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Ambiguity is not just a problem

Average sentence from Wall Street Journal has more than one
million different possible tree structures (Charniak 1999)

Adding semantics makes the problem even worse!

"Any given sequence of notes is infinitely ambiguous, but this
 ambiguity is seldom apparent to the listener" (Longuet-Higgins 1987)

Humans perceive mostly just one grouping structure

> 96% agreement among subjects (language users)

Language: Penn Treebank
Music: Essen Folksong Collection
Vision: Nijmegen Visual Database



Historically, two competing principles for solving
ambiguity in perception

1.  Simplicity Principle (Wertheimer 1923...Leeuwenberg 2001, Chater 2003)

Preference for the simplest structure

2.  Likelihood Principle (Helmholtz 1910...Suppes 1984, Charniak 2001)

Preference for the most likely structure

Can these principles still inspire us?



The Dual Nature of Perception
These principles each play a different role in perception:

Simplicity: general preference for "economy", "least effort",
    "shortest derivation"

Likelihood: a memory-based bias due to previous experiences



The Dual Nature of Perception
These principles each play a different role in perception:

Simplicity: general preference for "economy", "least effort",
    "shortest derivation"

Likelihood: a memory-based bias due to previous experiences

Hypothesis: perceptual systen strives for the simplest structure
    but in doing so it is influenced by the likelihood of

 previous structures



Possible Measures for Simplicity and Likelihood

Simplicity: number of "steps" to generate a tree structure

Likelihood: joint probability of the steps to generate a tree structure

We can compute this if we have a large, representative collection
of tree structures for each modality (a "corpus")



Possible Measures for Simplicity and Likelihood

Simplicity: number of "steps" to generate a tree structure

Likelihood: joint probability of the steps to generate a tree structure

We can compute this if we have a large, representative collection
of tree structures for each modality (a "corpus")

Data-Oriented Parsing model (DOP):

New input is analyzed and interpreted out of parts of previously
perceived input

(cf. CBR, Corpus-based NLP, EBL, ...)



Example of a DOP model for Language
Let's start with an extremely simple corpus:
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the dress

the rackon

the dog thesaw with telescope



A new sentence such as "She saw the dress with the telescope" is
analyzed by combining subtrees from the corpus

 S

NP VP

 V NP

NP PP

she

the dress

 V

saw

PP

 P NP

thewith telescope

=  S
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NP PP
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the dress
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But there is also a "competing" analysis:

NP

the dress
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the thesaw with telescopedress
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PP

 P NP

thesaw with telescope

This analysis consists of two steps, and is therefore preferred
according to the simplicity principle: maximal similarity with corpus.

But it is not preferred according to the likelihood principle!
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DOP models are Stochastic Tree Grammars

By putting various constraints on STGs, we can instantiate:

- stochastic context-free grammars

- stochastic head-lexicalized grammars

- stochastic tree-adjoining grammars

- stochastic finite-state grammars

  etc...

We will focus on STSGs (Stochastic Tree Subsitution Grammars)



DOP models are Stochastic Tree Grammars

By putting various constraints on STGs, we can instantiate:

- stochastic context-free grammars

- stochastic head-lexicalized grammars

- stochastic tree-adjoining grammars

- stochastic finite-state grammars

  etc...

We will focus on STSGs (Stochastic Tree Subsitution Grammars)

However, we have also developed DOP models for richer structures,
such as LFG, HPSG, Logical-Semantic and Discourse annotations

     (e.g. Bod & Kaplan 1998, 2003; Way 2003; Neumann 2003; Bod et al. 1996; Bod 1998)
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Experiments with large corpora

Penn Treebank, Essen Folksong Collection:
Tens of thousands of analyzed sentences and folksongs

Simplest tree structure for string s:
  Minimize number N of corpus subtrees in tree T

Tbest  =  arg minT N(T | s)

Likeliest tree structure for string s:
  Maximize product of relative frequencies of subtrees ti in T

Tbest  =  arg maxT P(T | s)  =  arg max<t1...tn> Π i P(ti | s)

Our best hypothesis so far:
The perceptual system selects the simplest structure from
the top of the distribution of most probable structures



The probability of:

 

P(t)  =   

| t |

Σt' : root(t')=root(t) | t' |
a subtree t :

 a derivation  d = t1°...°tn : P(t1 ° ... ° tn)  =  Πi P(ti)

 a parse tree  T  : P(T)  =  ΣdΠi P(tid)

   where tid is the i-th subtree in derivation d that produces T



Computational Aspects of DOP

Problem: exponentially many subtrees in DOP / STSG

Can be solved by reducing DOP to an isomorphic
Probabilistic Context-Free Grammar or PCFG
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Computational Aspects of DOP

Problem: exponentially many subtrees in DOP / STSG

Can be solved by reducing DOP to an isomorphic
Probabilistic Context-Free Grammar or PCFG

Every node in every tree in corpus is assigned a unique number:

A@k denotes node at address k where A is nonterminal of that node

 A new nonterminal is created for each node in the training data: Ak
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Sketch of PCFG reduction of DOP (1)

Consider a node A@j of the following form in STSG/DOP:

A@j

B@k C@l
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Sketch of PCFG reduction of DOP (1)

Consider a node A@j of the following form in STSG/DOP:

A@j

B@k C@l

There are bk non-trivial subtrees headed by B@k plus trivial case
where left node is simply B.
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Sketch of PCFG reduction of DOP (1)

Consider a node A@j of the following form in STSG/DOP:

A@j

B@k C@l

There are bk non-trivial subtrees headed by B@k plus trivial case
where left node is simply B.

Thus bk + 1 different possibilities on the left branch

Similarly, cl + 1 possibilities on the right branch

Thus, aj = (bk + 1)(cl + 1) possible subtrees headed by A@j
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Sketch of PCFG reduction of DOP (2)

There is a PCFG with the following property (Bod 2003; Goodman 2003):

for every subtree in training corpus headed by A, the PCFG will
generate an isomorphic subderivation with probability 1/a

Aj → BC (1/aj) A → BC (1/a)
Aj → BkC (bk/aj) A → BkC (bk/a)
Aj → BCl (cl/aj) A → BCl (cl/a)
Aj → BkCl (bkcl/aj) A → BkCl (bkcl/a)
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Sketch of PCFG reduction of DOP (2)

There is a PCFG with the following property (Bod 2003; Goodman 2003):

for every subtree in training corpus headed by A, the PCFG will
generate an isomorphic subderivation with probability 1/a

Aj → BC (1/aj) A → BC (1/a)
Aj → BkC (bk/aj) A → BkC (bk/a)
Aj → BCl (cl/aj) A → BCl (cl/a)
Aj → BkCl (bkcl/aj) A → BkCl (bkcl/a)

Rather than using all subtrees, we can use a "compact" PCFG !
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Sketch of PCFG reduction of DOP (3)

• Dynamic programming algorithm known as Viterbi bottom-
up search computes most probable derivation for input string

• Same algorithm can be used to compute shortest derivation
(i.e. simplest tree) by assigning each subtree equal probability
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Sketch of PCFG reduction of DOP (3)

• Dynamic programming algorithm known as Viterbi bottom-
up search computes most probable derivation for input string

• Same algorithm can be used to compute shortest derivation
(i.e. simplest tree) by assigning each subtree equal probability

Thus both likeliest and simplest tree are efficiently computed

Next, we can compute the simplest among the n likeliest
trees also by Viterbi n best search
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Sketch of PCFG reduction of DOP (3)

• Dynamic programming algorithm known as Viterbi bottom-
up search computes most probable derivation for input string

• Same algorithm can be used to compute shortest derivation
(i.e. simplest tree) by assigning each subtree equal probability

Thus both likeliest and simplest tree are efficiently computed

Next, we can compute the simplest among the n likeliest
trees also by Viterbi n best search

• Other work has proposed different computational solutions:

Voted Perceptron (Collins), Tree Kernels (Bod, Duffy),
MaxEnt (Sima'an), MDL (Bonnema), E-M (Prescher)...
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Wall Street Journal (WSJ) corpus in the Penn Treebank:
50.000 manually analyzed sentences
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analyzed western folksongs:

•  Pitches: numbers from 1 to 7
•  Duration indicators: underscore (_) or a period (.) after the numbers
•  Octave position: plus and minus signs (+,-) before the numbers
•  Chromatic alterations: "#" or "b" after the numbers

  •  Pauses: 0, possibly followed by duration indicators
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Test Domains

•  Linguistic test domain:

Wall Street Journal (WSJ) corpus in the Penn Treebank:
50.000 manually analyzed sentences : the benchmark in NLP

•  Musical test domain:

Essen Folksong Collection (EFC): 20.150 melodically
analyzed western folksongs:

•  Pitches: numbers from 1 to 7
•  Duration indicators: underscore (_) or a period (.) after the numbers
•  Octave position: plus and minus signs (+,-) before the numbers
•  Chromatic alterations: "#" or "b" after the numbers

  •  Pauses: 0, possibly followed by duration indicators

•  Visual test domain: see later
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Example from Essen Folksong Collection

#4551: Schneckhaus Schneckhaus stecke deine Hörner aus
  (German children song)

5_3_5_3_1234553_1234553_12345_3_12345_3_553_553_553_65432_1_
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Example from Essen Folksong Collection

#4551: Schneckhaus Schneckhaus stecke deine Hörner aus
  (German children song)

5_3_5_3_1234553_1234553_12345_3_12345_3_553_553_553_65432_1_

Grouping structure according to Essen Folksong collection:

((5_3_5_3_) (1234553_) (1234553_) (12345_3_) ( 12345_3_) (553_553_)
(553_65432_1_))

NB: linguistic phrase structure does not predict musical phrase structure!
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Preprocessing the Essen Folksong Annotations

•  We automatically added three basic labels to the phrase structures:

"S" to each whole song

"P" to each phrase

"N" to each note

•  In this way, we obtain conventional tree structures that can be used
    by DOP/STSG, or its isomorphic PCFG
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Examples of some simple musical trees

6b 5 5_

P

P

6b 5 5_

P

P

6b 5

P P

+3b5_ 0_

P

P

S

N N N N N N N N N N N

     

N N N N N N

-5 1 1 1 2

N

3_ 1

P

N N N N N N

3 3 32 2 1_.

P

S
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Experimental Evaluation

Corpora are randomly divided into 10 training/test set splits



5 4

Experimental Evaluation

Corpora are randomly divided into 10 training/test set splits

Test 1: Simplicity-Likelihood-DOP  (SL-DOP)
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n likeliest structures
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Experimental Evaluation

Corpora are randomly divided into 10 training/test set splits

Test 1: Simplicity-Likelihood-DOP  (SL-DOP)

Selects simplest structure from among
n likeliest structures

Test 2: Likelihood-Simplicity-DOP  (LS-DOP)

Selects likeliest structure from among
n simplest structures
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Scores of SL-DOP & LS-DOP

n

SL-DOP LS-DOP
(simplest among n likeliest) (likeliest among n  simplest)

Language Music Language Music

1 87.9% 86.0% 85.6% 84.3%
5 89.3% 86.8% 86.1% 85.5%
10 90.2% 87.2% 87.0% 85.7%
11 90.2% 87.3% 87.0% 85.7%
12 90.2% 87.3% 87.0% 85.7%
13 90.2% 87.3% 87.0% 85.7%
14 90.2% 87.2% 87.0% 85.7%
15 90.2% 87.2% 87.0% 85.7%
20 90.0% 86.9% 87.1% 85.7%
50 88.7% 85.6% 87.4% 86.0%
100 86.8% 84.3% 87.9% 86.0%
1,000 85.6% 84.3% 87.9% 86.0%
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Scores of SL-DOP & LS-DOP

n

SL-DOP LS-DOP
(simplest among n likeliest) (likeliest among n  simplest)

Language Music Language Music

1 87.9% 86.0% 85.6% 84.3%
5 89.3% 86.8% 86.1% 85.5%
10 90.2% 87.2% 87.0% 85.7%
11 90.2% 87.3% 87.0% 85.7%
12 90.2% 87.3% 87.0% 85.7%
13 90.2% 87.3% 87.0% 85.7%
14 90.2% 87.2% 87.0% 85.7%
15 90.2% 87.2% 87.0% 85.7%
20 90.0% 86.9% 87.1% 85.7%
50 88.7% 85.6% 87.4% 86.0%
100 86.8% 84.3% 87.9% 86.0%
1,000 85.6% 84.3% 87.9% 86.0%

Same model obtains maximal scores for both language and music

Perceptual system strives for simplest analysis, but "searches" only among
the most likely analyses   (see Schaefer et al. 2004 for psychological experiments)
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Comparison with other work

Language: DOP outperforms Collins, Charniak, Ratnaparkhi on WSJ

 → non-head dependencies can only be covered by
subtrees without (lexical) restrictions
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→ many phrases that include large intervals are not
captured by harmonic, metrical or melodic "rules"
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Comparison with other work

Language: DOP outperforms Collins, Charniak, Ratnaparkhi on WSJ

 → non-head dependencies can only be covered by
subtrees without (lexical) restrictions

Music: DOP outperforms Temperley, Thom, Chang on EFC

→ many phrases that include large intervals are not
captured by harmonic, metrical or melodic "rules"

By using largest possible subtrees (simplest analysis) which occur
most frequently, DOP takes into account more dependencies
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Example of non-headword dependency (ATIS corpus)

NP

DT JJS

nearest

PP

TO NP

NN

to

E.g.: Show the nearest airport to Denver

•  non-head modifier nearest predicts the correct PP-attachment

•  Example from WSJ: BA carried more people than cargo in 1988
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Example of "jump phrase" (EFC)

Folksong K0690:

(3_2_11-5) (-5332211-5) (-512314_2) (...

•  Gestalt principles predict "wrong" phrases on large intervals:

(3_2_11-5-5) (332211-5-5) (12314_2) (...

•  Parallelism, meter & harmony reinforce same "wrong" predictions!

• Many phrases reflect idiom-dependent pitch contours which cannot
be predicted by rules, but only by "patterns" (Cf. Huron 1996)
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The importance of large subtrees

•  Large subtrees may be statistically significant though they are
linguistically and musically redundant

•  Continuum between "regular phrases" (rules) and "idiomatic
phrases" (patterns) both in language and music

•  DOP can capture the full gradience between rules and patterns
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How can we apply this to Visual Structures?

Structured visual databases are still too small (<300) to get statistically
significant results
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How can we apply this to Visual Structures?

Structured visual databases are still too small (<300) to get statistically
significant results

What are the primitive elements in visual perception?

In Nijmegen Visual Database: line segments, angles, a.o.

"Syntactic" categories: symmetry (S), alternation (A),
iteration (I).

Of course, we only deal with medium-level computer vision in this way
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a k

a

a

a

a

a

a

a

a

a

a

a

l l

k l

l

ll

l

l

kk

=>=>

la ka la la ka la la la la laka ka

S(la,ka) S(la,ka) S(la,ka) S(la,ka)

4(S(la,ka))

Experiments support SL-DOP, but not statistically significant
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DOP is used in various AI applications

• Structural language models for speech (Bod 1998, 2000; Chelba 1998)

argmaxW P(W | A)  =  argmaxW ΣT P(W, T | A)

• Statistical machine translation (Hearne & Way 2004; Poutsma & Bod 2003)

argmax P(Translated sentence | Source sentence)

• Musical tempo tracking systems (Zaanen, Honing & Bod 2004)

argmax P(Temporal structure | Acoustic input)

• Interactive spoken dialog systems (Bod 1999; Scha et al. 1999), used by OVIS

argmax P(Interpretation, Word string | Acoustic signal)
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Example of OVIS annotation used in spoken dialog

  

        P
origin.place

van

 MP
d1.d2

voorburg

         NP
town.voorburg

           P
destination.place

naar

   MP
(d1;d2)

ERROR

        P
origin.place

van

 MP
d1.d2

venlo

      NP
town.venlo

           P
destination.place

naar

 MP
d1.d2

voorburg

         NP
town.voorburg

   MP
(d1;d2)

MP
 d2
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   MP
(d1;d2)

  VP
d1.d2

   V
wants

wil

ik

   S
d1.d2

PER
user

        P
origin.place

van

 MP
d1.d2

venlo

      NP
town.venlo

 MP
d1.d2

   MP
(d1;d2)

           P
destination.place

naar

       NP
town.almere

almere

 MP
d1.d2° ° =

   MP
(d1;d2)

  VP
d1.d2

   V
wants

wil

ik

   S
d1.d2

PER
user

        P
origin.place

van

 MP
d1.d2

venlo

      NP
town.venlo

 MP
d1.d2

           P
destination.place

naar

       NP
town.almere

almere
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How far do exemplar-based models stretch?

• Problem solving with exemplar-based model such as DOP/STSG?

• Exemplar-based reasoning has been proposed as early as Thomas
   Kuhn in his account on normal science (in his "Structure of ...")

"Scientists solve problems by modeling them on previous
 problem-solutions" (Kuhn 1962)

• Problem-solutions in physics can be represented by derivation trees
   -- though they do not represent grouping structure
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Example of derivation tree in classical mechanics

Derivation of planet's mass from a satellite's orbit using Newton's laws

F = ma

F = GMm/r2

a = v2/r

F = mv2/r  v = 2πr/P

F = 4π2mr/P2

4π2mr/P2 = GMm/r2

M = 4π2r3/GP2

A tree describes the steps from higher-level laws to the solution (formula)



Subtrees can be reused to solve new problems

F = ma

F = GMm/r2

a = v2/r

F = mv2/r  v = 2πr/P

F = 4π2mr/P2

4π2mr/P2 = GMm/r2



Deriving Kepler's third law by this subtree

F = ma

F = GMm/r2

a = v2/r

F = mv2/r  v = 2πr/P

F = 4π2mr/P2

4π2mr/P2 = GMm/r2

r3/P2 = GM/4π2

We only need to solve the last equation of the previous subtree for r3/P2



Often we need to combine two or more subtrees (by term rewriting)

F = ma a = v2/r

F = mv2/r  

F = GMm/r2 F = ma a = v2/r

F = mv2/r  F = GMm/r2

o =

mv2/r = GMm/r2

<=>

F = ma a = v2/r

F = mv2/r  F = GMm/r2

mv2/r = GMm/r2

v = √(GM/r)



Derivation trees in fluid mechanics

E.g. derivation of orifice system from Bernoulli involves an ad hoc correction
coefficient (Cd)

ΣE = constant

ρgz1 + ρv12/2 + p1  =  ρgz2 + ρv22/2 + p2

p1 = p2
v1 = 0
z1 − z2 = h

v = √(2gh) Q(theoretical) = vA  

Q(theoretical) = A√(2gh) Q(actual) = CdQ(theoretical)

Q(actual) = CdA√(2gh)



Derivation tree for a weir (dam) can still be derived by subtrees from
orifice system that include the ad hoc correction

ΣE = constant

ρgz1 + ρv12/2 + p1  =  ρgz2 + ρv22/2 + p2

p1 = p2
v1 = 0
z1 − z2 = h

v = √(2gh)

Q(theoretical) = vA  

Q(actual) = CdQ(theoretical)

Q(theoretical) = ∫vdA dA = Bdh

Q(theoretical) =  ∫vBdh

Q(theoretical) =  B√(2g) ∫√hdh

Q(theoretical) =  (2/3)B√(2g) h3/2

Q(actual) =  (2/3) Cd B√(2g) h3/2
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Simplicity and Likelihood also in problem solving

• Prefer largest possible derivational chunks, such that minimal
   recourse to additional derivational steps is needed

• Prefer more frequently occurring chunks: reflects usefulness

• P(Derivation-tree | Phenomenon) can be computed in a Bayesian
  way as in language and music, given a corpus of "exemplars"

We have just received an NWO grant for "Exemplar-Based
Explanation" (one postdoc and one phd student)
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Conclusions

•  DOP provides a general framework for stochastic grammar models

•  Same model achieves highest accuracy for both music and language
on resp. EFC and WSJ

•  The model can also be used for vision, problem solving and reasoning --
 as long as we can create a corpus of prior structures

•  AI should aim at developing general models for (each level of) cognition
rather than particularist models for each cognitive task separately

there are autonomous levels of explanation, but without striving for
underlying models AI becomes a plethora of disparate algorithms


