Unifying Linguistic, Musical and Visual Processing

Rens Bod

ILLC, University of Amsterdam School of Computing, University of Leeds

What do Language, Music and Image have in common? E.g.:

Language:

"List the sales of products in 2003"

Music:

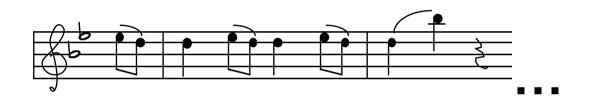
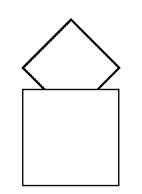


Image:



At first sight very little...

How do we perceive Language, Music and Image?

Inherent to all forms of perception:

A structuring process in groups, subgroups, sub-subgroups, etc.

It is virtually impossible *not* to perceive structure

(People even assign structure to noise...)

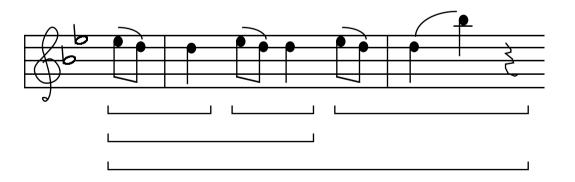
How do we perceive Language, Music and Image?

Inherent to all forms of perception:

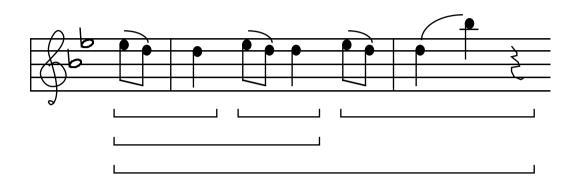
A structuring process in groups, subgroups, sub-subgroups, etc.

It is virtually impossible *not* to perceive structure (People even assign structure to noise...)

In music, grouping structure is typically respresented as:



Grouping Structure in Music



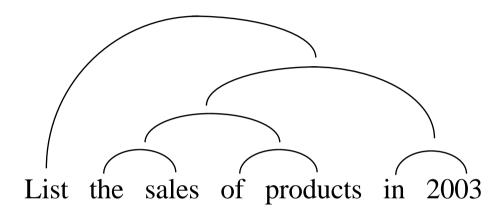
The musical piece as a whole forms a group

A *group* consists of *subgroups* which are recursively built up out of smaller *subgroups*, up to the smallest unit (e.g. a pitch)

Grouping structure represents how parts combine into a whole

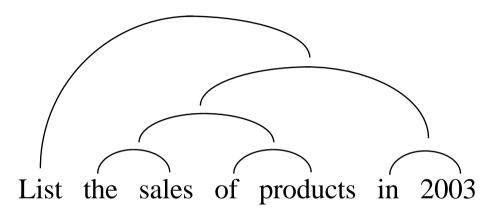
Grouping Structure in Language

Groups in language form a *tree structure* (Wundt 1880):

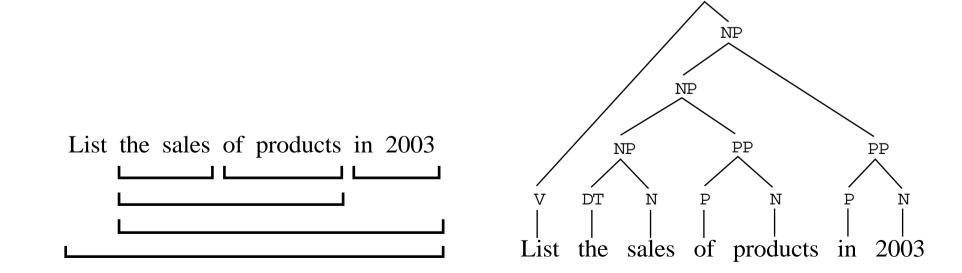


Grouping Structure in Language

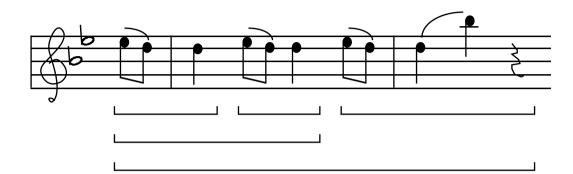
Groups in language form a *tree structure* (Wundt 1880):



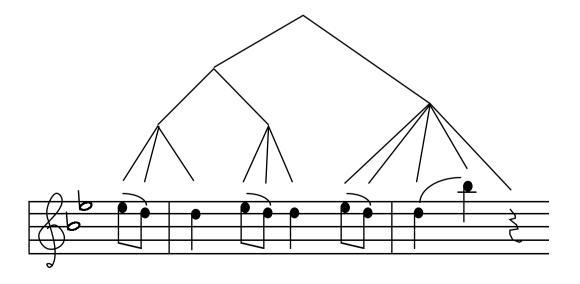
Grouping structure in different representations (Chomsky 1956):



Grouping Structure = Tree Structure

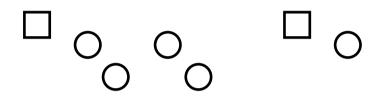


is equivalent (isomorphic) with:

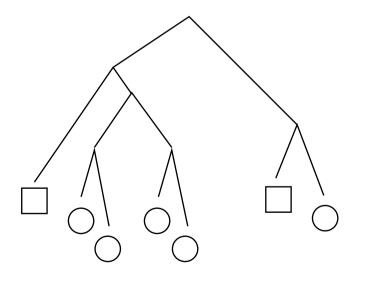


Also Visual Groups form a Tree Structure

According to Wertheimer (1923) the visual input

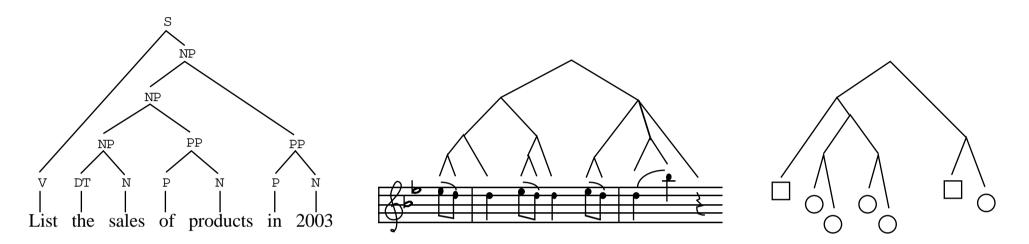


is assigned the following structure:



Perceptual structuring forms the link between low-level segmentation and higher-level interpretation algorithms

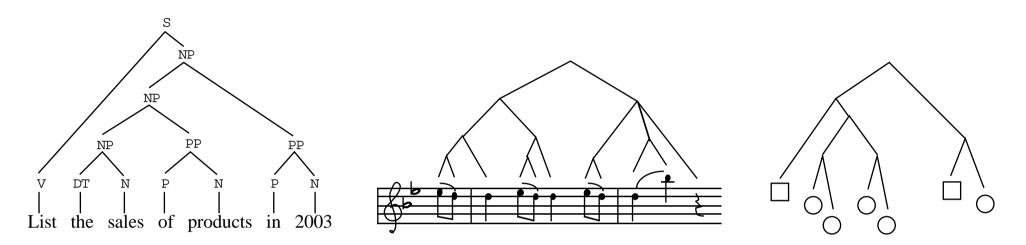
Perceptual Structure = Tree Structure



Relatively Uncontroversial:

There exists *one representation* for structural perception for all modalities

Perceptual Structure = Tree Structure



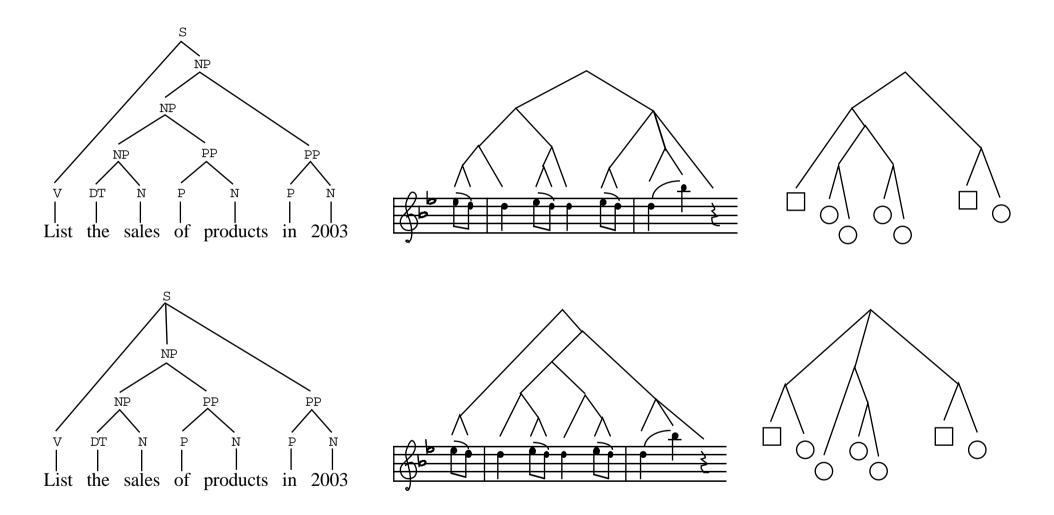
Relatively Uncontroversial:

There exists *one representation* for structural perception for all modalities

Very Controversial:

There exists one model that predicts the perceived structure in language, music en vision

Additional Problem: Perception is Ambiguous



The same input can be assigned several structures: ambiguity

Ambiguity is not just a problem

Average sentence from *Wall Street Journal* has more than **one million** different *possible* tree structures (Charniak 1999)

Adding semantics makes the problem even worse!

Ambiguity is not just a problem

Average sentence from *Wall Street Journal* has more than **one million** different *possible* tree structures (Charniak 1999)

Adding semantics makes the problem even worse!

"Any given sequence of notes is infinitely ambiguous, but this ambiguity is seldom apparent to the listener" (Longuet-Higgins 1987)

Humans perceive mostly just one grouping structure

Ambiguity is not just a problem

Average sentence from *Wall Street Journal* has more than **one million** different *possible* tree structures (Charniak 1999)

Adding semantics makes the problem even worse!

"Any given sequence of notes is infinitely ambiguous, but this ambiguity is seldom apparent to the listener" (Longuet-Higgins 1987)

Humans perceive mostly just one grouping structure

> 96% agreement among subjects (language users)

Language:	Penn Treebank
Music:	Essen Folksong Collection
Vision:	Nijmegen Visual Database

Historically, two competing principles for solving ambiguity in perception

1. Simplicity Principle (Wertheimer 1923...Leeuwenberg 2001, Chater 2003)

Preference for the *simplest* structure

2. Likelihood Principle (Helmholtz 1910...Suppes 1984, Charniak 2001)

Preference for the *most likely* structure

Can these principles still inspire us?

The Dual Nature of Perception

These principles each play a *different* role in perception:

Simplicity: general preference for "economy", "least effort", "shortest derivation"

Likelihood: a memory-based bias due to previous experiences

The Dual Nature of Perception

These principles each play a *different* role in perception:

Simplicity: general preference for "economy", "least effort", "shortest derivation"

Likelihood: a memory-based bias due to previous experiences

Hypothesis: perceptual systen strives for the *simplest* structure but in doing so it is influenced by the *likelihood* of previous structures

Possible Measures for Simplicity and Likelihood

Simplicity: *number* of "steps" to generate a tree structure

Likelihood: joint *probability* of the steps to generate a tree structure

We can compute this if we have a large, representative collection of tree structures for each modality (a "corpus")

Possible Measures for Simplicity and Likelihood

Simplicity: *number* of "steps" to generate a tree structure

Likelihood: joint *probability* of the steps to generate a tree structure

We can compute this if we have a large, representative collection of tree structures for each modality (a "corpus")

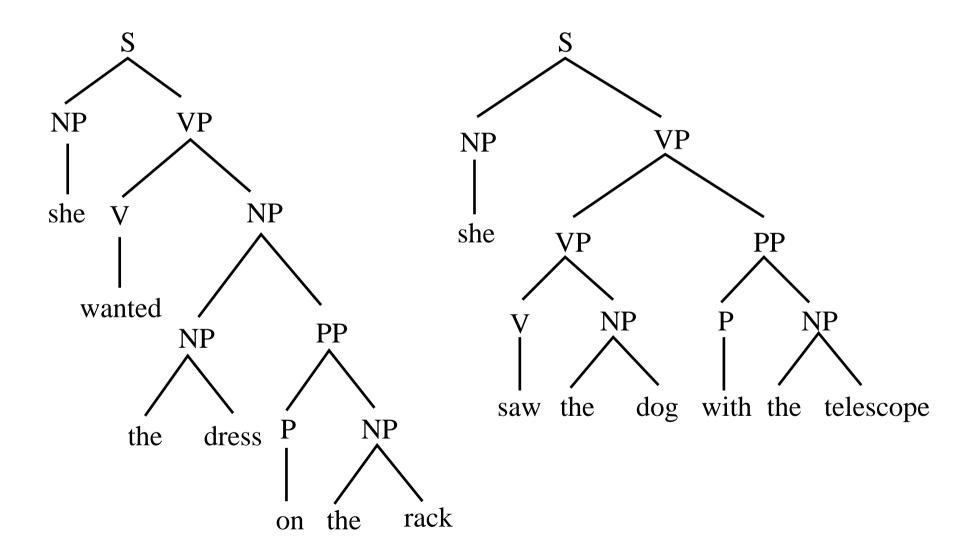
Data-Oriented Parsing model (DOP):

New input is analyzed and interpreted out of <u>parts</u> of previously perceived input

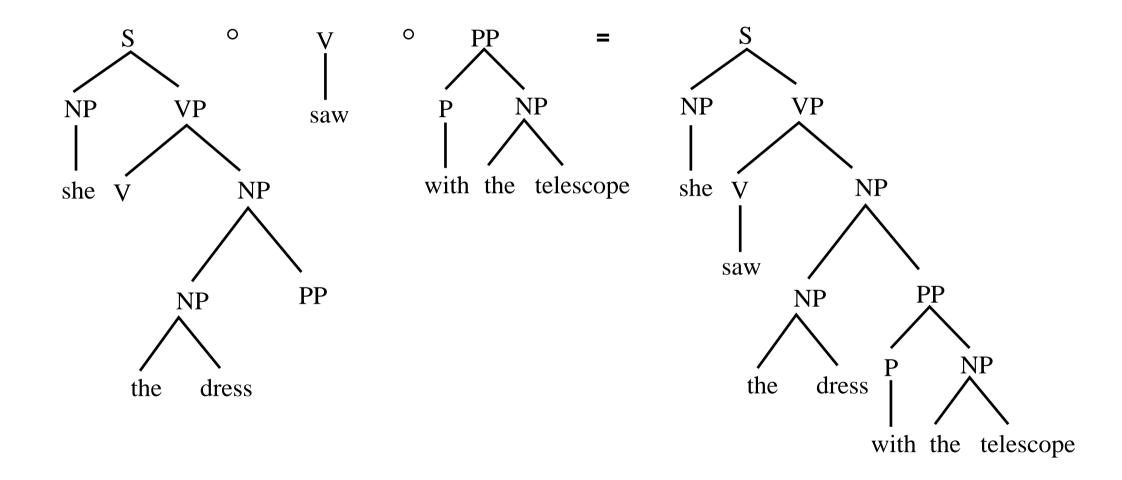
(cf. CBR, Corpus-based NLP, EBL, ...)

Example of a DOP model for Language

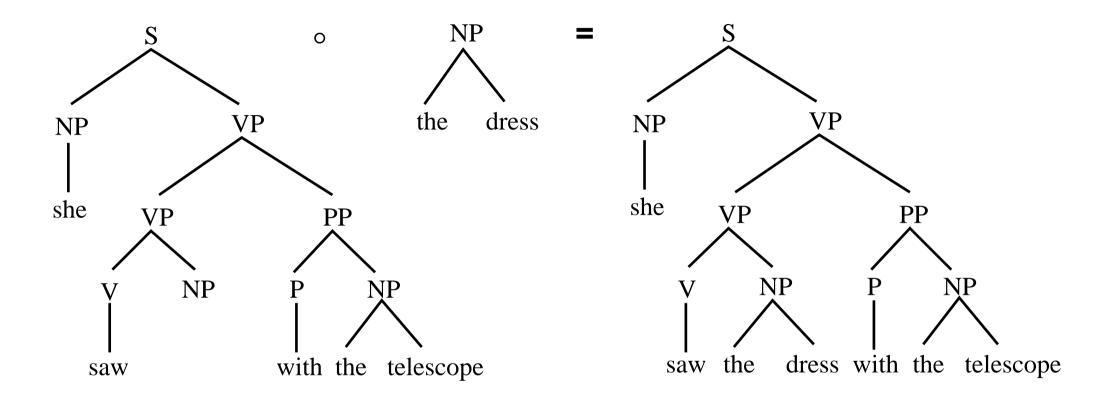
Let's start with an extremely simple corpus:



A new sentence such as "She saw the dress with the telescope" is analyzed by **combining subtrees from the corpus**



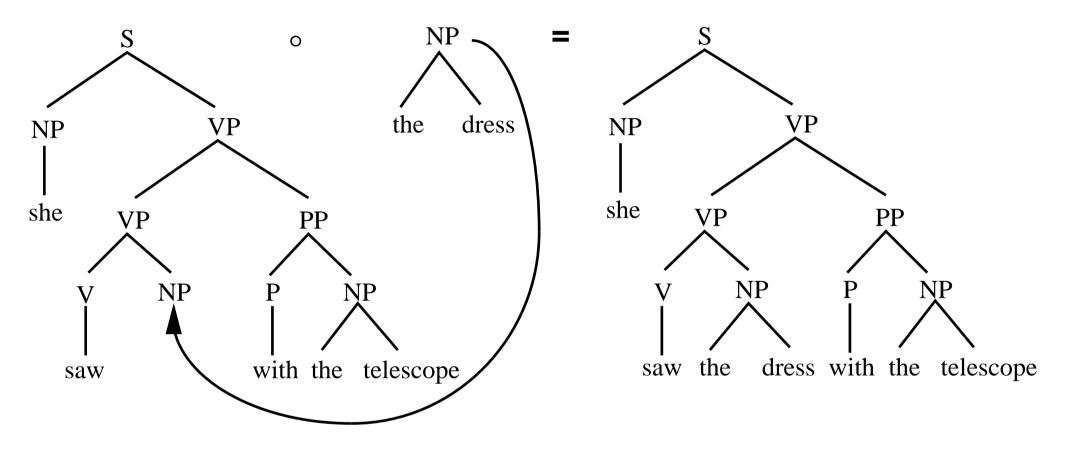
But there is also a "competing" analysis:



This analysis consists of two steps, and is therefore preferred according to the *simplicity principle*: **maximal similarity** with corpus.

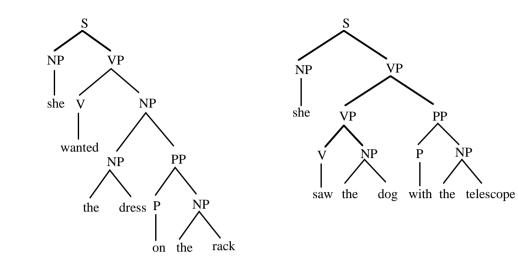
But it is **not** preferred according to the *likelihood principle*!

But there is also a "competing" analysis:

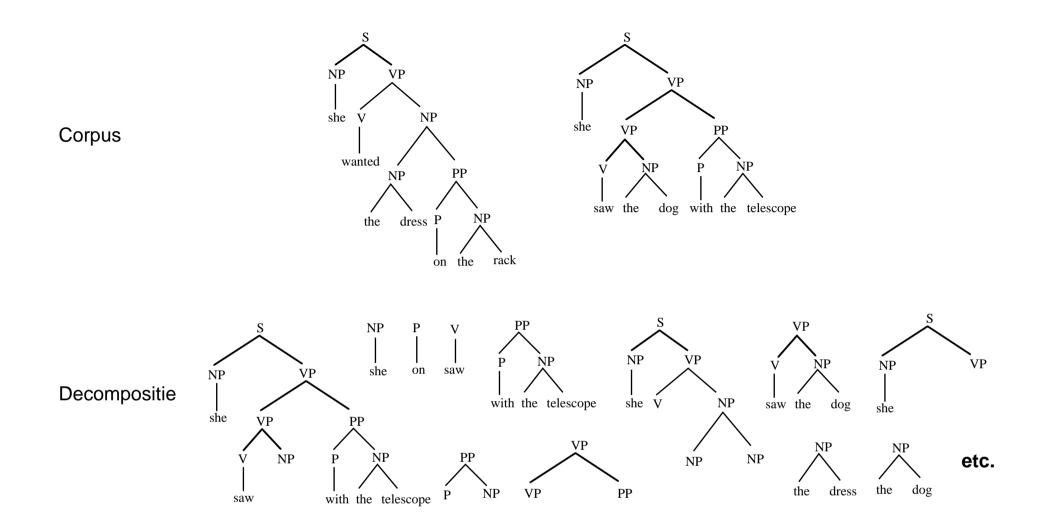


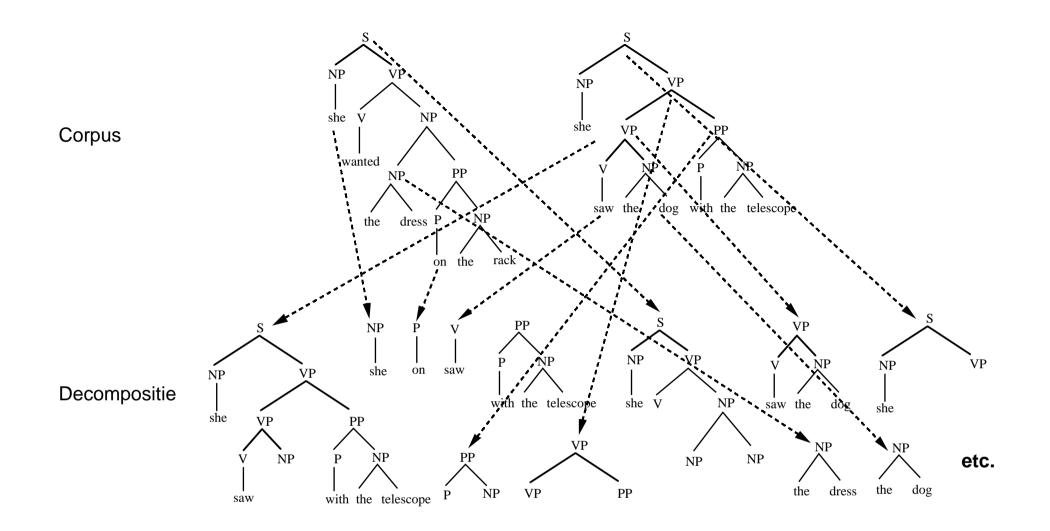
This analysis consists of two steps, and is therefore preferred according to the *simplicity principle*: **maximal similarity** with corpus.

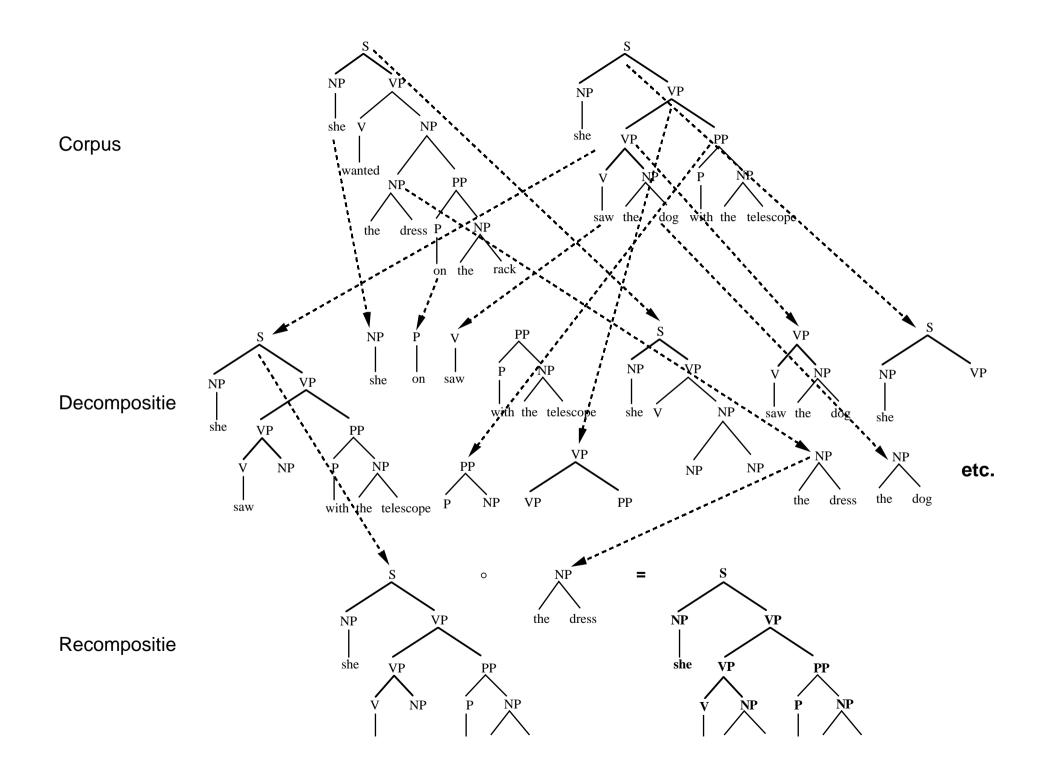
But it is **not** preferred according to the *likelihood principle*!



Corpus







DOP models are Stochastic Tree Grammars

By putting various constraints on STGs, we can instantiate:

- stochastic context-free grammars
- stochastic head-lexicalized grammars
- stochastic tree-adjoining grammars
- stochastic finite-state grammars etc...

We will focus on STSGs (Stochastic Tree Subsitution Grammars)

DOP models are Stochastic Tree Grammars

By putting various constraints on STGs, we can instantiate:

- stochastic context-free grammars
- stochastic head-lexicalized grammars
- stochastic tree-adjoining grammars
- stochastic finite-state grammars etc...

We will focus on STSGs (Stochastic Tree Subsitution Grammars)

However, we have also developed DOP models for richer structures, such as *LFG*, *HPSG*, *Logical-Semantic* and *Discourse annotations*

(e.g. Bod & Kaplan 1998, 2003; Way 2003; Neumann 2003; Bod et al. 1996; Bod 1998)

Penn Treebank, Essen Folksong Collection: Tens of thousands of analyzed sentences and folksongs

Penn Treebank, Essen Folksong Collection: Tens of thousands of analyzed sentences and folksongs

Simplest tree structure for string *s*:

Minimize number N of corpus subtrees in tree T

 $T_{best} = \arg \min_{T} N(T \mid s)$

Penn Treebank, Essen Folksong Collection: Tens of thousands of analyzed sentences and folksongs

Simplest tree structure for string *s*:

Minimize number N of corpus subtrees in tree T $T_{best} = \arg \min_{T} N(T \mid s)$

Likeliest tree structure for string s:

Maximize product of relative frequencies of subtrees t_i in T

 $T_{best} = \arg \max_{T} P(T \mid s) = \arg \max_{t_1...t_n} \prod_{i} P(t_i \mid s)$

Penn Treebank, Essen Folksong Collection: Tens of thousands of analyzed sentences and folksongs

Simplest tree structure for string *s*:

Minimize number N of corpus subtrees in tree T

 $T_{best} = \arg \min_{T} N(T \mid s)$

Likeliest tree structure for string s:

Maximize product of relative frequencies of subtrees t_i in T

$$T_{best} = \arg \max_T P(T \mid s) = \arg \max_{t_1...t_n} \prod_i P(t_i \mid s)$$

Our best hypothesis so far:

The perceptual system selects the *simplest* structure from the top of the distribution of *most probable* structures

The probability of:

a subtree t:

$$P(t) = \frac{|t|}{\sum_{t': root(t')=root(t)} |t'|}$$

a derivation $d = t_1^{\circ} \dots^{\circ} t_n$: $P(t_1^{\circ} \dots^{\circ} t_n) = \prod_i P(t_i)$

a parse tree T :
$$P(T) = \sum_{d} \prod_{i} P(t_{id})$$

where t_{id} is the *i*-th subtree in derivation *d* that produces *T*

Computational Aspects of DOP

Problem: exponentially many subtrees in DOP / STSG

Can be solved by reducing DOP to an isomorphic *Probabilistic Context-Free Grammar* or *PCFG*

Computational Aspects of DOP

Problem: exponentially many subtrees in DOP / STSG

Can be solved by reducing DOP to an isomorphic *Probabilistic Context-Free Grammar* or *PCFG*

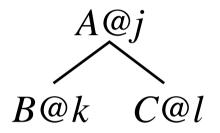
Every node in every tree in corpus is assigned a unique number:

A@kdenotes node at address k where A is nonterminal of that node

A new nonterminal is created for each node in the training data: A_k

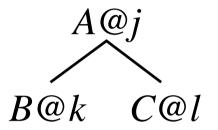
Sketch of PCFG reduction of DOP (1)

Consider a node A@j of the following form in STSG/DOP:



Sketch of PCFG reduction of DOP (1)

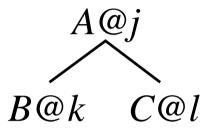
Consider a node A@j of the following form in STSG/DOP:



There are b_k non-trivial subtrees headed by B@k plus trivial case where left node is simply B.

Sketch of PCFG reduction of DOP (1)

Consider a node A@j of the following form in STSG/DOP:



There are b_k non-trivial subtrees headed by B@k plus trivial case where left node is simply B.

Thus $b_k + 1$ different possibilities on the left branch

Similarly, $c_1 + 1$ possibilities on the right branch

Thus, $a_j = (b_k + 1)(c_l + 1)$ possible subtrees headed by $A@_j$

Sketch of PCFG reduction of DOP (2)

There is a PCFG with the following property (Bod 2003; Goodman 2003):

for every subtree in training corpus headed by A, the PCFG will generate an isomorphic subderivation with probability 1/a

$A_j \rightarrow BC$	(1/aj)	$A \rightarrow BC$	(<i>1/a</i>)
$A_j \rightarrow B_k C$	(<i>b_k/a_j</i>)	$A \rightarrow B_k C$	(<i>b</i> _k /a)
$A_j \rightarrow BC_l$	(<i>cı/aj</i>)	$A \rightarrow BC_{l}$	(<i>c</i> ⊮a)
$A_j \rightarrow B_k C_l$	(<i>b</i> _k c₁/a _j)	$A \rightarrow B_k C_l$	(<i>b</i> _k c₁/a)

Sketch of PCFG reduction of DOP (2)

There is a PCFG with the following property (Bod 2003; Goodman 2003):

for every subtree in training corpus headed by *A*, the PCFG will generate an isomorphic subderivation with probability 1/*a*

$A_j \rightarrow BC$	(1/aj)	A ightarrow BC	(<i>1/a</i>)
$A_j \rightarrow B_k C$	(<i>b_k/a_j</i>)	$A \rightarrow B_k C$	(<i>b</i> _k /a)
$A_j \rightarrow BC_l$	(<i>cı/aj</i>)	$A \rightarrow BC_{l}$	(<i>c</i> ⊮a)
$A_j \rightarrow B_k C_l$	(<i>b_kcı/a_j</i>)	$A \rightarrow B_k C_l$	(<i>b</i> _k c₁/a)

Rather than using all subtrees, we can use a "compact" PCFG !

Sketch of PCFG reduction of DOP (3)

- Dynamic programming algorithm known as *Viterbi bottom*up search computes most probable derivation for input string
- Same algorithm can be used to compute *shortest derivation* (i.e. simplest tree) by assigning each subtree equal probability

Sketch of PCFG reduction of DOP (3)

- Dynamic programming algorithm known as *Viterbi bottom*up search computes most probable derivation for input string
- Same algorithm can be used to compute *shortest derivation* (i.e. simplest tree) by assigning each subtree equal probability

Thus both *likeliest* and *simplest* tree are efficiently computed

Next, we can compute the simplest among the *n* likeliest trees also by *Viterbi n best search*

Sketch of PCFG reduction of DOP (3)

- Dynamic programming algorithm known as *Viterbi bottom*up search computes most probable derivation for input string
- Same algorithm can be used to compute *shortest derivation* (i.e. simplest tree) by assigning each subtree equal probability

Thus both *likeliest* and *simplest* tree are efficiently computed

Next, we can compute the simplest among the *n* likeliest trees also by *Viterbi n best search*

• Other work has proposed different computational solutions:

Voted Perceptron (Collins), *Tree Kernels* (Bod, Duffy), *MaxEnt* (Sima'an), *MDL* (Bonnema), *E-M* (Prescher)...

Test Domains

• Linguistic test domain:

Wall Street Journal (WSJ) corpus in the Penn Treebank: 50.000 manually analyzed sentences

Test Domains

• Linguistic test domain:

Wall Street Journal (WSJ) corpus in the Penn Treebank: 50.000 manually analyzed sentences

• Musical test domain:

Essen Folksong Collection (EFC): 20.150 melodically analyzed western folksongs:

- *Pitches*: numbers from 1 to 7
- Duration indicators: underscore (_) or a period (.) after the numbers
- Octave position: plus and minus signs (+,-) before the numbers
- Chromatic alterations: "#" or "b" after the numbers
- Pauses: 0, possibly followed by duration indicators

Test Domains

• Linguistic test domain:

Wall Street Journal (WSJ) corpus in the Penn Treebank: 50.000 manually analyzed sentences : *the* benchmark in NLP

• Musical test domain:

Essen Folksong Collection (EFC): 20.150 melodically analyzed western folksongs:

- *Pitches*: numbers from 1 to 7
- Duration indicators: underscore (_) or a period (.) after the numbers
- Octave position: plus and minus signs (+,-) before the numbers
- Chromatic alterations: "#" or "b" after the numbers
- Pauses: 0, possibly followed by duration indicators
- Visual test domain: see later

Example from Essen Folksong Collection

#4551: Schneckhaus Schneckhaus stecke deine Hörner aus (German children song)

5_3_5_3_1234553_1234553_12345_3_12345_3_553_553_65432_1_

Example from Essen Folksong Collection

#4551: Schneckhaus Schneckhaus stecke deine Hörner aus (German children song)

5_3_5_3_1234553_1234553_12345_3_12345_3_553_553_65432_1_

Grouping structure according to Essen Folksong collection:

((5_3_5_3_) (1234553_) (1234553_) (12345_3_) (12345_3_) (553_553_) (553_65432_1_))

NB: linguistic phrase structure does not predict musical phrase structure!

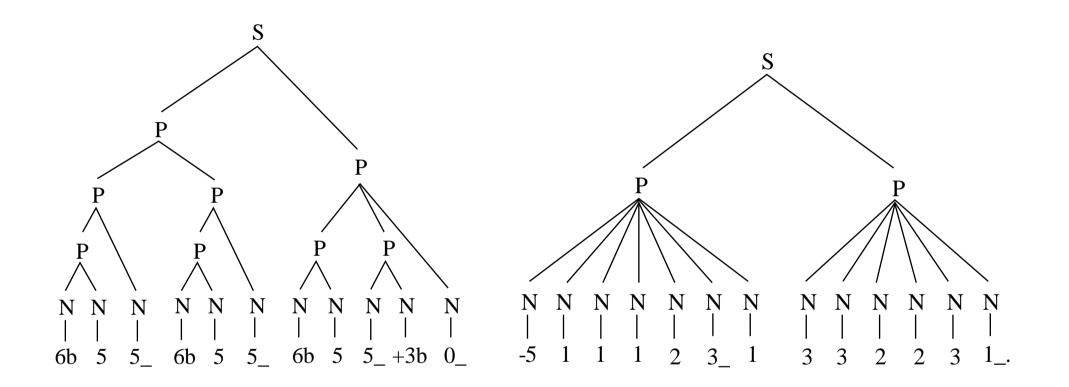
Preprocessing the Essen Folksong Annotations

• We automatically added three basic labels to the phrase structures:

"S" to each whole song "P" to each phrase "N" to each note

 In this way, we obtain conventional tree structures that can be used by DOP/STSG, or its isomorphic PCFG

Examples of some simple musical trees



Experimental Evaluation

Corpora are randomly divided into 10 training/test set splits

Experimental Evaluation

Corpora are randomly divided into 10 training/test set splits

Test 1: Simplicity-Likelihood-DOP (SL-DOP)

Selects <u>simplest</u> structure from among *n* likeliest structures

Experimental Evaluation

Corpora are randomly divided into 10 training/test set splits

Test 1: Simplicity-Likelihood-DOP (SL-DOP)

Selects <u>simplest</u> structure from among *n* likeliest structures

Test 2: Likelihood-Simplicity-DOP (LS-DOP)

Selects <u>likeliest</u> structure from among **n** simplest structures

Scores of SL-DOP & LS-DOP

	SL-DOP (simplest among <i>n</i> likeliest)		LS-DOP (likeliest among <i>n</i> simplest)	
n	Language	Music	Language	Music
1	87.9%	86.0%	85.6%	84.3%
5	89.3%	86.8%	86.1%	85.5%
10	90.2%	87.2%	87.0%	85.7%
11	90.2%	87.3%	87.0%	85.7%
12	90.2%	87.3%	87.0%	85.7%
13	90.2%	87.3%	87.0%	85.7%
14	90.2%	87.2%	87.0%	85.7%
15	90.2%	87.2%	87.0%	85.7%
20	90.0%	86.9%	87.1%	85.7%
50	88.7%	85.6%	87.4%	86.0%
100	86.8%	84.3%	87.9%	86.0%
1,000	85.6%	84.3%	87.9%	86.0%

Scores of SL-DOP & LS-DOP

	SL-DOP (simplest among <i>n</i> likeliest)		LS-DOP (likeliest among <i>n</i> simplest)	
п				
	Language	Music	Language	Music
1	87.9%	86.0%	85.6%	84.3%
5	89.3%	86.8%	86.1%	85.5%
10	90.2%	87.2%	87.0%	85.7%
11	90.2%	87.3%	87.0%	85.7%
12	90.2%	87.3%	87.0%	85.7%
13	90.2%	87.3%	87.0%	85.7%
14	90.2%	87.2%	87.0%	85.7%
15	90.2%	87.2%	87.0%	85.7%
20	90.0%	86.9%	87.1%	85.7%
50	88.7%	85.6%	87.4%	86.0%
100	86.8%	84.3%	87.9%	86.0%
1,000	85.6%	84.3%	87.9%	86.0%

Same model obtains maximal scores for both language and music

Perceptual system strives for **simplest** analysis, but "searches" only among the **most likely** analyses (see Schaefer et al. 2004 for psychological experiments)

Comparison with other work

Language: DOP outperforms Collins, Charniak, Ratnaparkhi on WSJ

 \rightarrow non-head dependencies can only be covered by subtrees without (lexical) restrictions

Comparison with other work

Language: DOP outperforms Collins, Charniak, Ratnaparkhi on WSJ

- \rightarrow non-head dependencies can only be covered by subtrees without (lexical) restrictions
- **Music**: DOP outperforms Temperley, Thom, Chang on EFC
 - → many phrases that include large intervals are not captured by harmonic, metrical or melodic "rules"

Comparison with other work

Language: DOP outperforms Collins, Charniak, Ratnaparkhi on WSJ

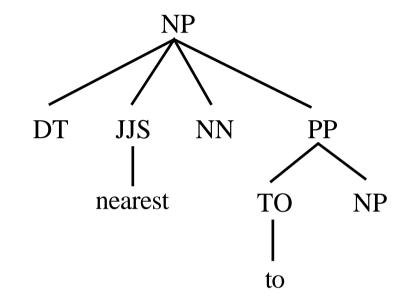
 \rightarrow non-head dependencies can only be covered by subtrees without (lexical) restrictions

Music: DOP outperforms Temperley, Thom, Chang on EFC

→ many phrases that include large intervals are not captured by harmonic, metrical or melodic "rules"

By using largest possible subtrees (simplest analysis) which occur most frequently, DOP takes into account more dependencies

Example of non-headword dependency (ATIS corpus)



E.g.: Show the nearest airport to Denver

- non-head modifier *nearest* predicts the correct PP-attachment
- Example from WSJ: *BA carried <u>more</u> people <u>than</u> cargo in 1988*

Example of "jump phrase" (EFC)

Folksong K0690:

(3_2_11-5) (-5332211-5) (-512314_2) (...

• Gestalt principles predict "wrong" phrases on large intervals:

(3_2_11-5-5) (332211-5-5) (12314_2) (...

- Parallelism, meter & harmony reinforce same "wrong" predictions!
- Many phrases reflect idiom-dependent pitch contours which cannot be predicted by rules, but only by "patterns" (Cf. Huron 1996)

The importance of large subtrees

- Large subtrees may be statistically significant though they are linguistically and musically redundant
- Continuum between "regular phrases" (*rules*) and "idiomatic phrases" (*patterns*) both in language and music
- DOP can capture the full gradience between *rules* and *patterns*

How can we apply this to Visual Structures?

Structured visual databases are still too small (<300) to get statistically significant results

How can we apply this to Visual Structures?

Structured visual databases are still too small (<300) to get statistically significant results

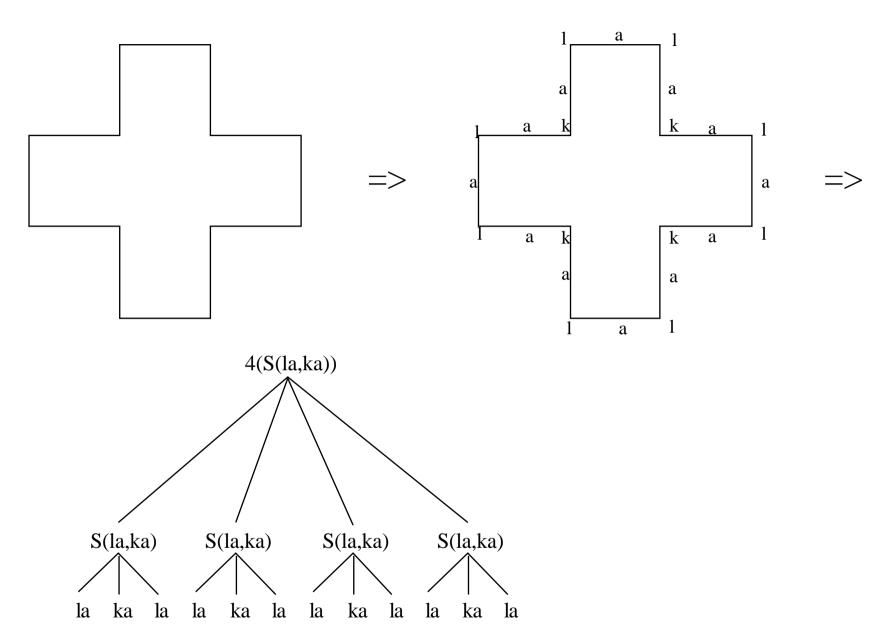
What are the primitive elements in visual perception?

In Nijmegen Visual Database: line segments, angles, a.o.

"Syntactic" categories:

symmetry (S), alternation (A), iteration (I).

Of course, we only deal with medium-level computer vision in this way



Experiments support SL-DOP, but not statistically significant

DOP is used in various AI applications

• Structural language models for speech (Bod 1998, 2000; Chelba 1998)

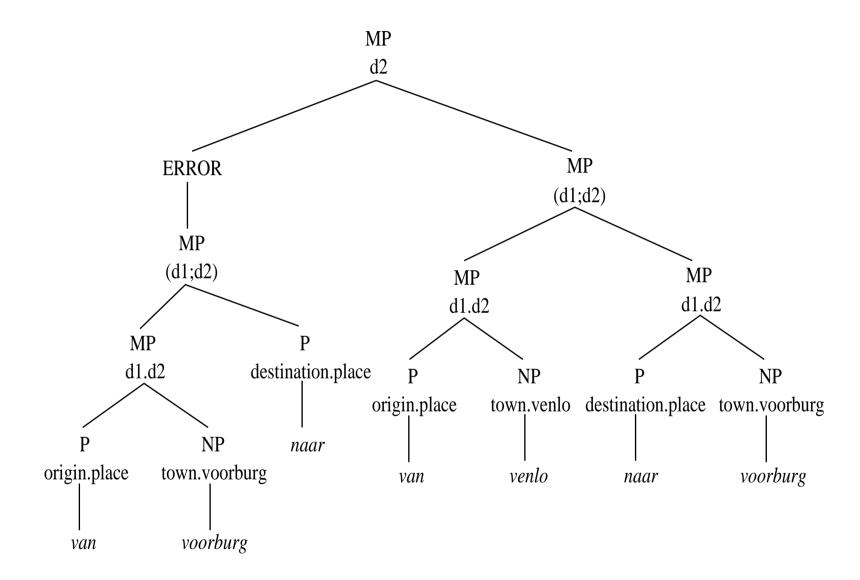
 $\operatorname{argmax}_{W} P(W | A) = \operatorname{argmax}_{W} \Sigma_{T} P(W, T | A)$

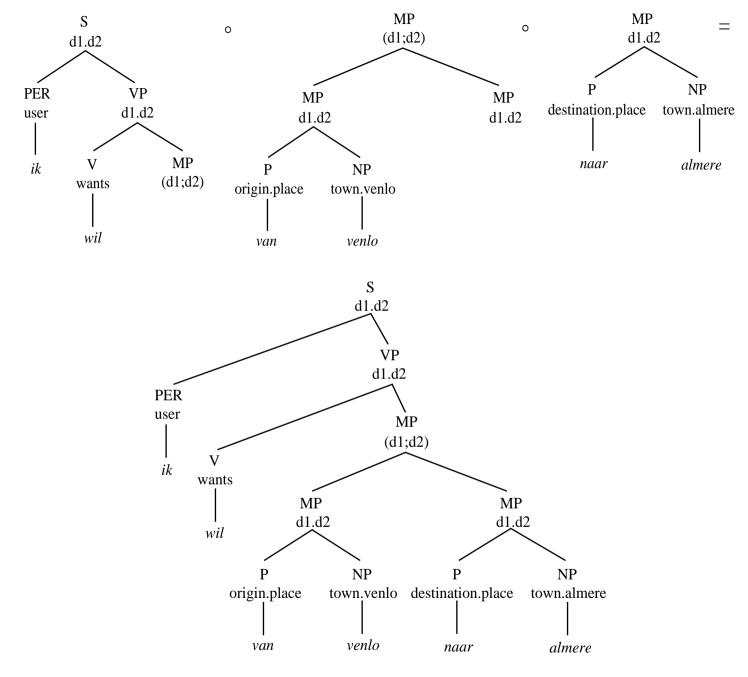
- Statistical machine translation (Hearne & Way 2004; Poutsma & Bod 2003) argmax P(Translated sentence | Source sentence)
- Musical tempo tracking systems (Zaanen, Honing & Bod 2004)

argmax P(Temporal structure | Acoustic input)

• Interactive spoken dialog systems (Bod 1999; Scha et al. 1999), used by OVIS argmax P(Interpretation, Word string | Acoustic signal)

Example of OVIS annotation used in spoken dialog





How far do exemplar-based models stretch?

• Problem solving with exemplar-based model such as DOP/STSG?

How far do exemplar-based models stretch?

- Problem solving with exemplar-based model such as DOP/STSG?
- Exemplar-based reasoning has been proposed as early as Thomas Kuhn in his account on *normal science* (in his "*Structure of* ...")

"Scientists solve problems by modeling them on previous problem-solutions" (Kuhn 1962)

How far do exemplar-based models stretch?

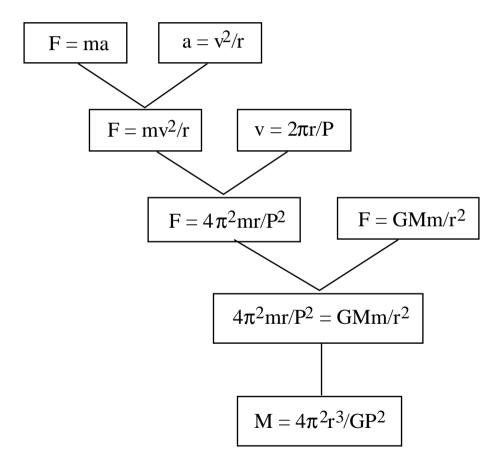
- Problem solving with exemplar-based model such as DOP/STSG?
- Exemplar-based reasoning has been proposed as early as Thomas Kuhn in his account on *normal science* (in his "*Structure of* ...")

"Scientists solve problems by modeling them on previous problem-solutions" (Kuhn 1962)

Problem-solutions in physics can be represented by derivation trees
 -- though they do not represent grouping structure

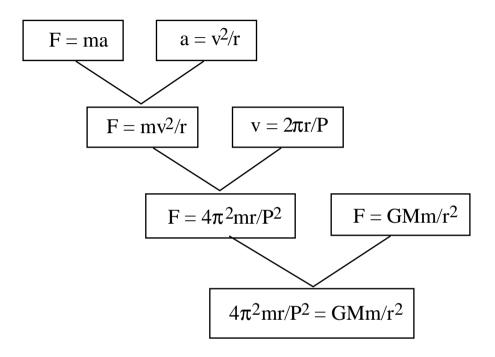
Example of derivation tree in classical mechanics

Derivation of planet's mass from a satellite's orbit using Newton's laws

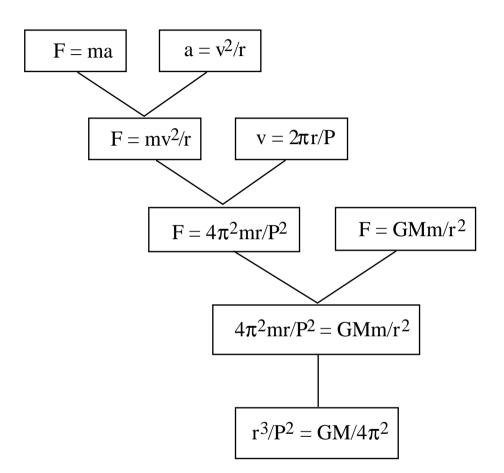


A tree describes the steps from higher-level laws to the solution (formula)

Subtrees can be reused to solve new problems

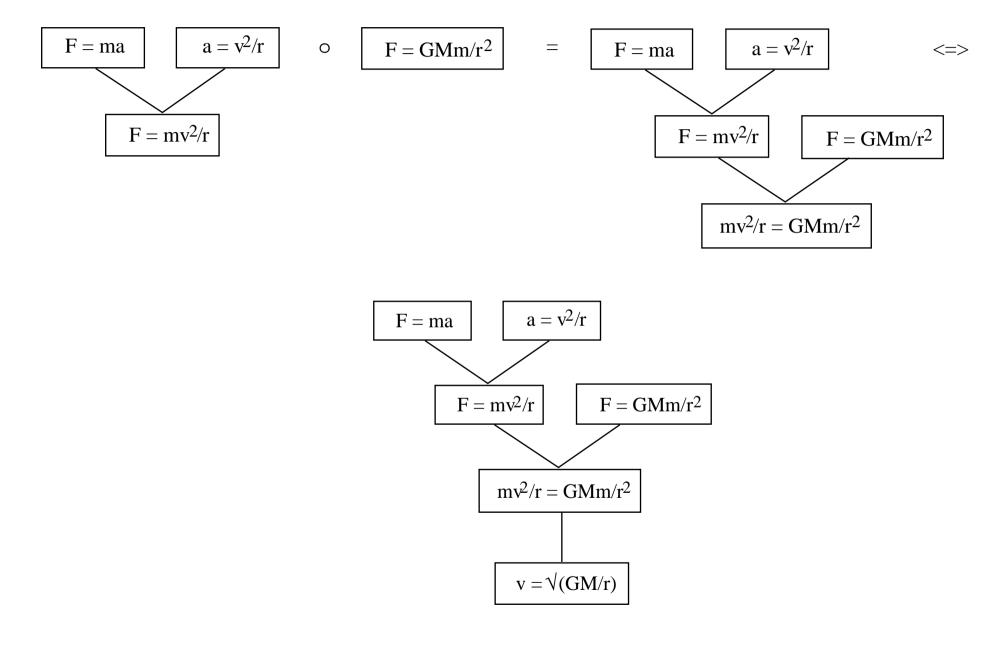


Deriving Kepler's third law by this subtree



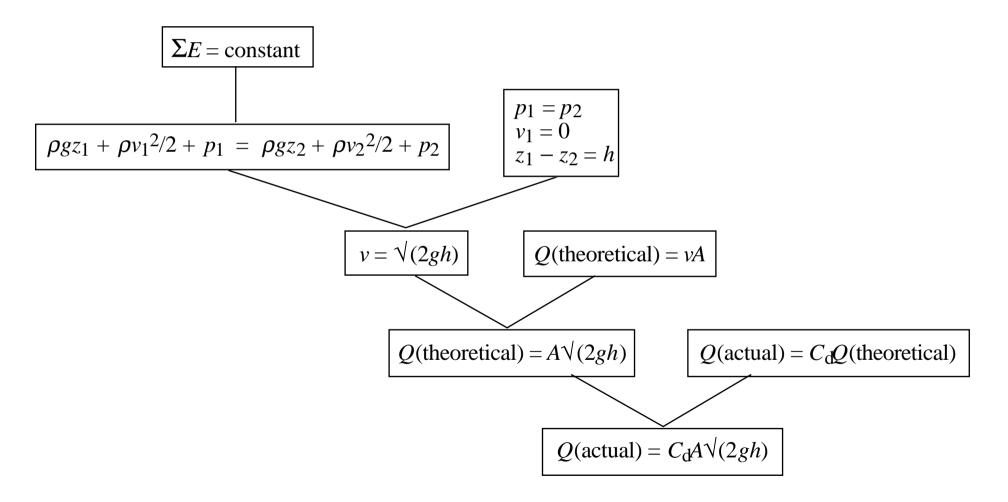
We only need to solve the last equation of the previous subtree for r^3/P^2

Often we need to combine two or more subtrees (by term rewriting)

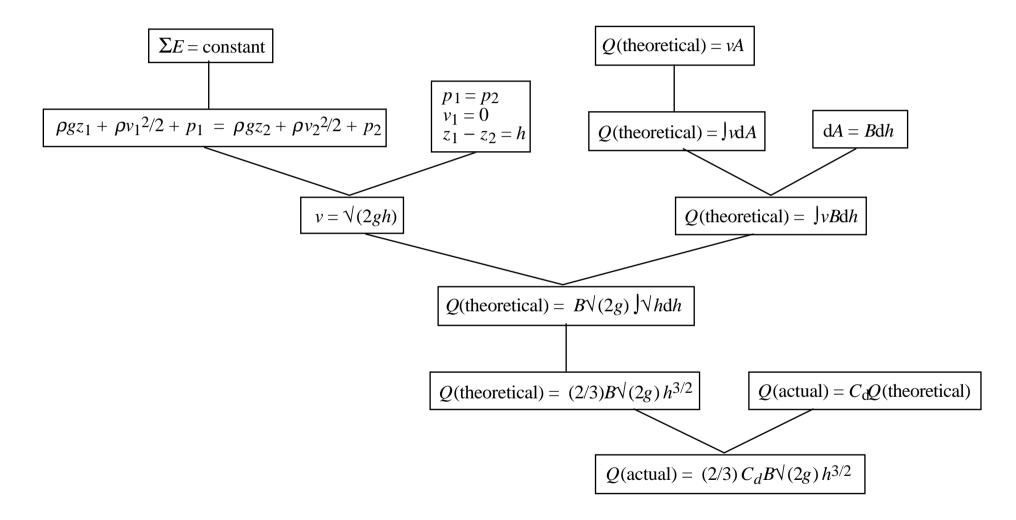


Derivation trees in fluid mechanics

E.g. derivation of *orifice* system from Bernoulli involves an ad hoc correction coefficient (Cd)



Derivation tree for a *weir* (*dam*) can still be derived by subtrees from orifice system that <u>include</u> the ad hoc correction



Simplicity and Likelihood also in problem solving

• Prefer largest possible derivational chunks, such that minimal recourse to additional derivational steps is needed

Simplicity and Likelihood also in problem solving

- Prefer largest possible derivational chunks, such that minimal recourse to additional derivational steps is needed
- Prefer more frequently occurring chunks: reflects usefulness

Simplicity and Likelihood also in problem solving

- Prefer largest possible derivational chunks, such that minimal recourse to additional derivational steps is needed
- Prefer more frequently occurring chunks: reflects usefulness
- P(Derivation-tree | Phenomenon) can be computed in a Bayesian way as in language and music, given a corpus of "exemplars"

We have just received an NWO grant for "Exemplar-Based Explanation" (one postdoc and one phd student)

• DOP provides a general framework for stochastic grammar models

- DOP provides a general framework for stochastic grammar models
- Same model achieves highest accuracy for both music and language on resp. EFC and WSJ

- DOP provides a general framework for stochastic grammar models
- Same model achieves highest accuracy for both music and language on resp. EFC and WSJ
- The model can also be used for vision, problem solving and reasoning -- as long as we can create a corpus of prior structures

- DOP provides a general framework for stochastic grammar models
- Same model achieves highest accuracy for both music and language on resp. EFC and WSJ
- The model can also be used for vision, problem solving and reasoning -- as long as we can create a corpus of prior structures
- Al should aim at developing general models for (each level of) cognition rather than particularist models for each cognitive task separately

there are autonomous levels of explanation, but without striving for underlying models AI becomes a plethora of disparate algorithms