

UNIVERSITEIT VAN AMSTERDAM Institute for Logic, Language and Computation

Core Logic 2005/2006; 1st Semester dr Benedikt Löwe

Homework Set #10

Deadline: November 22nd, 2005

Exercise 32 (total of seven points).

Let $\mathcal{L} := \{+, \cdot, 0, 1, -\}$ be the language of Boolean algebras and Φ_{BA} be the axioms of Boolean algebras. Let

$$\begin{split} \varphi &:= \quad \forall x \forall y \bigg(\big((x \neq x \cdot y) \land (y \neq x \cdot y) \big) \to (x \cdot y = 0) \bigg), \\ \psi &:= \quad \exists x \big((x \neq 0) \land (x \neq 1) \big). \end{split}$$

Let Φ_0 , Φ_1 , Φ_2 , and Φ_3 be the deductive closures of Φ_{BA} , $\Phi_{BA} \cup \{\neg\psi\}$, $\Phi_{BA} \cup \{\varphi\}$, and $\Phi_{BA} \cup \{\varphi, \psi\}$, respectively. Investigate whether Φ_i is a complete theory. If it isn't, give a formula σ such that $\sigma \notin \Phi_i$ and $\neg \sigma \notin \Phi_i$. If it is complete, give a brief argument why. (1 point each for Φ_0 and Φ_1 , 2 points for Φ_2 , 3 points for Φ_3 .)

Exercise 33 (total of three points).

Give the names of the following logicians and mathematicians (1 point each):

- X was one of the students of David Hilbert who was a teacher at the *Gymnasium* Arnoldinum from 1929 to 1948.
- Y was an important figure in the history of the *Deutsche Mathematiker-Vereinigung*. He was married to the granddaughter of Hegel, and is popularly known for the "Y bottle", a two-dimensional manifold not embeddable into \mathbb{R}^3 .
- Z received his PhD degree in 1924 at the UvA for a thesis entitled *Intuitionistische axiomatiek der projectieve meetkunde* and was the PhD supervisor of a (retired) ILLC member.

(*One extra point:* What is the canonical webpage for finding information about supervisor-student relations in mathematics?)

Exercise 34 (total of five points).

Let $\mathbf{P} := \langle P, \leq \rangle$ be a **partial preorder** (*i.e.*, \leq is a reflexive and transitive relation). For $x, y \in P$, define $x \equiv y$ by $x \leq y \& y \leq x$. Show that \equiv is an equivalence relation (1½ points). Let $D := P/\equiv$ be the set of \equiv -equivalence classes. For $\mathbf{d}, \mathbf{e} \in D$, define $\mathbf{d} \leq \mathbf{e}$ if and only if there are $x \in \mathbf{d}$ and $y \in \mathbf{e}$ such that $x \leq y$. Show that this is well-defined (2 points) and that $\langle D, \leq \rangle$ is a partial order (1½ points).

Exercise 35 (total of seven points).

- (1) Find wellorders W and W^{*} such that $W \oplus W^*$ is not isomorphic to $W^* \oplus W$ and explain why (2 points).
- (2) Similarly, find wellorders W and W^{*} such that $W \otimes W^*$ is not isomorphic to $W^* \otimes W$ and explain why (2 points).
- (3) In the first two tasks, you can choose one wellorder to be finite. Why can't both wellorders be finite in such an example (1 point)?
- (4) Consider $\mathbf{L} := \langle \mathbb{Q}, \leq \rangle$ to be the rational numbers with the usual ordering. Find out whether $\mathbf{L} \oplus \mathbf{L}$ is isomorphic to \mathbf{L} and give an argument (2 points).

Hint. The Cantor Isomorphism Theorem (sometimes called "back-and-forth theorem") for countable linear orders may help. If you use it, you don't have to prove it, but please state it clearly with a proper reference to the literature and make sure that you apply it properly.