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Hyperbolic polynomials

Definition
A homogeneous polynomial h ∶ Rn+1 → R is called hyperbolic if ∃p ∈ {h > 0},
such that −∂2hp has Minkowski signature. Such a point p is called hyperbolic
point of h.

● two hyperbolic polynomials h, h̃ equivalent ∶⇔ ∃A ∈ GL(n+ 1), such that
A∗h̃ = h

● there is precisely one equivalence class of quadratic hyperbolic
polynomials in each dimension

● there is no general classification for higher degree deg(h) ≥ 3
● in the following: hyp1(h) ∶= {hyperbolic points of h} ∩ {h = 1}

Definition
Open subsets of hyp1(h) are called projective special real (PSR) manifolds for
deg(h) = 3, and generalised PSR (GPSR) manifolds for deg(h) ≥ 4.

3 / 24



Example: The level set {hi = 1}, i ∈ {1, 2}, for h1 = x4 − x2(y2 + z2) − 2
√

2
3
√

3 xy3

and h2 = xyz

● note: hyp1(h1) ⊊ {h1 = 1}, hyp1(h2) = {h2 = 1}
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Remark
hyp1(h) admits a natural Riemannian metric g that is given by the
restriction of

−∂2h

to T hyp1(h) × T hyp1(h).

● g is the centro-affine fundamental form determined by the centro-affine
Gauß equation

DXY = ∇ca
X Y + g(X, Y )ξ,

● D = flat connection on ambient Rn+1

● ∇ca = induced centro-affine connection in T hyp1(h)
● ξ = position vector field in Rn+1

5 / 24



Motivation 1: Supergravity

Explicit constructions of special Kähler and quaternionic Kähler manifolds:

● supergravity r-map constructs from given PSR manifold H a projective
special Kähler (PSK) manifold M ≅ Rn+1 + iR>0 ⋅H [DV’92, CHM’12]

● supergravity c-map constructs from given PSK manifold M a
(non-compact) quaternionic Kähler manifold N ≅M ×R2n+5 ×R>0
[FS’90]

● above constructions preserve geodesic completeness

M̃
rigid c-map

//

ASK/PSK

��

Ñ

HK/QK

��
H

??

sugra r-map
// M sugra c-map

// N
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Motivation 2: Kähler geometry
Geometry of Kähler cones [DP’04, W’04, TW’11]:
● for X a compact Kähler τ -fold, the homogeneous polynomial

h ∶H1,1(X;R) → R, [ω] ↦ ∫
X

ωτ ,

is hyperbolic since every point in the Kähler cone K ⊂H1,1(X;R) is
hyperbolic by the Hodge-Riemann bilinear relations

● H ∶= {h = 1} ∩K is a (G)PSR manifold for τ ≥ 3
● in general, H is not a connected component of hyp1(h)
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Motivation 3: Combinatorial geometry

Lorentzian polynomials [BH]:
● a degree τ ≥ 2 homogeneous polynomial h ∶ Rn+1 → R is strictly

Lorentzian if
(i) −∂i1 . . . ∂in−1 h has Minkowski signature ∀ i1, . . . , in−1 ∈ {1, . . . , n − 1}
(ii) h has only positive coefficients

● Lorentzian polynomials ∶= limits of Lorentzian polynomials in vector
space Symτ(Rn+1)∗

● Lorentzian polynomials have applications in matroid theory and in the
geometry of Kähler cones [BH]

Remark [BH, Thm, 2.16]

Strictly Lorentzian polynomials are hyperbolic, i.e. every point in Rn+1
>0 is

hyperbolic.
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Question 1: Which hyperbolic/strictly Lorentzian polynomial can be realised
as the volume polynomial of some compact Kähler manifold?

Question 2: What does the geometry of the volume polynomial, i.e. of the
Riemannian manifold hyp1(h), tell us about the underlying Kähler manifold?

↝ We take the following (hopefully realistic) approach:
● Restriction 1: cubic hyperbolic polynomials, respectively compact Kähler

3-folds
● Restriction 2: smooth projective toric 3-folds for the considered Kähler

manifolds
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Why these restrictions?

Cubic hyperbolic polynomials

● global geometry a connected component H of hyp1(h) is complete w.r.t
centro-affine metric g iff H ⊂ Rn+1 is closed

● have some classification results for corresponding PSR manifolds:
(i) curves [CHM’12], 3 equivalence classes (2 closed, 1 homogeneous space)
(ii) surfaces [CDL’14], 7 equivalence classes (5 + 1 one-parameter family

closed, 2 homogeneous spaces)
(iii) reducible h [CDJL’17]
(iv) homogeneous PSR manifolds [DV’92]

While not completely understood in general dimension, the moduli space of
hyperbolic cubics cubics has the following characterisation:

Theorem [L’19]
Let y ∶= (y1, . . . , yn)T, and let h ∶ Rn+1 → R be a hyperbolic cubic. Then

(i) h ≅ x3 − x(y2
1 + . . . + y2

n) + P3(y), where P3 ∶ Rn → R is homogeneous of
degree 3

(ii) hyp1(h) contains a complete connected component iff ∃ choice for P3,
such that ∥P3∥ ∶=max

∣y∣=1
P3(y) ≤ 2

3
√

3 .
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● can roughly split up study of the moduli space of hyperbolic cubics h in
standard form x3 − x⟨y, y⟩ + P3(y) into whether ∥P3∥ ≤ 2

3
√

3 , or
∥P3∥ > 2

3
√

3
● if h is in standard form, P3-term gives information about the connected

component of hyp1(h) that contains (x, y) = (1, 0)
● the standard form with ∥P3∥ ≤ 2

3
√

3 allows us to describe the asymptotic
geometry of complete connected components of hyp1(h), these are again
complete PSR manifolds [L’20] and describe the boundary points of
GL(n + 1)-orbits in the moduli space.
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Smooth projective toric 3-folds

● for our purpose, need the fan picture to describe torics
● toric 3-folds X are described by their moment polytope M in R3

● alternatively, describe X by the fan Σ with cones spanned by the
faces/edges/vertices of the dual polytope N

Remark [BP]
A toric 3-fold XΣ corresponding to a finite fan Σ in R3 is smooth &
projective if Σ is

(i) complete, i.e. the union of the cones in Σ is R3,
(ii) simplicial, i.e. the generators η1, . . . , ηm of the rays in Σ are contained in

an integer lattice,such that for each 3-d. cone C(ηi, ηj , ηk) in Σ, we have

∣det(ηi∣ηj ∣ηk)∣ = 1.
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Calculating the volume polynomial
Question: How do we calculate the volume polynomial h of XΣ from the
combinatorial data in Σ?

Theorem [BP, CLS]
Let XΣ be a smooth projective toric 3-fold with fan Σ. Let η1, . . . , ηm denote
the generators of the rays in Σ, and assign a formal variable vi to each ηi.
Then there is a ring isomorphism

H∗(XΣ,Z) ≅ Z[v1, . . . , vm]/(IΣ + JΣ)

where
● the vi on the right hand side are of degree two
● IΣ is the Stanley-Reisner ring (or: face ring) of Σ, i.e.

IΣ ∶= (vi1 . . . vin ∣ ij ≠ ik, C(ηi1 , . . . , ηin) ∉ Σ) ,

● JΣ is the ideal generated by solutions of

(η1∣ . . . ∣ηm)
⎛
⎜
⎝

v1
⋮

vm

⎞
⎟
⎠
= 0
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note:
● m ≥ 4, otherwise completeness cannot be satisfied
● H∗(XΣ,R) ≅H∗(XΣ,Z) ⊗R
● H2(XΣ,Z) ≅H1,1(XΣ,Z)

↝ in the following, will assume wlog that (ηm−2∣ηm−1∣ηm) = (
1 0 0
0 1 0
0 0 1
), can

always be obtained via acting with SL(2,Z)

Calculating hΣ

With our assumptions, {[v1], . . . , [vm−3]} is a basis of H1,1(XΣ,R). Since
H3(XΣ,R) is 1-dimensional, we have

hΣ = hΣ(x1, . . . , xm−3) = (
m−3
∑
i=1

xi[vi])
3

.
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Examples of volume polynomials

Example 1
CP 3 is smooth projective toric, and one fan Σ is given by

Σ = {C(e1, e2, e3), C(e1, e2, η), C(e1, η, e3), C(η, e2, e3)}
∪ {C(e1, e2), C(e1, e3), C(e1, η), C(e2, e3), C(e2, η), C(e3, η)}
∪ {C(e1), C(e2), C(e3), C(η)},

η = −e1 − e2 − e3. Then
hΣ = x3

1[v3
1].

↝ as expected, but boring (for our purposes)
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Example 2
(CP 1)3 is smooth projective toric, and one fan Σ is determined by its
3-dimensional cones

3-d. cones of Σ = C(±e1,±e2,±e3).

The volume polynomial is given by

hΣ = (x1[v1] + x2[v2] + x3[v3])3

= 3x1x2x3[v1v2v3].

↝ to actually find the above polynomial, make use of

IΣ = (v1v4, v2v5, v3v6),
JΣ = (v4 − v1, v5 − v2, v6 − v3),

⇒ [v2
i ] = [0] for all 1 ≤ i ≤ 3

↝ hyp1(hΣ) is a homogeneous surface, which is flat w.r.t. centro-affine
fundamental form
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Blowup construction on the level of fans

● in order to make use of the toric minimal model programme (tmmp), we
need to understand blowups at a point and along curves, and “flips” on
the level of fans

● need to make sure to stay in class of smooth projective toric 3-folds

Blowup in a point
Blowing up XΣ in a point correspond to
● choosing a 3-d. cone C(ηi, ηj , ηk) in Σ
● constructing a new ray ηm+1 = ηi + ηj + ηk

● building a new fan Σ′ via

3-d. cones of Σ′ = 3-d. cones of Σ ∖ {C(ηi, ηj , ηk)}
∪ {C(ηi, ηj , ηm+1), C(ηi, ηm+1, ηk), C(ηm+1, ηj , ηk)}

● this completely determines Σ′

● Σ′ is complete & simplicial, hence XΣ′ is a smooth projective toric
3-fold

↝ the above process is a certain type of star subdivision
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Proposition (DL, AS)

Let Σ be a complete simplicial fan. Suppose Σ′ is obtained via a one-point
blowup (in the tmmp). Then

(i) hΣ′ ≅ hΣ + x3
m+1, (which is nice)

(ii) every connected component of hyp1(hΣ′) is not closed in Rm−2

Proof sketch:
● (i) follows from a calculation and uses that 1

6 ∂3hΣ(U, V, W ) = [UV W ]
and that hΣ′ is hyperbolic

● the second point (ii) follows from the fact that for all planes E ⊂ Rm−2,
such that E /⊂ {xm+1 = 0}, hΣ′ ∣E is equivalent to x3 + y3

● hyp1(x3 + y3) has two isometric, non-closed connected components

↝ next, blowing up along a curve
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Blowup in along a curve
Blowing up XΣ along a curve correspond to
● choosing two 3-d. cones C(ηi, ηj , ηk), C(ηi, ηℓ, ηk) in Σ, so that

C(ηi, ηk) ∈Σ, and ηℓ = −ηj +Aηi +Bηk

● constructing a new ray ηm+1 = ηi + ηk

● building a new fan Σ′ via

3-d. cones of Σ′ = 3-d. cones of Σ ∖ {C(ηi, ηj , ηk), C(ηi, ηℓ, ηk)}
∪ {C(ηi, ηj , ηm+1), C(ηj , ηk, ηm+1),

C(ηi, ηℓ, ηm+1), C(ηk, ηℓ, ηm+1)}

● this completely determines Σ′

● Σ′ is complete & simplicial, hence XΣ′ is a smooth projective toric
3-fold

↝ the above is another type of star subdivision
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↝ unfortunately, the situation is more complicated when looking at hΣ′

compared to the one-point blowup:

Proposition (DL,AS)

Let Σ be a complete simplicial fan. Suppose Σ′ is obtained via a one-point
blowup (in the tmmp). Wlog assume that the new ray corresponds to the two
3-d. cones

C(e1, e2, e3), C(e1,−e2 + ae1 + ce3, e3), ηm+1 = e1 + e3.

Let further N = (η1∣ . . . ∣ηm−4), ṽ = ([v1], . . . , [vm−4])T). Then

hΣ′ = hΣ + (−
3(a + c + 1)

ac
x2

m−3xm+1 + 3xm−3x2
m+1 + x3

m+1)

⋅ ( ac

a2 + ac + c2 + a + c
([e∗1(Nṽ)e∗3(Nṽ)vm−3]

+[(ae∗3(Nṽ) + ce∗1(Nṽ))v2
m−3])

+ a2c2

a2 + ac + c2 + a + c
[v3

m−3]) .

↝ no easy to see general conclusion (for now)
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Since there is no nice general result yet, we consider two examples:

Blowup of CP 3 along a curve
We have

3-d. cones of Σ = {C(e1, e2, e3), C(e1, e2, η), C(e1, η, e3), C(η, e2, e3)},

and

3-d. cones of Σ′ = 3-d. cones of Σ ∖ {C(e1, e2, e3), C(e1, η, e3), C(e1, e3)}
∪ {C(e1, e2, µ), C(e1, η, µ), C(e2, e3, µ), C(e3, η, µ)}

where µ = e1 + e3. With

IΣ = (v1v2v3v4), JΣ = (v2 − v1, v3 − v1, v4 − v1),
IΣ′ = (v2v4, v1v3v5), JΣ′ = (v2 − v1 + v5, v3 − v1, v4 − v1 + v5).

we obtain

hΣ′ = hΣ + (−3x1x2
5 − 2x3

5)[v3
1].

● hΣ′ ≅ x3 − xy2 + 2
3
√

3 y3

● hyp1(hΣ′) is a homogeneous space.
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Blowup of (CP 1)3 along a curve

Modulo calculations, we obtain

hΣ = x1x2x3[v1v2v3],
hΣ′ = 3x2 (x1x3 − x2

7) [v1v2v3].

● hyp1(hΣ) has 4 equivalent connected components and is a
homogeneous space (flat) [CDL’14]

● hyp1(h′Σ) has 2 equivalent connected components and, again, is a
homogeneous space (constant negative curvature) [CDJL’17]
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What type of result can we expect in general, including flips?

We conjecture that the following holds:

Conjecture
Let hΣ be the volume cubic of a smooth projective toric 3-fold. Then for any
standard form x3 − x⟨y, y⟩ + P3(y) of hΣ, such that (x, y) = (1, 0) is a Kähler
class, P3 fulfils either

∥P3∥ =
2

3
√

3
, hyp1(hΣ) is a homogeneous space,

or

∥P3∥ >
2

3
√

3
, c.c. of hyp1(hΣ) containing a Kähler class is incomplete.

↝ if true, the above would disqualify most smooth projective toric 3-folds as
toy models for supergravity
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Thank you for your attention!
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