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Transversality

There are various ways in which one can motivate the concept of transversality. Let
us start from

Question 1. Suppose we are given a submanifold Z ⊆ N of a smooth manifold N .
Which conditions on a map f :M → N will ensure that the preimage f−1(Z) ⊆M is
necessarily a submanifold?

To start analyzing this question, note that for every q ∈ Z, we can find a submanifold
chart, i.e. a diffeomorphism ψ : V → ψ(V ) ⊆ Rn such that ψ(Z∩V ) = ψ(V )∩Rk×{0},
where n = dimN and k = dimZ. Now consider the open subset U := f−1(V ) ⊆ M .
For a point x ∈ U we have

f(x) ∈ Z ⇐⇒ ψ ◦ f(x) ∈ Rk × {0}
⇐⇒ πRn−k ◦ ψ ◦ f(x) = 0.

So one way to ensure that f−1(Z) ∩ U is a submanifold of M is to require that 0 is a
regular value of the map

h := πRn−k ◦ ψ ◦ f : U → Rn−k.

Note that for x ∈ h−1(0) the differential (πRn−k)∗,0 ◦ ψ∗,f(x) = πRn−k ◦ ψ∗,f(x) vanishes
on Tf(x)Z, so the differential h∗,x : TxM → T0Rn−k will be surjective if and only if
f∗,x : TxM → Tf(x)N maps TxM onto a subspace containing a complement of Tf(x)Z ⊆
Tf(x)N . This is one way to motivate

Definition 1. A map f : M → N is called transverse to a submanifold Z ⊆ N if for
all points x ∈ f−1(Z) one has

(1) f∗,x(TxM) + Tf(x)Z = Tf(x)N.

We use the notation f ⋔ Z to denote the fact that f is transverse to Z.

The above discussion is now summarized by

Theorem 1. If f :M → N is transverse to the submanifold Z ⊆ N , then f−1(Z) is a
submanifold of M of dimension

dimM + dimZ − dimN. □

In the discussion so far, we implicitly assumed that M , N and Z have no boundary.
For later reference, we now state two more general versions.

Theorem 2. Suppose M is a manifold with boundary and Z ⊆ N has no boundary,
and let f : M → N be a smooth map. If both f and f |∂M are transverse to Z, then
f−1(Z) ⊆M is a submanifold with boundary f−1(Z) ∩ ∂M . □

Theorem 3. Suppose M has no boundary, but Z ⊆ N is a submanifold with boundary.
If f : M → N is transverse to both Z and ∂Z, then f−1(Z) is a submanifold with
boundary f−1(∂Z). □



Transversality

The proof of Theorem 2 directly follows from our earlier discussion of preimages of
regular values in submanifolds with boundary, and the situation of Theorem 3 is a
special case of a sublevel set of a regular value, which we also treated earlier.
Here are two simple examples illustrating these situations:

Example 1. Let M := [−1, 1] × R2, let N = R2 and let Z = R × {0} ⊆ R2. Consider
f :M → N given by f(x, y, z) = (x, y). Both f and f |∂M are transverse to Z, and the
preimage f−1(Z) ⊆M is the strip S = {(x, 0, z) ∈M}.
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Example 2. Let M = R2, N = R and Z = [−1, 1] ⊆ R. This time, we consider the
map f : M → N given by f(x, y) = x. This is a submersion, so it is transverse
to any submanifold of the target N , in particular also to Z and ∂Z. The preimage
f−1(Z) ⊆M is the strip S = [−1, 1]× R.
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Question 2. What happens when both M and Z are allowed to have boundary?

Before we continue, we make a few further remarks on the definition of transversality.

Remarks 1.

• If Z = {q} ⊆ N is a single point, the transversality of f : M → N just means
that the point q ∈ N is a regular value.

• For Z = N , every map is transverse to Z. Note that the above theorems are
not very interesting in this case.

• A submersion f :M → N is transverse to every submanifold Z ⊆ N .
• A map f : M → N with f(M) ∩ Z = ∅ trivially satisfies the conditions for
transversality to Z.

• If dimM + dimZ < dimN , then the condition (1) cannot be achieved for
dimension reasons. So in this case transversality of f to Z means f(M)∩Z = ∅.

• An interesting situation arises when f :M → N is an embedding of a subman-
ifold. In this case, if f is transverse to another submanifold Z ⊆ N , then the
intersection M ∩ Z is a submanifold of M , of Z and of N .

The results so far in some sense explain why transversality is desirable. Our next goal
is to prove that it is also typical, in the sense that starting from an arbitrary map f it
can be achieved by a suitable small perturbation.

Remark 2. The subset of maps transverse to a given submanifold is open in both the
strong and weak topologies on C∞(M,N). We will not get into the details of this
statement, as a discussion of these topologies (which agree when M is compact) would
lead us too far from the main aims of this course. The interested reader is invited to
consult the book [1] on this topic.

The next fact is very simple, but so useful that we state it as a separate lemma.

Lemma 4. Suppose the submanifold Z ⊆ N is embedded as a closed subset of N , and
f : M → N is a smooth map. Then the subset Tf ⊆ M of points p ∈ M at which
transversality of f to Z holds is an open subset of M .

Proof. The set Tf is the union of two sets, namely the set T1 of points whose images
under f avoid Z, and the set T2 of points that get mapped to Z under f and where
condition (1) holds.
Under the assumption of the lemma, the set T1 = f−1(N \ Z) =M \ f−1(Z) is clearly
open in M . Therefore it remains to show that all points in T2 are interior points of Tf .
To prove this, let p ∈ T2 be given, and let q = f(p). Pick a submanifold chart
ψ : V → ψ(V ) ⊆ Rn for Z near q with ψ(q) = 0 and ψ(Z ∩ V ) = ψ(V ) ∩ Rk × {0}.
As f satisfies the condition (1) at p, we know that πRn−k maps ψ∗,f(p) ◦ f∗,p(TpM)
surjectively onto Rn−k. As surjectivity of a linear map is equivalent (in coordinates) to
the nonvanishing of the determimant of a suitable minor, this is an open condition. So
there is an open neighborhood W ⊆ M of p such that for any x ∈ W either f(x) /∈ Z
or (1) is satisfied at x. This shows that p is also an interior point of Tf . As p ∈ T2 was
arbitrary, this completes the proof of the lemma. □

Remark 3. A compact submanifold is automatically a closed subset. The condition
excludes examples like Z = R \ {0} ⊆ R2. Indeed, for this Z and the inclusion map
f : R ↪→ R2 we have Tf = {0}, which is not open in R.

The main tool in proving that transversality is very common is provided by the following
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Theorem 5 (Transversality for families). Suppose M , X, and N are manifolds (we
assume that ∂X = ∅), and

F :M ×X → N

is a smooth map transverse to the submanifold Z ⊆ N without boundary. If ∂M ̸= ∅,
we also require that F |∂M×X is transverse to Z.
Then for almost all x ∈ X the map

Fx :M −→ N

p 7→ F (p, x)

is transverse to Z.
Moreover, if M is compact and Z ⊆ N is a closed subset, then the set of such points
x ∈ X is open and dense.

Proof. By our assumption, the subset Y := F−1(Z) ⊆M ×X is a submanifold, which
has boundary ∂Y = Y ∩ ∂(M ×X) = Y ∩ ((∂M)×X) if ∂M ̸= ∅. Schematically, the
situation might look like this:

M

X
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We consider the projection π = (πX)|Y : Y → X. By Sard’s theorem, almost all points
x ∈ X are regular values of π and π|∂Y . Now the first part of the theorem follows from
the following observation.
Claim: If x ∈ X is a regular value of π, the Fx ⋔ Z, and if x ∈ X is a regular value
of π|∂Y , then (Fx)|∂M ⋔ Z.
As the two parts of the claim are proved by identical arguments, we only consider the
first one. Note that

x ∈ X is a regular value for π ⇐⇒ ∀ (p, x) ∈ Y : π∗,(p,x) : T(p,x)Y → TxX is surjective

⇐⇒ ∀ (p, x) ∈ Y : T(p,x)M ×X = T(p,x)Y + T(p,x)M × {x}.
Here the first equivalence is just the definition, and the second one follows from the
fact that T(p,x)M ×{x} = ker π∗,(p,x), so that surjectivity of π∗,(p,x) is indeed equivalent
to T(p,x)Y being a complement to it. Now by assumption we know that F ⋔ Z, so that
for (p, x) ∈ Y we have

F∗,(p,x)(T(p,x)M ×X) + TF (p,x)Z = TF (p,x)N.

Since at points (p, x) ∈ Y we have F∗,(p,x)T(p,x)Y ⊆ T(F (p,x)Z, we conclude using the
above equivalences that

x ∈ X is a regular value for π

=⇒ ∀ (p, x) ∈ Y : F∗,(p,x)(T(p,x)M × {x}) + TF (p,x)Z = TF (p,x)N,

which in turn is equivalent to Fx ⋔ Z.
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It remains to prove the last part of the theorem. So suppose Z ⊆ N is a closed subset.
Then F−1(Z) ⊆ M × X is also a closed subset. Let U ⊆ X be an open subset such
that the closure K = U ⊆ X is compact. If M is compact, then Y ∩ (M × K) is
also compact. Because the set C ⊂ Y of critical points of π is closed, its intersection
CK := C ∩ (M ×K) is compact, and hence so is its image π(CK) ⊆ K. But then the
set U \CK of regular values of π in U is open. As X can be covered by open sets U of
this type, we conclude that the set of regular values of F is open.
The argument for F |∂Y is completely analogous, and so the theorem is proven. □

Here is a first application of this result.

Example 3. Suppose that f : M → Rn is any smooth map and Z ⊆ Rn is any
submanifold. Then we apply the theorem to the map

F :M × Rn → Rn

(p, λ) 7→ f(p) + λ,

which is clearly a submersion, to conclude that there are arbitrarily small λ ∈ Rn such
that the translation f + λ is transverse to Z.
Note that a countable union of sets of measure 0 is still a set of measure 0, so we could
even find an arbitrarily small λ ∈ Rn such that the translation f + λ is transverse to
any countable collection of submanifolds Zi ⊆ Rn, with no condition on their relative
positions.

Our next goal is to generalize the result in the example to an approximation result for
maps between manifolds by transverse ones. In the statement we use

Definition 2. Suppose A ⊆ M is a closed subset. Two maps f0, f1 : M → N with
f0(a) = f1(a) for all a ∈ A are called smoothly homotopic relative to A if there exists
a smooth map

F :M × [0, 1] → N

such that F (x, 0) = f0(x), F (x, 1) = f1(x) and F (a, t) = f0(a) for all (a, t) ∈ A× [0, 1].

One easily sees that homotopy relative to A is an equivalence relation on maps from
M to N . For A = ∅, we get the usual notion of (smooth) homotopy.

Theorem 6. Let f : M → M be a smooth map, where M is a compact manifold
(possibly with boundary), and let Z ⊆ N be a submanifold which is a closed subset.
If U ⊆ M is open such that f |M\U and f |∂M\U are transverse to Z, then there exists
a map g : M → N which is homotopic to f relative to M \ U such that g ⋔ Z and
g|∂M ⋔ Z.

Proof. By assumption, the image f(M) ⊆ N is compact, so we can find finitely many
vector fields X1, . . . , Xr on N with compact support such that for all q ∈ f(M) their
values X1(q), . . . ,Xr(q) span TqN . As the vector fields have compact support, each of
them has a complete flow

ϕXi : N × R → N,

which is characterized by ϕXi(q, 0) = q and d
dt
ϕXi(q, t) = Xi(ϕ

xi(q, t)).
We also choose a smooth function β : M → R such that β|M\U = 0 and β|U > 0. We
then define

F :M × Rr → N

by
F (p, λ1, . . . , λr) := ϕX1

β(p)λ1
◦ . . . ϕXr

β(p)λr
◦ f(p).

We now make the following obserations:
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(a) For all p ∈ M \ U and all λ ∈ Rr we have F (p, λ) = f(p). In particular, by
assumption at all such points the maps F and F |∂M×Rr are transverse to Z.

(b) For all p ∈ U we have

∂F

∂λi
(p, 0) = β(p) ·Xi(p),

so that at all points (p, 0) ∈ U ×{0} the differential F∗,(p,0) is surjective already
on the second factor {0} ×Rr. So at all points of U × {0} ⊂M ×Rr the maps
F and F |∂M×Rr are also transverse to Z.

By Lemma 4, the set of points (p, λ) ∈ M × Rr for which transversality holds for F
is open in M × Rr, and the set of points at which transversality holds for F |∂M×Rr is
open in ∂M × Rr. Combining this with observation (b) above and the fact that U is
compact, we conclude that there is an ε > 0 such that the transversality conditions for
both F and F |∂M×Rr hold for all points (p, λ) ∈ U×B(0, ε). Together with observation
(a), this implies that the maps

F |M×B(0,ε) and F |∂M×B(0,ε)

are transverse to Z. So by Theorem 5, we see that for almost all λ0 ∈ B(0, ε) the map
g :M → N defined as g(p) := F (p, λ0) has the properties stated in the theorem. □

Remarks 4. We collect a few more observations in the context of Theorem 6.

• The proof shows that the map g can in fact be choosen arbitrarily close to f .
• One can always choose U to be some open neighborhood of f−1(Z). Another
standard situation for applications is U =M .

• If f |∂M ⋔ Z, we can choose U = M \ ∂M , and get g transverse to Z which is
homotopic to f relative to ∂M .

• It is interesting to compare the content of the theorem for Z = {q} with the
content of Sard’s theorem. Theorem 6 asserts that we can make q a regular
value by perturbing f , whereas Sard’s theorem asserts that one can find regular
values of the original f which are arbitrarily close to q.
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