DIFFERENTIALGEOMETRIE

Übungsaufgaben 3

Präsenzaufgaben

(P7) Für $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ betrachten wir die Abbildung $f_{\alpha} : \mathbb{R} \to S^1 \times S^1$, gegeben als

$$f_{\alpha}(t) = (\cos t, \sin t, \cos \alpha t, \sin \alpha t).$$

Zeigen Sie, dass f_{α} eine injektive Immersion ist. Ist f_{α} eine Einbettung?

(P8) Wir betrachten die Teilmenge $F_n \subseteq \mathbb{R}P^n \times \mathbb{R}^{n+1}$, definiert als

$$F_n := \{(\ell, v) \mid v \perp \ell\} \subseteq \mathbb{R}P^n \times \mathbb{R}^{n+1}.$$

- a) Zeigen Sie, dass F_n mit der offensichtlichen Projektion $p: F \to \mathbb{R}P^n$, $p(\ell, v) = \ell$ ein glattes Vektorbündel vom Rang n über $\mathbb{R}P^n$ ist.
- b) Können Sie einen Diffeomorphismus vom Totalraum F_1 des Bündels $p:F_1\to\mathbb{R}P^1$ zum Totalraum des Bündels $p:E\to\mathbb{R}P^1$ aus der Vorlesung mit

$$E = \{(\ell, v) \,|\, v \in \ell\}$$

finden, der für $\ell \in \mathbb{R}P^1$ jeweils die Fasern F_ℓ und E_ℓ miteinander identifiziert?

(P9) Wir hatten Untermannigfaltigkeiten von Mannigfaltigkeiten als Bilder von Einbettungen definiert. Überlegen Sie sich, dass man Untermannigfaltigkeit äquivalent auch als Teilmengen $S \subseteq M$ beschreiben kann, die lokal das Urbild eines Punktes unter einer (lokal definierten) Submersion sind.

Übungsaufgaben mit Abgabetermin Do, 25.4., in der Vorlesung

(A7) a) Zeigen Sie, dass für jedes r > 0 die Teilmenge

$$M_r := \{ (x, y) \in \mathbb{R}^n \times \mathbb{R}^n : ||x - y|| = r \} \subseteq \mathbb{R}^n \times \mathbb{R}^n$$

eine glatte Untermannigfaltigkeit der Dimension 2n-1 ist.

- **b)** Was passiert für r = 0?
- c) Beschreiben Sie (für r > 0) den Tangentialraum von M_r im Punkt $(x, y) \in M_r$!
- d) Zu welcher bekannten Mannigfaltigkeit ist M_r für r > 0 diffeomorph?
- (A8) Sei $F: M \to N$ eine glatte Abbildung zwischen glatten Mannigfaltigkeiten, und sei $S \subset N$ eine Untermannigfaltigkeit. Wir nennen F transvers zu S falls für jeden Punkt $p \in M$ mit $F(p) \in S$ die Bedingung

$$F_{*,p}(T_pM) + T_{F(p)}S = T_{F(p)}N$$

erfüllt ist.

- a) Beweisen Sie: Ist F transvers zu S, so ist $F^{-1}(S) \subset M$ eine Untermannigfaltigkeit der Dimension dim $M + \dim S \dim N$.
- **b)** In $\mathbb{R}^4 \setminus \{0\}$ ist die Teilmenge

$$S := \{(x, y, u, v) \in \mathbb{R}^4 \setminus \{0\} \mid x^2 - y^2 + u^3 - 3uv^2 = 0, 2xy + 3u^2v - v^3 = 0\}$$

eine 2-dimensionale Untermanngifaltigkeit. Zeigen Sie, dass die Inklusion $I: S^3 \hookrightarrow \mathbb{R}^4 \setminus \{0\}$ transverse zu S ist.

Bemerkung: Mit der Identifikation $\mathbb{R}^4 \setminus \{0\} \cong \mathbb{C}^2 \setminus \{0\}$ lässt sich S als

$$\{(z_1, z_2) \in \mathbb{C}^2 \setminus \{0\} \mid z_1^2 + z_2^3 = 0\}$$

schreiben.

Das Urbild $K := I^{-1}(S) \subset S^3$ ist diffeomorph zu S^1 , aber die Einbettung $K \hookrightarrow S^3$ lässt sich nicht zur Standardeinbettung deformieren. Man nennt den Knoten $K \subset S^3$ Kleeblattschlinge.

- (A9) Seien $p_1: E_1 \to B$ und $p_2: E_2 \to B$ zwei Vektorbündel über derselben Mannigfaltigkeit B.
 - a) Beweisen Sie, dass das Urbild $E := p^{-1}(\Delta) \subseteq E_1 \times E_2$ der Diagonalen $B \cong \Delta := \{(b,b) \mid b \in B\} \subseteq B \times B$ unter der Abbildung $p := p_1 \times p_2 : E_1 \times E_2 \to B \times B$ eine Untermannigfaltigkeit von $E_1 \times E_2$ ist. Welche Dimension hat E?
 - b) Zeigen Sie, dass (E, p, B) auf natürliche Weise die Struktur eines Vektorbündels über B erhält, wobei $p: E \to B$ die offensichtliche Projektion $p(e_1, e_2) := p_1(e_1) (= p_2(e_2))$ ist.
 - c) Man nennt dieses Bündel die direkte Summe der Bündel E_1 und E_2 und schreibt dafür $E=E_1\oplus E_2$. Können Sie diese Bezeichnung erklären?
- (A10) Sei M eine kompakte glatte Mannigfaltigkeit und $F: M \to N$ eine injektive Immersion von M in eine glatte Mannigfaltigkeit N. Zeigen Sie:
 - a) F ist eine Einbettung.
 - b) Falls dim $M = \dim N$ und N zusammenhängend ist, so ist F sogar ein Diffeomorphismus.