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Abstract. In this paper we study extreme events for random walks on homogeneous
spaces. We consider the following three cases. On the torus we study closest returns
of a random walk to a fixed point in the space. For a random walk on the space of unimod-
ular lattices we study extreme values for lengths of the shortest vector in a lattice. For a
random walk on a homogeneous space we study the maximal distance a random walk gets
away from an arbitrary fixed point in the space. We prove an exact limiting distribution
on the torus and upper and lower bounds for sparse subsequences of random walks in the
two other cases. In all three settings we obtain a logarithm law.

1. Introduction

Let X be a probability space and G a group acting on X . Let m be a G-invariant
probability measure on X and fix also a probability measure µ on G. We define a random
walk on X as a sequence of random variables Xi = gi · · · g1x where the gj’s have distribution
µ and x has distribution m. Fix a function ∆ : X → R. The focus of our interest is the
random variable

Mn = max
0≤i<n

∆(Xi).

There exists a natural measure on the space of all random walks on X which we denote
by P and define formally in section 3.1. We are particularly interested in the existence of
sequences an and bn such that the distribution P(Mn ≤ anr + bn) has a non-degenerate
limit and if this is the case, determining the limit. We refer to such a limit as the extreme
value distribution of the random walk. One reason why extreme value distributions are
interesting is that they imply asymptotics for the growth of extreme values of ∆(Xn). In
many cases this turns out to be a logarithm law, namely we get that almost surely

lim sup
n→∞

∆(Xn)

log n
= C

for some C > 0. One result of this kind is Sullivan’s logarithm law for geodesics on hy-
perbolic d-space [23]. Kleinbock and Margulis later generalised this to certain classes of
homogeneous spaces, see [11], and Athreya, Ghosh and Prasad proved ultrametric ana-
logues of this result, see [1], [2].

The general framework for determining extreme value distributions is known as extreme
value theory (EVT). EVT was first applied in dynamics by Collet [10], who studied C2
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transformations T of an interval. He was interested in the entrance times of T jx into a
shrinking neighborhood around a fixed point x0 and to understand this, he determined
the limiting distribution of the maximum of − log d(T jx, x0). Similar results to Collets
have since been proven for other choices of T and other types of maps, see for example
[13], [17], [18], [19]. In the context of this paper, recent results by Aytac, Freitas and
Vaienti [3] are particularly interesting as they apply EVT to a setting involving randomness,
more precisely, iterations of a randomly perturbed map. Freitas, Freitas and Todd have
developed a general framework for applying EVT to dynamical systems T : X → X, see
[14], [15], [16].

Classically, random walks were studied as objects living on Rd. However, the concept of
random walks generalizes easily to many other spaces. For example to homogeneous spaces
with a group action which is the case we are particularly interested in. In [12], Eskin and
Margulis studied recurrence properties for random walks on finite volume homogeneous
spaces G/Γ where G is a semisimple Lie group and Γ a nonuniform irreducible lattice. In a
series of papers Benoist and Quint [5], [6], [7], [8], developed this theory further by studying
stationary measures on G/Γ while also generalizing their results to p-adic Lie groups.

The main idea of this paper is to apply EVT to random walks on homogeneous spaces.
The level of dependency among the Xi’s is the deciding factor in whether EVT can suc-
cessfully be applied to obtain limiting distributions for the maximum of ∆(Xi). The closer
Xi is to being an independent sequence the easier it is to apply EVT. EVT provides
independence-like conditions that, if satisfied by Xi, imply a limiting distribution for Mn.
The idea of this paper is to verify these conditions by rewriting the joint distribution of
the random walk using the averaging operator. The spectral gap property of the averag-
ing operator is the crucial ingredient in showing that the independence-like conditions are
satisfied by the random walk.

Our main results are divided into three different settings. In the following, let Sµ and
Gµ denote the semigroup and group generated by the support of µ respectively.

1.1. Closest returns on the torus. Let X = T
d be the d-dimensional torus with

Lebesque measure m and Euclidian metric d. Let G = Aut(Td) denote the group of
linear automorphisms of Td and fix a probability measure µ on the G. We assume that
there is no Gµ-invariant factor torus T of Td such that the projection of Gµ on Aut(T ) is
amenable.

We are interested in the closest returns of a random walk to a fixed point on the torus
and in particular, how these shortest distances distribute. Let x0 ∈ X be fixed and define

∆(x) = − log d(x, x0).

We see that for small values of d(x, x0), ∆(x) becomes large hence we can study the closest
returns of Xi by looking at successive maxima of ∆(Xi).

Theorem 1.1. Assume that the support of µ is bounded and that det(g − I) 6= 0 for all
g ∈ Sµ. Then for un = r + 1

d
log n we have that for a.e. x0 ∈ X

lim
n→∞

P(Mn ≤ un) = e
− 1
Vd
e−dr

,
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where Vd is the volume of the unit ball in Rd.

The stationary measures of random walks on the torus were recently studied by Bourgain,
Furman, Lindenstrauss and Mozer [9].

The limiting distribution implies a logarithm law. That is,

Corollary 1.2. For P-a.e. random walk and every x0 ∈ X we have

lim sup
n→∞

∆(Xn)

log n
=

1

d
.

Actually we will see later that we only need a sufficiently good upper bound on the
limiting distribution of Mn to derive the logarithm law.

1.2. Shortest vectors on the space of unimodular lattices. Let X = Ld denote the
space of d-dimensional unimodular lattices and let m denote the normalized Haar measure
on Ld. Recall that Ld can be identified with SL(d,R)/SL(d,Z) and thus can be thought of
as a homogeneous space. Let G = SL(d,R) and fix a probability measure µ on the group.
Assume that Gµ is non-amenable. Set

∆(Λ) = max
v∈Λ\{0}

log

(
1

‖v‖

)
. (1.1)

We see that this maximum will always be attained for the shortest vector in the lattice Λ.
The function ∆ plays a crucial role in connections between flows on the space of lattices
in Rd and Diophantine approximation.

Define for any a ∈ N,

Mn,a = max
0≤i<n

∆(Xai) (1.2)

Theorem 1.3. Set un = r + 1
d

log n. Let w = Vd
2ζ(d)

where Vd is the volume of the unit ball

in Rd. There exist constants w(a) ∈ R such that w(a)→ w as a→∞ and

e−we
−dr ≤ lim inf

n→∞
P(Mn,a ≤ un) ≤ lim sup

n→∞
P(Mn,a ≤ un) ≤ e−w(a)e−dr .

As the reader will notice, we are not able to prove an exact limiting distribution. Instead
we get an upper and lower bound only differing by a constant multiple which goes to zero
as the random walk becomes infinitely sparse. The difference between this case and the
random walk on the torus is that one of the independence-like conditions from EVT is not
fully satisfied in this setup. It is natural to ask what additional assumptions would suffice
to prove an exact limit. This question is answered by the following theorem.

Theorem 1.4. Let {mj} be a sequence in N such that {mj+1 −mj} is strictly increasing.
Also, let αn < βn denote sequences in N such that αn → ∞ and Nn := βn − αn → ∞.
Then for un = r + 1

d
logNn we have

lim
n→∞

P

(
max

αn≤j<βn
∆
(
Xmj

)
≤ un

)
= e−we

−dr
,

where w is the constant from Theorem 1.3.
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Again we obtain a logarithm law.

Corollary 1.5. For P-almost every random walk and every x0 ∈ X we have

lim sup
n→∞

∆(Xn)

log n
=

1

d
.

1.3. Maximal excursions on homogeneous spaces. Let X = G/Γ where G is a simple,
non-compact Lie group with finite center and Γ a non-uniform lattice in G. Let m denote
the normalized Haar measure on X and fix also a probability measure µ on G. Assume
that Gµ is non-amenable.

We are interested in the maximal distance a random walk gets away from some arbitrary
fixed point x0 ∈ X . Therefore, define

∆(x) = d(x, x0)

where d is a Riemannian metric on X chosen by fixing a right invariant Riemannian metric
on G which is bi-invariant with respect to a maximal compact subgroup of G. Let Mn,a be
defined as in (1.2).

Theorem 1.6. There exists constants k > 0, w > 0 and w(a) ∈ R such that for sufficiently
large a we have w(a) > 0 and such that for every x0 ∈ X

e−we
−kr ≤ lim inf

n→∞
P(Mn,a ≤ un) ≤ lim sup

n→∞
P(Mn,a ≤ un) ≤ e−w(a)e−kr ,

where un = r + 1
k

log n.

Remark 1.7. The constant k is explicit and has been computed in [11] (Lemma 5.6).

Again we do not obtain an exact limit and again this relates to the inability to verify
one of the independence-like conditions from EVT. In this setting we also do not prove an
analogue of Theorem 1.4. The reason is that we need to know exact asymptotics for the
tail distribution function of ∆, a property which we call k-SDL (see definition 3.2). While
this was proven in [11] for the shortest vectors on Ld, only a weaker property called k-DL
is known for the Riemannian distance on homogeneous spaces.

As in the previous cases a logarithm law follows from Theorem 1.6.

Corollary 1.8. For P-almost every random walk and for all x0 ∈ X we have

lim sup
n→∞

∆(Xn)

log n
=

1

k
.

Here k > 0 is again the constant from Remark 1.7.

This is a random walk analogue of the logarithm law Kleinbock and Margulis proved
for geodesics. A natural question to ask is whether one could determine the extreme value
distribution for the geodesic flow, since it would be a generalization of the logarithm law
mentioned. One result in this direction is by Pollicott [21]. He determines the exact
limiting distribution for the geodesic flow on SL(2,R)/SL(2,Z). However, the proof uses
connections between geodesics on the upper half plane and continued fractions, a connection
that only exists for d = 2.
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1.4. Structure of the paper. We begin by giving a short introduction to extreme value
theory in Section 2. This introduction is short and in no way a complete overview of the
field. However, for the reader unfamiliar with extreme value theory, the section should
be sufficient to understand this paper without having to look elsewhere. In Section 3 we
formally define the random walk and introduce the main tools used in the paper. In this
section we also show how the averaging operator and its spectral gap property is used to
prove quasi-independence for the random walk. We prove various results for the limiting
distribution of the random walk under general assumptions. In Section 4 we finalize the
proofs of our main theorems using the results from the previous section and known results.
For the case of the torus an additional argument is required which we give in this section
as well.

2. General extreme value theory

EVT deals with determining the distributional properties of the maximum or minimum
of a sequence of random variables fn as n becomes large. This task is fairly simple if one
assumes that the random variables are mutually independent. However, in many interesting
cases we have some degree of dependence among the random variables. What we can prove
in the dependent case is related to how strong the dependency among the random variables
is.

In the following we elaborate on the basics of EVT for stationary sequences of identically
distributed random variables. For a reference on general extreme value theory, see [20].

Let (X ,P) be a probability space. Let fi denote a stationary, identically distributed
sequence of real-valued random variables and let Mn := max0≤i<n(fi). We use the notation

Ff0,...,fn−1(r) = P(f0 ≤ r, . . . , fn−1 ≤ r) = P({f0 ≤ r} ∩ · · · ∩ {fn−1 ≤ r}).

Notice that Ff0,...,fn−1(r) = P(Mn ≤ r). Also notice that since the fi are identically
distributed we have Ffi(r) = Ffj(r) for all i, j ∈ N. We denote this common distribution
simply by F . We are concerned with the limiting distribution of Mn under linear scalings
a−1
n (Mn − bn), where an > 0 and bn are sequences of real numbers. By this we mean the

limit

lim
n→∞

P

(
Mn − bn
an

≤ r

)
.

The sequences an and bn, known as scaling sequences, are introduced in order to avoid cases
of degenerate limiting distributions, a notion we explain in the following. To understand
why degenerate cases occur, look for example at any independent, identically distributed
(i.i.d.) stochastic process. In this case we easily see that

P(Mn ≤ r) = F (r)n →

{
1 if r ∈ {F (r) = 1}
0 if r ∈ {0 ≤ F (r) < 1}

.

We call this a degenerate limiting distribution and we see that such one provides us with
little information about Mn. Later in this section we discuss how to determine an and bn,
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but for now assume these exist such that

P

(
Mn − bn
an

≤ r

)
= P (Mn ≤ anr + bn)→ G(r),

where G : R → [0, 1] is a non-degenerate distribution function. To simplify notation set
un := anr + bn.

As mentioned, the i.i.d. case is the simplest, and in this case the limiting distribution
of Mn is known. When dealing with the dependent case, we are interested in stationary
sequences that only exhibit little dependency. In other words, these are sequences that
in some sense are close to being independent. This notion is formalized through two
independence type conditions denoted D(un) and D′(un).

Condition D(un). Condition D(un) will be said to hold for fi and un if for any integers
0 ≤ i1 < · · · < ip < j1 < · · · < jp′ < n for which j1 − ip ≥ l, we have∣∣∣Ffi1 ,...,fip ,fj1 ,...,fjp′ (un)− Ffi1 ,...,fip (un)Ffj1 ,...,fjp′

(un)
∣∣∣ ≤ α(n, l),

where there exists a sequence ln s.t. α(n, ln)→ 0 as n→∞ and ln
n
→ 0 for n→∞.

Condition D′(un). Condition D′(un) will be said to hold for fi and un if

lim sup
n→∞

n

[nq ]∑
j=1

P(f0 > un, fj > un)→ 0 as q →∞.

It is a standard result from EVT that if a stationary sequence fi satisfies these two
conditions, then the limiting distribution of Mn is the same as if fi were an i.i.d. process.
This is the content of the following theorem.

Theorem 2.1 ([20], Theorem 3.4.1.). Let un = anr + bn be a scaling sequence s.t. D(un)
and D′(un) are satisfied for the stationary sequence fn. If τ = τ(r) is a real function such
that nP(f0 > un)→ τ , then

lim
n→∞

P(Mn ≤ un) = e−τ . (2.1)

For some cases of dependent stationary sequences, either or both of Condition D(un)
and D′(un) are not satisfied. However, it is possible to weaken these conditions and still
salvage some information about the limiting distribution. For the purpose of this paper we
introduce the following weakened version of Condition D′(un).

Condition D′g(r)(un). For the stationary sequence fi, let

gq(r) := lim sup
n→∞

n

[nq ]∑
j=1

P(f0 > un, fj > un).

Condition D′g(r)(un) will be said to hold for fi and un if

lim sup
q→∞

gq(r) ≤ g(r),
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where g : R→ R only depends on r ∈ R.

Under this weakened assumption we can prove the following theorem.

Theorem 2.2. Let un = anr + bn be a scaling sequence s.t. D(un) and D′g(r)(un) are

satisfied for the stationary sequence fi. If τ1 = τ1(r) and τ2 = τ2(r) denote real functions
such that

τ1 ≤ lim inf
n→∞

nP(f0 > un) ≤ lim sup
n→∞

nP(f0 > un) ≤ τ2. (2.2)

Then

e−τ2 ≤ lim inf
n→∞

P(Mn ≤ un) ≤ lim sup
n→∞

P(Mn ≤ un) ≤ eg(r)−τ1 .

The proof of Theorem 2.2 is essentially similar to the proof of Theorem 2.1. Notice
that we also made a weakening of the assumption that nP(f0 > un) → τ . This is to
accommodate cases where the limit cannot be determined or does not exist.

Until now we have assumed the existence of scaling sequences an and bn such that the
limit of P(Mn ≤ anr + bn) is non-degenerate. However, such scaling sequences do not
necessarily exist. In the case of Theorem 2.1, the assumption that nP(f0 > un) → τ
provides the most straightforward way to determine if suitable an and bn exist and, if this
is the case, what they are. Namely, we see that if the limit function τ is either 0 or ∞,
then the limit in (2.1) becomes a degenerate distribution. Thus in order to obtain a non-
degenerate limit, we must choose an and bn such that the limit nP(f0 > un)→ τ is not 0
or ∞. In specific cases writing out the expression for nP(f0 > un) often provides an easy
way to see how an and bn must be chosen in order for the limit to exist and be non-trivial.

Similarly for Theorem 2.2, if τ2 =∞ then we get a trivial lower bound on the lim inf of
P(Mn ≤ un). So again, by looking at the expression for nP(f0 > un) we can often see how
an and bn must be chosen for the upper bound on the lim sup to be less than ∞.

3. EVT for random walks in a general setting

In this section we define random walks on a general probability space with a group
action. In this general setting we show how the averaging operator can be used to prove
extreme value distributions and logarithm laws for random walks. First we introduce the
setup and define notation.

3.1. Notation and setup. Let (X ,m) denote a probability space and G a group acting
measurably on X preserving m. Fix also some probability measure µ on G. The product
space G×N naturally inherits the product measure µ⊗N which is also a probability measure.

We define the probability space (Y ,P) by

(Y ,P) := (G×N ×X , µ⊗N ⊗m).

We denote elements in G×N by ḡ and write these as ḡ = (g1, . . . , gi, . . . ).
By a random walk on X generated by G we mean a sequence of the form Xi = gi · · · g1x

where x ∈ X has distribution m and the gj ∈ G each have distribution µ. Define the map
Li : G×N → G by Li(ḡ) = gi · · · g1. Then for each i, Li(ḡ)x represents the i’th position of
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the random walk along the path ḡ starting at x. We use the convention that L0(ḡ) = e,
i.e. the neutral element in G. We define the sequence of random variables Xi : Y → X by

Xi(ḡ, x) = Li(ḡ)x.

We see that Y can be thought of as the space of all possible random walks on X . Let
∆ : X → R. We define the sequence of real random variables ξi : Y → R by

ξi(ḡ, x) = ∆(Li(ḡ)x).

and define a new sequence of random variables Mn : Y → R by

Mn(ḡ, x) := max
0≤i<n

ξi(ḡ, x).

It follows from G-invariance of m that ξi is a stationary sequence with respect to P.
Stationarity in particular implies that the random variables are identically distributed and
we let F denote the common distribution function of the ξi.

We denote by

Gi = G · · ·G = {g1 · · · gi : gj ∈ G, ∀ 1 ≤ j ≤ i} .

The natural probability measure on Gi is the convolution measure defined as the push-
forward measure of µ⊗i under the map Li. That is µ∗i = µ⊗N((Li)−1). It is a useful
observation that∫

G×N
f(Li(ḡ)) dµ⊗N(ḡ) =

∫
Gi
f(g) dµ∗i(g) =

∫
G

· · ·
∫
G

f(gi · · · g1)dµ(gi) · · · dµ(g1),

for any function f : Gi → R.

3.1.1. Averaging operator. As previously mentioned, the so-called averaging operator plays
a very important role in this work. Denote by A : L2(X ,m) → L2(X ,m) the averaging
operator with respect to G given by

Af =

∫
G

f(gx) dµ(g),

where f ∈ L2(X ,m). We get the n’th iterate of A by straightforward calculation, this is

Anf =

∫
Gn
f(g′x) dµ∗n(g′).

Since m is G-invariant we also get∫
X
Af dm =

∫
X

∫
G

f(gx) dµ(g)dm(x) =

∫
G

∫
X
f(gx) dm(x)dµ(g) =

∫
X
f dm. (3.1)

Notice that A is linear.

Definition 3.1. We say that the averaging operator has spectral gap in L2(X ,m) if there
exists constants λ ∈ (0, 1) and c0 > 0 such that for all f ∈ L2(X ,m) and all n ∈ N∥∥∥∥Anf − ∫

X
f dm

∥∥∥∥
2

≤ c0λ
n ‖f‖2 . (3.2)
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3.1.2. Distance-like functions. We are going to characterize the function ∆ according to
the asymptotic behavior of its tail distribution function. We define the tail distribution
function of ∆ as

Φ∆(z) = m ({x : ∆(x) ≥ z}) , z ∈ R.
Notice that

Φ∆(un) = P(ξ0 > un).

Definition 3.2. For k > 0, we say that ∆ is k-DL (”Distance-Like”) if it is continuous and
satisfies

∃ v1, v2 > 0 such that v1e
−kz ≤ Φ∆(z) ≤ v2e

−kz , ∀ z ∈ R. (3.3)

For k > 0, we say that ∆ is k-SDL (”Strong-Distance-Like”) if it is continuous and satisfies

∃ v1 > 0 such that Φ∆(z) = v1e
−kz + o(e−kz) as z →∞. (3.4)

The notion of distance-like functions was introduced in [11].
Throughout the paper we will make use of big O notation as well as Vinogradov symbols

when appropriate. So for a set S and functions f, g on S we write f(s) = O(g(s)) if
there exists a constant c such that |f(s)| ≤ c |g(s)| for all s ∈ S. We sometimes write
f(s)� g(s) meaning the same as f(s) = O(g(s)) and we write f(s) � g(s) if f(s)� g(s)
and g(s)� f(s).

3.2. Bounds on the limiting distribution of Mn.

Theorem 3.3. Assume that ∆ is k-DL for some k > 0 and that A has spectral gap on
L2(X ,m). Set un = r + 1

k
log n. Then for all r ∈ R

e−v2e−kr ≤ lim inf
n→∞

P(Mn ≤ un) ≤ lim sup
n→∞

P(Mn ≤ un) ≤ eθλe
−kr
,

where

θλ =
λ

1− λ
c0v2 − v1,

and where v1, v2 and c0, λ are the constants from Definition 3.2 and 3.1 respectively.

Remark 3.4. We see that for λ close to 1, we get θλ > 0 rendering the upper bound on
the limiting distribution trivial. However, for small values of λ we get θλ < 0, hence a
non-trivial upper bound.

Naturally, the strategy of the proof will be to verify the assumptions of Theorem 2.2.
We begin by determining the correct scaling sequences an and bn. Assume that ∆ is a
k-DL function. Then there exists constants v1, v2 > 0 such that for all n ∈ N

v1e
−kun ≤ Φ∆(un) ≤ v2e

−kun .

Easily, we see that

v1 lim inf
n→∞

(
ne−kun

)
≤ lim inf

n→∞
nΦ∆(un) ≤ lim sup

n→∞
nΦ∆(un) ≤ v2 lim sup

n→∞

(
ne−kun

)
.
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Since Φ∆(un) = P(ξ0 > un), the upper bound on (2.2) will be non-trivial if we can find
sequences an and bn such that the limit of ne−k(anr+bn) exists and is non-trivial. By writing
ne−k(anr+bn) = ne−kanre−kbn it is easy to see that for an = 1 and bn = 1

k
log n we get

lim
n→∞

ne−k(anr+bn) = e−kr.

Obviously for this choice of scaling sequences we also get a non-trivial lower bound. We
formulate this conclusion as a lemma

Lemma 3.5. Suppose ∆ is a k-DL function and set un = r + 1
k

log n. Then

v1e
−kr ≤ lim inf

n→∞
nP(ξ0 > un) ≤ lim sup

n→∞
nP(ξ0 > un) ≤ v2e

−kr,

where v1, v2 > 0 are the constants from Definition 3.2.

Remark 3.6. It follows immediately that if ∆ is assumed to be k-SDL, then the lemma
holds with the same choice of un.

The next lemma verifies Condition D′g(r)(un) under the assumptions of Theorem 3.3.

Lemma 3.7. Assume that ∆ is k-DL for some k > 0 and suppose A has spectral gap
in L2(X ,m). Set un = r + 1

k
log n. Then Condition D′g(r)(un) holds for ξi with g(r) =

λ
1−λc0v2e

−kr, where v2 and c0, λ are the constants from Definition 3.2 and 3.1 respectively.

Proof. We can rewrite the joint probability of ξ0 and ξj in terms of integrals of characteristic
functions. Set W := (un,∞), V0 = {x ∈ X : ∆(x) ∈ W} and V ḡ

i = {x ∈ X : ξi(ḡ, x) ∈ W}.
Notice that V0 = V ḡ

0 and

1V ḡi
(x) = 1V0(Li(ḡ)x).

We then get

P(ξ0 > un, ξj > un) =

∫
G×N

∫
X
1V ḡ0 ∩V

ḡ
j

(x) dm(x) dµ⊗N(ḡ)

=

∫
G×N

∫
X
1V0(x)1V0(Lj(ḡ)x) dm(x) dµ⊗N(ḡ)

=

∫
X
1V0(x)

∫
G×N

1V0(Lj(ḡ)x) dµ⊗N(ḡ) dm(x)

=

∫
X
1V0(x)

∫
Gj
1V0(g′x) dµ∗j(g′) dm(x)

=

∫
X
1V0(x)Aj (1V0(x)) dm(x).

Set ψ := 1V0 to get

P(ξ0 > un, ξj > un) =

∫
X
ψAj(ψ) dm.
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Recall the Cauchy-Schwartz inequality stating that ‖fg‖1 ≤ ‖f‖2 ‖g‖2 for f, g ∈ L2(X ,m).
We proceed by estimating the difference |P(ξ0 > un, ξj > un) − P(ξ0 > un)P(ξj > un)|.
Written in terms of integrals we have∣∣∣∣∫

X
ψAj(ψ) dm−

∫
X
ψ dm

∫
X
ψ dm

∣∣∣∣ =

∣∣∣∣∫
X
ψ

(
Aj(ψ)−

∫
X
ψ dm

)
dm

∣∣∣∣
≤
∫
X

∣∣∣∣ψ(Aj(ψ)−
∫
X
ψ dm

)∣∣∣∣ dm
=

∥∥∥∥ψ(Aj(ψ)−
∫
X
ψ dm

)∥∥∥∥
1

≤ ‖ψ‖2

∥∥∥∥Aj(ψ)−
∫
X
ψ dm

∥∥∥∥
2

≤ c0λ
j ‖ψ‖2

2 .

(3.5)

The Cauchy-Schwartz inequality was used to get the second last inequality while the spec-
tral gap property of A was applied to get the final estimate. It follows that

P(ξ0 > un, ξj > un) ≤
(∫
X
ψ dm

)2

+ c0λ
j ‖ψ‖2

2 .

Since ψ is a characteristic function we know that

‖ψ‖2
2 =

∫
X
ψ2 dm =

∫
X
ψ dm.

We also notice that ∫
X
ψ dm = Φ∆(un).

Using that ∆ is k-DL and that un = r + 1
k

log n we get

P(ξ0 > un, ξj > un) ≤ (v2e
−kun)2 + c0λ

jv2e
−kun =

v2
2

n2
e−2kr + c0λ

j v2

n
e−kr.

We do the summation from Condition D′g(r)(un) to get

n

[nq ]∑
j=1

P(ξ0 > un, ξj > un) ≤ n

[nq ]∑
j=1

(
v2

2

n2
e−2kr + c0λ

j v2

n
e−kr

)

≤ v2
2

q
e−2kr + c0v2e

−kr
[nq ]∑
j=1

λj.
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Recall that since λ ∈ (0, 1) we have
∑∞

j=1 λ
j = λ

1−λ so when we take the lim supn→∞ we
get

gq(r) = lim sup
n→∞

n

[nq ]∑
j=2

P(ξ0 > un, ξj > un) ≤ v2
2

q
e−2kr +

λ

1− λ
c0v2e

−kr.

Finally taking the lim supq→∞ gives

lim sup
q→∞

gq(r) ≤
λ

1− λ
c0v2e

−kr.

So Condition D′g(r)(un) holds with g(r) = λ
1−λc0v2e

−kr. �

Remark 3.8. Notice that g(r) vanishes as the spectral gap λ goes to zero.

3.2.1. Verifying Condition D(un). To verify Condition D(un) we need to rewrite the joint
distribution function of the ξi using the averaging operator. The idea is the same as the
one we used to rewrite the joint distribution in the proof of Lemma 3.7. Now we essentially
do the same calculation in higher generality.

Throughout the following computation let n̄ = (n1, . . . , nt) denote a fixed t-tuple of
integers where n1 < · · · < nt. Let W = (−∞, un] and again use the notation V0 =
{x ∈ X : ∆(x) ∈ W} and V ḡ

i = {x ∈ X : ξi(ḡ, x) ∈ W} introduced in the proof of Lemma
3.7. Furthermore, set

Λn̄ := {y ∈ Y : ξn1(y) ∈ W, . . . , ξnt(y) ∈ W} .
Using this notation we rewrite the joint distribution function of ξn1 , . . . , ξnt in terms of
integrals of characteristic functions.

P(Λn̄) =

∫
G×N×X

1Λn̄ d(µ⊗N ⊗m)

=

∫
G×N

∫
X

t∏
i=1

1V ḡni
(x) dm(x) dµ⊗N(ḡ)

=

∫
G×N

∫
X

t∏
i=1

1V0(Lni(ḡ)x) dm(x) dµ⊗N(ḡ)

=

∫
X

∫
G×N

t∏
i=1

ψ(Lni(ḡ)x) dµ⊗N(ḡ) dm(x), (3.6)

where again ψ := 1V0 . It is practical to introduce the notation g[i,j] = gi · · · gj for i > j.
We now look at the integral with respect to µ⊗N in (3.6). We can rewrite this integral
using the averaging operator in the following way. First we write∫

G×N

t∏
i=1

ψ(Lni(ḡ)x) dµ⊗N(ḡ) =

∫
G

· · ·
∫
G

t∏
i=1

ψ(gni · · · g1x) dµ(gnt) · · · dµ(g1). (3.7)
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Now, on the right hand side of (3.7), look only at the integrals with respect to gnt , . . . , gnt−1+1.
We get∫

G

· · ·
∫
G

t∏
i=1

ψ(gni · · · g1x) dµ(gnt) · · · dµ(gnt−1+1)

=
t−1∏
i=1

ψ(g[ni,1]x)

∫
Gnt−nt−1

ψ(g[nt,nt−1+1]g[nt−1,1]x) dµ∗(nt−nt−1)(g[nt,nt−1+1])

=
t−1∏
i=1

ψ(g[ni,1]x)Ant−nt−1ψ(g[nt−1,1]x).

Inserting this in (3.7) we get∫
G×N

t∏
i=1

ψ(Lni(ḡ)x)dµ⊗N(ḡ)

=

∫
G

· · ·
∫
G

t−1∏
i=1

ψ(g[ni,1]x)Ant−nt−1ψ(g[nt−1,1]x)dµ(gnt−1) · · · dµ(g1).

We repeat this step by looking at the integrals in (3.7) with respect to gnt−1 , . . . , gnt−2+1.
These integrals, rewritten in terms of the averaging operator as done above, become

t−2∏
i=1

ψ(g[ni,1]x)Ant−1−nt−2
(
ψ(g[nt−2,1]x)Ant−nt−1ψ(g[nt−2,1]x)

)
.

Again we can insert this in (3.7) and repeat the procedure. Doing this t times eventually
gives that the integral with respect to µ⊗N in (3.6) is

An1
(
ψ(x)An2−n1

(
ψ(x) . . . Ant−nt−1 (ψ(x))

)
. . .
)
.

By integrating again with respect to m and applying (3.1) we finally get

P(Λn̄) =

∫
X
An1

(
ψ(x)An2−n1

(
ψ(x) . . . Ant−nt−1 (ψ(x))

)
. . .
)
dm(x)

=

∫
X
ψ(x)An2−n1

(
ψ(x) . . . Ant−nt−1 (ψ(x)) . . .

)
dm(x).

We can simplify notation by defining the following sequence of operators. For the sequence
n̄ = (n1, . . . , nt) and the fixed function ψ := 1V0 we define Ei

n̄ : L∞(X ,m) → L∞(X ,m)
recursively by

E1
n̄(ϕ) = ϕ,

Ei
n̄(ϕ) = Ei−1

n̄ (ψAni−ni−1(ϕ)),
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where ϕ ∈ L∞(X ,m). Notice that Ei is linear since A is linear. Using this notation and
setting ϕ = ψ we get

P(Λn̄) =

∫
X
Et
n̄(ψ) dm. (3.8)

Having rewritten the joint distribution, we proceed by demonstrating how to apply the
spectral gap property of the averaging operator. More explicitly, we look at how we can
split (3.8) into a product of two integrals at the cost of an error term when A has spectral
gap. Let n̄ = (n1, . . . , np, np+1, . . . , nt) and also set q̄ = (n1, . . . , np) and s̄ = (np+1, . . . , nt).
Again assume that n1 < · · · < np < np+1 < · · · < nt. We want to estimate the difference

|P(Λn̄)−P(Λq̄)P(Λs̄)| .

Written as integrals this is∣∣∣∣∫
X
Et
n̄(ψ) dm−

∫
X
Ep
q̄ (ψ) dm

∫
X
Et−p
s̄ (ψ) dm

∣∣∣∣ .
Notice that

Et
n̄(ϕ) = Ep

q̄ (ψAnp+1−np(Et−p
s̄ (ϕ))).

Assume now that A has spectral gap in L2(X ,m). Let σ := Et−p
s̄ (ψ). Using the linearity

of Ep
q̄ we get∣∣∣∣ ∫

X
Et
n̄(ψ) dm−

∫
X
Ep
q̄ (ψ) dm

∫
X
Et−p
s̄ (ψ) dm

∣∣∣∣
=

∣∣∣∣∫
X
Ep
q̄

(
ψAnp+1−np(σ)

)
dm−

∫
X
Ep
q̄ (ψ)

(∫
X
σ dm

)
dm

∣∣∣∣
=

∣∣∣∣∫
X
Ep
q̄

(
ψAnp+1−np(σ)

)
dm−

∫
X
Ep
q̄

(
ψ

∫
X
σ dm

)
dm

∣∣∣∣
=

∣∣∣∣∫
X
Ep
q̄

(
ψ

(
Anp+1−np(σ)−

∫
X
σ dm

))
dm

∣∣∣∣
≤
∫
X

∣∣∣∣Ep
q̄

(
ψ

(
Anp+1−np(σ)−

∫
X
σ dm

))∣∣∣∣ dm
=

∥∥∥∥Ep
q̄

(
ψ

(
Anp+1−np(σ)−

∫
X
σ dm

))∥∥∥∥
1

.

(3.9)

Continuing the calculation, set ρ := Anp+1−np(σ) −
∫
X σ dm. Also, recall the Hölder in-

equality for L∞ functions, that is, for f ∈ L1 and g ∈ L∞ we have

‖fg‖1 ≤ ‖f‖1 ‖g‖∞ .
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We then get ∥∥Ep
q̄ (ψρ)

∥∥
1

=
∥∥ψAn2−n1(. . . ψAnp−np−1(ψρ))

∥∥
1

≤ ‖ψ‖∞
∥∥An2−n1(ψAn3−n2(. . . ψAnp−np−1(ψρ))

∥∥
1

= ‖ψ‖∞
∥∥ψAn3−n2(. . . ψAnp−np−1(ψρ))

∥∥
1

...

≤ ‖ψ‖p−1
∞ ‖ψρ‖1

≤ ‖ψ‖p∞ ‖ρ‖1

≤ ‖ρ‖2 .

Here we alternated between using the Hölder inequality to split into products of norms
and equation (3.1) to get rid of the averaging operator. The last inequality holds since ψ
is a characteristic function on a probability space. We can now continue the calculation in
(3.9) by applying the spectral gap property of A:∥∥Ep

q̄ (ψρ)
∥∥

1
=

∥∥∥∥Ep
q̄

(
ψ

(
Anp+1−np(σ)−

∫
X
σ dm

))∥∥∥∥
1

≤
∥∥∥∥(Anp+1−np(σ)−

∫
X
σ dm

)∥∥∥∥
2

≤ c0λ
np+1−np ‖σ‖2

≤ c0λ
np+1−np ,

since it is easily seen that ‖σ‖2 ≤ 1. All together we have shown that

|P(Λn̄)−P(Λq̄)P(Λs̄)| = O
(
λnp+1−np

)
. (3.10)

Lemma 3.9. If A has spectral gap on L2(X ,m) then Condition D(un) holds for the se-
quence ξi for any choice of scaling sequence un and any choice of ∆.

Proof. Set W = (−∞, un] such that for n̄ = (n1, . . . , nt) we have

P(Λn̄) = P(ξn1 ≤ un, . . . , ξnt ≤ un).

We rewrite the distribution function using the averaging operator as demonstrated earlier.
Let 1 ≤ n1 < · · · < np < np+1 < · · · < nt < n be integers such that np+1 − np ≥ l. Set
n̄ = (n1, . . . , np, np+1, . . . , nt), q̄ = (n1, . . . , np) and s̄ = (np+1, . . . , nt). By definition

Fξn1 ,...,ξnp ,ξnp+1 ,...,ξnt
(r) = P(ξn1 ≤ r, . . . , ξnp ≤ r, ξnp+1 ≤ r . . . , ξnt ≤ r),

which means that∣∣∣Fξn1 ,...,ξnp ,ξnp+1 ,...,ξnt
(un)− Fξn1 ,...,ξnp

(un)Fξnp+1 ,...,ξnt
(un)

∣∣∣
can be written as

|P(Λn̄)−P(Λq̄)P(Λs̄)| , (3.11)
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which by (3.10) is bounded by O (λnp+1−np). Since λnp+1−np → 0 for any sequence ln →∞
satisfying ln ≤ np+1−np, we conclude that Condition D(un) holds for any choice of un and
∆. �

We can now conclude on the proof of Theorem 3.3. In Lemma 3.5 we determined that
the inequalities in (2.2) are non-trivial for the scaling sequence un = r + 1

k
log n and in

Lemma 3.7 we proved that Condition D′g(r)(un) is satisfied for ξi with g(r) = 1
1−λc0v2− v1.

In Lemma 3.9 we proved that Condition D(un) is satisfied for ξi for any choice of un and ∆.
This means that all assumptions of Theorem 2.2 are satisfied and so Theorem 3.3 follows
from Theorem 2.2.

Corollary 3.10. For any a ∈ N, Theorem 3.3 holds with Mn substituted by Mn,a =
max0≤i<n ξai and

θλ =
λa

1− λa
c0v2 − v1 (3.12)

Proof. Set ηi = ξai and fix a ∈ N. First notice that ξi being stationary implies that ηi is
stationary. This also means that the common distribution of ξi and ηi is the same and so
nothing is changed in the proof of Lemma 3.5. The appropriate scaling sequence for ηi is
therefore also un = r + 1

k
log n.

In Lemma 3.7 replace j by aj throughout the proof to obtain

g(r) = v2e
−kr

∞∑
j=1

λaj =
λa

1− λa
c0v2e

−kr.

In Lemma 3.9, equation (3.11) is bounded above by λnp+1−np . The equivalent equation for
ηi is bounded by λa(np+1−np) and so Condition D(un) holds as well. Again all assumptions
of Theorem 2.2 are satisfied and so the corollary follows from Theorem 2.2. �

3.3. Proving Theorem 1.4 in the general setting.

Theorem 3.11. Assume that ∆ is k-SDL for some k > 0 and that A has spectral gap on
L2(X ,m). Let {mj} be a subsequence in N such that {mj+1 −mj} is strictly increasing.
Also, let αn < βn denote sequences in N such that αn → ∞ and Nn := βn − αn → ∞.
Then for un = r + 1

k
logNn we have

lim
n→∞

P

(
max

αn≤j≤βn
(ξmj) ≤ un

)
= e−v1e−kr ,

where v1 > 0 is the constant from Definition 3.2.

We first prove a lemma.

Lemma 3.12. Suppose ∆ is k-SDL for some k > 0 and let un = r + 1
k

log n. Then

lim
n→∞

P(ξ0 ≤ un)n = e−v1e−kr .
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Proof. Notice that P(ξ0 ≤ un) = 1−Φ∆(un). Using that ∆ is k-SDL and un = r + 1
k

log n
we get

(1− Φ∆(un))n =
(
1− (n−1v1e

−kr)− o(n−1)
)n

= en log(1−(n−1v1e−kr)−o(n−1)). (3.13)

We approximate log
(
1− (n−1v1e

−kr)− o(n−1)
)

by its second order Taylor expansion around
0 to get

log
(
1− (n−1v1e

−kr)− o(n−1)
)

= −n−1v1e
−kr + o(n−1).

Inserting this in (3.13) we get

(1− Φ∆(un))n = e−v1e−kr+o(1).

Taking limits gives

lim
n→∞

(1− Φ∆(un))n = e−v1e−kr .

�

Proof of Theorem 3.11. Let W = (−∞, un] and m̄(n) = (mαn ,mαn+1, . . . ,mβn−1). Using
the notation from section 3.2.1 we get that

P

(
max

αn≤j<βn
(ξmj) ≤ un

)
= P(ξmαn ≤ un, . . . , ξmβn−1

≤ un) = P(Λm̄(n)).

Set q̄ = (mαn) and s̄ = (mαn+1, . . . ,mβn−1). Recall that ψ = 1V0 . It then follows from
(3.10) that

P(Λm̄(n)) =

(∫
X
ψ dm

)
P(Λs̄) +O

(
λmαn+1−mαn

)
. (3.14)

Now set q̄1 = (mαn+1) and s̄1 = (mαn+2, . . . ,mβn−1). We then apply (3.10) again to get

P(Λs̄) =

(∫
X
ψ dm

)
P(Λs̄1) +O

(
λmαn+2−mαn+1

)
.

Inserting this in (3.14) while using that
∫
X ψ dm ≤ 1 gives

P(Λm̄(n)) =

(∫
X
ψ dm

)2

P(Λs̄1) +O
(
λmαn+2−mαn+1 + λmαn+1−mαn

)
.

Repeating this process βn − αn times eventually gives

P(Λm̄(n)) =

(∫
X
ψ dm

)(βn−αn)

+O

(
βn−2∑
i=αn

λmi+1−mi

)
. (3.15)

Recall the notation Nn = βn − αn and notice that
∫
X ψ dm = P(ξ0 ≤ un). Since Nn →∞

for n→∞ it follows from Lemma 3.12 that

lim
n→∞

(∫
X
ψ dm

)Nn
= e−v1e−kr .
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Also, as λ ∈ (0, 1) and {mi+1 −mi} is strictly increasing, we see that

βn−2∑
i=αn

(
λmi+1−mi

)
= O(λmαn+1−mαn )→ 0, for n→∞.

So taking limits in (3.15) gives

lim
n→∞

P(Λm̄(n)) = e−v1e−kr .

�

3.4. Logarithm law for random walks.

Corollary 3.13. Assume that ∆ is k-DL for some k > 0 and that A has spectral gap on
L2(X ,m). Then for P-a.e. y ∈ Y we have

lim sup
n→∞

ξn(y)

log n
=

1

k
.

Proof. We prove lim supn→∞
ξn(y)
logn
≤ 1

k
and lim supn→∞

ξn(y)
logn
≥ 1

k
for P-a.e. y ∈ Y .

The proof of the upper bound is an application of the classical Borel-Cantelli Lemma.
For completeness we give the proof. Recall the Borel-Cantelli Lemma stating that for any
sequence An ⊂ Y we have that

∞∑
n=1

P(An) <∞ ⇒ P({y ∈ Y : y ∈ An for infinitely many n}) = 0.

Let ε > 0 be given. We look at the sequence of sets

An =

{
(ḡ, x) : ξn(ḡ, x) ≥

(
1

k
+ ε

)
log n

}
.

Since ξn is stationary we have that

P(An) = P

(
ξn ≥

(
1

k
+ ε

)
log n

)
= P

(
ξ0 ≥

(
1

k
+ ε

)
log n

)
= m

(
x : ∆(x) ≥

(
1

k
+ ε

)
log n

)
= Φ∆

((
1

k
+ ε

)
log n

)
.

Since ∆ is k-DL we get

P(An) ≤ v2e
−k( 1

k
+ε) logn =

v2

n1+kε



EXTREME VALUE THEORY FOR RANDOM WALKS ON HOMOGENEOUS SPACES 19

where v2 > 0 is the constant from Definition 3.2. So
∑∞

n=1 P(An) ≤ v2

∑∞
n=1

1
n1+kε < ∞

implying that for P-a.e. y ∈ Y , the inequality

ξn(y) ≥
(

1

k
+ ε

)
log n

only holds true for finitely many n. So by taking the lim supn→∞ and dividing by log n we
get

lim sup
n→∞

ξn(y)

log n
≤ 1

k
+ ε.

Since this holds true for every ε > 0 we have proved the desired inequality for P-a.e. y ∈ Y .
We now prove the lower bound. Assume for contradiction that the lower bound does not

hold, i.e. assume that there exists ε > 0 such that

P

(
lim sup
n→∞

ξn
log n

≤ 1

k
− ε
)
> ε.

Let

B =

{
lim sup
n→∞

ξn
log n

≤ 1

k
− ε
}

For each y ∈ B we can find sufficiently large n0 ∈ N such that

sup
j>n0

ξj
log j

≤ 1

k
− ε

2

This implies that

B ⊂
⋃
n0≥1

{
sup
j>n0

ξj
log j

≤ 1

k
− ε

2

}
Since P(B) > ε there must be some n1 ∈ N for which

P

({
sup
j>n1

ξj
log j

≤ 1

k
− ε

2

})
> δ (3.16)

for some δ > 0. For any n2 ≥ n1 and any a ∈ N we have

δ < P

(
max

n1≤j<n2

ξj
log j

≤ 1

k
− ε

2

)
≤ P

(
max

n1≤j<n2

ξj
log n2

≤ 1

k
− ε

2

)
≤ P

(
max

n1≤j<[n2
a ]

(ξaj) ≤
(

1

k
− ε

2

)
log n2

)
. (3.17)

We now apply Corollary 3.10 with the goal of obtaining the opposite inequality. For any
a ∈ N we have

lim sup
n→∞

P

(
max
0≤j<n

(ξaj) ≤ r +
1

k
log n

)
≤ eθλe

−kr
.
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where θλ = λa

1−λa c0v2 − v1. For simplicity we make a change of variables. Set r = 1
k

log s
where s ∈ (0,∞). Then

lim sup
n→∞

P

(
max
0≤j<n

(ξaj) ≤
1

k
log(sn)

)
≤ eθλs

−1

.

Pick a ∈ N sufficiently large to ensure that θλ < 0. Let δ > 0 be as in (3.16). Then for

s > 0 sufficiently small we get that eθλs
−1
< δ

2
. Also by picking n ∈ N sufficiently large we

get

P

(
max
0≤j<n

(ξaj) ≤
1

k
log(sn)

)
< eθλs

−1

+
δ

2
< δ.

Since ξaj is stationary, we see that

P

(
max

n1≤j<n1+n
(ξaj) ≤

1

k
log(sn)

)
< δ.

Since (3.17) holds for any n2 ≥ n1 we can set n2 := a(n1 +n). Inserting this in (3.17) gives

P

(
max

n1≤j<n1+n
(ξaj) ≤

(
1

k
− ε

2

)
log(n1 + n)

)
> δ.

Set n3 := n1 +n. It is a simple calculation to show that if we choose n large enough we get(
1

k
− ε

2

)
log(n3) <

1

k
log(sn).

This inequality implies the following sequence of inequalities,

δ < P

(
max

n1≤j<n3

(ξaj) ≤
(

1

k
− ε

2

)
log(n3)

)
≤ P

(
max

n1≤j<n3

(ξaj) ≤
1

k
log(sn)

)
< δ,

which is a contradiction.
�

4. Proofs of main results

At this stage we are almost done with the proofs of the main results concerning maximal
excursions and shortest vectors. The only part that remains is to combine the results of
the previous section with known results from other papers.

For the closest returns on the torus we still need some additional arguments specific to
this setup.

4.0.1. Proofs of main results for shortest vectors on the space of unimodular lattices. In
the setup of Subsection 1.2 it was proven by Kleinbock and Margulis [11] (Proposition 7.1)
that ∆ as defined in (1.1) is d-SDL. In the proof of the same proposition the explicit value
of the constant w is derived as well. Furthermore, we know from Shalom [22] (Theorem
C) that in the same setup the averaging operator has spectral gap in L2. Notice that the
theorem applies to Ld since we can identify this space with SL(d,R)/SL(d,Z). So Theorem
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1.3, Theorem 1.4 and Corollary 1.5 follow from Corollary 3.10, Theorem 3.11 and Corollary
3.13 respectively. Using the d-SDL property of ∆ and (3.12) we see that

w(a) =
λa

1− λa
c0w − w,

so indeed, w(a)→ w for a→∞.

4.0.2. Proofs of main results for maximal excursions on homogeneous spaces. In the setup
of Subsection 1.3 it was also proven by Kleinbock and Margulis [11] (Proposition 5.1) that
∆(x) = d(x, x0) is a k-DL function for some k > 0. The spectral gap property of the
averaging operator in L2 in this setup also follows from Shalom [22] (Theorem C). So
Theorem 1.6 and Corollary 1.8 follow from Corollary 3.10 and Corollary 3.13 respectively.

4.1. Proofs of main results for closest returns on the torus. We recall the setup
of Theorem 1.1. Let X = T

d equipped with Lebesque measure m and Euclidian metric
d. Also, let G = Aut(Td) equipped with a probability measure µ. Assume that there is
no Gµ-invariant factor torus T such that the projection of Gµ on Aut(T ) is amenable. We
know from Bekka and Guivarc’h [4] (Theorem 5) that the averaging operator has spectral
gap in L2(X ,m).

Let x0 ∈ X be a fixed point and set ∆(x) = − log d(x, x0). The random variables ξi are
then given by

ξi(ḡ, x) = − log d(Li(ḡ)x, x0).

The strategy for proving Theorem 1.1 is to verify the assumptions of Theorem 2.1. Notice
that Lemma 3.9 verifies Condition D(un) for ξi with any choice of un and ∆. This means
that we are left with the task of determining the scaling sequence un such that the limit
of nP(ξ0 > un) is non-trivial and, for this un, verifing Condition D′(un).

First we determine un. Let Br(x0) ⊂ X denote the ball of radius r around x0 and Vd the
volume of the unit ball in Rd. Then

nP(ξ0 > un) = nm ({− log d(x, x0) > un})
= nm (Be−un (x0)) .

Since X is locally Euclidian we get that for sufficiently large n,

nm (Be−un (x0)) = nVde
−dun .

As in the case of Lemma 3.5 we now see that if we set un = r + 1
d

log n we get

lim
n→∞

nP(ξ0 > un) = Vde
−dr.

We collect this conclusion in a lemma.

Lemma 4.1. Set un = r + 1
d

log n. Then for the stationary sequence ξi we have

lim
n→∞

nP(ξ0 > un) = Vde
−dr.
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Having determined un, we proceed to verify Condition D′(un). This is the step which
requires the most work. Fix δ ∈ (0, 1). Recall the Hardy-Littlewood maximal operator M ,
which for a function f : X → C is given by

Mf(x) := sup
R∈(0,δ)

1

m(BR(x))

∫
BR(x)

|f(y)| dm(y).

The Hardy-Littlewood maximal inequality then states that for any f ∈ L1(X ) and any
β > 0 we have

m ({x : Mf(x) > β}) = O
(
β−1 ‖f‖1

)
This version of the Hardy-Littlewood maximal inequality for functions on Td, which we
shall use in the proof of the following lemma, follows easily from the classical version for
functions on Rd. Let

Ei =

{
(ḡ, x) : d(Li(ḡ)x, x) <

1

s

}
.

The next lemma gives sufficient assumptions for Condition D′(un) to hold.

Lemma 4.2. Suppose that for constants α ∈ (0, d) and κ > 0 we have that for all s > 0,

[sα]∑
i=1

P(Ei) = O
(
s−κ
)
. (4.1)

Then Condition D′(un) holds for ξi and un(r) = r + 1
d

log n for a.e. x0 ∈ X .

Proof. Using that P = µ⊗N ⊗m we can rewrite the estimate as

[sα]∑
i=1

∫
G×N

m

({
x ∈ X : d(Li(ḡ)x, x) <

1

s

})
dµ⊗N(ḡ) ≤ B

sκ
. (4.2)

for some B > 0. Define the function Ψs : X → R by

Ψs(x) =

[sα]∑
i=1

∫
G×N

1{x∈X :d(Li(ḡ)x,x)< 1
s}(x) dµ⊗N(ḡ),

and apply the Hardy-Littlewood maximal operator to Ψs to get

MΨs(x) = sup
R∈(0,δ)

1

m(BR(x))

∫
BR(x)

Ψs(y) dm(y).

Set MΨs(x) :=Ms(x). Using (4.2) and the Hardy-Littlewood maximal inequality we get
that for every β > 0

m ({x :Ms(x) > β}) = O
(
β−1 ‖Ψs‖1

)
= O

(
β−1s−κ

)
.

Let ε > 0. Set γ = 1+2ε
κ

and notice that γκ − ε = 1 + ε > 1. Let n be an integer and
substitute s with nγ and set β = n−ε. Then

m
({
x :Mnγ (x) > n−ε

})
= O

(
nε−γκ

)
.
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Since ε− γκ < −1 we see that
∞∑
n=1

m
({
x :Mnγ (x) > n−ε

})
= O

(
∞∑
n=1

nε−γκ

)
<∞.

The classical Borel-Cantelli Lemma then tells us that for a.e. x0 ∈ X
x0 /∈ lim sup

n→∞

{
x :Mnγ (x) > n−ε

}
.

So there exists a number N(x0) such that for all n ≥ N(x0) we haveMnγ (x0) ≤ n−ε. That
is

Mnγ (x0) = sup
R∈(0,δ)

1

m(BR(x0))

∫
BR(x0)

Ψnγ (x) dm(x) ≤ n−ε.

Choose n so large that 1
nγ
∈ (0, δ) and set R = 1

nγ
. Then∫

Bn−γ (x0)

Ψnγ (x) dm(x) ≤ Vd
nε+γd

.

We want to switch back to the real variable s instead of the integer variable n while
preserving the inequality above. Let s ∈ (n, n+1). On the right hand side of the inequality
we can clearly substitute n with s− 1 and the inequality will still hold. The left hand side
written out is

[nγα]∑
i=1

∫
G×N

m

(
Bn−γ (x0) ∩

{
x : d(Li(ḡ)x, x) <

1

nγ

})
dµ⊗N(ḡ).

We see that by changing n to s inside the integral, the measure of the intersection becomes
smaller. However, to ensure that we are not summing over more terms we need to change
n to s− 1 in the upper limit of the sum. All together we get

[(s−1)γα]∑
i=1

∫
G×N

m

(
Bs−γ (x0) ∩

{
x : d(Li(ḡ)x, x) <

1

sγ

})
dµ⊗N(ḡ) ≤ Vd

(s− 1)ε+γd
. (4.3)

We aim to connect the left hand side of (4.3) with the sum in Condition D′(un). To do
this we derive as follows using the triangle inequality for the inclusion:

{x ∈ X : ξ0 > un, ξi > un}

=

{
x ∈ X : − log d(x, x0) > r +

1

d
log n, − log d(Li(ḡ)x, x0) > r +

1

d
log n

}
=

{
x ∈ X : d(x, x0) ≤ e−r

n
1
d

, d(Li(ḡ)x, x0) ≤ e−r

n
1
d

}
⊂
{
x ∈ X : d(x, x0) ≤ 2e−r

n
1
d

, d(Li(ḡ)x, x) ≤ 2e−r

n
1
d

}
=

{
x ∈ X : d(x, x0) ≤ 1

lγ
, d(Li(ḡ)x, x) ≤ 1

lγ

}
,
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where l :=
(

n
1
d

2e−r

) 1
γ

. Notice that the last line is exactly the set inside the integral in (4.3)

above with s substituted by l. Using this gives

[(l−1)γα]∑
i=1

P(ξ0 > un, ξi > un)

≤
[(l−1)γα]∑
i=1

∫
G×N

m

(
d(x, x0) ≤ 1

lγ
,d(Li(ḡ)x, x0) ≤ 1

lγ

)
dµ⊗N(ḡ)

≤ Vd
(l − 1)γd+ε

� Vd
lγd+ε

.

In the last line above we replaced l − 1 with l for notational simplicity. We can do this
since we are only interested in the behavior as n→∞. Inserting the expression for l gives

1

lγd+ε
=

(2e−r)(d+ ε
γ

)

n1+ ε
γd

= O
(
n−

ε
γd
−1
)
.

hence

n

[(l−1)γα]∑
i=1

P(ξ0 > un, ξi > un) = O
(
n−

ε
γd

)
. (4.4)

Since (l − 1)γα = O(n
α
d ) and α

d
< 1, we see that for sufficiently large n, [(l − 1)γα] ≤

[
n
q

]
for any q ∈ N. This means that the left hand side of (4.4) does not necessarily account for
the entire quantity that we need to estimate to verify Condition D′(un). To obtain this we
need to add

n

[nq ]∑
i=[(l−1)γα]+1

P(ξ0 > un, ξi > un)

to the left hand side of equation (4.4). To find an upper bound on this sum we apply the
averaging operator exactly like in Lemma 3.7. This gives

[nq ]∑
i=[(l−1)γα]+1

P(ξ0 > un, ξi > un) ≤
[nq ]∑

i=[(l−1)γα]+1

(
P(ξ0 > un)2 + P(ξ0 > un)O(λi)

)
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where λ ∈ (0, 1) comes from the spectral gap property of the averaging operator. From the
proof of Lemma 4.1 we see that P(ξ0 > un) = 1

n
Vde

−dr. Inserting this gives

[nq ]∑
i=[(l−1)γα]+1

P(ξ0 > un, ξi > un)

≤
([

n

q

]
− [(l − 1)γα]

)(
1

n
Vde

−dr
)2

+
1

n
Vde

−dr
[nq ]∑

i=[(l−1)γα]+1

O(λi)

≤ n

q

(
1

n
Vde

−dr
)2

+
1

n
Vde

−drO(λ[(l−1)γα]+1)

= O

(
1

qn
+

1

n
λ[(l−1)γα]+1

)
.

Consequently,

n

[nq ]∑
i=[(l−1)γα]+1

P(ξ0 > un, ξi > un) = O
(
q−1 + λ[(l−1)γα]+1

)
.

Adding this to (4.4) we get

n

[nq ]∑
i=1

P(ξ0 > un, ξi > un) = O
(
n−

ε
γd + q−1 + λ[(l−1)γα]+1

)
.

Taking the lim sup for n→∞ gives

lim sup
n→∞

n

[nq ]∑
i=1

P(ξ0 > un, ξi > un) = O
(
q−1
)
,

and finally by letting q →∞ we obtain

lim sup
n→∞

n

[nq ]∑
i=1

P(ξ0 > un, ξi > un)→ 0 for q →∞.

We conclude that Condition D′(un) has been established. �

In the following set Ω := supp(µ). To complete the proof of Condition D′(un) we need
to show that the estimate in (4.1) holds for the setup of Theorem 1.1. This is the content
of the next lemma.

Lemma 4.3. Assume that there exists T > 1 such that ‖ω‖ ≤ T for all ω ∈ Ω. Assume
also that det(ω − I) 6= 0 for all ω ∈ Sµ. Let α < d. Then there exists κ > 0 such that for
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all s > 0
[sα]∑
i=1

P(Ei) = O
(
s−κ
)
. (4.5)

Proof. The strategy of the proof is to derive two different upper bounds on

P(Ei) = P

({
(ω̄, x) ∈ Ω×N ×X : d(Li(ω̄)x, x) <

1

s

})
,

using two different methods. One method generates a bound that is good for small values
of i while the other method gives a good bound for large values of i. Using the two in
combination gives the upper bound in (4.5).

4.1.1. Method 1. Let ω̄ ∈ Ω×N and for notational simplicity set

Li(ω̄) := ω ∈ Ωi.

For s > 0 we look at

Eω
s :=

{
x ∈ X : ωx ∈ B 1

s
(x)
}
.

A point x ∈ X can be written as x = y+Zd for some y ∈ [0, 1]d. Multiplication by ω gives

ωx = ωy + Zd.

Assume that x ∈ Eω
s . Then

ωy ∈ y +B 1
s

+ Zd, (4.6)

where B 1
s

is the ball of radius 1
s

at 0 in Rd. We see that

m
({
x ∈ X : ωx ∈ B 1

s
(x)
})

= volRd
({
y ∈ [0, 1]d : ωy ∈ y +B 1

s
+ Zd

})
.

Rearranging (4.6) we get

y ∈ (ω − I)−1B 1
s

+ (ω − I)−1
Z
d,

where we used that det(ω − I) 6= 0. So

m
({
x ∈ X : ωx ∈ B 1

s
(x)
})

= m
([

(ω − I)−1B 1
s

+ (ω − I)−1
Z
d
]/
Z
d
)
.

We see that (ω − I)−1
Z
d can at most have finitely many points in [0, 1]d so the measure

must be bounded from above by a scalar multiple of m
(

(ω − I)−1B 1
s

)
. To estimate the

measure we first see that

m
(

(ω − I)−1B 1
s

)
=

1

|det(ω − I)|
m
(
B 1

s

)
.

Since det(ω − I) 6= 0 and ω has integer entries we see that |det(ω − I)| ≥ 1. Then

m
(

(ω − I)−1B 1
s

)
≤ m

(
B 1

s

)
= O

(
s−d
)
.
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To find an upper bound on the number of copies of (ω− I)−1B 1
s

in [0, 1]d, first notice that

(ω − I)−1 =
1

det(ω − I)
· A,

where A is some integer matrix. This implies that

(ω − I)−1
Z
d/Zd ⊂ 1

det(ω − I)
Z
d/Zd.

So the integer lattice Zd will at most be contracted by the factor det(ω − I) in all d
directions. This means that

#
(
(ω − I)−1

Z
d/Zd

)
≤ |det(ω − I)|d .

By assumption ‖ω‖ ≤ T for all ω ∈ Ω. So for ω ∈ Ωi it follows simply by multiplying

matrices that ‖ω‖ ≤ (dT )i. Set T̃ = dT . By definition of the determinant we then see that
det(ω − I) = O(T̃ di) for all ω ∈ Ωi. Consequently,

#
(
(ω − I)−1

Z
d/Zd

)
= O(T̃ di)d = O(T̃ d

2i).

Multiplying the number of sets by the measure of each set we get

m (Eω
s ) = m

([
(ω − I)−1B 1

s
+ (ω − I)−1

Z
d
]/
Z
d
)

= O

(
T̃ d

2i

sd

)
.

Finally, as the upper bound is independent of ω = Li(ω̄), integrating over Ω×N is trivial
and so

P(Ei) =

∫
Ω×N

m

({
x ∈ X : d(Li(ω̄)x, x) <

1

s

})
dµ⊗N(ω̄) = O

(
T̃ d

2i

sd

)
.

4.1.2. Method 2. Let again ω̄ ∈ Ω×N and Li(ω̄) = ω. Again, for s > 0 we look at the set

Eω
s =

{
x ∈ X : ωx ∈ B 1

s
(x)
}
.

The idea of how to estimate its measure is to find a set, which contains Eω
s , and whose

measure is easier to compute. Think of X as the d-cube [0, 1]d and partition this into
sub-cubes of the form

d×
k=1

[
jk
s
,
jk + 1

s

]
,

where jk ∈ {0, . . . , s− 1}. Clearly, as each vector j̄ = (j1, . . . , jd) ∈ {0, . . . , s− 1}d := J

uniquely determines one such sub-cube, we have sd cubes of volume
(

1
s

)d
in the partition.

Let Cj̄ denote the cube corresponding to the vector j̄. Clearly{
x ∈ X : ωx ∈ B 1

s
(x)
}

=
⋃
j̄∈J

{
x : x ∈ Cj̄, ωx ∈ B 1

s
(x)
}
.



28 MAXIM SØLUND KIRSEBOM

Notice that this is a disjoint union up to measure zero. Let

C+
j̄

:=
d×

k=1

[
jk
s
− 1

s
,
jk + 1

s
+

1

s

]
.

Obviously Cj̄ ⊂ C+
j̄

. We claim that{
x : x ∈ Cj̄, ωx ∈ B 1

s
(x)
}
⊂
{
x : x ∈ Cj̄, ωx ∈ C+

j̄

}
.

This is easy to see. Set x = (x1, . . . , xd) and ωx = (y1, . . . , yd). If ωx ∈ B 1
s
(x), then

d(ωx, x) =
√

(x1 − y1)2 + · · ·+ (xd − yd)2 <
1

s
.

In particular this means that |xk − yk| < 1
s

for all k ∈ {1, . . . , d}. Assume further that

x ∈ Cj̄. Then for every k, xk ∈
[
jk
s
, jk+1

s

]
so we must have yk ∈

[
jk
s
− 1

s
, jk+1

s
+ 1

s

]
implying

that ωx ∈ C+
j̄

. So we have{
x ∈ X : ωx ∈ B 1

s
(x)
}
⊂
⋃
j̄∈J

{
x : x ∈ Cj̄, ωx ∈ C+

j̄

}
.

Taking measures we get

m
({
x ∈ X : ωx ∈ B 1

s
(x)
})
≤ m

⋃
j̄∈J

{
x : x ∈ Cj̄, ωx ∈ C+

j̄

}
≤
∑
j̄∈J

m
({
x : x ∈ Cj̄, ωx ∈ C+

j̄

})
=
∑
j̄∈J

∫
X
1{

x :x∈Cj̄ , ωx∈C
+
j̄

}(x) dm(x)

=
∑
j̄∈J

∫
X
1Cj̄(x)1C+

j̄
(ωx) dm(x).

Integrating over Ω×N we get,∫
Ω×N

m
({
x ∈ X : Li(ω̄)x ∈B 1

s
(x)
})
dµ⊗N(ω̄)

≤
∫

Ω×N

∑
j̄∈J

∫
X
1Cj̄(x)1C+

j̄
(Li(ω̄)x)dm(x)dµ⊗N(ω̄)

=
∑
j̄∈J

∫
X
1Cj̄(x)

∫
Ω×N

1C+
j̄

(Li(ω̄)x)dµ⊗N(ω̄)dm(x)

=
∑
j̄∈J

∫
X
1Cj̄(x)Ai

(
1C+

j̄
(x)
)
dm(x),
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where A is the averaging operator. Performing the analogous calculation as in (3.5) we get∣∣∣∣∫
X
1Cj̄A

i
(
1C+

j̄

)
dm−

∫
X
1Cj̄dm

∫
X
1C+

j̄
dm

∣∣∣∣
=

∣∣∣∣∫
X
1Cj̄

(
Ai
(
1C+

j̄

)
−
∫
X
1C+

j̄
dm

)
dm

∣∣∣∣
≤
∥∥∥∥1Cj̄ (Ai (1C+

j̄

)
−
∫
X
1C+

j̄
dm

)∥∥∥∥
1

≤
∥∥∥1Cj̄∥∥∥

2

∥∥∥∥Ai (1C+
j̄

)
−
∫
X
1C+

j̄
dm

∥∥∥∥
2

≤
∥∥1Cj̄∥∥2

∥∥1C+
j̄

∥∥
2
O(λi),

where λ ∈ (0, 1). This gives us∫
X
1Cj̄A

i
(
1C+

j̄

)
dm ≤

∫
X
1Cj̄dm

∫
X

(
1C+

j̄

)
dm+

∥∥1Cj̄∥∥2

∥∥1C+
j̄

∥∥
2
O(λi)

=

(
3

s2

)d
+

(
3

s2

) d
2

O(λi).

Now, recall that there were sd sub-cubes in the partition of [0, 1]d so instead of summing
over all j̄ ∈ J , we may multiply by sd to finally get

P(Ei) =

∫
Ω×N

m
({
x ∈ X : Li(ω̄)x ∈ B 1

s
(x)
})

dµ⊗N(ω̄) = O

(
1

sd
+ λi

)
.

4.1.3. Combining method 1 and 2. The idea of combining method 1 and method 2 is that
for small values of i

O

(
T̃ d

2i

sd

)
,

is relatively small as s becomes large. Conversely, since λ ∈ (0, 1),

O

(
1

sd
+ λi

)
is small for large values of i as s grows. Thus if we use the first bound for the first values
of i and add the second bound for the last values of i we are optimizing the total upper
bound.

We can write the above idea as
[sα]∑
i=1

P(Ei) =
K∑
i=1

P(Ei) +

[sα]∑
i=K+1

P(Ei)

�
K∑
i=1

T̃ d
2i

sd
+

[sα]∑
i=K+1

(
1

sd
+ λi

)
.
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for some integer 1 ≤ K ≤ [sα]. Since T̃ > 1 we can estimate the first sum by

K∑
i=1

T̃ d
2i

sd
= O

(
T̃ d

2K

sd

)
.

For the second sum we have

[sα]∑
i=K+1

(
1

sd
+ λi

)
�

[sα]∑
i=1

(
1

sd
+ λi

)
−

K∑
i=1

(
1

sd
+ λi

)
� 1

sd−α
+ λK .

Choose K = δ log s where δ > 0 is some constant to be determined. Inserting this we get

[sα]∑
i=1

P(Ei)�
1

sd
T̃ d

2(δ log s) +
1

sd−α
+ λδ log s

� sd
2(δ log T̃ )−d + sδ log λ + sα−d.

The estimate as a whole must be polynomially decreasing in s, so we need all exponents to
be negative. α − d < 0 by assumption and δ log λ < 0 since λ ∈ (0, 1). Also, by choosing
δ > 0 sufficiently small we get that d2(δ log T̃ )− d < 0. Pick δ such that this inequality is
satisfied and set κ := min(|α− d|, |δ log λ|, |d2(δ log T̃ )− d|). We then conclude that

[sα]∑
i=1

P(Ei) = O
(
s−κ
)
.

�

We can now conclude the proof of Theorem 1.1. In Lemma 4.1 we proved that the correct
scaling sequence was un = r + 1

d
log n. Lemma 4.3 and 4.2 together prove that Condition

D′(un) is satisfied under the assumptions of Theorem 1.1. Condition D(un) was proven
already in Lemma 3.9. This means that all assumptions of Theorem 2.1 have been satisfied
and so Theorem 1.1 follows.

Proof of Corollary 1.2. We want to prove the logarithm law without the assumptions on
Ω and Sµ made in Lemma 4.3 hence we cannot apply Theorem 1.1 directly. However, the
proof of Lemma 3.7 works for the random walk on the torus as well. In this case the role
of the k-DL assumption is played by the fact that P(ξ0 > un) = 1

n
Vde

−dr which we derived
in the proof of Lemma 4.1.

The analogue of Lemma 3.7 for closest returns on the torus implies that the conclusion
of Theorem 3.3, Corollary 3.10 and Corollary 3.13 holds for closest returns on the torus.
In particular, Corollary 3.13 then implies Corollary 1.2.

�
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