19 Computable Isomorphism

By the way, Yurii has opened a website accessible to everyone at http://staff.science.uva.nl/~jkhomski/recursion.html
19.1 Definition. A property \mathcal{P} of sets is computably invariant if for every computable permutation f (of ω), $X \in \mathcal{P}$ implies $f[X] \in \mathcal{P}$.
1_{ω} is a computable permutation, and the computable permutations are closed under inversion and composition.
19.2 Examples. Computably invariant are:
(i) being c.e.;
(ii) cardinality;
(iii) being computable;
and not computably invariant are:
(iv) containing 2 ;
(v) containing the even numbers;
(vi) being an index set.
19.3 Definition. Sets A and B are computably isomorphic, notation $A \equiv B$, if there exists a computable permutation p such that $p[A]=B$.

Computable isomorphism is an equivalence relation; its equivalence classes are called computable isomorphism types.

The following is an effective analogue of the Schröder-Bernstein Theorem.
19.4 Myhill's Isomorphism Theorem. $A \equiv B$ if and only if $A \equiv_{1} B$.

Proof. (\Rightarrow) Trivial.
(\Leftarrow) Assume $f 1$-reduces A to B, and $g 1$-reduces B to A. We construct a suitable permutation h as the union of a chain of decidable finite functions h_{s}, $s \in \omega$. We set out from $h_{0}=\emptyset$.

Suppose h_{s} has been constructed, it is 1-1, and

$$
\forall u \in \operatorname{Dom} h_{s}\left(u \in A \Leftrightarrow h_{s}(u) \in B\right) .
$$

Let s be even, say $s=2 x$. If $x \in \operatorname{Dom} h_{s}, h_{s+1}=h_{s}$. Otherwise, $\{x\} \cup$ Dom h_{s} has more elements than $\operatorname{Ran} h_{s}$, so we can define $h_{s+1}(x)$ to be the first element of the sequence $f(x), f\left(h_{s}^{-1} f(x)\right), f\left(h_{s}^{-1} f\left(h_{s}^{-1} f(x)\right)\right), \ldots$ that does not belong to $\operatorname{Ran} h_{s}$.

If s be odd, say $s=2 y+1$, we proceed in the same way, but in the other direction, doing nothing if $y \in \operatorname{Ran} h_{s}$, putting it in otherwise and using g to find a corresponding element for the domain of h_{s+1}.

The proof shows more.
19.5 Corollary. Let $\left(A_{n}\right)_{n \in \omega}$ and $\left(B_{n}\right)_{n \in \omega}$ be partitions of ω into infinite sets, and f and g computable injections such that for all $n, f\left[A_{n}\right] \subseteq B_{n}$ and $g\left[B_{n}\right] \subseteq A_{n}$. Then there exists a computable permutation h such that for all $n, h\left[A_{n}\right]=B_{n}$.

20 Acceptable numberings

Let \mathcal{P} be the class of p.c. functions of one variable. A numbering of the p.c. functions is a surjection $\rho: \omega \rightarrow \mathcal{P}$. The numbering φ used thus far is the standard or canonical numbering. A numbering ρ is acceptable if there are computable functions f and g such that for all $x, \varphi_{f(x)}=\rho_{x}$ and $\rho_{g(x)}=\varphi_{x}$.
Acceptable Numbering Theorem (Rogers). For any acceptable numbering ρ of the p.c. functions, there exists a computable permutation h such that for all $e, \rho_{h(e)}=\varphi_{e}$.

Proof. Part exercise, part promise.
区

Homework. Make sure you understand the exercise part of the proof of the Acceptable Numbering Theorem. Hand in: 1.6.9 (inacceptable numberings).

$21 \Sigma_{\mathbf{1}}$ forms

The projection of a relation $R \subseteq \omega \times \omega$ is the set $\{x \mid \exists y R x y\} . \Sigma_{1}$ is the class of projections of computable relations. A Σ_{1} (normal) form for a set is a presentation as such a projection.
21.1 Normal Form Theorem for c.e. sets. A set is c.e. if and only if it is (in) Σ_{1}.

Proof. (\Rightarrow) If A is c.e., then $A=W_{e}$ for some index e, and

$$
x \in A \Leftrightarrow \exists s x \in W_{e, s} .
$$

(\Leftarrow) If R is computable, and $A=\{x \mid \exists y R x y\}$, define: $\psi(x) \simeq \mu y R x y$. Then A $=\operatorname{Dom} \psi$.
22.2 Definition. If $A=W_{e}$, we call e a Σ_{1}-index or a c.e.-index for A.
22.3 Quantifier Contraction Theorem. $A \in \Sigma_{1}$ iff there are $n \in \omega$ and an ($n+2$)-ary computable relation R such that

$$
x \in A \Leftrightarrow \exists y_{0} \ldots y_{n} R x y_{0} \ldots y_{n}
$$

Proof. Define a binary computable relation S by

$$
S x y \Leftrightarrow R\left(x,(y)_{0} \ldots(y)_{n}\right) .
$$

Then $x \in A \Leftrightarrow \exists y S x y$.
囚
An n-ary relation R is c.e. if $\left\{\left\langle y_{1}, \ldots, y_{n}\right\rangle l R y_{1} \ldots y_{n}\right\}$ is c.e. By what we have just seen, this is equivalent to the existence of a computable relation S such that $R y_{1} \ldots y_{n} \Leftrightarrow \exists z S y_{1} \ldots y_{n} z$. We also have:
22.4 Corollary. The projection of a c.e. relation is c.e.

The Quantifier Contraction Theorem is very useful for showing sets to be c.e. For example,
(1) $K=\left\{x \mid \exists s x \in W_{x, s}\right\}$.
(2) $K_{0}=\left\{x \mid \exists s \pi_{1} x \in W_{\pi_{1} x, s}\right\}$.
(3) $K_{1}=\left\{x \mid \exists s \exists y y \in W_{x, s}\right\}$.
(4) $\operatorname{Ran} \varphi_{e}=\left\{y \mid \exists s \exists x y=\varphi_{e, s}(x)\right\}$.
(5) φ_{e} itself, as a relation, is c.e.: it is $\left\{(y, x) \mid \exists s y=\varphi_{e, s}(x)\right\}$.
22.5 Uniformization Theorem. For every c.e. relation R, there exists a p.c. function ψ such that

$$
\psi(\bar{x}) \downarrow \Leftrightarrow \exists y R y \bar{x} \Leftrightarrow R(\psi(\bar{x}), \bar{x}) .
$$

Proof. Since R is c.e., there exists a computable relation S such that $R y \bar{x} \Leftrightarrow$ $\exists z S y \bar{x} z$. Define: $\psi(\bar{x}) \simeq\left(\mu u \cdot S\left((u)_{0}, \bar{x},(u)_{1}\right)_{0}\right.$.

The function ψ is called a selector function. Observe that an index for ψ can be computed (it can be found uniformly) from any given c.e. index of R. Moreover, if R actually is a unary function, then $\psi=R$.

