Homework 16 (due Thursday 13 December)

Exercises 3.2.5, 3.2.7, 4.1.9 and 4.1.10 from the syllabus.
Exercise 3.2.5. Prove that there are at most $2^{\aleph_{0}}$ degrees. [10pts]
Hint: Note that there are only countably many sets in every degree. Hence, there are at least $2^{\aleph_{0}}$ degrees. Conclude that there are exactly $2^{\aleph_{0}}$ degrees.

Exercise 3.2.7.

(a.) Let $\left\{A_{y} \mid y \in \omega\right\}$ be any countable sequence of sets. Define the infinite join

$$
\oplus_{y} A_{y}=\oplus\left\{A_{y} \mid y \in \omega\right\}:=\left\{\langle x, y\rangle \mid x \in A_{y}, y \in \omega\right\}
$$

Prove that $\operatorname{deg}\left(\oplus_{y} A_{y}\right)$ is the uniform least upper bound for $\left\{\operatorname{deg}\left(A_{y}\right) \mid\right.$ $y \in \omega\}$ in the sense that if there exists a set C and a computable function f such that $A_{y}=\Phi_{f(y)}^{C}$ for all y, then $\oplus_{y} A_{y} \leq_{T} C$. [20pts]
(b.) Prove that this operation is not well-defined on degrees. Namely, define $\left\{A_{y} \mid y \in \omega\right\}$ and $\left\{B_{y} \mid y \in \omega\right\}$ such that $A_{y} \equiv_{T} B_{y}$ but $\oplus_{y} A_{y} \not \equiv_{T} \oplus_{y} B_{y}$. [20pts]

Exercise 4.1.9. Prove that $A \in \bigcup_{n}\left(\Sigma_{n} \cup \Pi_{n}\right)$ iff A can be obtained from a computable relation by a finite number of applications of projection and complementation. [10pts]

Exercise 4.1.10. Prove that Ext $\in \Sigma_{3}$ for

$$
\text { Ext }:=\left\{x \mid \varphi_{x} \text { is extendible to a total computable function }\right\}
$$

[20 pts]

