Homework 16 (due Thursday 13 December)

Exercises 3.2.5, 3.2.7, 4.1.9 and 4.1.10 from the syllabus.

Exercise 3.2.5. Prove that there are at most 2^{\aleph_0} degrees. [10pts]

HINT: Note that there are only countably many sets in every degree. Hence, there are at least 2^{\aleph_0} degrees. Conclude that there are exactly 2^{\aleph_0} degrees.

Exercise 3.2.7.

(a.) Let $\{A_y \mid y \in \omega\}$ be any countable sequence of sets. Define the *infinite* join

 $\oplus_{y} A_{y} = \oplus \{ A_{y} \mid y \in \omega \} := \{ \langle x, y \rangle \mid x \in A_{y}, y \in \omega \}$

Prove that $\deg(\bigoplus_y A_y)$ is the uniform least upper bound for $\{\deg(A_y) \mid y \in \omega\}$ in the sense that if there exists a set C and a computable function f such that $A_y = \Phi_{f(y)}^C$ for all y, then $\bigoplus_y A_y \leq_T C$. [20pts]

(b.) Prove that this operation is not well-defined on degrees. Namely, define $\{A_y \mid y \in \omega\}$ and $\{B_y \mid y \in \omega\}$ such that $A_y \equiv_T B_y$ but $\bigoplus_y A_y \not\equiv_T \bigoplus_y B_y$. [20pts]

Exercise 4.1.9. Prove that $A \in \bigcup_n (\Sigma_n \cup \Pi_n)$ iff A can be obtained from a computable relation by a finite number of applications of projection and complementation. [10pts]

Exercise 4.1.10. Prove that $Ext \in \Sigma_3$ for

Ext := { $x \mid \varphi_x$ is extendible to a total computable function}

[20 pts]