42.4 Exercises

:1 (a) Show that the relation of divisibility, $m \mid n$, is representable.
(b) Show that $m|(k+n) \& m| n$ implies $m \mid k$.
:2 Numbers m and n are relatively prime if they have no prime factors in common. Show that m and n are relatively prime if and only if $\forall x(m|x n \Rightarrow m| x)$.
:3 If m is relatively prime with n and k, then m is relatively prime with $n k$.
:4 The surjective pairing operation is strictly monotonic in both its arguments: if $m<n$, then $\langle m, k\rangle<\langle n, k\rangle$ and $\langle k, m\rangle<\langle k, n\rangle$.

