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1 Introduction

1.1 History and motivations

This Habilitationsschrift deals with the interplay between combinatorial, topological and
structural properties and definability aspects of the real number continuum; here, by defin-
ability, we refer to the descriptive complexity of sets of real numbers in terms of formal
logic. In addition to this main theme, we explore smaller side avenues, such as: technical
aspects of forcing (the central tool in set theory for obtaining independence proofs), infinite
combinatorics, and generalised Baire spaces—a sub-field of set theory that has caught the
attention of set theorists in recent years, where one studies analogues of the real numbers
at higher cardinalities.

Real numbers are ubiquitous in nearly all areas of science and mathematics. Although
known since antiquity, the exact nature of real numbers was not clearly understood and
the use of real numbers other than the rationals use was limited to concrete cases, such as
the number π in geometry. The first use of the concept of a real number in its full and
unbridled form was the development of calculus in the late 17th century, which required an
abstract treatment of convergent sequences and limit processes. Even then, the concept of
a real number was not clearly defined, and it was not until the late 19th century that the
real number continuum was given a proper mathematical definition.

As 19th century mathematics progressed and its methods became more abstract, increas-
ingly complex and unexpected aspects of the real number continuum were being discovered.
One of these was Cantor’s famous theorem about the uncountability of real numbers, em-
ploying the diagonalisation method for the first time. Having discovered the surprising result
that there were “different sizes of infinity”, Cantor went on to conjecture the famous Contin-
uum Hypothesis (CH)—the statement that the cardinality of the continuum is the smallest
cardinality above the countable one. Cantor himself, and many of his successors, devoted
considerable effort to proving or refuting this conjecture, but were all met with failure.

Another unexpected aspect of the real number continuum was the existence of non-
measurable sets, leading to such bizarre results as the famous Banach-Tarski paradox. But
proofs of the existence of such non-measurable sets were non-constructive, in the sense that
they did not provide concrete definitions of the non-measurable set. Rather, this existence
was established indirectly, using an evocation of the Axiom of Choice, a fundamental princi-
ple of mathematics. This realisation made some mathematicians ask the following question:
what if we restrict attention to definable sets of reals? How counter-intuitive can they be,
and can “paradoxes” be resolved by restricting attention to sets of reals of a given complex-
ity? In 1917, Mikhail Suslin was led to study analytic sets of reals (a set is analytic if it is
the image of a Borel set under a continuous function; or, equivalently, if it can be defined in
second-order number theory by a Σ1

1-sentence with real parameters). Suslin proved that all
analytic sets are measurable, in addition to having a number of other desirable properties
(in particular, having the Baire property and the perfect set property). This provided the
first clear example of a relationship between mathematical properties of sets on one hand,
and their logical definability on the other.

Proceeding higher through the projective hierarchy, one can define Σ1
n, Π1

n and ∆1
n sets

of reals as those definable in second-order number theory by a sentence of the corresponding
complexity (a purely topological definition can also be given). This hierarchy typically
serves as a natural measure of the “complexity” of a given set of reals. A natural question
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then arises: at which level do counter-intuitive sets (e.g., non-measurable sets) first occur?
Efforts to resolve this fundamental question grounded immediately on the first level beyond
Suslin’s result: it was impossible to determine whether all Σ1

2 sets were Lebesgue measurable.
The obstacles encountered here were so severe that some mathematicians were prompted
to speculate on the potential “unsolvability” of such problems. Nikolai Luzin described the
state of affairs in 1925 thus:

“The theory of analytic sets presents a perfect harmony: any analytic set is
either countable or of the cardinality of the continuum; an analytic set is never a
set of the third category [satisfies the Baire property] . . . finally, an analytic set
is always measurable.

There remains but one significant gap: one does not know whether every com-
plementary analytic [Π1

1] uncountable set has the cardinality of the continuum.

The efforts that I exerted on the resolution of this question led me to the follow-
ing totally unexpected discovery: there exists a family . . . consisting of effective
[definable] sets, such that one does not know and one will never know whether
every set from this family, if uncountable, has the cardinality of the continuum,
nor whether it is of the third category, nor whether it is measurable. . . . This is
the family of the projective sets of Mr. H. Lebesgue. It remains but to recognise
the nature of this new development.” [33, p 1572]

This often quoted passage is remarkable for its prophetic quality, despite the fact that
in 1925 mathematicians were not aware of the incompleteness phenomenon in mathematics,
and it is unclear what Luzin might have meant by the phrase “one will never know”.

However, Luzin was right. Both the Continuum Hypothesis and the question described
above turned out to be independent, in the sense that neither the statement nor its negation
could be deduced just from ZFC (the standard axiomatisation of set theory), although it
took until the 1960s for this to be conclusively settled by work of Gödel, Cohen and Solovay
[22, 10, 11, 39].

The methods employed in both cases—inner models and forcing—have now become
standard staples in the establishments of such independence proofs. Logic and set theory
have thus come out as the right tools for settling foundational questions about the nature
of the real numbers.

1.2 Modern research area

Although set theory has evolved beyond recognition since its early beginnings described
above, two fundamental research areas—cardinal characteristics and descriptive set theory—
can be traced back to the independence of CH and the problems regarding definability of
sets of reals.

The size of the continuum is perhaps the most fundamental problem in the foundations
of the reals, but one may also ask more subtle questions, for example: what is the smallest
number of Lebesgue-null sets needed to cover all the reals? What is the smallest cardinality
of a measure-one set of reals? If CH is true then the answer is trivial (ℵ1), but if CH is false,
these numbers could have different values, and even be different from one another. Such
questions are usually formulated in terms of a cardinal characteristic: a cardinal number

2



motivated by combinatorial, topological or analytical questions whose exact value is inde-
pendent of set theory. The study of cardinal characteristics, and the models constructed to
prove independence results about them, have given rise to sophisticated forcing techniques,
particularly with the work of Shelah and Goldstern [23, 38]. Moreover, statements about
cardinal characteristics can be viewed as axiomatic statements with implications to other
areas of mathematics, where the independence of a statement A is established by showing
that A is a consequence of one cardinal characteristic inequality and ¬A is the consequence
of another, both of which are known to be consistent. A detailed overview of this area can
be found in [3] and [4].

Questions about definability of sets of reals have led to the development of descriptive
set theory. This rich sub-field of set theory studies sets of reals from the definable point of
view, usually using the Borel and the projective hierarchy as a measure of complexity, as
well as variations of it such as the effective hierarchy. Questions about regularity properties
(generalisations of the concept of measurability) have been a motivating factor throughout
this development. Typically, it is possible to prove that sets of sufficiently low complexity,
such as Borel and analytic sets, are regular (although there are interesting exceptions, see,
e.g., [25]), and that the Axiom of Choice implies the existence of irregular sets. What
happens on all the intermediate levels (even on the Σ1

2 and ∆1
2 levels) is typically independent

of ZFC.

These two aspects of the real number continuum are not unrelated—in fact, there are
numerous connections between the study of regularity properties in descriptive set theory
and combinatorial questions concerning cardinal characteristics. One simple connection
is via the Solovay and the Judah-Shelah characterisation theorems [39, 26]. Due to this
characterisation, for instance, the axiom “all ∆1

2 sets of reals are measurable” is equivalent
to the forcing-theoretic statement “there exists a random-generic real over L[r], for every
r ∈ R”. The latter statement is directly related to the cardinal characteristic cov(N )
mentioned above (the least number of Lebesgue-null sets needed to cover the set of all
reals).

Such connections were heavily employed and studied in my PhD Thesis, [29, Chapter 2].
In particular, building on the general theory of Idealized Forcing due to Jindřich Zapletal
[41, 42] and work of Ikegami [27], I was able to present Solovay- and Judah-Shelah-style
characterisation theorems as well as the theory of (certain types of) cardinal characteristics
in this abstract framework. Several papers included in the current Habilitationsschrift con-
tinue this line of research, answering questions posed in my PhD Thesis or introducing new
concepts motivated by those ideas.

There are also other, more subtle connections between regularity properties and cardinal
characteristics: for instance, the existence of a definable wellorder of the reals (e.g., lightface
∆1

3-definable) was long seen as conflicting with certain cardinal inequalities on the reals,
since traditional forcing arguments destroy the definable wellorder. However, a recent line
of work carried out by Fischer, Friedman and Zdomskyy [21, 13, 17, 18] established the
consistency of a ∆1

3-wellorder together with combinatorial properties of the reals, and this
line of research was continued in two papers included in this Habilitationsschrift.

Finally, an area that has attracted the attention of set theorists in recent years is the
study of generalised Baire spaces. While the real number continuum is typically represented
by ωω in set theory (the space of functions from ω to ω), here one attempts to generalist
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results to the space κκ, where κ is a regular uncountable cardinal (sometimes, with addi-
tional properties). The area has gained momentum with three recent workshops, dedicated
specifically to generalised Baire spaces, held in Amsterdam, Hamburg and Bonn in 2014,
2015 and 2016. The workshops have also led to the output of a crucial paper [32] of which
I am one of the main authors,1 collecting the most important open questions in this young
research area. One publication included in this thesis deals with regularity properties on
generalised Baire spaces.

1.3 Overview and background of publications

The publications comprising this Habilitationsschrift are listed below (followed by the cor-
responding citation number for future reference).

All the publications included here concern research carried out exclusively after the
completion of my PhD degree. A complete list of all publications can be found in Section
2.2.

A discussion of the collaboration process, detailing my own contribution to each of the
collaborative works, is included in a header page immediately preceding each publication.

1. Vera Fischer, Sy David Friedman and Yurii Khomskii, Co-analytic mad families and
projective wellorders, Archive for Mathematical Logic 52:7-8, 2013, pp 809-822. [14]

2. Vera Fischer, Sy David Friedman and Yurii Khomskii, Cichoń’s diagram, regularity
properties and ∆1

3 sets of reals, Archive for Mathematical Logic 53:5–6, 2014, pp 695-
729. [15]

3. Vera Fischer, Sy David Friedman and Yurii Khomskii, Measure, category and projective
well-orders, Journal of Logic and Analysis 6, Paper 8 (2014) (25 pp). [16]

4. Sy David Friedman, Yurii Khomskii and Vadim Kulikov, Regularity properties on the
generalised reals, Annals of Pure and Applied Logic 167, 2016, pp 408–430. [20]

5. Giorgio Laguzzi and Yurii Khomskii, Full-splitting Miller trees and infinitely often
equal reals, Annals of Pure and Applied Logic, 168:8, 2017, pp 14911506. [31]

6. Barnabas Farkas, Yurii Khomskii and Zoltán Vydyánszki, Almost disjoint refinements
and mixing reals, Fundamenta Mathematicae, to appear. [12]

7. Jörg Brendle, Yurii Khomskii and Wolfgang Wohofsky, Cofinalities of Marczewski ide-
als, Colloquium Mathematicum, to appear. [7]

8. Yurii Khomskii, Filter-Laver measurability, Topology and its Applications, to appear.
[30]

9. Jörg Brendle and Yurii Khomskii, Projective Maximal Independent Families, preprint.
[9]

We will now provide a brief overview of each work, highlighting the most important
results and providing some additional background information, as well as pointing to various
connections between the publications.

1This paper is not included in this Habilitationsschrift since it only contains a survey of open questions
and no original results.
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The two papers Co-analytic mad families and projective wellorders [14] and Measure,
category and projective well-orders [16], both joint works with Fischer and Friedman, are
closely connected and the results belong to the long-term project of studying definable
wellorders of the reals together with other properties. The main motivation is the following:
it is well-known that if V = L then there exists a Σ1

2 wellorder of the reals, and, conversely,
the existence of a Σ1

2 wellorder of the reals implies that the reals are constructible. The
standard constructions in set theory to increase the size of the continuum destroy any
nice wellorder of the reals. However, using coding argument originally due to Jensen and
Solovay [28], Harrington [24, Theorem A] showed that a ∆1

3-wellorder was consistent with the
continuum being arbitrarily large. Friedman [19] used more sophisticated coding methods
to obtain a model with a lightface (i.e., without real parameters) ∆1

3-wellorder of the reals
together with 2ℵ0 = ℵ2. Fischer and Friedman [13] went further and obtained models with
a ∆1

3-wellorder, 2ℵ0 = ℵ2, and three pairs of cardinal characteristic inequalities,2 showing
for the first time how to combine classical forcing iterations with Harrington-style coding
arguments.

Fischer, Friedman and Zdomskyy [17] generalised this argument in a different direction,
by providing a model with a ∆1

3 wellorder and the continuum of size ℵ3, as well as some
additional properties.3 Later, the same authors [18] obtained the consistency of the ∆1

3-
wellorder together with 2ℵ0 = ℵ3 and Martin’s Axiom, answering a question of Harrington.
Another result was the consistency of more cardinal characterstic inequalities4

It is still an ongoing project to understand to what extent the structure of the real line
can be modified by classical forcing arguments while still obtaining a ∆1

3-definable wellorder.
Our two papers are a contribution to this research. In [14] we focus on the following concept:

Definition 1.1. An infinite family A of infinite subsets of ω is almost disjoint if for all
a, b ∈ A, the intersection a ∩ b is finite. A maximal almost disjoint family (mad) is an
almost disjoint family which cannot be extended.

By identifying infinite subsets of ω with elements of 2ω, one can consider mad families
as subsets of the reals and study their complexity in the sense of descriptive set theory.
A results of Mathias [34] shows that mad families cannot be analytic. In [6] Brendle and
Khomskii studied mad families for other levels of the projective hierarchy. Combining those
methods with the ones in [17], our main result is:

[14, Theorem 1.7] (Fischer, Friedman, Khomskii): It is consistent that b = 2ℵ0 = ℵ3,
there exists a Π1

1 mad family, and a ∆1
3-definable wellorder of the reals.

In [16], we consider the so-called Cichoń’s diagram and the cardinal characteristics that
appear in it: b, d and the additivity, covering, uniformity and cofinality numbers of the
meager ideal and the ideal of Lebesgue-null sets of reals, see Figure 1 and [3] for the relevant
definitions. This classical diagram represents all ZFC-provable relations between these 10
cardinal characteristics (plus the size of the continuum). Any combination of values consis-
tent with this diagram is, in fact, consistent with ZFC. The main result of this paper is that
each of these combinations is also consistent with a ∆1

3-wellorder of the reals. The results
in [16, Theorem 4.1 to Theorem 4.23] cover all the cases.

2d < 2ℵ0 , b < a and b < g, see [4] for the definitions.
3A Π1

2 definable mad family (see Definition 1.1) and b = ℵ3.
4p = b = ℵ2 < a = s = 2ℵ0 = ℵ3, see [4] for the definitions.

5



cov(N ) // non(M) // cof(M) // cof(N ) // 2ℵ0

b //

OO

d

OO

ℵ1 // add(N ) //

OO

add(M)

OO

// cov(M)

OO

// non(N )

OO

Figure 1: Cichoń’s diagram

The paper Cichoń’s diagram, regularity properties and ∆1
3 sets of reals [15], also a joint

work with Fischer and Friedman, deals with regularity properties naturally related to the
cardinal characteristics in Cichoń’s diagram for sets of reals higher up in the projective
hierarchy, most notably ∆1

3 set of reals. In this paper we solve a number of questions
mentioned in, and motivated by, the work in my PhD Thesis, particularly [29, Chapter 2].

We consider the properties of sets of reals being Lebesgue-measurable, having the Baire
property, being Laver - Miller - and Sacks-measurable, denoted (in correspondence to the
forcing partial orders) by C,B,L,M and S respectively. The notation used is as follows: for
P one of these properties, Γ(P) abbreviates the statement “all sets of complexity Γ are P-
regular”. For the Σ1

2 and ∆1
2 complexity classes, well-known characterisation theorems due

to Solovay [39], Judah and Shelah [26], and Brendle and Löwe [8] establish connections to
the existence of certain kinds of reals over L, and thus to the cardinal invariants in Cichoń’s
diagram. On the ∆1

3-level, the ZFC-provable implications are summarised in Figure 2.

∆1
3(B) +3 ∆1

3(S)

∆1
3(L) +3 ∆1

3(M)

7?

∆1
3(C)

KS

Figure 2: Diagram of implications for ∆1
3 sets of reals.

The main result of this paper is:

[15, Section 5] (Fischer, Friedman, Khomskii): Every true/false combination not contra-
dicting this diagram is consistent with ZFC or ZFC with an inaccessible.

Additional results concern Mathias and Silver forcing in [15, Section 6], partial results about
∆1

4 sets and about separating ∆1
3 from Σ1

3 measurability, in [15, Section 7]. The most
interesting result here is [15, Theorem 7.12] and its consequence: that several ZFC-
implications which hold on the second level of the projective hierarchy fail to lift to the
third and fourth levels.

The publication Regularity properties on the generalised reals [20] is an excursion into
the area of generalised Baire spaces, while remaining within the area of regularity properties
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for projective sets. The basic idea is as follows: if classical descriptive set theory takes
place on the Baire space ωω with the topology generated by basic open sets of the form
[σ] := {x ∈ ωω : σ ⊆ x} for σ ∈ ω<ω, here we consider a regular uncountable cardinal κ
(sometimes with additional assumptions) and look at the generalised Baire space κκ, with
the topology generated by [σ] := {x ∈ κκ : σ ⊆ x} and σ ∈ κ<κ. An analogous definition
can be given for the generalised Cantor space 2κ. This leads to the natural concepts of
generalised-Borel sets, generalised-analytic sets, and the generalised-projective hierarchy.
We refer the reader to [32] for an overview of the current state of this area.

This work is the first systematic attempt to study regularity properties, such as the
ones mentioned above, from the point of view of descriptive set theory in the generalised
Baire space. We use the framework from [27] and [29, Chapter 2] to define regularity
properties related to tree-like forcing notions P, proving some results for general P as well
as deeper results for concrete P ∈ { Cκ,Sκ,Mκ,Lκ,Rκ,Vκ} (all the definitions are given in
[20, Example 3.2]).

The most important results we obtain are:

[20, Theorem 3.10] (Friedman, Khomskii, Kulikov): Let P be a tree-like forcing notion on
2κ whose conditions are κ-Sacks trees, or a tree-like forcing notion on κκ whose conditions
are κ-Miller trees. Then Σ1

1(P) fails.

[20, Corollary 3.14] (Friedman, Khomskii, Kulikov): ∆1
1(P) is consistent for P ∈ {Cκ,Sκ,

Mκ, Lκ,Rκ}, and if κ is inaccessible, also for P = Vκ.

[20, Lemma 4.4] (Friedman, Khomskii, Kulikov): Suppose κ is inaccessible. Then ∆1
1(Mκ)

implies that for every r ∈ κκ there is an x ∈ κκ↑ which is unbounded over κκ↑ ∩ L[r].

[20, Lemma 4.9] (Friedman, Khomskii, Kulikov): Let Γ be a class of subsets of κκ or 2κ

closed under continuous preimages (in particular Γ = ∆1
1). Then

1. Γ(Mκ)⇒ Γ(Sκ).

2. Γ(Vκ)⇒ Γ(Sκ).

3. Γ(Cκ)⇒ Γ(Mκ).

4. Γ(Lκ)⇒ Γ(Mκ).

5. Γ(Rκ)⇒ Γ(Mκ).

6. If κ is inaccessible, then Γ(Cκ)⇒ Γ(Vκ).

Next, returning to the classical Baire space ωω, we consider another application of the
general methods from [29, Chapter 2]. In the paper Full-splitting Miller trees and infinitely
often equal reals [31] joint with Giorgio Laguzzi, we consider two specific forcing partial
order:

Definition 1.2. A tree T ⊆ ω<ω is called a full-splitting Miller tree iff every t ∈ T has an
extension s ∈ T such that s is full-splitting, i.e., s_ 〈n〉 ∈ T for every n. Let FM denote the
partial order of full-splitting Miller trees ordered by inclusion.

Definition 1.3. A tree T ⊆ ωω is called an infinitely often equal tree, or simply ioe-tree, if
for each t ∈ T there exists N > |t|, such that for every k ∈ ω there exists s ∈ T extending t
such that s(N) = k. Let IE denote the partial order of ioe-trees ordered by inclusion.
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Both forcing partial orders are similar to Cohen forcing but do not have the ccc, and
are canonically related to “adding an infinitely often real” (a real x ∈ ωω such that for
all reals y in the ground model, ∃∞n (x(n) = y(n)). Moreover, there are two interesting
Borel-generated σ-ideals, Dω and Iioe, naturally related to FM and IE, respectively. Some
results include:

[31, Theorem 3.4] (Khomskii, Laguzzi): Let Γ be a pointclass closed under continuous
preimages. Then the following are equivalent:

1. Γ(C)

2. Γ(FM)

3. Γ(IE)

[31, Theorem 3.5] (Khomskii, Laguzzi): ∆1
2(C) ⇒ Σ1

2(wIE).

Here wIE denotes a “local” version of the regularity property related to IE. We also
consider dichotomy properties “FM-Dich” and “IE-Dich”, for the trees from Definitions 1.2
and 1.3 and the respective Borel ideals Dω and Iioe. Here we prove:

[31, Theorem 4.3] (Khomskii, Laguzzi): The following are equivalent:

1. Σ1
2(FM-Dich)

2. Σ1
2(IE-Dich)

3. ∀r ∈ ωω (ω
L[r]
1 < ω1).

Further results establish that in the Solovay model both dichotomy properties hold for
all projective sets, and that they follow from the Axiom of Determinacy for all sets of reals.
In Section 5 we consider the question whether IE adds a Cohen real — this is related to
an old question of Fremlin: is there a forcing P such that P does not add a Cohen real but
the two-step iteration P ∗ P does? The question was recently solved by Zapletal [43] using
rather unorthodox methods. In Theorem 5.3, we prove a property of IE and argue that this
indicates that IE is a more natural solution.

The paper Almost disjoint refinements and mixing reals [12] lies on the intersection
between descriptive set theory and combinatorial set theory of the reals. The questions
therein have connections both to regularity properties, cardinal characteristics, and forcing
properties. It is motivated by the following concept.

Definition 1.4. Let H ⊆ [ω]ω. We say that H has an almost-disjoint refinement {AH :
H ∈ H} if AH ∈ [H]ω for all H, and |AH ∩AK | < ω for all H 6= K ∈ H.

A folklore result states that if H is a family of size < 2ℵ0 , then it has an almost-disjoint
refinement, and a theorem due to Balcar and Vojtáš [2] shows that every ultrafilter on ω has
an almost-disjoint refinement. More interestingly, Balcar and Pazák [1], and independently
Brendle (in [40]), proved the following theorem:

Theorem 1.5 (Balcar-Pazák, Brendle). If M is a model of set theory with P(ω) ∩M 6=
P(ω), then [ω]ω ∩ ω has an almost disjoint refinement.
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One of the main results of this paper is a generalisation of this theorem to disjoint
refinements with respect to an ideal I on ω. We use I+ to denote sets which are not in I.

Definition 1.6. Let I be an ideal on ω. Let H ⊆ I+. We say that a family {AH : H ∈ H}
is an I-almost-disjoint refinement of H if AH ⊆ H, AH ∈ I+ for every H ∈ H, and
(AH ∩AK) ∈ I for all H 6= K ∈ H.

[12, Theorem 1.6] (Farkas, Khomskii, Vydyánszki). Assume that M is a transitive model
with ω1 ⊆M , P(ω)∩M 6= P(ω), and I is an analytic or co-analytic ideal with parameters
in M . Then there is an I-almost-disjoint refinement of I+ ∩M .

Other results include the study of a property of forcing partial orders that we call “adding
mixing reals” and “adding mixing injections”, closely related to almost disjoint refinements.

The publication Cofinalities of Marczewski ideals [7], with Brendle and Wohofsky, an-
swers a question of Miroslav Repický (private communication, cf. [37]).

Definition 1.7. A set A ⊆ ωω is Laver-null, notation A ∈ `0, if and only if for every Laver
tree T ∈ L, there exists a Laver subtree S ⊆ T , such that [S] ∩ A = ∅. A set A ⊆ ωω is
Miller-null, notation A ∈ m0, if the same statement holds for Miller trees T, S ∈M.

These ideals have been studied, in particular, by Brendle in [5]. Several facts concerning
the covering and additivity numbers of these ideals are known, and it was known that
the cofinality numbers cof(`0) and cof(m0) can consistently be above the continuum (for
instance, this holds under CH). Repický (and independently the authors of this paper),
asked the following question: is the cof(`0) > 2ℵ0 and cof(m0) > 2ℵ0 provable in ZFC? In
this paper we solve this problem, by proving an even stronger result:

[7, Corollary 18] (Brenlde, Khomskii, Wohofsky): cf(cof(`0)) > 2ℵ0 and cf(cof(m0)) >
2ℵ0 .

Next, we return to yet another application of the general methods from [29, Chapter 2].
In the paper Filter-Laver measurability [30], we consider the following concept.

Definition 1.8. Let F be a filter on ω. An F-Laver tree is a tree T ⊆ ω<ω such that for
all σ ∈ T extending stem(T ), SuccT (σ) ∈ F . An F+-Laver-tree is a tree T ⊆ ω<ω such that
for all σ ∈ T extending stem(T ), SuccT (σ) ∈ F+. We use LF and LF+ to denote the partial
orders of F -Laver and F+-Laver trees, respectively, ordered by inclusion.

The forcing partial orders LF and LF+ have been used and studied in the literature for
various purposes. Notice that if F is the cofinite filter, then LF+ is the standard Laver forcing
and LF is (a version of) the standard Hechler forcing. We focus on regularity properties
related to these forcing notions, in the sense of [27] and [29]. An important innovation
which enables this study is a dichotomy theorem proved recently by Miller [35]. The main
results of the paper are of two types: [30, Lemmas 4.5, 4.6, 4.7, 4.10 and 4.11] hold for
arbitrary filters and describe relationships between various regularity properties depending
on reducibility relations between filters. And [30, Theorem 5.7, 5.15 and 5.16] yield
much stronger results under the assumption that F is an analytic filter (this is because of
definability properties of the corresponding forcing and ideal, allowing us to apply results
from [27] and [29, Chapter 2].
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The last publication, Projective Maximal Independent Families [9] deals with the follow-
ing combinatorial concept, closely related to maximal almost disjoint families (cf. Definition
1.1).

Definition 1.9. A family I ⊆ [ω]ω is called independent if whenever we choose finite disjoint
F,G ⊆ I, we get ⋂

A∈F
A ∩

⋂

B∈G
(ω \B) is infinite.

A family I ⊆ [ω]ω is called a maximal independent family (m.i.f.) if it is independent and
maximal with regard to this property.

Just as with mad families, maximal independent families can be considered subsets of
the reals by identifying the space [ω]ω with the Cantor space. A result of Miller [36] shows
that there are no analytic m.i.f.’s. In a way analogous to [6] and [14], one can study in which
models there are m.i.f.’s of various complexity in the projective hierarchy. Our main result
is the following:

[9, Theorem 4.2] (Brendle, Khomskii): In the Cohen model, there are no projective
m.i.f.’s.

Here, the Cohen model refers to the ω1-product of Cohen forcing. In particular, the
statement “there are no projective m.i.f.’s” is consistent with ZFC and does not require the
strength of an inaccessible cardinal.

1.4 Structure of this Habilitationsschrift

This Habilitationsschrift is structured as follows. The nine publications are included follow-
ing a detailed C.V., in the same order as listed above. Each publication is preceded by a
header page. For joint publications, this page is used to describe the individual contribution
of the authors to that publication. In each case, a general description of the type of work
carried out and the form of the collaboration is followed by an itemised list of the main
results with the appropriate authorship attribution.

1.5 Statement about submission of this habilitation

Hiermit bestätige ich, dass ich mich nicht anderenorts einem Habilitationsverfahren unter-
zogen habe.

Hamburg, 18.07.2017 Yurii Khomskii
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and ∆1

3 sets of reals, Archive for Mathematical Logic 53:5–6, 2014, pp 695-729.

8. (with Vera Fischer and Sy Friedman) Measure, category and projective well-
orders, Journal of Logic and Analysis 6, Paper 8 (2014) (25 pp).

9. (with Sy Friedman and Vadim Kulikov) Regularity properties on the generalised
reals, Annals of Pure and Applied Logic 167, 2016, pp 408–430.
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3 Cumulative Habilitation

3.1 Typographical remark

The articles contained in this Habilitationsschrift are included in this document. For all
articles that have appeared in print, the published paper in the publisher’s layout is included
in pdf form in the style and formatting with header, footer and page numbers as in the
published version. For articles that are yet to appear, the latest preprint version is attached,
with page number count starting at 1.

Each publication is preceded by a header page describing in detail my own contribution
to it.

The page numbers that appear on these header pages refer to the actual page numbers
in this Habilitationsschrift. They are thus also visible in the Contents section (as Subsection
numbers), and may help the reader with orientation throughout the text. However, these
page numbers are not visible throughout the rest of the text.
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3.2 Co-analytic mad families and definable well-orders

Vera Fischer, Sy David Friedman and Yurii Khomskii, Archive for Mathematical Logic 52:7-
8, 2013, pp 809-822.

This paper is the result of combining methods established by Brendle and Khomskii in [6]
with those already known to the other authors, e.g., [19, 13]. The publication is the result
of intensive collaboration, which took the form of regularly scheduled meetings with all three
authors, as well as many informal meetings and discussions between Fischer and Khomskii.
Below is a detailed list of the main results of this paper, with an approximate indication of
authorship.

• Definition 2.2, Lemma 2.3 and Lemma 2.4: Khomskii, with contribution by
Fischer and Friedman

• Lemma 3.2 and paragraphs preceding it: Fischer, with contribution by Friedman
and Khomskii

• Lemma 4.1: Collaboration

The paper was written by Fischer and Khomskii (Section 3 by Fischer, Sections 1, 2 and
5 by Khomskii and Section 4 jointly).
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Abstract We show that the existence of a Π1
1 -definable mad family is consistent

with the existence of a Δ1
3-definable well-order of the reals and b = c = ℵ3.
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1 Introduction

An almost disjoint (a.d.) family A is a collection of infinite subsets of ω, such that
|a ∩b| < ω for all a, b ∈ A. A maximal almost disjoint (mad) family is an infinite a.d.
family which is maximal with regard to this property, i.e., ∀a ∃b ∈ A (|a ∩ b| = ω).
Mad families have been studied from a variety of perspectives: for example, the size
of the least mad family that can possibly exist is the cardinal characteristic a, and its
value has been shown to be independent of ZFC. Another perspective is the descrip-
tive set-theoretic one, where one looks at the possible complexity of mad families (as
subsets of [ω]ω). This investigation has been carried out in a number of results, and
we briefly summarize its history.

Theorem 1.1 (Mathias [15]) There are no analytic mad families.
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In the constructible universe L , it is easy to construct Σ1
2 -definable mad families.

Arnold Miller proved a seemingly stronger result.

Theorem 1.2 (Miller [16]) In L, there is a Π1
1 mad family.

The above result has recently been superseded by Asger Törnquist:

Theorem 1.3 (Törnquist [18]) The following are equivalent:

1. There is a Σ1
2 mad family.

2. There is a Π1
1 mad family.

Combining this theorem with well-known facts about constructing Σ1
2 -definable

mad families in L which are preserved by iterations of some standard forcing notions
(among which Cohen, random, Sacks and Miller forcing), one can easily see that
the existence of a Π1

1 mad family is consistent with ¬CH. On the other hand, the
following was proved in [9] (where b is the bounding number, i.e., the least size
of an unbounded family, and an ω-mad family is a mad family satisfying a stronger
maximality requirement—see e.g. [13] for a definition).

Theorem 1.4 (Friedman and Zdomskyy) It is consistent that b = c = ℵ2 and there
exists a Π1

2ω-mad family.

This was further extended in [7]:

Theorem 1.5 (Fischer et al.) It is consistent that b = c = ℵ3, there exists aΠ1
2ω-mad

family and a Δ1
3-definable well-order of the reals.

Methods for obtaining models with large continuum together with a Δ1
3-definable

wellorder have been developed by Jensen and Solovay [12], by Harrington [10] and
by Friedman [8]; it is an ongoing project to determine to what extent theΔ1

3 wellorder
is compatible with certain other properties of the model (such as a cardinal inequality
or the existence of other projective objects, cf. [5–7]).

Dropping the “ω”-requirement, Theorem 1.4 was improved in [4]:

Theorem 1.6 (Brendle and Khomskii) For any regular uncountable cardinal κ , it is
consistent that b = c = κ and there exists a Π1

1 mad family.

The present paper is concerned with the following question: to what extent can
Theorem 1.5 be merged with Theorem 1.6? Note that we have no chance of obtaining
a Π1

1ω-mad family together with b > ℵ1 (the reason is that an ω-family does not
contain a perfect set by [17], so a Π1

1ω-mad family must be completely contained
in L), so the “ω”-requirement must certainly be dropped. Taking that into account,
we do indeed succeed in proving an optimal result extending both Theorem 1.5 and
Theorem 1.6.

Theorem 1.7 (Main Theorem) It is consistent that b = c = ℵ3, there exists a Π1
1

mad family, and a Δ1
3-definable well-order of the reals.

For the proof of this theorem, we use a combination of the techniques for construct-
ing Δ1

3 well-orders, as presented in [7], and the techniques from [4] for constructing
a Π1

1 mad family in models where b is large. Most of the work involves overcoming
two main obstacles:
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1. Showing that a version of almost disjoint coding has a nice preservation property,
and

2. Dealing with iterations longer than length ℵ1.

The first obstacle will be solved in Lemma 2.4 and the second one will be solved by
making use of the ♦-principle, in Lemma 4.1.

Note that, while our main theorem is formulated as an optimal generalization of
Theorems 1.5 and 1.6, it would be easy to modify the proof so that it yields the same
result with b = c = ℵ2 instead of ℵ3. The only difference would be a straightforward
simplification of the coding mechanism. We also conjecture that the same result holds
for b = c = κ for any uncountable regular κ , although that would require a substantial
change to the coding mechanism, and it is still not completely clear whether that can
be done.

This paper is structured as follows: in Sect. 2, we give the preliminary definitions,
review the main methods of [4] and [7], and introduce a different version of “almost
disjoint coding”. In Sect. 3, we review the preparatory forcing construction from [7]
and prove that the ♦-principle is preserved after the preparation. Finally, in Sect. 4,
we combine these efforts and obtain a proof of the Main Theorem.

2 Preliminaries

We start by summarizing the main tools behind the result of [4]. One of the central
concepts there was considering mad families constructed from perfect a.d. families,
and preserving the maximality of the re-interpreted family by forcing, as opposed to
the more classical concept of preserving a mad family directly.

Definition 2.1 A set A ⊆ [ω]ω is called an ℵ1-perfect mad family if A = ⋃
α<ℵ1

Aα
where each Aα is a perfect a.d. set and A is a mad family. For a forcing P, such a
family A is said to be P-indestructible if in the generic extension V [G] by P, AV [G] :=
⋃
α<ℵ1

AV [G]
α is a mad family.

The method of [4] involved the construction of an ℵ1-perfect mad family in L ,
which had a Σ1

2 definition and moreover was indestructible (in the sense of Defini-
tion 2.1) by the κ-iteration of Hechler forcing with finite support, for κ being any
uncountable regular cardinal. We now briefly review that construction.

For α < ℵ1, let Pα := {Pασ | σ ∈ ω<ω} be an infinite partition of some (unspec-
ified) domain Dα ∈ [ω]ω into infinite sets, indexed by finite sequences σ . For each
σ ∈ ω<ω, let {pασ (0), pασ (1), pασ (2), . . . } be the increasing enumeration of Pασ . For
each f ∈ ωω, let Φα( f ) := {pαf �n( f (n)) | n ∈ ω} and let Aα := {Φα( f ) | f ∈ ωω}.
Then Aα is an almost disjoint subfamily of [Dα]ω of size 2ℵ0 . Furthermore Aα is a
perfect set in the natural topology of [Dα]ω (since Φ is a homeomorphism between
ωω and Aα).

The idea is then to construct, by induction on α < ℵ1, a sequence of such partitions
Pα , each of them giving rise to a perfect a.d. set Aα , and to make sure that the union
A := ⋃

α<ℵ1
Aα becomes a mad family. If the construction takes place in L , it is easy

to make itΣ1
2 -definable. To guarantee preservation by Hechler forcing, the following

essential property was used:
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Definition 2.2 A forcing P strongly preserves splitting reals (abbreviated by “s.p.s.”),
if for every P-name ȧ for an element of [ω]ω, there is a sequence {an : n ∈ ω} of ele-
ments of [ω]ω, such that if z ∈ [ω]ω splits all an’s, then �P“ž splits ȧ”.

The Hechler partial order satisfies the s.p.s.-property by [1]. Moreover, the s.p.s.-
property is preserved by iterations of ccc forcings with finite support (see [2, Propo-
sition 3.10]).

We now state the Main Lemma from [4], involved in the induction step of the
construction (in the original Lemma, an ideal on ω was also generated for techni-
cal reasons, but we leave it out here since it would only make the presentation more
difficult). The notations Pβ, Aβ,Φβ etc. refer to the objects described above.

Lemma 2.3 (Main Lemma, [4]) Let M be a countable model of set theory such that
Pβ ∈ M for all β < α. Assume that for all β �= β ′ < α and for all f, g ∈ ωω, the set
Φβ( f ) ∩Φβ ′

(g) is finite (i.e.,
⋃
β<α Aβ is an a.d. family).

Then there exists a new partition Pα (of some domain Dα), lying outside M, which
satisfies the following properties:

1. For every f, h ∈ ωω and every β < α,Φβ( f )∩Φα(h) is finite (i.e.,
⋃
β≤α Aβ is

still a.d.)
2. For every Y ∈ M, if Y is almost disjoint from Φβ( f ) for all f ∈ ωω and all

β < α, then there exists an h ∈ ωω such that Φα(h) ⊆ Y .
3. Suppose V ′ ⊇ V is a model of set theory, M ′ ⊇ M is a countable model with

M ′ ∈ V ′, and every real in V which is splitting over M is still splitting over M ′.
Then for every Y ∈ M ′, if Y is almost disjoint from Φβ( f ) for every f ∈ ωω in
V ′ and every β < α, then there exists an h ∈ ωω in V ′ such that V ′ � Φα(h) ⊆ Y
(i.e., condition 2 holds relativized to V ′ and M ′.)

Clearly, the above lemma can be applied with V ′ = V [G], and M ′ = M[G] being
generic extensions via some forcing that satisfies the s.p.s. property. This Lemma will
be the crucial tool in our inductive construction of the mad family in Sect. 4.

Next, we shift our attention to the Δ1
3-definable well-order of the reals. As a

Σ1
2 -definable well-order implies that every real is constructible (see e.g. [11, The-

orem 25.39]), a Δ1
3 well-order is optimal in the presence of ¬CH. A (boldface) Δ1

3
well-order together with ¬CH was first obtained by Harrington [10], and Sy Fried-
man improved this result by establishing the consistency of a (lightface)Δ1

3 well-order
of the reals together with c = ℵ2. Different methods of obtaining large continuum,
Δ1

3 well-orders, and the existence of certain combinatorial objects on the reals have
recently been developed in [5–7] (dealing with cardinal inequalities, ω-mad families,
and MA, respectively).

In this paper we will mostly be using the methods from [7]. The final model will
be obtained as a two-step forcing extension of L . In the first stage (the “preliminary
stage”) the universe is prepared in a special way, by adding certain subsets of ℵ1 and
ℵ2 but no new reals. We will denote this intermediate extension by L∗, and the forcing
leading up to it by P∗. Note that since no new reals have been added, L∗ still satisfies
many properties of L , such as having a Σ1

2 -good well-ordering of the reals.
In the next stage (the “coding stage”), new reals are added to L∗, by a finite sup-

port iteration of length ℵ3, consisting of σ -centered forcing posets. This iteration
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simultaneously makes sure that b = ℵ3 and that aΔ1
3 well-ordering of the reals exists.

In [7], theΠ1
2 -definable mad family was explicitly added by this forcing as well. In our

situation, we would like to preserve an ℵ1-perfect mad family defined in L∗ instead.
We would like to simulate the proof in [4], but for that we need two ingredients: the
s.p.s.-property of the forcing, and a way to deal with iterations of length longer than
ℵ1. The next theorem deals with the first ingredient.

Recall that one of the central methods in the “coding stage” is almost disjoint cod-
ing, a technique which allows subsets ofω1 to be coded by reals in a generic extension.
We show that this can be done by a forcing having the s.p.s.-property.

Let C := {cα : α < ℵ1} be a fixed, definable (e.g. closed) family of a.d. sets, and
let A ⊆ ω1 be an arbitrary set. Let IA be the ideal on ω generated by the a.d. family
{cα : α ∈ A}, let I+

A denote IA-positive sets and FA the corresponding filter. While
the standard almost disjoint coding can be seen as a Mathias partial order with the filter
FA, we will use a Laver-like partial order instead. Precisely, we prove the following:

Lemma 2.4 For any given C and A ⊆ ω1, there exists a σ -centered forcing, which
we shall denote by LA( C), such that

1. LA( C) adds a dominating real,
2. LA( C) satisfies the s.p.s.-property, and
3. LA( C) adds a generic real ẋG with the following property:

(a) if α ∈ A then � |ran(ẋG) ∩ cα| < ω, and
(b) if α /∈ A then � |ran(ẋG) ∩ cα| = ω.

Consequently, � “ẋG encodes A”.

Proof Let LA( C) be the Laver partial order with filter FA, i.e., the partial order
consisting of all trees T such that for any t ∈ T longer than stem(T ), we have
SuccT (t) := {n | t�〈n〉 ∈ T } ∈ FA; the ordering is inclusion.

It is clear that this forcing is σ -centered, and to see that it adds a dominating real,
simply note that for any t ∈ T , if SuccT (t) ∈ FA then also SuccT (t)\m ∈ FA for
any finite m. To verify that it has the s.p.s.-property, we use a result of Brendle and
Hrušák [3]. We need some definitions:

• An ideal I on ω is countably tall if for any sequence {an | n < ω} of infinite
subsets of ω, there is b ∈ I such that |an ∩ b| = ω for every n.

• For two ideals I,J , write J ≤K I (J is Katetov-reducible to I) iff there is an
f : ω → ω s.t. ∀a (a ∈ J → f −1[a] ∈ I).

A recent result from [3, Proposition 1] then states the following: Let I be an arbitrary
ideal and F the corresponding filter. Then the following are equivalent:

1. For all X ∈ I+ and every J ≤K I�X,J is not countably tall.
2. Laver forcing with the filter F has the s.p.s.-property.

The argument for the proof of this result is quite similar to the one for Hechler
forcing—indeed Hechler forcing can be seen as Laver with the cofinite filter. To prove
that LA( C) satisfies the s.p.s., it suffices to show that IA satisfies clause 1 from above.
The main point is that IA itself is not countably tall.

Let X ∈ I+
A , let J ≤K IA�X and let f : X → ω be the function witnessing this

Katetov reduction. We have two cases:
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Case 1 The set {α ∈ A | | f “(cα ∩ X)| = ω} is finite. Let {α1, . . . , αn} enumerate
it. Since X /∈ IA, the remaining set Y := X \(cα1 ∪ · · · ∪ cαn ) is also not in IA. Let
Y ′ := f “Y . Then Y ′ /∈ J , so, in particular, Y ′ is infinite. We claim that no infinite
subset Z ⊆ Y ′ can be in J , which will witness the fact that J is not countably tall (in
fact it will not even be tall).

Towards a contradiction, let Z ⊆ Y ′ be an infinite set in J . Then f −1[Z ] ∈ IA,
and f −1[Z ] ∩ Y is an infinite set, also in IA. So f −1[Z ] ∩ Y must be almost covered
by some finitely many cβ1 , . . . , cβk , none of which can be among the cαi ’s. Therefore,
Z is almost covered by finitely many sets of the form f “(cβ j ∩ Y ), where cβ j �= cαi

for any i . But by assumption, all such sets were finite, contradicting that Z is infinite.

Case 2 The set {α ∈ A | | f “(cα ∩ X)| = ω} is infinite. Pick a countable sequence
{αn | n < ω} from it, and let an := f “(cαn ∩ X). We claim that {an | n < ω}
is a witness to the fact that J is not countably tall. Let b ∈ J be arbitrary. By
assumption, b′ := f −1[b] ∈ IA. This means that there are β1, . . . βk ∈ A such that
b′ ⊆∗ cβ1 ∪· · ·∪cβk . But then b′ cannot have infinite intersection with infinitely many
of the cαn ’s, since otherwise some cβi and some cαn , with βi �= αn , would have infinite
intersection, contradicting their mutual almost disjointness. Therefore, for some n, b′
has only finite intersection with cαn . But then b = f “(b′) has finite intersection with
an , proving that J is not countably tall.

It remains to show that LA( C) can be used for a.d. coding purposes, i.e., condition
(3) from the theorem.

(a) Let α ∈ A and T ∈ LA( C). Inductively let S ≤ T be obtained by pruning the tree
and removing cα from every splitting node, i.e., making sure that SuccS(t) :=
SuccT (t)\cα for every t ∈ S. Sinceω\SuccT (t) is in IA and α ∈ A, ω\SuccS(t)
is also in IA, so the tree S is a valid LA( C)-condition. Moreover, for all n above
the stem, S � n /∈ cα . Hence S � |ran(ẋG) ∩ cα| < ω.

(b) Let α /∈ A, T ∈ LA( C) and n ∈ ω be given. Let t := stem(T ) and consider
SuccT (t) ∈ FA. Since α /∈ A and the collection {cβ | β < ℵ1} was a.d., clearly
cα /∈ IA. But then SuccT (t)∩cα is infinite and so we may pick m ≥ n from this set.
Then letting S ≤ T be such that stem(S) = t�〈m〉 we have S � m ∈ ran(ẋG).

As a result, ẋG codes A as we wanted. ��

3 The preliminary stage, ♦ and ♦′

In this section we review the preliminary forcing construction leading from L to L∗,
and verify that the♦-principle is valid in L∗. Most of the exposition here follows closely
that of [7], although many details are left out. We start by defining the preliminary
forcing P∗ = P0 ∗ Ṗ1 ∗ Ṗ2.

A transitive ZF− model M is suitable if ωM
3 exists and ωM

3 = ωLM
3 . If M is

suitable then also ωM
1 = ωLM

1 and ωM
2 = ωLM

2 .
Fix a ♦ω2(cof (ω1)) sequence 〈Gξ | ξ ∈ ω2 ∩ cof (ω1)〉 which isΣ1-definable over

Lω2 . For α < ω3, let Wα be the <L -least subset of ω2 coding α, and for 1 < α < ω3

123



Co-analytic mad families and definable wellorders 815

let Sα = {ξ ∈ ω2 ∩ cof (ω1) | Gξ := Wα ∩ ξ �= ∅}. Then S = 〈Sα | 1 < α < ω3〉 is a
sequence of stationary subsets of ω2 ∩ cof (ω1), which are mutually almost disjoint.
Let S−1 := {ξ ∈ ω2 ∩ cof(ω1) | Gξ = ∅}. Note that S−1 is a stationary subset of
ω2 ∩ cof(ω1) which is disjoint from all Sα’s.

Step 0. For every α such that ω2 ≤ α < ω3 “shoot a club” Cα disjoint from Sα via the
poset P0

α , consisting of all closed subsets of ω2 which are disjoint from Sα ordered by
end-extension, and let P0 = ∏

α<ω3
P0
α be the direct product of the P0

α’s with supports
of size ω1, where for α ∈ ω2,P0

α is the trivial poset. Then P0 is countably closed,
ω2-distributive (the proof of which uses the stationarity of S−1) and ω3-c.c.

Step 1. We begin by fixing some notation. Whenever k ∈ ω, X is a set of ordi-
nals and j ∈ k, let I k

j (X) = {γ | k · γ + j ∈ X}. In particular, let Even(X) =
I 2
0 (X) = {γ | 2 · γ ∈ X}. For every α < ω3 let Dα be a subset of ω2 which

codes the triple 〈Cα,Wα,Wγ 〉 where γ is the largest limit ordinal ≤ α, precisely:
I 3
0 (Dα) = Cα, I 3

1 (Dα) = Wα and I 3
2 (Dα) = Wγ . Let

Eα = {M ∩ ω2 | M ≺ Lα+ω2+1[Dα], ω1 ∪ {Dα} ⊆ M}.

Then Eα is a club on ω2. Choose Zα ⊆ ω2 such that Even(Zα) = Dα and if β < ω2
is ωM

2 for some suitable model M such that Zα ∩ β ∈ M, then β ∈ Eα . Then we
have:

(∗)α: If β < ω2,M is a suitable model such that ω1 ⊂ M, ωM
2 = β, and Zα ∩β ∈

M, then M � ψ(ω2, Zα ∩ β), where ψ(ω2, X) is the formula “Even(X)

codes a triple (C̄, W̄ , ¯̄W ), where W̄ and ¯̄W are the<L -least codes of ordinals
ᾱ, ¯̄α < ω3 such that ¯̄α is the largest limit ordinal not exceeding ᾱ and C̄ is a
club in ω2 disjoint from Sᾱ”.

Similarly to S, define a sequence A = 〈Aξ | ξ < ω2〉 of stationary subsets of ω1
which are mutually almost disjoint, using the “standard” ♦-sequence. Code Zα by a
subset Xα of ω1 with the poset P1

α consisting of all pairs 〈s0, s1〉 ∈ [ω1]<ω1 ×[Zα]<ω1

where 〈t0, t1〉 ≤ 〈s0, s1〉 iff s0 is an initial segment of t0, s1 ⊆ t1 and t0\s0 ∩ Aξ = ∅
for all ξ ∈ s1 (note that this is closely related to the a.d. coding discussed in Sect. 2,
but deals with coding subsets of ω2 by subsets of ω1). Then Xα satisfies the following
condition:

(∗∗)α: IfM is a suitable model such that {Xα}∪ω1 ⊂ M, thenM � φ(ω1, ω2, Xα),
where φ(ω1, ω2, X) is the formula: “Using the sequence A, X almost dis-

jointly codes a subset Z̄ of ω2, such that Even(Z̄) codes a triple (C̄, W̄ , ¯̄W ),

where W̄ and ¯̄W are the <L -least codes of ordinals ᾱ, ¯̄α < ω3 such that ¯̄α
is the largest limit ordinal not exceeding ᾱ and C̄ is a club in ω2 disjoint
from Sᾱ”.

Let P1 = ∏
α<ω3

P1
α , where P1

α is the trivial poset for all α ∈ ω2, with countable
support. Then P1 is countably closed and has the ω2-c.c.

Step 2. Finally we force a “localization” of the Xα’s. Fixφ as in (∗∗)α and define the po-
set Lk(X, X ′) as in [7, Definition 1]. That is, let X, X ′ ⊂ ω1 be such that φ(ω1, ω2, X)
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and φ(ω1, ω2, X ′) hold in any suitable model M with ωM
1 = ωL

1 containing X and
X ′, respectively. Then let L(X, X ′) be the poset of all functions r : |r | → 2, where
the domain |r | of r is a countable limit ordinal such that:

1. if γ < |r | then γ ∈ X iff r(3γ ) = 1
2. if γ < |r | then γ ∈ X ′ iff r(3γ + 1) = 1
3. if γ ≤ |r |,M is a countable suitable model containing r�γ as an element and

γ = ωM
1 , then M � φ(ω1, ω2, X ∩ γ ) ∧ φ(ω1, ω2, X ′ ∩ γ ).

The ordering is end-extension.
For every α ∈ Lim(ω3) and m ∈ ω, let P2

α+m = L(Xα+m, Xα). Let

P2 =
∏

α∈Lim(ω3)

∏

m∈ω
P2
α+m

with countable supports. In LP0∗P1
, the poset P2 has the ω2-c.c. Also note that P2

α+m

produces a generic function in the space 2ω1 (of LP0∗P1
), which is the characteristic

function of a subset Yα+m of ω1 with the following property:

(∗ ∗ ∗)α: For every β < ω1 and any suitable M such that ωM
1 = β and Yα+m ∩ β

belongs to M, we have M � φ(ω1, ω2, Xα+m ∩β)∧φ(ω1, ω2, Xα ∩β).
Now we let P∗ := P0 ∗ P1 ∗ P2 be the result of combining these three generic

extensions, and use L∗ to denote the intermediary extension LP∗
.

Next, we want to show that ♦ holds in L∗. Since we have added new subsets of ω1,
this is not a priori obvious. To prove that this is the case, we use the related ♦′-princi-
ple, a version of ♦ due to Kunen, in which we allow countably many possibilities at
stage α to capture sets.

Definition 3.1 A sequence {Sα | α < ω1} is a ♦′-sequence if Sα = {Sn
α | n < ω} such

that Sn
α ⊆ α for all n, and if for all S ⊆ ω1, the set {α | ∃n (S ∩α = Sn

α)} is stationary.

Lemma 3.2 In L∗, there exists a ♦′-sequence which is Σ1-definable over Lω1 .

Proof We define the sequence in L , and show that it is preserved by P∗. For α <
ω1(= ωL

1 ), let β(α) be the least ordinal β such that Lβ � ZF− + (α is countable). Let
D′
α := {A ⊆ α | A ∈ Lβ(α)}. We claim that {D′

α | α < ω1} is a ♦′-sequence even
after forcing with P∗.

So, let p0 ∈ P∗, let Ẋ be a P∗-name for a subset of ω1 and Ċ a P∗-name for a closed
unbounded subset of ω1. Let N be the least countable elementary submodel of some
large L� such that p0, Ẋ , Ċ are elements of N . Let N̄ be the transitive collapse of N .

As in the proof of [7, Lemma 1], get an extension p1 of p0 which meets all dense
sets in N by considering a generic filter g over N . Now let ḡ be the image of g under
the transitive collapse that maps N to N̄ .

Then ḡ is definable from an ω-enumeration of N̄ and (as N is the least countable
elementary submodel of some L� containing a certain finite set of parameters) there
is such an ω-enumeration in Lβ(α), where α = N ∩ ω1. So p1 � Ẋ ∩ α ∈ Lβ(α)
and p1 � α ∈ Ċ . But then p1 forces that the intersection {α | Ẋ ∩ α ∈ D′

α} ∩ Ċ is
non-empty, which completes the proof. ��
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To conclude, note that by [14, Theorem II 7.14], every ♦′-sequence gives rise to a
♦-sequence in a natural way. Consequently, there is a ♦-sequence in L∗ which is Σ1
definable over Lω1 .

4 Constructing an s.p.s.-indestructible mad family in L∗

We are now ready to prove the main theorem, using an inductive construction and
Lemma 2.3. In [4], the method was to define a sequence {Mα | α < ℵ1} of count-
able models covering all Dℵ1 -names for reals (where Dℵ1 stands for the ℵ1-itera-
tion of Hechler forcing), while simultaneously constructing the perfect a.d. families
Aα using Lemma 2.3. Condition 3 of the Lemma then guaranteed that the family
A := ⋃

α<ℵ1
Aα thus constructed was not destroyed by Dℵ1 , and an additional argu-

ment (involving the fact that Hechler forcing is Suslin ccc) then showed that the same
must hold for Dκ , where κ is any regular uncountable cardinal. Since we will need
to deal with more complicated iterations, which are ccc but not Suslin, we need a
different method for dealing with longer iterations, and we use the ♦-sequence for this
purpose.

Lemma 4.1 Let P be any ccc forcing notion satisfying the s.p.s.-property. Then there
exists a P-indestructible, ℵ1-perfect, Σ1

2 -definable mad family in L∗. Moreover, in
(L∗)P this family still has a Σ1

2 definition.

Proof First of all, note that we may assume, without loss of generality, that in L∗ there
exists a definable 5-dimensional version of ♦, namely, a sequence

{(Xα, Eα,<α) | α < ℵ1}

such that Xα ⊆ ω1, Eα,<α ⊆ (ω1 × ω1), and for every triple (X, E,<), the set

{α | X ∩ α = Xα, E ∩ (α × α) = Eα and (< ∩(α × α)) = <α}

is stationary. Fix such a sequence for the rest of the proof.

Definition 4.2 We say that a triple (X, E,<) “codes a ZF− model” iff

1. E and < are binary relations on X,
2. (X, E) is well-founded and extensional,
3. < well-orders X, and
4. (X, E) |� ZF−.

We proceed by defining the ℵ1-mad family, by induction on α < ℵ1, using the ideas
described in Sect. 2. At each step, Lemma 2.3 is applied to produce the next parti-
tion Pα (of some domain Dα), giving rise to a perfect a.d. set Aα . Simultaneously, a
sequence of countable transitive ZF− models {Mα | α < ℵ1} will be defined (note
that the transitivity of the models is crucial in the current argument). Inductively, the
following conditions will be guaranteed for all α:
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818 V. Fischer et al.

1. 〈Mβ | β < α〉 ∈ Mα ,
2. 〈Pβ | β < α〉 ∈ Mα ,
3.

⋃
β<α Aβ is a.d.

We proceed with the inductive construction. At stage α, assume Mβ and Pβ have
been defined, and the three inductive conditions are satisfied. To define Mα , consider
two cases:

• Case 1. If (Xα, Eα,<α) codes a countable ZF− model (in the sense of Defi-
nition 4.2), let M ′

α be its transitive collapse. If, additionally, it so happens that〈
Mβ | β < α

〉 ∈ M ′
α and

〈
Pβ | β < α

〉 ∈ M ′
α , let Mα := M ′

α .
• Case 2. If the above fails, then simply let Mα be the countable, transitive ZF−

model with<L -least code, such that
〈
Mβ | β < α

〉 ∈ Mα and
〈
Pβ | β < α

〉 ∈ Mα .

After that, we are in the right situation to apply Lemma 2.3 to the model Mα and
the collection of partitions

〈
Pβ | β < α

〉
, so we use it to construct a new partition Pα ,

picking the <L -least one satisfying all the conditions.
This completes the inductive definition. We claim that A := ⋃

α<ℵ1
Aα thus con-

structed is a P-indestructible mad family. By the third inductive condition, it follows
immediately that A is a.d., so let’s focus on its maximality. Let G be P-generic, and
let Y be a new real in L∗[G]. Since P may have added many reals, by basic cardinality
arguments we clearly cannot assume that Y is contained in some Mα[G]. However,
here we will use ♦ to get around this difficulty.

Claim 4.3 For some α < ω1,Y belongs to a generic extension of Mα via some forcing
which has the s.p.s.-property.

Proof Let Ẏ be a P-name for Y . Let N be a countably closed, elementary submodel
of some sufficiently large Hθ , with |N | = ℵ1, containing P, Ẏ , the entire sequences
〈Mα | α < ω1〉 and 〈Pα | α < ω1〉, and all the countable ordinals. Let E and < be
binary relations on ω1 so that (N ,∈,<Hθ

) ∼= (ω1, E,<) (here <Hθ
refers to some

natural well-order of N inherited from Hθ ). Also, let 〈Nα | α < ω1〉 be a continuous
sequence of countable elementary submodels of Hθ , converging to N . Note that if G
is P-generic, then, since P is ccc, N [G] is a generic extension of N via P ∩ N and
Nα[G] is a generic extension of Nα via P ∩ Nα .

Moreover, by continuity of the sequence 〈Nα | α < ω1〉, there are club-many α so
that

(Nα,∈,<Hθ
) ∼= (α, E ∩ (α × α),< ∩ (α × α)).

Using ♦, we can then pick an α such that in fact

(Nα,∈,<Hθ
) ∼= (Xα, Eα,<α).

Then clearly (Xα, Eα,<α) codes a model, and by elementarity
〈
Mβ | β < ω1

〉
and

〈
Pβ | β < ω1

〉
belong to Nα . Moreover, we may assume that Ẏ ∈ Nα .

Let N̄α be the transitive collapse of Nα , via collapsing function πα . As all members
of the transitive closure of Mβ and Pβ for β < α have rank < α (again, without loss
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of generality), they are mapped onto themselves by πα . Also, since Nα contains all
the ordinals < α, it follows that the initial segments

〈
Mβ | β < α

〉
and

〈
Pβ | β < α

〉

are contained in the transitive collapse N̄α . But then, we find ourselves in the situation
of Case 1 (from the construction of the models), and it follows that Mα = N̄α .

As Ẏ ∈ Nα,Y ∈ Nα[G]. Then Y = πα(Y ) is in the transitive collapse of Nα[G]
by πα , which is equal to Mα[πα“G], the generic extension of Mα by the forcing
πα(P ∩ Nα).

Nα
P∩Nα ��

πα

��

Nα[G] � Y

πα

��
Mα

πα(P∩Nα) �� Mα[πα“G] � πα(Y ) = Y

Since P ∩ Nα has the s.p.s.-property, so does πα(P ∩ Nα). Therefore, Y is indeed
in a generic extension of an Mα via a forcing with the s.p.s.-property. ��

Now we may apply condition (3) of Lemma 2.3 with M = Mα and M ′ =
Mα[πα“G], and see that Y has infinite intersection with some member of

⋃
β≤α Aβ .

Therefore, indeed, A = ⋃
α<ℵ1

Aα is P-indestructible.

It remains only to argue that A(L∗)P has a Σ1
2 definition. For this, first note that

ωω ∩ L∗ = ωω ∩ L , and that, by Lemma 3.2, we may assume that the ♦-sequence
we chose in the beginning of the proof is Σ1 definable over Lω1 . Since the Mα’s are
chosen so that they are either defined from ♦ or chosen to be <L -least, and the Pα’s
are also<L -least, we can use a standard argument to show that the set B of (codes for)
{Pα | α < ℵ1} is a Σ1

2 set. Then, in (L∗)P, the mad family is given by the formula

x ∈ A ⇐⇒ ∃b ∈ B (x ∈ Aα for α s.t. b codes Pα).

Since “x ∈ Aα for α s.t. b codes Pα” is a recursive computation, the above gives a
Σ1

2 definition of A in (L∗)P. This completes the proof of Lemma 4.1. ��
With this we are almost done with the proof of the Main Theorem. All that remains

to be done is forcing aΔ1
3-definable well-order of the reals, together with b = c = ℵ3,

over L∗ (i.e., the “coding stage”). For that, we will define a forcing iteration Pω3

following [7, Step 3], with only two essential differences:

1. For a.d. coding purposes, we will use the Laver-like almost disjoint coding from
Lemma 2.4 as opposed to the standard a.d. coding, and

2. At stages where no coding is performed, we use a trivial version of the Laver-like
coding (or use Hechler forcing).

This way, dominating reals are added cofinally often and the s.p.s.-property is pre-
served.
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So, in L∗, fix a definable (e.g. closed) sequence C = 〈cζ : ζ < ω1〉 of almost
disjoint subsets of ω. This will be used for coding purposes. We will define a finite
support iteration 〈Pα, Q̇γ | α ≤ ω3, γ < ω3〉 such that Q̇α is a Pα-name for a
σ -centered poset which has the s.p.s.-property. Every Qα is going to add a generic
real whose Pα-name will be denoted by u̇α , and just as in [7] we will have that
L∗[Gα] ∩ ωω = L∗[〈u̇Gα

ξ | ξ < α〉] ∩ ωω for every Pα-generic filter Gα . This gives
a canonical well-order of the reals in L∗[Gα], which depends only on the sequence
〈u̇Gα

ξ : ξ < α〉. The Pα-name for this well-order will be denoted by <̇α . Additionally,
we can make sure that for all α < β we have that Pβ forces <̇α to be an initial segment
of <̇β . Then if G is a Pω3 -generic filter over L∗,<G := ⋃{<̇G

α : α < ω3} will be the
desired well-order of the reals.

We proceed with the recursive construction of Pω3 . Along the construction we shall
also define a sequence 〈 Ȧα | α ∈ Lim(ω3)〉, where Ȧα is a Pα-name for a subset
of [α, α + ω). For every ν with ω2 ≤ ν < ω3, fix a bijection iν : {〈ζ, ξ 〉 | ζ <
ξ < ν} ∼−→ Lim(ω2). If Gα is Pα-generic over L∗,<α= <̇Gα

α and x, y are reals
in L∗[Gα] such that x <α y, let x ∗ y := {2n | n ∈ x} ∪ {2n + 1 | n ∈ y} and
Δ(x ∗ y) := {2n + 2 | n ∈ x ∗ y} ∪ {2n + 1 | n /∈ x ∗ y}.

Suppose Pα has been defined and fix a Pα-generic filter Gα .
Suppose α is a limit ordinal. Write it in the form ω2 · α′ + ξ , where ξ < ω2.

If α′ > 0, let i = io.t.(<̇Gα
ω2 ·α′ )

and 〈ξ0, ξ1〉 = i−1(ξ). Let Aα := ȦGα
α be the set

α + (ω\Δ(xξ0 ∗ xξ1)), where xζ is the ζ -th real in L[Gω2·α′ ] ∩ [ω]ω according to the
well-order <̇Gα

ω2·α′ (here Gω2·α′ = Gα ∩ Pω2·α′ ).

Then, we define Qα as follows: Qα is the finite support iteration 〈Pn
α, Q̇m

α | n ≤
ω,m < ω〉, where

• Case 1: if m ∈ Δ(xξ0 ∗ xξ1) then �m“Q̇m
α is the Laver-like a.d. coding partial order

LYα+m (
C) from Lemma 2.4”, where C is the a.d. sequence fixed at the beginning,

and Yα+m is the subset of ω1 whose characteristic function was added by P2
α+m

(see Sect. 2).
• Case 2: if m /∈ Δ(xξ0 ∗ xξ1) then �m Q̇m

α is the trivial poset.

Let um
α be the generic real added by Qm

α in the first case, and the constant 0 function
in the second case. Let uα be a real encoding the um

α ’s for all m ∈ ω.
If α < ω2 or α is a successor, let Qα be again the Laver-like forcing Lω1(

C), or
Hechler forcing (or any other σ -centered forcing that satisfies the s.p.s. property).
Notice that what happens at these stages is irrelevant for the purpose of “decoding”
the Δ1

3-well-order.
With this the inductive definition of our finite support iteration Pω3 is complete—for

more details, we refer the reader to [7]. To complete the proof, first notice that since
the sets Δ(x, y) are always non-empty, Case 1 occurs cofinally often in the iteration,
and therefore dominating reals are added cofinally often. It follows that in (L∗)Pω3 we
have b = c = ℵ3. To show that in (L∗)Pω3 there is a Δ1

3-definable well-order of the
reals, we follow the arguments of [7]. Notice that a version of [7, Lemma 3] certainly
goes through in our context (in fact it is even easier to prove). Consequently, Lemmas
4 and 5 from [7] hold, and theΣ1

3 formula defining the well-order can be read off from
the statements of these Lemmas.
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Finally, note that all the forcing posets in the construction of Pω3 (including the
trivial ones) satisfy the s.p.s.-property, so by [2, Proposition 3.10], the entire finite sup-
port iteration does, as well. Thus we can apply Lemma 4.1 and obtain aΣ1

2 -definable
mad family in (L∗)Pω3 , and, by Theorem 1.3, also a Π1

1 mad family.

5 Open questions

In the introduction, we mentioned that there is no problem to modify our proof so that
it works for b = c = ℵ2, and a natural open question is whether the same holds for
b = c = κ for all regular uncountable κ . We conjecture that the answer is positive,
but some work needs to be done on the coding mechanism to make sure it works for
larger values of the continuum.

Another question one may ask is whether the existence of a Π1
1 mad family and a

Δ1
3 well-order is consistent with other values of the cardinal characteristics b, a and

s. For example, is it consistent with b < c or even b < a?
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Abstract We study regularity properties related to Cohen, random, Laver, Miller
and Sacks forcing, for sets of real numbers on the Δ1

3 level of the projective hieararchy.
For Δ1

2 and Σ1
2 sets, the relationships between these properties follows the pattern of

the well-known Cichoń diagram for cardinal characteristics of the continuum. It is
known that assuming suitable large cardinals, the same relationships lift to higher pro-
jective levels, but the questions become more challenging without such assumptions.
Consequently, all our results are proved on the basis of ZFC alone or ZFC with an
inaccessible cardinal. We also prove partial results concerning Σ1

3 and Δ1
4 sets.
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1 Introduction

The study of regularity properties in descriptive set theory is closely related to cardinal
characteristics of the continuum. By well-known results of Solovay, Judah and She-
lah, the statement “all Σ1

2 sets of reals are Lebesgue measurable” is equivalent to “for
every r ∈ ωω, the set of random reals over L[r ] has measure one”, and the statement
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“all Δ1
2 sets of reals are Lebesgue measurable” is equivalent to “for every r ∈ ωω,

there is a random real over L[r ]”; analogous results hold for the Baire property and
Cohen reals. These characterizations link the statements about projective regularity
with the covering and additivity numbers of the meager and null ideals on the reals.
Likewise, Brendle and Löwe [8] uncovered a link between the regularity properties
naturally connected to Laver-, Miller- and Sacks-forcing for Σ1

2 and Δ1
2 sets, and the

cardinal invariants b (the bounding number), d (the dominating number) and the size
of the continuum.

Thus, if we restrict attention to the second projective level, a very clear picture
emerges, in which the relationships between the various regularity statements follow
the familiar pattern of Cichoń’s diagram (see Fig. 1 in Sect. 2). Other, more exotic,
regularity properties have also been extensively studied on the second level, with
some important contributions being [6–9,23]. See also [32] for a very detailed and
self-contained survey. An abstract approach has been proposed by Ikegami in [24] and
developed further in the PhD theses of Laguzzi [36] and of the third author [35].

Far less is known concerning sets higher up in the projective hierarchy, even at the
Σ1

3 and Δ1
3 levels. Concerning such questions, there are two, somewhat divergent,

methods of approach. According to one of them, adopted e.g., by Ikegami in [24],
Judah and Spinas in [31] and a few others, one assumes the existence of certain large
cardinals, which imply that all the essential results from the second level lift almost
verbatim to higher levels (for the third level, this requires the existence of sharps for
sets of ordinals). Although this approach is interesting and certainly worthy of further
investigation, it is not the approach we will take in this paper, for reasons that shall be
explained in the next section. Here, all results will be proved on the basis of ZFC alone
or ZFC with an inaccessible; indeed, we will put special emphasis on eliminating the
inaccessible wherever possible (notice that the statement “all Σ1

3 sets are Lebesgue
measurable” already implies an inaccessible in L by [40]).

Some work in this direction, most of it contained in Chapter 9 of [3], has been car-
ried out by Judah, Shelah, Bagaria and others in the eighties and early nineties, and our
methods are related to the ones used there. On the other hand, we have more modern
means at our disposal, particularly the theory of “non-elementary proper forcing” (in
our case, “Suslin and Suslin+ proper forcing”) developed by Judah, Shelah, Goldstern
and Kellner, and a result of René David [10] about the existence of a model of set
theory in which ω1 is inaccessible in L[r ] for all reals r , but there exists a Σ1

3-good

Fig. 1 A complete diagram of implications for Σ1
2 and Δ1

2 sets of reals

123



Cichoń’s diagram, regularity properties and Δ1
3 sets of reals 697

wellorder of the reals. Using these methods, we will provide a complete solution to the
situation on the Δ1

3-level. Although our emphasis will be on the regularity properties
corresponding to the cardinal invariants appearing in Cichoń’s diagram (i.e., the reg-
ularity properties connected to Cohen, random, Laver, Miller and Sacks forcing), our
methods are sufficiently general and certainly have many more applications regarding
questions of a similar nature.

The paper is structured as follows: in Sect. 2 we introduce the relevant defini-
tions, summarize known results on the second level and provide the motivation for the
research carried out in the rest of the paper. In Sect. 3 we recall the basic properties of
Suslin and Suslin+ proper forcing, proving several important technical results which
may be interesting in their own right and have applications other than those considered
in this paper. In the crucial Sect. 4 we develop several methods for obtaining regular-
ity for Δ1

3 sets of reals in a “minimal” way, using various iterated forcing techniques.
In Sect. 5 we use these methods to separate regularity properties on the Δ1

3-level. In
Sect. 6 we briefly consider two additional regularity properties that have received a
lot of attention is set theory, and in Sect. 7 we deal with some results concerning Σ1

3
and Δ1

4 sets. Section 8 closes with some open questions.

2 Regularity properties and Cichoń’s diagram

2.1 Definitions

We assume that the reader is familiar with the standard definitions of the Baire prop-
erty, Lebesgue measure, the ideal M of meager sets and N of measure-null sets, as
well as the definitions of Cohen, random, Laver, Miller and Sacks forcing. Following
standard practice, we denote these forcing notions with the letters C,B,L,M and S.
If T is a tree on ω<ω or 2<ω then [T ] denotes the set of branches through T , and [t]
denotes the basic open set for t ∈ ω<ω or 2<ω.

Definition 2.1 A set A ⊆ ωω is

– Laver-measurable if ∀T ∈ L ∃S ∈ L s.t. S ≤ T and ([S] ⊆ A or [S] ∩ A = ∅).
– Miller-measurable if ∀T ∈ M∃S ∈ M s.t. S ≤ T and ([S] ⊆ A or [S]∩ A = ∅).

A set A ⊆ 2ω is
– Sacks-measurable if ∀T ∈ S ∃S ∈ S s.t. S ≤ T and ([S] ⊆ A or [S] ∩ A = ∅).

Sacks-measurability is also known under the term Marczewski-measurability.
Although contemporary interest in properties such as the ones above is often forc-
ing-related, it is interesting to note that among Polish mathematicians, there had been
a considerable interest in them long before the advent of forcing, see e.g., [44].

Both Lebesgue measure and the Baire property can be represented in the style of
Definition 2.1, using the following well-known characterizations:

1. A subset A of ωω or 2ω is Lebesgue-measurable iff every closed set C of positive
measure has a closed subset C ′ ⊆ C of positive measure such that C ′ ⊆ A or
C ′ ∩ A = ∅.
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2. A subset A of ωω or 2ω has the Baire property iff every basic open set [t] has
a basic open subset [s] ⊆ [t] such that [s]\A is meager or [s] ∩ A is meager.
Moreover, this holds iff every Gδ non-meager set X has a Gδ non-meager subset
Y ⊆ X such that Y ⊆ A or Y ∩ A = ∅.

If we choose to represent random forcing by the partial order of closed sets of
positive measure, and Cohen forcing by Gδ (or Borel) non-meager sets, we obtain
an exact equivalence between the two classical properties on one hand, and B- and
C-measurability in the sense analogous to Definition 2.1 on the other hand. There-
fore, we will frequently refer to the Baire property and Lebesgue measure as “C-” and
“B-measurability”, respectively.

Notation 2.2 If Γ is a class of sets (e.g., a projective class), we will use the notation
“Γ (P)” to abbreviate the statement “all sets of complexity Γ are P-measurable”, with
P ranging over one of the forcing notions considered above.

2.2 The second level

While ZFC proves that analytic sets are P-measurable for all P as above, statements
such as Σ1

2(P) and Δ1
2(P) are independent of ZFC. The following results of Solovay

[42], Ihoda–Shelah [23] and Brendle–Löwe [8] provide an exact characterization of
regularity statements for Σ1

2 and Δ1
2 sets of reals.

Theorem 2.3 [42]

1. Σ1
2(B) ⇐⇒ ∀r {x | x is not random over L[r ]} ∈ N .

2. Σ1
2(C) ⇐⇒ ∀r {x | x is not Cohen over L[r ]} ∈ M.

Theorem 2.4 [23]

1. Δ1
2(B) ⇐⇒ ∀r ∃x (x is random over L[r ]).

2. Δ1
2(C) ⇐⇒ ∀r ∃x (x is Cohen over L[r ]).

Theorem 2.5 [8]

1. Σ1
2(L)⇐⇒ Δ1

2(L)⇐⇒ ∀r ∃x (x is dominating over L[r ]).
2. Σ1

2(M)⇐⇒ Δ1
2(M)⇐⇒ ∀r ∃x (x is unbounded over L[r ]).

3. Σ1
2(S)⇐⇒ Δ1

2(S)⇐⇒ ∀r ∃x (x /∈ L[r ]).
These three theorems make it possible to compare the strength of various hypoth-

eses of the form Σ1
2(P) and Δ1

2(P) with one another. Notice that the right-hand-side
statements of Theorem 2.3 are naturally related to the cardinal numbers add(N ) and
add(M); the right-hand-side statement of Theorem 2.4 are related to cov(N ) and
cov(M); and those of Theorem 2.5 to b, d and 2ℵ0 . So it is not surprising that the
relationship between the regularity hypotheses follows a pattern familiar from (part
of) the Cichoń diagram—see Fig. 1.

The interpretation of this diagram is as usual: every implication appearing on it is
provable in ZFC, as well as the additional implication Δ1

2(L) + Δ1
2(C) ⇒ Σ1

2(C)
(the counterpart to the cardinal equation add(M) = min(b, cov(M)) established
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Table 1 Correspondence between regularity, transcendence and cardinal characteristic

Reg. hypothesis Transcendence over L[r ] Cardinal char.

∀r(ωL[r ]
1 < ω1) “Making ground model reals countable” ℵ1

Σ1
2(B) Measure-one many random reals add(N )

Δ1
2(B) Random reals cov(N )

Σ1
2(C) Co-meager many Cohen reals add(M)

Δ1
2(C) Cohen reals cov(M)

Δ1
2(L) / Σ1

2(L) Dominating reals b

Δ1
2(M) / Σ1

2(M) Unbounded reals d

Δ1
2(S) / Σ1

2(S) New reals 2ℵ0

by John Truss [45]). Any other implication is not provable, i.e., any constellation
of true/false-assignments to the above statements not contradicting the diagram, is
actually consistent with ZFC. We call such an implication diagram “complete”. The
above facts are well-known, and can be proved by iterating the right type of forcing
notions over L and using the fact that certain types of reals are, or are not, added by the
iteration, thus forcing the right-hand-side statements of Theorems 2.3, 2.4 and 2.5 to
be true or false. This is in perfect analogy to the proofs of the corresponding cardinal
inequalities, which can be found e.g., in [3, Chapter 7].

Notice that the statement ∀r(ωL[r ]
1 < ω1) is a little bit special, since it is the only

one that requires the strength of an inaccessible; nevertheless, it is a natural property
in this setting because:

(a) it plays the same role as ℵ1 does in the standard Cichoń diagram for cardinal
characteristics, and

(b) it is equivalent to a number of projective regularity statements, most notably “all
Σ1

2/Π1
1 sets have the perfect set property”.

The correspondence between regularity hypotheses on the second level, transcen-
dence over L and cardinal characteristics of the continuum is summarized in Table 1
below.

2.3 Beyond the second level

When looking higher up in the projective hierarchy and attempting to generalize the
theory to statements like Σ1

n(P) and Δ1
n(Q), for n ≥ 3, we are faced with two distinct

methods of approach, as mentioned in the introduction. For example, if L# denotes
the least inner model closed under sharps for sets of ordinals, Theorems 2.3, 2.4 and
2.5 can be lifted to the next level, so in set-generic extensions of L# we obtain char-
acterizations of Σ1

3(P) and Δ1
3(P) in terms of transcendence properties over L#. An

immediate consequence is that all the properties of the diagram from Fig. 1 lift to
the third projective level as well. For more on this approach, see the work of Ikegami
[24, Section 5]. Judah and Spinas [31] also proved results such as: if V is a canonical
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model with n Woodin cardinals and a measurable above them, then there is a forcing
extension in which Δ1

n+4(B) holds but Δ1
n+4(C) fails.

In this paper, we do not adopt the “large cardinal approach”, for the following
reasons:

1. As the consistency of “for all P and n < ω,Σ1
n(P) holds” is just an inaccessible

(it is true in the Solovay model), it seems unnatural to require stronger hypotheses
to prove more subtle statements about Σ1

n(P) or Δ1
n(P) for low values of n (this

view has been expressed by Bagaria, Judah, Shelah and others in the past).
2. Assuming too strong large cardinals (for example, enough to yield Projective

Determinacy) may trivialize the question. So, for this approach to work properly
one must assume exactly the right amount of large cardinal strength, which is,
arguably, a somewhat artificial requirement.

3. Without large cardinal assumptions, one can obtain results that are not direct ana-
logues of the second level results. In recent work of Friedman and Schrittesser
[16], a model for Proj(B) + ¬Δ1

3(C) was constructedt (“Proj” stands for the
class of all projective sets). In particular, this showed that the counterpart to the
classical Bartoszyński–Raisonnier–Stern implication “Σ1

n(B)⇒ Σ1
n(C)” fails to

lift to higher levels, for all n ≥ 3 (on the other hand, the existence of a measurable
implies Σ1

3(B)⇒ Σ1
3(C)). Other “non-liftings” of implications will follow from

our results as well, for example that Δ1
n(L) + Δ1

n(C) ⇒ Σ1
n(C) (the analogue

of the Truss-implication) consistently fails for n = 3 and n = 4, see Theorem
7.12. In light of this, it seems more interesting to study such questions in ZFC or
at most ZFC with an inaccessible.

So, if we must forgo large cardinal assumptions beyond an inaccessible, we must
also forgo beautiful characterization theorems like Theorem 2.3, 2.4 and 2.5. But then,
is there anything at all we can say about the relationship between the five regularity
properties? Fortunately, a number of simple implications can be proved by straight-
forward ZFC-arguments. First, an important observation:

Observation 2.6 (Brendle–Löwe) Let P ∈ {B,L,M,S}. For any tree T ∈ P, there
exists a natural homeomorphism ϕT between [T ] and the entire space (ωω or 2ω),
which preserves the property of “being a P-condition”. From this it follows that if
Γ is a class of sets closed under continuous preimages, and we are only interested
in the statement Γ (P), then we may safely drop the “below any P-condition”-clause
from the definition of P-measurability, and simply say that a set A is P-measurable
if and only if there exists a T ∈ P such that [T ] ⊆ A or [T ] ∩ A = ∅. Similarly, A
is C-measurable if and only if there is a Gδ non-meager set X such that X ⊆ A or
X ∩ A = ∅.

Lemma 2.7 (Brendle–Löwe) Let Γ be a class of sets closed under continuous pre-
images. Then the following implications hold in ZFC:

1. Γ (L)⇒ Γ (M)⇒ Γ (S).
2. Γ (C)⇒ Γ (M).
3. Γ (B)⇒ Γ (S).
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Fig. 2 An incomplete diagram of implications for Σ1
n and Δ1

n sets of reals

Proof In view of the previous observation, proving Γ (P)⇒ Γ (Q) amounts to finding
a Q-object below any P-object. For the first implication, note that a Laver tree is a
Miller tree, a Miller tree is a perfect tree in ωω, and the imagine of this perfect tree
under the natural homeomorphism between ωω and a dense Gδ subset of 2ω, is an
uncountable Gδ subset of 2ω which, by the perfect set theorem, contains the branches
of a Sacks tree.
For the second implication, note that a Gδ non-meager set is comeager in a basic open
set. It is not hard to inductively construct a Miller tree whose branches are completely
contained inside a set that is comeager in a basic open set.
Finally, every closed set of positive measure clearly contains a perfect subset. �

Summarizing the above, we obtain a different implication diagrams for the same
regularity properties on the Σ1

n and Δ1
n level, for n ≥ 3, see Fig. 2. Note, however,

that unlike Fig. 1, this is not a “complete” diagram, in the sense that it only shows the
implications we know to exist so far, but it does not claim that no additional impli-
cations exist. Also, notice that the analogue of ∀r(ωL[r ]

1 < ω1) is missing from the
diagram—it is not clear which hypothesis should take its place.

The long-term goal is to “complete” this diagram on the third level, and potentially
on all levels n ≥ 3 (i.e., to find all possible implications and prove that all other impli-
cations are consistently false). There are still many obstacles to this goal. However, if
we restrict attention exclusively to the Δ1

3 sets, we obtain a much simpler diagram (see
Fig. 3). In Sect. 5 we show that diagram is indeed complete, by constructing models
for every combination of “true”/“false”-assignments consistent with the diagram, in
ZFC or ZFC with an inaccessible. Partial results related to levels above Δ1

3 will be
discussed in Sect. 7.

We should mention that results concerning the Baire property and Lebesgue mea-
surability were known prior to our work. The consistency of Δ1

3(C) + ¬Δ1
3(B), for

example, follows from [27], and the consistency of the converse, Δ1
3(B) + ¬Δ1

3(C),
was first proved by Bagaria in [28] and later (using different methods) by Bagaria
and Woodin in [2]. The consistency of Σ1

3(B) + ¬Δ1
3(C) had remained open for a

long time, until it became a corollary of the much stronger theorem of [16]. To our
knowledge, no study of the properties L,M and S on higher levels has been carried
out so far.
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Fig. 3 Diagram of implications for Δ1
3 sets of reals

On the technical side, our proofs will involve Suslin and Suslin+ proper forcings,
a special case of the general theory of “non-elementary proper forcing” developed by
Shelah, cf. [41].

3 Suslin and Suslin+ proper forcing

The theory of Suslin ccc forcings is well-understood, and a detailed summary can be
found in [3, Section 3.6]. In the context of forcing notions that are proper but not ccc,
there is a closely related concept, developed, among others, by Ihoda and Shelah in
[22], Goldstern in [18,19], Shelah in [41] and Kellner in [33,34]. In this section we
will give a brief overview of some essential properties of Suslin and Suslin+ proper
forcing, and prove some results that will be crucial for the techniques in our paper.

3.1 Basic concepts

The main idea is to replace countable elementary submodels M ≺ Hκ for sufficiently
large κ in the definition of “proper forcing” by countable transitive (not necessarily
collapses of elementary) models of (a sufficient fragment of) ZFC. For that to make
sense, the forcing notions need to be definable.

Definition 3.1 Let P be a forcing partial order whose conditions are (or can be coded
by) reals. Assume that P,≤P and⊥P are definable by projective formulas with a param-
eter a ∈ ωω. Let ZFC∗ denote some (unspecified) sufficiently large finite fragment of
ZFC, and let M be a countable transitive model of ZFC∗ containing the parameter a.
Then PM ,<M

P and ⊥M
P refer to the forcing notion re-interpreted in M . A condition

q ∈ P is called (M,P)-generic if (in V ) q � “Ġ ∩PM is a PM -generic filter over M”.

Following the terminology introduced by Shelah, countable models of ZFC∗ which
contain the defining parameters will be called “candidates”.

Definition 3.2 Let (P,≤P,⊥P) be as above. We say that P is proper-for-candidates
if for all candidates M containing the defining parameter of P, and every p ∈ PM ,
there exists a q ≤ p which is (M,P)-generic.

Some authors call this property “strongly proper”, although we will stick to the
above terminology in order to avoid confusion with other interpretations of the term
“strongly proper”.
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Note that if M ≺ Hκ is a countable elementary submodel of a sufficiently large
Hκ such that Hκ |� ZFC∗ and contains all relevant parameters, then a condition q is
(M,P)-generic in the above sense if and only if it is (M,P)-generic in the usual sense
(with PM = P ∩ M). Hence, properness-for-candidates implies ordinary properness.

Usually, properness-for-candidates is coupled with an absoluteness requirement on
the definition of the partial order.

Definition 3.3 A forcing P is Suslin proper if P,≤P and ⊥P are Σ1
1-relations, and P

is proper-for-candidates.

If P is Suslin proper, then PM = P ∩ M,≤M
P =≤P ∩M2 and ⊥M

P = ⊥P ∩ M2

by Σ1
1-absoluteness. Moreover, the statement “{pi | i < ω} is predense below q” is

Π1
1 and hence absolute between candidates M and V . Clearly, all Suslin ccc partial

orders (i.e., all Suslin partial orders having the ccc) are Suslin proper, and there are
some well-known examples of non-ccc forcings that are Suslin proper—most nota-
bly Mathias forcing. However, many standard forcing notions (e.g., Sacks, Miller and
Laver forcing) are not quite Suslin proper, because ⊥P fails to be a Σ1

1 relation (it is
then only Π1

1). To fix this problem, an alternative notion was proposed by Shelah and
Goldstern:

Definition 3.4 A forcing P is Suslin+ proper if

1. P and ≤P are Σ1
1,

2. there is a Σ1
2, (ω+ 1)-place relation epd(p0, p1, . . . , q) (“effectively predense”)

such that if epd(p0, p1, . . . , q) holds for pi , q ∈ P, then {pi | i < ω} is predense
below q, and

3. for every candidate M containing all relevant parameters, and all p ∈ PM , there
is a q ≤ p such that for every D ∈ M which is PM -dense, there exists an enu-
meration {di | i < ω} ⊆ D such that epd(d0, d1, . . . , q) holds. In this case
we say that q is an effective (M,P)-generic condition, and we call this property
effective-properness-for-candidates.

So Suslin properness implies Suslin+ properness, which in turn implies proper-
ness. A sufficient condition for a forcing to be Suslin+ proper is an effective version
of Axiom A, where the amalgamation makes sure that epd is defined in a Σ1

2-way.
All standard definable tree-like forcings which are known to be proper are in fact Sus-
lin+ proper. A good exposition of this phenomenon can be found in Kellner’s papers
[33,34].

Remark 3.5 In [18, Remark 1.7] it was shown that if d ∈ ωω is a code for an analytic
set, canonically coding (P,≤P,⊥P)), then the statement “d codes a Suslin proper
forcing” is a Π1

3 statement. The same holds for Suslin+ proper forcing, i.e., if d is
a code for a Σ1

2-set canonically coding (P,≤P) as well as the relation epd, then “d
codes a Suslin+ proper forcing” iff

≤P is a partial order, and

∀1 M [M countable, transitive, M |� ZFC∗, d ∈ M →
∀0 p ∈ PM ∃1q ≤P p s.t. ∀0 D ∈ M(M |� “D is dense” →

∃1{di | i < ω} ⊆ D s.t. epd(d0, d1, . . . , q))]
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(where ∀0 and ∃0 refers to natural number quantifiers and ∀1 and ∃1 to real number
quantifiers.) As countable, transitive models M can be coded by well-founded rela-
tions E on ω, it is not hard to verify that the above statement is Π1

3. In particular, if P
is a Suslin (Suslin+) proper forcing then N |� “P is a Suslin (Suslin+) proper forcing”
for any inner model N with ω1 ⊆ N , by downwards Π1

3-absoluteness.

Next, we want to look at the complexity of the forcing relation �P. First, let us fix
the following terminology:

Definition 3.6 Let P be a forcing notion. We say that τ is a countable P-name for a
real if it is a countable set of pairs (ň, p), where n ∈ ω and p ∈ P.

In the above definition we think of reals as subsets of ω (or members of 2ω), and
if τ is of the above form and G a generic filter, then we think of τ [G] as the set
{n | ∃p ∈ G ((ň, p) ∈ τ)} ⊆ ω (or the corresponding function in 2ω).

Although not every name for a real is countable, if P is proper then for every P-name
for a real σ and p ∈ P there exists q ≤ p and a countable P-name τ for a real such that
q � τ = σ . If conditions of P are reals, each such countable name can be canonically
coded by a real. Moreover, if P is Σ1

1 then the statement “x codes a countable name
for a real” is Σ1

1. We will frequently identify countable P-names for reals with the
reals coding them.

The following lemma generalizes [29, Theorem 2.1], and is crucial for comput-
ing the complexity of the forcing relation. In its formulation, “p � θ(τ )” is to be
understood as a formula with real variables p and τ (actually the reals coding them)

Lemma 3.7 Let P be Suslin+ proper, p ∈ P and τ a countable P-name for a real.
Then for all n ≥ 2:

1. If θ is Π1
n then “p � θ(τ )” is Π1

n.
2. If θ is Σ1

n then “p � θ(τ )” is Π1
n+1.

Proof The proof is by induction on the complexity of θ , with Π1
2 being the base case.

So first, assume θ is Π1
2.

Claim. The following are equivalent:

1. p � θ(τ ),
2. for all candidates M containing τ, p, and any parameters appearing in the definition

of P or θ , we have M |� p � θ(τ ).

As candidates are coded by well-founded relations E on ω, the above equivalence
gives us a Π1

2-definition of “p � θ(τ )”.

Proof of Claim For (2)⇒ (1), fix p and let M be the transitive collapse of an elemen-
tary submodel of a sufficiently large Hκ , containing all necessary parameters. Then
by assumption M |� p � θ(τ ), but by elementarity and definability of � in Hκ , this
implies p � θ(τ ) (note that this direction is trivial and does not require θ to have any
particular complexity).
For (1)⇒ (2), assume that p � θ(τ ) and, towards contradiction, let M be such that
M |� p �� θ(τ ) (note that by absoluteness, M |� p ∈ P and M |� “τ is a countable
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name for a real”). Then there is p′ ≤ p in M such that M |� p′ � ¬θ(τ ). Let q ≤ p′
be an (M,P)-generic condition, and let G be P-generic over V with q ∈ G. Then G
is also M-generic, and p′ ∈ G, hence M[G] |� ¬θ(τ [G]). But this is a Σ1

2 formula,
so by upwards absoluteness V [G] |� ¬θ(τ [G]). This contradicts the assumption that
p � θ(τ ). �(Claim)

The rest follows by induction.

– For n ≥ 2, assume inductively that for Π1
n formulas χ , the relation “p � χ(τ)” is

Π1
n . Let θ be Σ1

n . Then p � θ(τ ) iff ∀q (q ∈ P∧ q ≤ p → q �� ¬θ(τ )), which
is easily seen to be Π1

n+1.
– For n ≥ 2, assume inductively that for Σ1

n formulas χ , the relation “p � χ(τ)”
is Π1

n+1. Let θ be Π1
n+1, and write θ(τ ) as ∀y χ(τ, y) for a Σ1

n formula χ . Then
the following are equivalent:
(1) p � θ(τ ), and
(2) ∀q∀σ ((q ∈ P and q ≤ p and “σ is a countable name for a real”) → q �

χ(τ, σ )).
(1)→ (2) is obvious, and for (2)→ (1), note that if p �� θ(τ ) then ∃q ≤ p such
that q � ¬θ(τ ), so q � ∃y¬χ(τ, y). But then there is a countable name σ and
q ′ ≤ q such that q ′ � ¬χ(τ, σ ), which contradicts (2).
As “q � χ(τ, σ )” is Π1

n+1 by induction, the statement in (2) is also Π1
n+1. �

3.2 Iterations

Next, we consider iterations of Suslin and Suslin+ proper forcing notions. This is some-
what tricky, since, in general, even a two-step iteration of Suslin+ forcing notions is
not Suslin+ (see [34, Remark 4.12]), so the definition of the iteration cannot be abso-
lute between countable models M and V . However, following [22] and [18], adequate
preservation results can still be proved, and that is sufficient for our purposes. In this
paper we will only consider iterations of length at most ω1 with countable support.
Most of our technical results just involve proper initial segments of the ω1-iteration,
which simplifies many things.

Definition 3.8 Let Pγ := 〈Pα, Q̇α | α < γ 〉 be a countable (i.e., full) support iter-
ation of length γ < ω1. We call this a Suslin (Suslin+) proper iteration of length γ
if each iterand is Suslin (Suslin+) proper, i.e., for every α < γ,�Pα“Q̇α is Suslin
(Suslin+) proper”.

Since the iteration Pγ is uniquely determined by the sequence 〈Q̇α | α < γ 〉 of
iterands, any candidate M containing the names for the defining parameters of all the
Q̇α’s can uniquely reconstruct the iteration (see e.g., [18, p. 350ff] for details). We will
refer to this M-reconstruction of the iteration as PM

γ . In general, PM
γ is not the same

as Pγ ∩ M . Later we will prove that being a Pγ -condition is Π1
2, so by downward

absoluteness PM
γ ⊇ Pγ ∩M does hold. However, PM

γ might contain objects which M
believes to be Pγ -conditions but which actually (in V ) are not.
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Definition 3.9 (Judah–Shelah; Goldstern; Kellner) If G is a Pγ -generic filter over V ,
and M is a candidate, we can define G M = G M

γ , the “potential PM
γ -generic filter over

M induced by G”, by induction on α ≤ γ , following [18, Definition 2.6] (see also
[34, Definition 4.3.]).

– If α = β + 1 then G M
α = {p ∈ PM

α | p�β ∈ G M
β and p(β)[G M

β ] ∈ G(β)}.
– If α is limit then G M

α = {p ∈ PM
α | ∀β < α (p ∈ G M

β )}.
(here G(β) is the β-th component of G). Then G M := G M

γ is the result of this
induction.

Remark 3.10 1. The object G M is not always well-defined: for example, if at some
stage α < γ,G M

α is not PM
α -generic over M then it does not make sense to evaluate

p(α)[G M
α ], so we cannot define G M

α+1 either. Therefore, we allow the possibility
that G M is undefined; but when we say “G M is PM

γ -generic over M”, we mean

that, inductively, every G M
α is PM

α -generic over M for α < γ , and hence every
G M
α is properly defined (and G M is PM

γ -generic over M).

2. If G M is well-defined then, as a filter on PM
γ , it takes the role that “G ∩M” would

in the usual situation (i.e., where M is a collapse of an elementary submodel). In
general, G M and G ∩M are different. However, their difference arises only from
the difference between PM

γ and Pγ ∩ M . In particular, if p ∈ G M and p is really
a Pγ -condition, then in fact p ∈ G. This follows inductively from the definition
of G M (if all initial segments of p are real Pα-conditions, then, inductively, it
follows that the definition of G M

α corresponds to the standard definition of the
iterated generic filter Gα). We will need this fact several times in our arguments.

See [34] and [41] for a more detailed treatment of these issues.

Definition 3.11 Following [18, Remark 2.13] and [34, Definition 4.4], we define:

– A condition q ∈ Pγ is (M,Pγ )-generic if q � “Ġ M is a PM
γ -generic filter over

M”.
– If p ∈ PM

γ , then q is (M,Pγ , p)-generic if it is (M,Pγ )-generic and, additionally,

q � p ∈ Ġ M .

The purpose of the “(M,Pγ , p)-generic condition” is that we would like to say
“for p ∈ PM

γ , there is q ≤ p which is (M,Pγ )-generic”, but we cannot say this since
p might not be in Pγ . Instead, saying that “q is (M,Pγ , p)-generic” is the desired
analogue.

The following theorem, proved by Judah–Shelah and by Goldstern, shows that a
property that is almost “properness-for-candidates” is preserved by countable support
iterations of Suslin and Suslin+ forcings.

Theorem 3.12 (Judah–Shelah; Goldstern) Let Pγ := 〈Pα, Q̇α | α < γ 〉 be a Sus-
lin+ proper iteration of length γ < ω1. Then for every candidate M containing the
parameters of all Q̇α and containing γ , and for every p ∈ PM

γ , there exists a q which
is (M,Pγ , p)-generic.
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Cichoń’s diagram, regularity properties and Δ1
3 sets of reals 707

Proof This is a specific instance of a more general preservation theorem, where the
iteration can have length γ ≤ ω2. In that case, we must first make sense of the way
a countable model M reflects the iteration. This general result is proved in detail for
Suslin proper forcings in [22, Lemma 2.8] and in [18, Theorem 2.16, Corollary 2.17],
and in [19] it is also mentioned that analogous results hold for Suslin+. Even stronger
results are proved by Shelah in [41], and also by Kellner in [34, Lemma 4.8]. �
Remark 3.13 As we are only dealing with countable iterations, the following holds
for Pα by induction on α < ω1:

1. Since by Theorem 3.12, each Pα is proper, Pα-names for reals have countable
names (modulo strengthening of the condition).

2. It follows that, inductively, we can assume that all components of p ∈ Pα are
represented by countable names for reals.

3. As countable names are coded by reals and α is countable, an entire condition
p ∈ Pα can be coded by a single real. As before, we will identify Pα-conditions
and countable Pα-names for reals with the reals coding them.

Now that we can treat Pα as a forcing with real number conditions, we can also
analyze the complexity of Pα,≤α and the forcing relation �α . We already mentioned
that Pα is not Suslin or Suslin+, i.e., neither Pα nor≤α are Σ1

1. However, we can prove
the following result, inductively on α < ω1.

Lemma 3.14 Let Pω1 := 〈Pα, Q̇α | α < ω1〉 be a Suslin+ proper iteration. Then the
following holds for all α < ω1:

1. Pα is Π1
2,

2. ≤α is Π1
2,

3. being a countable Pα-name for a real is Π1
2, and

4. for any p ∈ Pα and a countable Pα-name for a real τ , we have for all n ≥ 2:
(a) If θ is Π1

n then “p �α θ(τ )” is Π1
n.

(b) If θ is Σ1
n then “p �α θ(τ )” is Π1

n+1.

Proof The case α = 1 follows from the definition of Suslin+ properness and Lemma
3.7. Assume (1)–(4) holds for β < α. Then:

1. If α = β + 1 then p ∈ Pβ+1 iff p�β ∈ Pβ and “p(β) is a countable Pβ -name for
a real” and (p�β) �β p(β) ∈ Q̇β . By induction, this is a conjunction of three Π1

2
sentences, where the last one is so due to point (4) and the fact that “p(β) ∈ Q̇β”
is Σ1

1. If α is limit then (since we are dealing with countable support iterations
and α < ω1) p ∈ Pα iff ∀β < α (p�β ∈ Pβ). Again, this statement is Π1

2 by the
induction hypothesis.

2. If α = β + 1 then p ≤β+1 q iff (p�β) ≤β (q�β) and (p�β) �β p(β) ≤Q̇β
q(β),

which is again a conjunction of Π1
2 formulas, by induction. If α is limit then p ≤α q

iff ∀β < α (p�β) ≤β (q�β) which is likewise Π1
2.

3. The complexity of the set of countable Pα-names is the same as the complexity of
Pα , so this follows from point (1).

4. Similarly to the proof of Lemma 3.7, we prove this by induction on the complexity
of θ , starting with Π1

2. As before:
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Claim. The following are equivalent:
(a) p �α θ(τ ),
(b) for all candidates M containing τ, p and α, and any parameters appearing in

the definition of any Q̇β for β < α or in θ , we have M |� p �α θ(τ ).
The proof of this equivalence is as in Lemma 3.7, using the “almost-properness-for-
candidates”-property satisfied by Pα (i.e., Theorem 3.12). However, since Pα is not
absolute between V and M , the argument must proceed with some more care. Notice
that by downward Π1

2-absoluteness, we now already know that Pα ∩ M ⊆ PM
α .

The (b)⇒ (a) direction is exactly as before, i.e., we simply take M to be the col-
lapse of an elementary submodel of Hκ . For (a)⇒ (b), assume p �α θ(τ ) and let
M be a candidate containing the relevant parameters, and, towards contradiction,
suppose M |� p ��α θ(τ ). By downward Π1

2-absoluteness we know that p ∈ PM
α ,

and also M knows that τ is a countable name for a real.

Then M |� ∃p′ ≤α p (p′ �α ¬θ(τ )) (note that p′ may not be in Pα). Now use
Theorem 3.12, and find a condition q ∈ Pα which is (M,Pα, p)-generic. Then, if
G is Pα-generic over V , and q ∈ G, the derived object G M (see Definition 3.9 (1))
is PM

α -generic over M , and p′ ∈ G M . Therefore, M[G M ] |� ¬θ(τ [G]), and by
upward Σ1

2-absoluteness, ¬θ(τ [G]) holds in V [G]. But also M |� p′ ≤α p and
G M ⊆ PM

α is a filter, so also p ∈ G M . But p was in Pα , so by Remark 3.10 (2) p
must in fact be in G. That contradicts p �α θ(τ ). �(Claim).

For the rest, proceed inductively as before: if θ is Σ1
n for n ≥ 2 then p �α θ(τ ) iff

∀q (q ∈ Pα and q ≤α p → q ��α ¬θ(τ )), which is Π1
n+1, using the fact that Pα

and≤α areΠ1
2, i.e., points (1) and (2) of the theorem. Likewise, if θ(τ ) ≡ ∀yχ(τ, y)

is Π1
n+1 for n ≥ 2 and χ is Σ1

n , then, as before, p �α θ(τ ) iff ∀q∀σ ((q ∈ Pα and
q ≤α p and “σ is a countable Pα-name for a real”) → q �α χ(τ, σ )). Again this
is Π1

n+1 using the fact that being a countable Pα-name for a real is Π1
2, i.e., point

(3) of the theorem. �
From this theorem it follows that Pα,≤α , being a countable Pα-name for a real,

and the relation “p �α θ(τ )” for Π1
2 formulas θ , are all downwards absolute between

V and countable models M (containing the relevant parameters), and absolute in both
directions between V and models W ⊆ V with ω1 ⊆ W .

3.3 Suslin+ proper iterations and inaccessibles

We end this section with two further useful results about Suslin+ proper forcing, under
the assumption that ∀r (ωL[r ]

1 < ω1). The first result shows that this assumption is
preserved by Suslin+ iterations of countable length.

First, a preliminary Lemma.

Lemma 3.15 Suppose V |� ∀r (ωL[r ]
1 < ω1),Pγ := 〈Pα, Q̇α | α < γ 〉 is a Suslin+

proper iteration of length γ < ω1, and p is a Pγ -condition. Suppose further that p
and all the defining parameters of Pγ are coded by a real z. Then there exists q ∈ Pγ
such that q �γ p ∈ Ġ and q �γ “Ġ is L[ž]-generic”.

Proof As ωV
1 is inaccessible in L[z], we can find a candidate M ⊆ L[z] containing

all the reals and dense sets of L[z], and moreover reflecting all the relevant properties
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of L[z] (for example, let M := Lλ[z] for some sufficiently large λ < ωV
1 such that

Lλ[z] ≺ LωV
1
[z]). As p and the parameters of Pγ are now in M , by Theorem 3.12 we

can find an (M,Pγ , p)-generic condition q. Then q �γ “Ġ M is PM
γ -generic over M”

and, since M has the same reals and dense sets as L[z], also q �γ “Ġ is L[ž]-generic”.
On the other hand, q �γ p ∈ Ġ M , and since p ∈ Pγ , this implies q �γ p ∈ Ġ by
Remark 3.10 (2). �
Theorem 3.16 Suppose V |� ∀r (ωL[r ]

1 < ω1) and Pγ := 〈Pα, Q̇α | α < γ 〉 is a

Suslin+ proper iteration of length γ < ω1. Then V Pγ |� ∀r (ωL[r ]
1 < ω1).

Proof Suppose, towards contradiction, that the conclusion is false, and let ṙ be a
countable Pγ -name for a real and p ∈ Pγ such that p �γ ωL[ṙ ]

1 = ω1. Let z be a real
in V , coding p, ṙ and all the defining parameters of Pγ . By Lemma 3.15, there is a
q ∈ Pγ such that q �γ p ∈ Ġ and q �γ “Ġ is L[ž]-generic”.
By Remark 3.5, we know that every iterand occurring in Pγ is Suslin+ proper in L[z]
as well, so L[z] |� “Pγ is proper”. Therefore q �γ “L[ž][Ġ] is a proper forcing
extension of L[ž]”, so in particular

q �γ ωL[ž][Ġ]
1 = ωL[ž]

1 .

Now notice that in any Pγ -extension V [G] of V , since ṙ [G] is constructible from
ṙ and G, and ṙ is coded in z, we know that L[ṙ [G]] ⊆ L[z][G], which implies
ω

L[ṙ [G]]
1 ≤ ωL[z][G]

1 . On the other hand, ωL[z]
1 was countable by assumption. It follows

that

q �γ ωL[ṙ ]
1 ≤ ωL[ž][Ġ]

1 = ωL[ž]
1 < ω1

which, together with q �γ p ∈ Ġ and p �γ ωL[ṙ ]
1 = ω1, leads to a contradiction. �

Remark 3.17 The definability of the forcing is essential in the preceding result, since,
in general, the assumption ∀r (ωL[r ]

1 < ω1) is not preserved even by ccc forcings.
For example, assuming that ω1 is not Mahlo in L , one can find A ⊆ ω1 is such that
L[A] |� ∀r (ωL[r ]

1 < ω1). Then, using the technique of almost disjoint coding (see
e.g., [25]), one can construct a ccc forcing notion coding A by the generic real rG . So
L[A][rG] = L[rG] will be a generic extension of L[A] by a ccc forcing notion, while
obviously satisfying ωL[rG ]

1 = ω1.

Our second result (which uses the previous result) is a strong absoluteness property
of extensions by Suslin+ iterations.

Definition 3.18 Let P be a forcing notion. Then

1. V is Σ1
n-P-absolute iff for all Σ1

n formulas φ, all P-generic G over V , and all reals
x ∈ V :

V |� φ(x) ⇐⇒ V [G] |� φ(x).
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2. V is Σ1
n-P-correct iff for all Σ1

n formulas φ, all P-generic G over V , and all reals
x ∈ V [G]:

V [x] |� φ(x) ⇐⇒ V [G] |� φ(x).

Σ1
n-P-correctness implies Σ1

n-P-absoluteness, but not vice versa. In fact, Σ1
n-P-

correctness is much stronger. The following is clear:

Fact 3.19 If V is Σ1
3-P-correct, then Σ1

3-absoluteness holds between any two models
W and W ′ with V ⊆ W ⊆ W ′ ⊆ V [G].
Proof Let φ be Σ1

3 and x ∈ W . If W |� φ(x) then W ′ |� φ(x) by upwards
Σ1

3-absoluteness (i.e., Shoenfield absoluteness). Conversely, if W ′ |� φ(x) then by
upwards Σ1

3-absoluteness V [G] |� φ(x), so by Σ1
3-P-correctness V [x] |� φ(x), so

by upwards-absoluteness again W |� φ(x). �
Σ1

n-P-correctness and Σ1
n-P-absoluteness for all set-forcings P have been inves-

tigated before, by Woodin, Bagaria and Friedman among others. For instance, in [1]
and [13] it is shown that Σ1

3-P-absoluteness for all set-forcings P can be obtained
from a reflecting cardinal, whereas Σ1

3-P-correctness for all set-forcings P implies the
existence of sharps for sets of ordinals by [46]).

If we restrict attention to Suslin+ proper forcing notions, Σ1
3-correctness can be

obtained just from an inaccessible. In fact, in [3, Lemma 9.5.4] it is proved that if
V |� ∀r (ωL[r ]

1 < ω1) and P is Suslin ccc, then V is Σ1
3-P-correct. We now extend

this result to all Suslin+ proper forcings P (and their iterations of length ω1), relying
on Theorem 3.16.

Theorem 3.20 Suppose V |� ∀r (ωL[r ]
1 < ω1) and Pω1 := 〈Pα, Q̇α | α < ω1〉 is a

Suslin+ proper iteration. Then V is Σ1
3-Pω1 -correct.

Proof Since upwards Σ1
3-absoluteness always holds, it remains to prove the converse.

First we do it for countable iterations Pγ , γ < ω1.
Suppose, towards contradiction, that downwards-Σ1

3-Pγ -correctness fails. Then there
is a Σ1

3 formula φ, a countable Pγ -name for a real τ , and a condition p ∈ Pγ such that

p �γ (φ(τ) ∧ V [τ ] |� ¬φ(τ)). (*)

Our goal is to contradict (∗). Let θ be a Π1
2 formula and σ a (without loss of generality

countable) Pγ -name for a real, such that

p �γ (θ(τ, σ ) ∧ V [τ ] |� ¬φ(τ)).

Let z be a real coding τ, σ, p and all the defining parameters appearing in Pγ and in
φ. By Lemma 3.15, there is a q forcing “Ġ is L[ž]-generic” and “p ∈ Ġ”.
Let Gγ be any such generic filter with q ∈ Gγ and let us work in V [Gγ ] for the time
being.
Let x := τ [Gγ ] and y = σ [Gγ ]. Since p ∈ Gγ , by (∗) we know that V [Gγ ] |�
θ(x, y). By Shoenfield absoluteness, we also know that L[z][x][y] |� θ(x, y). As
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L[z][Gγ ] is a generic extension of L[z], we know that the intermediary models L[z] ⊆
L[z][x] ⊆ L[z][x][y] ⊆ L[z][Gγ ] can all be represented by generic extensions. Let Q
be the forcing leading from L[z][x] to L[z][x][y] (to find Q, first look at the quotient
of Pγ modulo the sub-forcing generated by τ , and then take the sub-forcing of that
generated by σ ). It follows that

L[z][x] |� ∃q ∈ Q (q �Q θ(x̌, σ )).

But by Theorem 3.16, V [Gγ ] |� ∀r (ωL[r ]
1 < ω1). Therefore also V [x] |� ∀r (ωL[r ]

1 <

ω1). Therefore, in particular, V [x] |� “ω1 is inaccessible in L[z][x]”. So, in V [x],
we can find an internal Q-generic filter H over L[z][x], so V [x] |� (L[z][x][H ] |�
θ(x, σ [H ])). By upwards-absoluteness, V [x] |� ∃y′θ(x, y′), i.e., V [x] |� φ(x). But
this is a contradiction with (∗), since we had p � V [τ ] |� ¬φ(τ).
To complete the proof of the theorem, it only remains to verify Σ1

3-correctness for the
entire iteration of length ω1. But obviously, if V [Gω1 ] |� φ(x) for some Σ1

3 formula
φ, then actually V [Gω1 ] |� ∃yθ(x, y), and since Pω1 is proper, x and y must both
appear at some stage γ < ω1, so by Shoenfield absoluteness V [Gγ ] |� θ(x, y). Then,
by what we have proved above, V [x] |� φ(x). �

4 Methods for obtaining regularity

The purpose of this section is to develop methods for obtaining regularity for Δ1
3 sets

of reals, but doing this with “as little damage as possible”, i.e., using forcing iterations
that preserve certain properties of the ground model. In total, we will present three
separate methods of achieving this goal. The first one is due to Judah:

Theorem 4.1 (Judah) 1. If V |� Σ1
2(B) and Bω1 denotes the ω1-product of random

forcing, then V Bω1 |� Δ1
3(B).

2. If V |� Σ1
2(C) and Cω1 denotes the ω1-product of Cohen forcing, then V Cω1 |�

Δ1
3(C).

Proof See [3, Theorem 9.4.6]. �
It is not clear whether the above can be generalized beyond Cohen and random:

the proofs depend on properties of the meager and null ideals (such as the Fubini
property), as well as a strong homogeneity of Cohen- and random-products.

Next, we present our second method for obtaining Δ1
3-regularity. This is inspired by

Shelah’s original proof that Δ1
3(B) does not require an inaccessible, see [40, Sect. 6].

Although we are primarily interested in the regularity properties mentioned in Sect. 2,
we would like our proofs to be sufficiently uniform and general, i.e., we would like
them to be applicable to many forcing notions P at once. We could require that P
has trees as conditions (see e.g., arboreal forcing from [6,24]), but in some cases
(e.g., Cohen) we prefer to work with Gδ sets instead. The reason is that, otherwise,
we would need to work “modulo an ideal” which would only complicate the proofs
unnecessarily. So we relax the requirement somewhat and adopt the following:
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Convention and Notation 4.2

– Let us say that P is a real forcing notion if the conditions are Gδ sets of reals,
ordered by inclusion. For conditions p ∈ P, we will generally use “p” to refer
to the real number coding the condition (i.e., Gδ code), and “[p]” to refer to the
corresponding set of reals. When P-conditions are closed sets, we may identify p
with a tree and [p] with the set of branches through that tree.

– We assume that, as usual, P adds a generic real, denoted by ġ, and that for all
p ∈ P we have �P (p ∈ Ġ ↔ ġ ∈ [p]) (so the generic filter and real are
mutually reconstructible).

– We will also assume that for projective pointclasses Γ , the statements
– “∀A ∈ Γ ∀p ∈ P ∃q ≤ p ([q] ⊆ A or [q] ∩ A = ∅)” and
– “∀A ∈ Γ ∃p ([p] ⊆ A or [p] ∩ A = ∅)”
are equivalent, so that, as in Observation 2.7, in order to prove Γ (P) it will suffice
to prove the latter statement (this is achieved by using suitable homeomorphisms
between [p] for conditions p ∈ P and the entire space of reals).

This level of generality will certainly take care of everything we are interested in,
and potentially much more. Note that we could be even more lenient in the convention
and allow the conditions of P to be Borel sets that are large with respect to an ideal,
following the approach of Zapletal [47].

Before stating the next theorem we introduce amoebas and quasi-amoebas for real
forcing notions.

Definition 4.3 Let P be a real forcing notion, and Q another forcing. We say that

1. Q is a quasi-amoeba for P if for every p ∈ P and every Q-generic G, there is a
q ∈ PV [G] such that q ≤P p and

V [G] |� ∀x ∈ [q] (x is P-generic over V ).

2. Q is an amoeba for P if for every p ∈ P and every Q-generic G, there is a
q ∈ PV [G] such that q ≤P p and for any larger model W ⊇ V [G],

W |� ∀x ∈ [q] (x is P-generic over V ).

There is a subtle difference between amoebas and quasi-amoebas, which is not
visible in the Cohen and random (and, in general, ccc) case, because the assertion “[q]
consists of Cohen/random reals over V ” is upwards absolute for Cohen/random-con-
ditions q. For non-ccc forcing this is not always the case: for example, “T is a perfect
tree of Sacks reals over V ” is not upwards absolute, as shown in the next example.

Example 4.4

1. A (the standard amoeba for measure) is an amoeba for B (see [3, Section 3.4]).
2. UM (the standard amoeba for category) is an amoeba for C (see [40, Sect. 4]).

Also, if D is Hechler forcing, then the two-step iteration (D ∗D) is an amoebas for
C (see [3, Theorem 3.5.1]).
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3. Mathias forcing R is an amoeba for itself [38, Corollary 2.5].
4. S is a quasi-amoeba, but not an amoeba, for itself [4, Theorem 4, Corollary 5].
5. M is a quasi-amoeba, but not an amoeba, for itself [4, Proposition 7].
6. L is not a quasi-amoeba for itself [4, Theorem 5].

One might expect quasi-amoebas to be quite useless in iterated forcing construc-
tions, since the property of adding large sets of generic reals is only temporary. Never-
theless, the success of our methods is in part due to the realization that quasi-amoebas
are, in fact, sufficient for the following argument.

Theorem 4.5 Suppose P is a real forcing notion and AP a quasi-amoeba for P. Fur-
thermore, assume that both P and AP are Suslin+ proper. Let Pω1 := 〈Pα, Q̇α | α <
ω1〉 be a countable support iteration whose iterands are P and AP interlaced (i.e., for
even α,�α Q̇α

∼= P and for odd α,�α Q̇α
∼= AP). Then V Pω1 |� Δ1

3(P).

Proof Let Gω1 be Pω1 -generic over V , let A = {x | φ(x)} = {x | ¬ψ(x)} be a Δ1
3

set in V [Gω1], defined by Σ1
3-formulas φ and ψ . As our iteration is proper, we may

assume, without loss of generality, that the parameters appearing in φ and ψ are in
the ground model V (otherwise, they are in some V [Gα0 ], and we repeat the same
argument with V [Gα0 ] as the ground model).
Our goal is to find a P-condition p in V [Gω1] such that [p] ⊆ A or [p] ∩ A = ∅.
Let x0 be the P-generic real over V , added at the first step of the iteration. In V [Gω1 ],
either φ(x0) or ψ(x0) must hold, so without loss of generality we assume that φ(x0)

holds. Then ∃yθ(x0, y) holds for some Π1
2 formula θ such that φ(x0) ≡ ∃yθ(x0, y).

By properness, there is an α < ω1 such that y ∈ V [Gα], and by Shoenfield absolute-
ness V [Gα] |� θ(x0, y). In V , let p be a Pα-condition and τ a countable Pα-name for
a real, such that

p �α θ(ġ0, τ )

where ġ0 is the name for the first P-generic real.
Let us adopt the following notation: let P1,α be the quotient of the iteration (i.e., such
that P1 ∗ P1,α ∼= Pα), and when x is a P-generic real over V , “p[x]” refers to the
P1,α-condition that remains of p after evaluating it according to x (i.e., the filter Gx

generated by x), and “τ [x]” refers to the P1,α-name that remains of τ after evaluating
it according to x . Here by “P1,α” we are, of course, referring to the definition of the
iteration. It is well-known that, if we consider τ and p as coded by reals (in some
explicit way), then there are Borel functions mapping τ �→ τ [x] and p �→ p[x], in
any model that contains x (this is similar to, e.g., [47, Proposition 2.3.1]).
Let θ̃ (x, p, τ ) be a conjunction of the following statements:

– “p[x] is a P1,α-condition”,
– “τ [x] is a countable P1,α-name for a real”, and
– p[x] �1,α θ(x̌, τ [x]).
Since the quotient P1,α is a Suslin+ proper iteration, using Lemma 3.14 (1), (3) and
(4), we conclude that θ̃ is a Π1

2 statement. For convenience, we will suppress the
parameters p and τ from θ̃ (remember that they are in the ground model V ).
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As we have p � θ(ġ0, τ ) and x0 is P-generic over V , we have

V [x0] |� θ̃ (x0).

Therefore, going back to V , we have

p(0) �P θ̃ (ġ0).

But by Lemma 3.14 (4), the above statement is again Π1
2, so by Shoenfield abso-

luteness, V [x0] |� p(0) �P θ̃ (ġ0). Let H1 be the next AP-generic over V [x0] (i.e.,
V [x0][H1] = V [G2]). By the definition of a quasi-amoeba, in V [x0][H1] there is a
P-condition q, such that q ≤ p(0) and

V [x0][H1] |� ∀x ∈ [q] (x is P-generic over V [x0]).

Then

V [x0][H1] |� ∀x ∈ [q] (V [x0][x] |� θ̃ (x)),

and by Π1
2-absoluteness between V [x0][x] and V [x0][H1]:

V [x0][H1] |� ∀x ∈ [q] (θ̃(x)).

Let Θ(q) abbreviate “∀x ∈ [q] (θ̃(x))”, and notice that, again, it is Π1
2. This is the

key step of our proof, since now, in all larger models V [Gβ ], 2 ≤ β < ω1, we have

V [Gβ ] |� Θ(q).

It remains to show that V [Gω1] |� [q] ⊆ A, which will complete the proof. So, in
V [Gω1 ], let z be any real in [q]. Let β < ω1 be such that z ∈ V [Gβ ], and assume β is
odd (so that β + 1 is even). Since V [Gβ+1] |� Θ(q), in particular, V [Gβ+1] |� θ̃ (z).
But looking at the meaning of θ̃ , in particular it says “p[z] �P1,α θ(ž, τ )”, which
implies “p[z] �P1,α ∃y′θ(ž, y′)” and hence “p[z] �P1,α φ(ž)”. Notice that, by gene-
ricity, we may assume that β was chosen to be sufficiently large so that p[z] in fact
belongs to G[β+1,β+α) (the generic filter restricted to stages [β + 1, β + α) of the
iteration).
It follows that V [Gβ+α] |� φ(z), and by upwards-absoluteness, V [Gω1] |� φ(z).
This completes the proof. �
Corollary 4.6 If P is Suslin+ proper and a quasi-amoeba for itself, then V Pω1 |�
Δ1

3(P). In particular V Sω1 |� Δ1
3(S) and V Mω1 |� Δ1

3(M).

If we want to obtain Δ1
3(P) for several different P at the same time, we can alter the

above construction somewhat, by interlacing more forcing notions. The only require-
ment is that the iteration is sufficiently “repetitive”, in the sense of the following
definition:
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Definition 4.7 Suppose Pω1 := 〈Pα, Q̇α | α < ω1〉 is a Suslin+ proper iteration,
where all iterands have parameters in the ground model. Such an iteration is called
repetitive if for any α < β < ω1, there are unboundedly many γ < ω1 such that

〈Q̇ξ | α < ξ ≤ β〉 = 〈Q̇γ+ξ | α < ξ ≤ β〉.

The following theorem is a stronger version of Theorem 4.5:

Theorem 4.8 Suppose P and AP are as in Theorem 4.5, Pω1 := 〈Pα, Q̇α | α < ω1〉
is Suslin+ proper with parameters in the ground model and repetitive, and both P and
AP appear cofinally often in the iteration. Then V Pω1 |� Δ1

3(P).

Proof The proof is exactly the same as that of Theorem 4.5. Instead of looking at
stages 1 and 2 of the iteration, we look at some stages α0 and α1. Then we find the
condition q in V [Gα1 ] andΘ(q) holds from that point onwards. Later we find a suffi-
ciently large γ so that the segment Pα1,α1+α is “copied” after γ , and rely on the same
arguments as before. The details are left to the reader. �

In our applications, the last theorem will only be used when we have a finite number
of Pi and quasi-amoeabs APi , i ≤ k. After iterating with (P0 ∗AP0 ∗ . . .∗Pk ∗APk)ω1

we obtain a model where Δ1
3(Pi ) holds for all i ≤ k.

Our third method for obtaining Δ1
3-regularity works under the assumption

∀r (ωL[r ]
1 < ω1). Let us first mention an observation essentially due to Zapletal (cf.

[47, Proposition 2.2.2.]), showing that for real forcing notions P, when we have an
(M,P)-generic condition, we can assume, without loss of generality, that all reals in
this condition are M-generic.

Lemma 4.9 (Zapletal) Let P be a proper, real forcing notion, and M a countable
model. If q is an (M,P)-generic condition, then there is q ′ ≤ q such that (in V ) all
x ∈ [q] are M-generic.

Proof Let B := {x ∈ [q] | x is M-generic}. As M is countable, it is easy to see
that B is Borel. Let ġ be the name for the P-generic real. Since q is (M,P)-generic,
q � ġ ∈ B. But Borel sets are P-measurable (in the sense of Definition 2.1). So either
there exists a q ′ ≤ q such that [q ′] ⊆ B, in which case we are done, or, for every
q ′ ≤ q there exists q ′′ ≤ q ′ such that [q ′′] ∩ B = ∅. But the latter case implies that
{q ′ | [q ′] ∩ B = ∅} is dense below q, hence q � ġ /∈ B, yielding a contradiction. �
Theorem 4.10 Suppose V |� ∀r (ωL[r ]

1 < ω1),P is a real forcing notion, and Pω1 :=
〈Pα, Q̇α | α < ω1〉 is a Suslin+ proper iteration in which P appears cofinally often.
Then V Pω1 |� Δ1

3(P).

Proof Let A = {x | φ(x)} = {x | ¬ψ(x)} be a Δ1
3 set in V [Gω1]. As the defining

parameter appears at some initial stage of the iteration, and by Theorem 3.16 we know
that ∀r(ωL[r ]

1 < ω1) holds in all V [Gα], let us again assume, without loss of generality,
that the parameters are in the ground model V . Also, without loss of generality, we
may assume that the first step of the iteration is P.
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Let x0 be the P-generic real over V . Again, let us assume V [Gω1 ] |� φ(x0) (without
loss of generality). Now by Theorem 3.20 V is Σ1

3-Pω1 -correct, therefore V [x0] |�
φ(x0). Then in V , there is a p ∈ P such that p �P φ(ġ). Then also p �P θ(ġ, τ )
for some countable name τ and a Π1

2 formula θ such that φ(x) ≡ ∃yθ(x, y). Now
let z be a real coding p, τ , and the parameters of P and θ . By Π1

2-absoluteness,
L[z] |� p �P θ(ġ, τ ).
Since ωV

1 is inaccessible in L[z], find a countable model M ⊆ L[z] reflecting every-
thing about PL[z] and containing all the parameters (as in the proof of Lemma 3.15).
By Lemma 4.9 there is q ≤ p such that all x in [q] are M-generic, hence L[z]-generic.
So (in V ) for all x ∈ [q] we have L[z][x] |� θ(x, τ [x]), and by Π1

2-absoluteness

V |� ∀x ∈ [q] θ(x, τ [x]).

As this statement is Π1
2, it holds in V [Gω1 ], so also the statement ∀x ∈ [q] ∃yθ(x, y)

holds, so [q] ⊆ A. �
The advantage of this method over the one before is that we can avoid amoebas,

which is useful in situations where no suitable amoebas are available, or those that are
available fail to have nice properties. However, to do this we pay the price of using an
inaccessible, rather than obtaining a proof on the basis of ZFC alone.

5 Completing the Δ1
3-diagram

Figure 3 shows the diagram of implications for regularity properties on the Δ1
3-level.

We will now apply the techniques presented in the previous section to show that
this diagram is complete, by constructing models, in ZFC or ZFC with an inaccessible,
which separate the regularity statements. We have three methods (Theorems 4.1, 4.8
and 4.10) at our disposal for proving that Δ1

3(P) is true in a model. But to separate
regularity properties we need another ingredient, namely, a method for showing that
Δ1

3(P) is false in a given model. For this, we note that one direction in the original
characterization Theorems 2.3, 2.4 and 2.5 can easily be generalized (for C and B this
was already mentioned and used in [2]).

Definition 5.1 A wellorder  of a set of reals, of length ω1, is called Σ1
n-good if

1.  is a Σ1
n-relation, and

2. the statement “x codes the set of  -predecessors of y” is Σ1
n .

We say that  is a Σ1
n-good wellorder of the reals if it is a wellorder of the set of all

reals.

Fact 5.2 Suppose M is a model with a Σ1
n-good wellorder of the reals. Then:

1. Σ1
n(B) �⇒ {x | x is not random over M} ∈ N .

2. Σ1
n(C) �⇒ {x | x is not Cohen over M} ∈ M.

3. Δ1
n(B) �⇒ ∃x (x is random over M).

4. Δ1
n(C) �⇒ ∃x (x is Cohen over M).

5. Δ1
n(L) �⇒ ∃x (x is dominating over M).
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6. Δ1
n(M) �⇒ ∃x (x is unbounded over M).

7. Δ1
n(S) �⇒ ∃x (x /∈ M).

Proof Points 1–4 follow from the original proofs of Solovay and Judah–Shelah; see
also [2, Lemmas 2.3, 2.85 and 2.105]. For 5 and 6, use an argument analogous to the
one in [8, Theorems 4.1 and 6.1] replacing Σ1

2 by Σ1
3 and Δ1

2 by Δ1
3 everywhere. 7 is

obvious. �
We are going to use the following results about models with Σ1

3-good wellorders:

Theorem 5.3 (Bagaria–Woodin) Assuming just the consistency of ZFC, there is a
model, which we will denote by L∗, such that

1. L∗ |� Σ1
2(B) (and hence also Σ1

2(P) for all P ∈ {C,L,M,S}) and
2. there is a Σ1

3-good wellorder of the reals of L∗.
Proof This model was first constructed in [2]. Easier constructions of models satisfy-
ing the above criteria are available using techniques developed recently by Friedman,
Fischer, Zdomskyy and others (e.g., [14,15]). �
Theorem 5.4 (David) Assuming the consistency of ZFC + inaccessible, there is a
model, which we will denote by Ld , such that

1. Ld |� ∀r (ωL[r ]
1 < ω1), and

2. there is a Σ1
3-good wellorder of the reals of Ld .

Proof This was proved by René David in [10]. �
We should note that the Σ1

3-good wellorder of the reals of L∗ and Ld from the
above results remains a Σ1

3-good wellorder (of the ground-model reals) in forcing
extensions. All the models we construct will be forcing extensions of L , L∗ or Ld ,
with the methods from the previous section guaranteeing that Δ1

3(P) holds for certain
P, while using Fact 5.2, together with known preservation results, to guarantee that
Δ1

3(Q) fails for other Q. The idea to use David’s model Ld to separate regularity
properties was first used by Judah and Spinas in [30].

We will use the diagrammatical notation employed by Bartoszyński and Judah in
[3, Sections 7.5, 7.6], with empty circles symbolizing “false” and full circles “true”.
There is a total of eleven possibilities of “true”/“false”-assignments not contradicting
the diagram, which we denote with the letters A–K and represent in Table 2.

In the following list we provide models for each situation. Whenever possible, the
models will be constructed in ZFC alone. In three cases, namely G, H and I, we will
have to make do with an inaccessible (although we conjecture that this hypothesis can
be eliminated).

– Situation A, determined by ¬Δ1
3(S).

This holds in L , L∗ and Ld .
– Situation B, determined by Δ1

3(S)+¬Δ1
3(B)+¬Δ1

3(M).
The model for this is LSω1 , i.e., the countable support iteration of Sacks forcing
of length ω1 starting from L . Since Sacks forcing is a quasi-amoeba for itself (see
Example 4.4), Δ1

3(S) follows by Corollary 4.6. Moreover, since Sω1 is ωω-bound-
ing and does not add random reals (by the Sacks property), it follows that, in this
model, even Δ1

2(B) and Δ1
2(M) fail.
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Table 2 Situations A–K in the Δ1
3-diagram

– Situation C, determined by Δ1
3(B)+¬Δ1

3(M).
Take the model (L∗)Bω1 . By Theorem 4.1 Δ1

3(B) holds. Because random forcing
is ωω-bounding, and because of Fact 5.2 (6), we have ¬Δ1

3(M).
– Situation D, determined by Δ1

3(M)+¬Δ1
3(B)+¬Δ1

3(L)+¬Δ1
3(C).

Here the model is LMω1 . Since Miller forcing is a quasi-amoeba of itself (see
Example 4.4) Δ1

3(M) follows by Corollary 4.6. On the other hand, Miller forcing
does not add Cohen or random reals because of the Laver property [3, Theorem
7.3.45], so both Δ1

2(B) and Δ1
2(C) fail. Also, Miller forcing does not add domi-

nating reals [3, Theorem 7.3.46], so Δ1
2(L) fails.

– Situation E, determined by Δ1
3(L)+¬Δ1

3(B)+¬Δ1
3(C).

Here, let us provide two models. Spinas, in [43], constructs a version of “amoeba
for Laver” forcing, which he denotes by A(L), and proves that it is an amoeba
for Laver in the sense of Definition 4.3 and, at the same time, satisfies the Laver
property. It follows that the iteration (L ∗ A(L))ω1 (i.e., the countable support
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iteration of length ω1 where L appears at even stages and A(L) at odd stages) has
the Laver property, hence L(L∗A(L))ω1 |� ¬Δ1

2(B) + ¬Δ1
2(C). But Δ1

3(L) holds
by Theorem 4.5.
Another model is the one given in [29, Theorem 3.1], namely, the ω1-iteration of
Mathias forcing starting from L. Here an even stronger assertion holds, namely
“all Δ1

3-sets are Ramsey” which implies Δ1
3(L) (see Sect. 6).

– Situation F, determined by Δ1
3(C)+¬Δ1

3(B)+¬Δ1
3(L).

Here we take (L∗)Cω1 . Then Δ1
3(C) holds by Theorem 4.1. On the other hand,

Cohen forcing adds neither dominating nor random reals, so by Fact 5.2 (3) and
(5), neither Δ1

3(B) nor Δ1
3(L) holds.

– Situation G, determined by Δ1
3(B)+Δ1

3(M)+¬Δ1
3(L)+¬Δ1

3(C).
Use the model (Ld)(B∗M)ω1 , i.e., the ω1-iteration, with countable support, of B
and M interlaced starting from David’s model Ld (which requires an inaccessi-
ble). By Theorem 4.10, both Δ1

3(B) and Δ1
3(M) hold. Since B and M do not add

dominating reals, Δ1
3(L) fails by Fact 5.2 (5). To show that Δ1

3(C) also fails we
can use a weaker version of the Laver property, namely the property of being
“(F, g)-preserving” as defined in [3, Definition 7.2.23]. Both random and Miller
forcing satisfy this property [3, Lemma 7.2.25 and Theorem 7.2.26], it is preserved
in countable support iterations [3, Theorem 7.2.29], and it implies that no Cohen
reals are added [3, Theorem 7.2.24]. Therefore ¬Δ1

3(C) follows by Fact 5.2 (4).
– Situation H, determined by Δ1

3(B)+Δ1
3(L)+¬Δ1

3(C).
Here we use (Ld)(B∗L)ω1 , an ω1-iteration of random and Laver forcing starting
from David’s model. By Theorem 4.10 Δ1

3(B) and Δ1
3(L) hold, and Δ1

3(C) fails
for the same reason as above, namely, because both random and Laver forcing
satisfy the “(F, g)-preserving” property.

– Situation I, determined by Δ1
3(B)+Δ1

3(C)+¬Δ1
3(L).

Here we use (Ld)(B∗C)ω1 . Again by Theorem 4.10 we have Δ1
3(B) and Δ1

3(C).
But neither random nor Cohen forcing adds dominating reals, so ¬Δ1

3(L) fails by
Fact 5.2 (5).

– Situation J, determined by Δ1
3(L)+Δ1

3(C)+¬Δ1
3(B).

Using our methods, we can easily see that (Ld)(C∗L)ω1 is a model for this, where
the fact that no random reals are added follows as in [3, Model 7.6.9]. However, in
[26, Theorem 3.2] a model was constructed starting just from ZFC. The method
there was similar to an application of our Theorem 4.5, iterating what was essen-
tially a mixture of C,UM (amoeba for category) and RF —Mathias forcing with
a Ramsey ultrafilter F—with finite support, starting in L . Since the use of the
Ramsey ultrafilters makes the iteration non-definable, one cannot use the argu-
ments from Sect. 4 directly. Instead, the iteration was done in such a way that
each segment Pα,β of the iteration would appear again as Q̇δ , for cofinally many
δ < ω1 (using a bookkeeping argument like in standard MA-proofs). In [26] it was
shown that such an iteration, starting from L , yields a model in which Δ1

3(R) (the
Ramsey property; see Sect. 6) as well as Δ1

3(C) hold. The former implies Δ1
3(L).

On the other hand, the iteration remains σ -centered implying that no random reals
are added, hence Δ1

2(B) fails.
– Situation K, determined by Δ1

3(B)+Δ1
3(C)+Δ1

3(L).
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Of course, the Solovay model satisfies this statement, so our only interest here
is in constructing a model in ZFC. But this is easy: since we do not have to
worry about preserving anything, we can freely apply Corollary 4.6. For exam-
ple, we can use the model L(B∗A∗C∗UM∗L∗A(L))ω1 , or L(B∗A∗C∗UM∗R)ω1 . In fact,
even L(B∗A∗C∗R)ω1 is sufficient, because, by the Bartoszyński–Raisonnier–Stern
argument, A already adds a comeager set of Cohen reals (cf. [3, Theorem 2.3.1]).

6 Silver and Mathias

Clearly, the techniques we developed in Sect. 4 are sufficiently general and can be
applied to many other regularity properties related to forcing notions on the reals. In
this section, we apply our techniques to two additional properties which, though not
related to the cardinal numbers in Cichoń’s diagram, have nevertheless received a lot
of attention.

Definition 6.1 1. A subset A ⊆ [ω]ω has the Ramsey property if ∃a ∈ [ω]ω ([a]ω ⊆
A or [a]ω ∩ A = ∅).

2. For a, b ∈ [ω]ω with |b\a| = ω, let [a, b]ω := {c ∈ [ω]ω | a ⊆ c ⊆ b}. We
call [a, b]ω the (a, b)-doughnut. A subset A ⊆ [ω]ω has the doughnut property
if ∃a, b ([a, b]ω ⊆ A or [a, b]ω ∩ A = ∅).

The Ramsey property is well-known, and the doughnut property was introduced
by DiPrisco and Henle in [11] as a generalization of the Ramsey property. It is not
hard to see that the Ramsey and doughnut properties are equivalent to Mathias- and
Silver-measurability, respectively. Therefore, we will denote them with the letters R
and V, which typically abbreviate the Mathias and the Silver forcing partial orders.
Mathias and Silver forcing are clearly Suslin+ proper.

On the Δ1
2- and Σ1

2-levels, the relationship between these and other properties has
been studied in [6,20,23]. The following are particularly interesting:

Fact 6.2 (Judah–Shelah; Halbeisen; Brendle–Halbeisen–Löwe).

1. Σ1
2(R) ⇐⇒ Δ1

2(R).
2. Δ1

2(C) �⇒ Σ1
2(V).

3. Σ1
2(V) �⇒ Σ1

2(M).

Proof For 1 see [23, Theorem 2.7]. For 2 see [20, Lemma 2.1], and for 3 see
[6, Proposition 3.5]. �

Unlike the situation with the properties we previously considered, now there are
still some open questions on the second level:

Question 6.3 Does Δ1
2(L) �⇒ Σ1

2(V) hold? Or, at least, does Δ1
2(L) �⇒ Δ1

2(V)
hold?

As in Lemma 2.7 we have the following:

Lemma 6.4 (Folklore) Let Γ be closed under continuous pre-images. Then:
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Fig. 4 (Incomplete) implication diagram for Δ1
3 sets of reals, including R and V

1. Γ (R)⇒ Γ (V)⇒ Γ (S).
2. Γ (R)⇒ Γ (L).

Proof For the first implication, note that [a]ω is a (∅, a)-doughnut, and the set of
characteristic functions of x ∈ [a, b]ω is a perfect tree in 2ω. For the second impli-
cation, use the fact that for any a ∈ [ω]ω it is easy to find a Laver tree T such that
∀x ∈ [T ] (ran(x) ⊆ a). �

In his Ph.D. thesis, Laguzzi proved two additional relationships of this kind.

Lemma 6.5 (Laguzzi) Let Γ be closed under continuous pre-images. Then:

1. Γ (C)⇒ Γ (V).
2. Γ (B)⇒ Γ (V).

Proof See [36, Fact 39 and Fact 55]. �
As an illustration of the application of our methods, let us repeat what we did in

Sect. 5, i.e., look at the Δ1
3-diagram with the additional properties V and R (Fig. 4).

There are now eighteen situations, represented in Table 3 (we have subdivided the
situations from the previous section).

To find models for these situations we need the following additional facts (cf. Fact
5.2).

Definition 6.6 Let M be a model. A real c ∈ [ω]ω is

– splitting over M if for all a ∈ M ∩ [ω]ω (|a ∩ c| = |a\c| = ω), and
– unsplit over M if for all a ∈ M ∩ [ω]ω (|c ∩ a| < ω or |c\a| < ω).

Fact 6.7 Suppose M is a model with a Σ1
n-good wellorder of the reals. Then:

1. Δ1
n(V) �⇒ ∃c (c is splitting over M).

2. Δ1
n(R) �⇒ ∃c (c is splitting over M) and ∃c (c is unsplit over M).

Proof For the first implication, use the argument in [6, Proposition 2.5], and for the
second one, use [21, Theorem 2.2]. �

Splitting and unsplit reals are related to the well-known cardinal characteristics s
and r (the splitting and reaping number, respectively), in a way similar to the relation-
ship shown in Table 1 (although they do not characterize R and V in any way).

We can now find models for the following situations from Table 3 (we only list the
ones that do not automatically follow from our results in Sect. 5).
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Table 3 Situations A–K in the Δ1
3-diagram

– Situation B1, determined by Δ1
3(S)+¬Δ1

3(V)+¬Δ1
3(M).

Here the model is LSω1 . Sacks forcing preserves P-points, which is an iterable
property (see [17, Lemma 2.9] and [3, Theorem 6.2.6]), so in particular no split-
ting reals are added, hence Δ1

2(V) fails by Fact 6.7 (1).
– Situation B2, determined by Δ1

3(V)+¬Δ1
3(B)+¬Δ1

3(M).
Use (Ld)Vω1 . By the Sacks property of Silver forcing neither random nor
unbounded reals are added.
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– Situation D1, determined by Δ1
3(M)+¬Δ1

3(V)+¬Δ1
3(L)+¬Δ1

3(C).
Here we use LMω1 . Again Δ1

2(V) fails because Miller forcing preserves P-points
[3, Lemma 7.3.48].

– Situation D2, determined by Δ1
3(V)+Δ1

3(M)+¬Δ1
3(B)+¬Δ1

3(L)+¬Δ1
3(C).

Here we can use (Ld)(V∗M)ω1 . Both V and M have the Laver property, and both
do not add dominating reals.

– Situation E1, determined by Δ1
3(L)+¬Δ1

3(V).
We don’t know if this situation is consistent!

– Situation E2, determined by Δ1
3(L)+Δ1

3(V)+¬Δ1
3(B)+¬Δ1

3(R)+¬Δ1
3(C).

Use (Ld)(L∗V)ω1 . Both L and V have the Laver property, implying that neither
random nor Cohen reals are added. To show that Δ1

3(R) fails, recall the preser-
vation property called “preserving !random” in [3, Definition 6.3.7]. Both L and
V satisfy this property (for L see [3, Theorem 7.3.39] and for V it follows from
an even stronger result, namely [3, Lemma 6.3.39]), it is preserved by countable
support iteration [3, Theorem 6.1.13] and implies that the ground model reals have
positive measure [3, Thorem 6.3.13]. From this, one can infer that there are no
unsplit reals over the ground model, in a way analogous to the well-known proof of
the cardinal inequality s ≤ non(N ) (i.e., for every a ∈ [ω]ω, the set Xa := {b | b
does not split a} has measure zero). Hence, the result follows from Fact 6.7 (2).

– Situation E3, determined by Δ1
3(R)+¬Δ1

3(B)+¬Δ1
3(C).

Clearly LRω1 works here.
– Situation H1, determined by Δ1

3(B)+Δ1
3(L)+¬Δ1

3(R)+¬Δ1
3(C).

Use (Ld)(B∗L)ω1 . Both B and L have the “(F, g)-preserving” property, implying
that no Cohen reals are added. To show that Δ1

3(R) fails use again the “preserving
!random”-property. Random forcing satisfies this by [3, Lemma 6.3.12], so, as
before, we are done by Fact 6.7 (2).

– Situation H2, determined by Δ1
3(B)+Δ1

3(R)+¬Δ1
3(C).

Use (Ld)(B∗R)ω1 . Both B and R have the “(F, g)-preserving” property, implying
that no Cohen reals are added.

– Situation J1, determined by Δ1
3(C)+Δ1

3(L)+¬Δ1
3(B)+¬Δ1

3(R).
Use (Ld)(C∗L)ω1 . As in [3, Model 7.6.9] we can show that no random reals are
added by the iteration. To show that Δ1

3(R) fails, we note that both C and L satisfy
a strong iterable property implying that no unsplit reals are added: see e.g., [12,
Lemma 8, 9] and [5, Main Lemma 1.11], and apply Fact 6.7 (2).

– Situation J2, determined by Δ1
3(C)+Δ1

3(R)+¬Δ1
3(B).

Here we can either use (Ld)(C∗R) or the ZFC-model from [26, Theorem 3.2] which
we also used in Situation J in Sect. 5.

– Situation K1, determined by Δ1
3(B)+Δ1

3(L)+Δ1
3(C)+¬Δ1

3(R).
Use (Ld)(B∗L∗C)ω1 . To show that no unsplit reals are added, use the iterable ver-
sion for C and L (as in Situation J1) and preservation of !random for B. Again,
Δ1

3(R) fails by Fact 6.7 (2).
– Situation K2, determined by Δ1

3(B)+Δ1
3(R)+Δ1

3(C).
Here L(B∗A∗R∗C)ω1 clearly suffices.
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To conclude: all situations except E1 are consistent. Moreover, we have ZFC-mod-
els for B1, D1, E3, J2 and K2, whereas for the other cases we need an inaccessible.
The difficulty concerning Situation E1 lies in the fact that we do not know whether
Δ1

3(L) ⇒ Δ1
3(V) holds (cf. Question 6.3).

7 Beyond Δ1
3

Although our techniques were primarily developed to deal with the Δ1
3-level of the pro-

jective hieararchy, there are some applications to higher levels as well. In this section
we summarize what can be said about higher levels using our techniques. We have two
applications: concerning the diagram on the Δ1

4-level, and concerning the separation
of Δ1

3-regularity from Σ1
3-regularity, as well as Δ1

4-regularity from Σ1
4-regularity.

7.1 The Δ1
4-diagram

Consider the analogue of Fig. 3 but with Δ1
3 replaced by Δ1

4. It turns out that, under the
assumption ∀r (ωL[r ]

1 < ω1), both Theorems 4.1 and 4.8 have suitable generalizations.
The first generalization is due to Judah and Spinas:

Theorem 7.1 (Judah–Spinas) Assuming ∀r (ωL[r ]
1 < ω1), there exists a model N0,

which has a Σ1
4-good wellorder of the reals, and, moreover, such that N

Bω1
0 |� Δ1

4(B)
and N

Cω1
0 |� Δ1

4(C).

For the proof, see [30]. The method is, in essence, an analogue of Theorem 4.1, but
starting from David’s model Ld instead of L , and using some additional tricks.

The following is a direct generalization of our own Theorem 4.5.

Theorem 7.2 Suppose V |� ∀r (ωL[r ]
1 < ω1),P is a real forcing notion and AP a

quasi-amoeba for P, and assume that both P and AP are Suslin+ proper. Let Pω1 :=
〈Pα, Q̇α | α < ω1〉 be a Suslin+ proper iteration whose iterands are P and AP
interlaced (i.e., the same conditions hold as in Theorem 4.5). Then V Pω1 |� Δ1

4(P).

Proof The proof is exactly the same as that of Theorem 4.5. The reader can verify that
every step in that proof is valid if we:

1. Replace Δ1
3 by Δ1

4,Σ
1
3 by Σ1

4 and Π1
2 by Π1

3 everywhere.
2. Use Σ1

3-Pω1 -correctness instead of Shoenfield absoluteness everywhere, which is
valid by Theorem 3.20. Notice that in the proof we only used Shoenfield abso-
luteness between models that lay between V and V [Gω1 ], so by Fact 3.19 we are
safe.

3. Use Lemma 3.14 (4) to conclude that θ̃ is Π1
3. �

Just as before, we actually have a stronger version which allows us to mix different
partial orders P.
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Theorem 7.3 Suppose V |� ∀r (ωL[r ]
1 < ω1),P and AP are as before, Pω1 :=

〈Pα, Q̇α | α < ω1〉 is Suslin+ proper with parameters in the ground model and repet-
itive, and both P and AP appear cofinally often in the iteration. Then V Pω1 |� Δ1

4(P).

Using Theorems 7.1 and 7.3, it follows that we can construct a model for any of the
situations from Sect. 5 which was obtained by an application of the first two methods
(Theorems 4.1 and 4.8) and not by the third method (Theorem 4.10).

Corollary 7.4 Situations A, B, C, D, E, F and K in the Δ1
4-diagram are consistent

relative to ZFC + inaccessible.

7.2 Separating Δ from Σ

Recall that, in the long-run, we would like to find “complete” diagrams on the com-
bined Δ1

n- and Σ1
n-levels, for n ≥ 3 (cf. Fig. 2). But there are many obstacles, and the

most urgent one seems to be the following:

Question 7.5 Does Σ1
n(P) ⇐⇒ Δ1

n(P) hold for P ∈ {L,M,S} and n ≥ 3?

Further progress in the study of the joint Σ1
n/Δ

1
n-diagram seems to depend largely

on the solution to the above question.
Nevertheless, there are a few interesting things we can prove. Recall that, after

Shelah proved that Σ1
3(B) implies an inaccessible in [40], Raisonnier [39] provided

an alternative and simpler proof, based on the following:

Definition 7.6 Let F be a non-principal filter on ω. F is called a rapid filter if

∀c ∈ [ω]ω ∃a ∈ F ∀n (|c(n) ∩ a| ≤ n),

or, equivalently, if F considered as a subset of ω↑ω (the space of strictly increasing
functions from ω to ω) is a dominating family in ω↑ω.

The point is that rapid filters provide natural counterexamples to several regularity
properties. The following is a folklore result:

Fact 7.7 If F is a rapid filter, then F (considered as a subset ofω↑ω) is not measurable
and does not have the Baire property.

Rapid filters also provide counterexamples to the Ramsey and doughnut properties
from Sect. 6, albeit using a derived construction:

Definition 7.8 For a ∈ [ω]ω, let

...
a := [0, a(0)) ∪ [a(1), a(2)) ∪ [a(3), a(4)) ∪ . . .

where {a(n) | n < ω} is the increasing enumeration of a. If F is a filter on ω, let...
F := {a ∈ [ω]ω | ...

a ∈ F}.
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It is clear that the operation F �→ ...
F does not increase the complexity. In [37]

Mathias proved that if F is a rapid filter then
...
F does not have the Ramsey property.

We improve this result as follows:

Lemma 7.9 If F is a rapid filter then
...
F does not have the doughnut property.

Proof Let a, b ∈ [ω]ω be arbitrary and assume |b\a| = ω. It is easy to see that [a, b]ω
cannot be a subset of

...
F : pick any x, y ∈ [a, b]ω such that x = y\{n} for some n.

Then, clearly,
...
x and

...
y have finite intersection, so x and y cannot both be in

...
F (this

argument works for any non-principal filter F).
So it remains to show that [a, b]ω cannot be completely disjoint from

...
F . Let f be an

enumeration of b\a. AsF is rapid, there is a y ∈ F be such that for all n, | f (n)∩y| ≤ n.
We will find an x ∈ [a, b]ω ∩ ...

F . The real x is constructed as follow: if i ∈ a then
i ∈ x ; if i /∈ b then i /∈ x ; and if i ∈ b\a, then, whether i is in x or not will depends
on the consideration described below (notice that, in any case, x will be a member of
[a, b]ω). For every n ≥ 1 and every element y(n), there is always at least one member
of b\a which lies strictly between y(n − 1) and y(n). Let mn be the largest of them.
Now it is easy to see that by making the right choice of either “mn ∈ x” or “mn /∈ x”
we can always make sure that y(n) is in

...
x = [0, x(0)) ∪ [x(1), x(2)) ∪ . . . (it

does not matter what we do with the other i ∈ b\a which lie between y(n − 1) and
y(n)). If we do this for every n, we obtain a set x which is in [a, b]ω, and moreover,
y\{y(0)} ⊆ ...

x . Since y ∈ F holds by assumption, x ∈ ...
F follows. �

Raisonnier’s proof of Shelah’s theorem is based on the following crucial lemma:

Lemma 7.10 (Raisonnier) Suppose ωL
1 = ω1 and Σ1

2(B) holds. Then there exists a
Σ1

3 rapid filter (the Raisonnier filter).

Looking at Raisonnier’s argument, it is straightforward to obtain the following
generalization to higher projective levels:

Lemma 7.11 Suppose M is a model with a Σ1
n-good wellorder of the reals. If ωM

1 =
ω1 and for every r there is a measure-one set of random reals over M[r ], then there
exists a Σ1

n+1 rapid filter.

We can use Raisonnier’s argument to prove the following separation results:

Theorem 7.12 1. It is consistent relative to ZFC that Δ1
3(P) holds for all P consid-

ered in Sects. 5 and 6, but Σ1
3(B),Σ

1
3(C),Σ

1
3(R) and Σ1

3(V) fail.

2. It is consistent relative to ZFC+ inaccessible that Δ1
4(P) holds for all P considered

in Sects. 5 and 6, but Σ1
4(B),Σ

1
4(C),Σ

1
4(R) and Σ1

4(V) fail.

Proof For 1, take the model for Situation K2 in Sect. 6, i.e., L(B∗A∗R∗C)ω1 . Since both
antecedents of Lemma 7.10 are satisfied we are done by Fact 7.7 and Lemma 7.9. For
2, take the model (Ld)(B∗A∗C∗R)ω1 , use Theorem 7.3 to obtain Δ1

4(P) for all P, and
again note that both antecedents of Lemma 7.11 are satisfied for M = Ld and n = 3,
so again we are done by Fact 7.7 and Lemma 7.9. �
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The above result has a number of interesting consequences regarding “non-lifting”
of implications that were true on the second level. We had the following non-trivial
implications:

1. Δ1
2(C)+Δ1

2(L) ⇒ Σ1
2(C) (analogue of Truss, cf. [45]).

2. Δ1
2(R) �⇒ Σ1

2(R) (Ihoda–Shelah, cf. [23]).
3. Δ1

2(C) �⇒ Σ1
2(V) (Halbeisen, cf. [20, Lemma 2.1]).

By Theorem 7.12, all of the above fail to lift to the third and fourth levels of the
projective hierarchy.

8 Open questions

Although we have made significant progress in this area of research, many questions
are still open. The most urgent question seems to be:

Question 8.1 Is Δ1
3(P) + ¬Σ1

3(P) consistent for P ∈ {S,M,L}? More generally, is
Δ1

n(P)+¬Σ1
n(P) consistent for these P?

We conjecture that the answer is positive. Recall that in Theorem 7.12 we proved the
consistency of Δ1

3(R)+¬Σ1
3(R) using the Raisonnier filter. It would seem plausible

that a similar method will work to settle Question 8.1 as well. In fact, we conjecture
the following:

Conjecture 8.2 It is consistent, relative to ZFC, that Δ1
3(P) holds for all P but Σ1

3(S)
fails (and therefore, Σ1

3(P) fails for all P).

The next question concerns the use of inaccessibles in our proofs. Of course, when
proving results about Σ1

3(P) or higher projective sets, inaccessibles cannot be avoided
(at least if our proofs are to work uniformly for all P). However, they are not necessary
for Δ1

3-results, and their use in our proofs seems to arise mostly from a lack of finer
methods. Therefore we conjecture the following:

Conjecture 8.3 All the situations on the Δ1
3-level (specifically Situations G, H, and

I from Sect. 5 and B2, D2, E2, H1, H2, J1 and K1 from Sect. 6) have models based
just in ZFC.

The plan would be to improve Theorem 4.10 by replacing the assumption
∀r (ωL[r ]

1 < ω1) by a weaker assumption (for example, about the existence of many
generics over L[r ]) that can be obtained without inaccessibles but is still sufficiently
strong to guarantee similar results. Then we can obtain models using this method,
starting with some other ZFC-model instead of Ld .

Other questions involve finding complete diagrams for levels beyond Δ1
3.

Question 8.4

1. Find a complete diagram for Δ1
3- and Σ1

3-regularity (cf. Fig. 2).
2. Find models for Situations G, H, I and J in the Δ1

4-diagram.
3. Find a complete diagram for regularity properties of all projective sets.
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Finally, the following simple questions are well-known, but have, so far, remained
unresolved:

Question 8.5 What is the consistency strength of Σ1
3(R) and Σ1

3(L)?
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This publication was a collaborative effort, with the three authors having regular meetings
as well as many informal meetings between Fischer and Khomskii. While the methods for
coding a ∆1

3-wellorder of the reals were already available in previous work of Fischer, Fried-
man and Zdomskyy (see Sections 1.2 and 1.3 ), the main obstacle was re-doing standard
iterated forcing constructions while making sure that the coding-forcing would not interfere
with the relevant preservation theorems. The precise contributions are:

1. Lemma 3.4: Fischer, with contributions by Khomskii and Friedman

2. Lemma 3.5: Fischer, with contributions by Khomskii and Friedman

3. Lemma 3.6: Fischer, with contributions by Khomskii and Friedman

4. Lemma 3.7: Collaborative effort of all three authors

5. Theorems 4.1 – 4.23: Collaborative effort of all three authors

The paper was written by Fischer.
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1 Introduction

There are various ways of forcing ∆1
3 wellorders of the reals. In [13], relying on

the method of almost disjoint coding, L. Harrington produces a generic extension in
which there is a boldface ∆1

3 wellorder of the reals and MA holds. Similar techniques
can be found in J. Bagaria and H. Woodin [2]. Later work by R. David [4] and
the second author [10, Theorem 8.52] made use of the method of Jensen coding to
obtain such wellorders when ω1 is inaccessible to reals. More recently, the present
authors, A. Törnquist and L. Zdomskyy have developed and used further techniques
to produce generic extensions in which there are lightface ∆1

3 wellorders of the reals
in the presence of a large continuum, as well as other combinatorial properties hold.
For example, in V. Fischer and S. D. Friedman [5] the method of coding with perfect
trees is used to obtain the consistency of the existence of a lightface ∆1

3 wellorder
on the reals with each of the following inequalities between some of the well-known
combinatorial cardinal characteristics of the continuum: d < c, b < a = s, b < g.
In V. Fischer, S. D. Friedman and L. Zdomskyy [7] the method of almost disjoint
coding is used to show that the existence of a lightface ∆1

3 wellorder of the reals is
consistent with b = c = ℵ3 and the existence of a Π1

2 definable ω -mad subfamily of
[ω]ω . The same method has been used in V. Fischer, S. D. Friedman and A. Törnquist
[6] to show the existence of a generic extension in which there is a lightface ∆1

3
wellorder of the reals, there is a Π1

2 definable maximal family of orthogonal measures,
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2 Vera Fischer, Sy David Friedman and Yurii Khomskii

while b = c = ω3 and there are no Σ1
2 -definable maximal families of orthogonal

measures. The method of Laver-like almost disjoint coding which strongly preserves
splitting reals is used in V. Fischer, S. D. Friedman and Y. Khomskii [9] to obtain the
consistency of a Π1

1 definable mad family in the presence of a lightface ∆1
3 wellorder

of the reals and b = c = ℵ3 , thus improving some of the results of [7]. In V. Fischer,
S. D. Friedman and L. Zdomskyy [8] the method of specializing Suslin trees is
used to obtain further applications to the combinatorial cardinal characteristics of the
continuum, more precisely to obtain the consistency of p = b = ℵ2 < a = s = c = ℵ3

with a lightface ∆1
3 wellorder, as well as to answer a question of L. Harrington by

showing that a lightface ∆1
3 wellorder of the reals is consistent with MA and c = ℵ3 .

Even though finite support iterations of ccc posets are often preferred, since they can
produce for example models with arbitrarily large continuum, there are cases as we will
see shortly in which such iterations cannot be used and we must make use of countable
support iterations.

In this paper we study the classical cardinal characteristics associated to the ideals of
measure and category, and the Cichoń diagram, which completely describes the ZFC
inequalities between those characteristics. An excellent introduction to the subject can
be found in T. Bartoszynski and H. Judah [3]. We will show that every admissible
assignment of ℵ1 -ℵ2 to these cardinal characteristics can be realized in a model in
which there is a ∆1

3 wellorder of the reals. The fact that such assignments can be
realized in forcing extensions (without the wellorder) is well known (see [3]). Given
any such admissible constellation, our strategy will be to provide an iteration of length
ℵ2 simultaneously forcing the constellation and the ∆1

3 wellorder. Note that with every
invariant in the Cichoń diagram one can associate a forcing notion which increases its
value without affecting the values of the other invariants. Thus to a certain extent
the problem of realizing such ℵ1 -ℵ2 assignments in a generic extension and adding
a projective wellorder to the reals reduces to iterating certain posets, on the one hand
posets which control the corresponding invariants and on the other hand posets which
provide the wellorder, without introducing undesirable reals.

Finite support iterations of ccc posets are known to add Cohen reals. This implies
that constellations in which the covering of the meager ideal, cov(M), has size ℵ1

while c = ℵ2 remain beyond the reach of such finite support ccc iterations. If we are to
provide indeed a uniform method of adding a projective wellorder, which can be used in
all 23 cases which we have to consider, the posets which we iterate to force the wellorder
should add no unbounded reals (for constellations in which d = ℵ1 ), no dominating
reals (for constellations in which b = ℵ1 ), no Cohen reals (for constellations in which
cov(M) = ℵ1 ), no random reals (for constellations in which cov(N ) = ℵ1 ), etc.

Journal of Logic & Analysis 6:8 (2014)
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Furthermore it is well-known that the iterations of posets which do not add a certain
type of real, for example dominating reals, might very well add such reals (see U.
Abraham [1]). Thus we need a poset with strong combinatorial properties which
guarantee not only that the poset but also that its iterations do not add undesirable reals.

To achieve our goal, we use the method of coding with perfect trees. The method was
introduced in V. Fischer and S. D. Friedman [5], which to the best knowledge of the
authors is the first work discussing cardinal characteristics in the context of projective
wellorders of the reals. As shown in [5], the poset of coding with perfect trees C(Y) is
ωω -bounding and proper (see also Lemma 3.3) and so its countable support iterations
preserve the ground model reals as a dominating family. As we will see in this paper,
C(Y) has other strong combinatorial properties which guarantee for example that its
iterations do not add Cohen and random reals (see Lemmas 3.4 and 3.6). The fact that
the combinatorial properties of the coding with perfect trees poset are strong enough
to obtain every admissible constellation is one of the main results of this paper.

Of course there are cases in which other methods can be used as well. For example
it is well-known that finite support iterations of σ -centered posets do not add random
reals. Relying on this fact, in two instances we provide alternative proofs for obtaining
the corresponding admissible assignments in the presence of a ∆1

3 wellorder using the
method of almost disjoint coding (see also [7]). However, we have to point out that
whenever we choose to use a different method to force the projective wellorder of the
reals, we have to guarantee that the corresponding iteration does not add undesirable
reals, and so guarantee that the iterands themselves satisfy a number of strong com-
binatorial properties. The task of verifying what kind of reals are added by a certain
partial order, and what kind of reals are not added is in general highly nontrivial and
lies at the heart of many open problems in the field.

The poset which forces the definable wellorder of the reals and is introduced in [5]
can be presented in the form 〈Pα, Q̇α : α < ω2〉 where Qα = Q0

α ∗ Q̇1
α is a two-step

iteration: an arbitrary S-proper poset Q0
α of size at most ℵ1 , for some stationary

S ⊆ ω1 chosen in advance, followed by a three step iteration Q1
α = K0

α ∗K̇1
α ∗K̇2

α . The
poset K0

α shoots closed unbounded sets through certain components of a countable
sequence of stationary sets (see [5, Definition 3]), K1

α is a poset known as localization
(see [5, Definition 1]), and K2

α is the forcing notion for coding with perfect trees (see [5,
Definition 3]). The poset Q(T) for shooting a club through a stationary, co-stationary
set T is ω1\T -proper and ω -distributive. The localization poset L(φ) is proper and
does not add new reals. The only poset of these three forcing notions which does add
a real is the coding with perfect trees partial order. The freedom at each stage α of
using an arbitrary S-proper poset Q0

α allows us to provide in addition each admissible

Journal of Logic & Analysis 6:8 (2014)
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ℵ1 -ℵ2 assignment to the characteristics in the Cichoń diagram.

The paper is organized as follows: in section 2 we establish the relevant preservation
theorems for S-proper rather than proper iterations, in section 3 we study the combina-
torial properties of the coding with perfect trees poset C(Y) and in section 4 we show
that each admissible assignment is consistent with the existence of a ∆1

3 -w.o. on R.

2 Preservation theorems

Throughout this section S denotes a stationary subset of ω1 .

For T ⊆ ω1 a stationary, co-stationary set let Q(T) denote the poset of all countable
closed subsets of ω1\T with extension relation given by end-extension. Note that if G
is a Q(T)-generic set, then

⋃
G is a closed unbounded subset of ω1 which is disjoint

from T . Thus Q(T) destroys the stationarity of T . One of the main properties of Q(T)
which will be used throughout the paper is the fact that Q(T) is ω -distributive and so
does not add new reals (see T. Jech [15]).

Since Q(T) destroys the stationarity of T , it is not proper. However Q(T) is ω1\T -
proper.

Definition 2.1 Let T ⊆ ω1 be a stationary set. A poset Q is T -proper, if for every
countable elementary submodel M of H(Θ), where Θ is a sufficiently large cardinal,
such thatM∩ω1 ∈ T , every condition p ∈ Q∩M has an (M,Q)-generic extension
q.

The proofs of the following two statements can be found in M. Goldstern [11].

Lemma 2.2 If Q is S-proper then Q preserves ω1 . Also Q preserves the stationarity
of every stationary subset S′ of ω1 which is contained in S .

Lemma 2.3 If 〈〈Pα : α ≤ δ〉, 〈Q̇α : α < δ〉〉 is a countable support iteration of
S-proper posets then Pδ is S-proper.

The proofs of the following two statements follow very closely the corresponding
“proper forcing iteration” case (see [1, Theorem 2.10 and 2.12]).

Lemma 2.4 Assume CH . Let 〈Pα : α ≤ δ〉 be a countable support iteration of length
δ ≤ ω2 of S-proper posets of size ω1 . Then Pδ is ℵ2 -c.c.

Journal of Logic & Analysis 6:8 (2014)
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Lemma 2.5 Assume CH . Let 〈Pα : α ≤ δ〉 be a countable support iteration of length
δ < ω2 of S-proper posets of size ω1 . Then CH holds in VPδ .

Preserving V ∩ 2ω as a dominating or as an unbounded family: A forcing notion P is
said to be ωω -bounding if the ground model reals V ∩ ωω form a dominating family
in VP . This property is preserved under countable support iteration of proper forcing
notions. A forcing notion P is said to be weakly bounding if the ground model reals
V∩ωω form an unbounded family in VP . In contrast to the ωω -bounding property, this
property of weak unboundedness is not preserved under countable support iterations
of proper posets. There are well-known examples of two-step iterations of weakly
bounding posets, which add a dominating real over V (see [1]). An intermediate
property, which preserves the ground model reals as an unbounded family in countable
support iterations of proper posets, is the almost ωω -boundedness. A forcing notion P
is said to be almost ωω -bounding if for every P-name for a real ḟ , ie a P-name for a
function in ωω , and for every condition p ∈ P, there is a real g ∈ ωω ∩V such that for
every A ∈ [ω]ω ∩ V there is an extension q ≤ p such that q  ∃∞i ∈ Ǎ(ḟ (i) ≤ ǧ(i)).
These are our main tools in providing that the ground model reals remain a dominating
or an unbounded family in the various models which we are to consider in section 4.

The proofs of the two preservation theorems below follow very closely the proofs of
the classical preservation theorems concerning preservation of the ωω -bounding and
the almost ωω -bounding properties respectively under countable support iterations of
proper forcing notions (see [1] or [11]).

Lemma 2.6 Let 〈〈Pi : i ≤ δ〉, 〈Q̇i : i < δ〉〉 be a countable support iteration of
length δ ≤ ω2 of S-proper, ωω -bounding posets. That is, assume that for all i < δ ,
Pi “Q̇i is ωω-bounding and S-proper”. Then Pδ is ωω -bounding and S-proper.

Lemma 2.7 Let 〈〈Pi : i ≤ δ〉, 〈Q̇i : i < δ〉〉 be a countable support iteration of length
δ ≤ ω2 of S-proper, almost ωω -bounding posets. That is, assume that for all i < δ ,
Pi “Q̇i is almost ωω-bounding and S -proper”. Then Pδ is weakly bounding and
S-proper.

Keeping non(M), non(N ) and cof(N ) small: Recall that with every ideal I on a set
X we can associate the following invariants:

• add(I) = min{|A| : A ⊆ I and
⋃A /∈ I},

• cov(I) = min{|A| : A ⊆ I and
⋃A = X},

• non(I) = min{|Y| : Y ⊆ X and Y /∈ I}, and
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• cof(I) = min{|A| : A ⊆ I and ∀B ∈ I∃A ∈ A(B ⊆ A)}.

Following standard notation we denote by M and N the ideals of meager and null
subsets of the real line, respectively. Thus add(M), cov(M), non(M), cof(M) and
add(N ), cov(N ), non(N ), cof(N ) denote the above defined cardinal invariants for
the ideals M and N .

To preserve small witnesses to non(M), non(N ) and cof(N ) we will use preservation
theorems which follow the general framework developed by M. Goldstern in [12].

Definition 2.8 ([3, Definition 6.1.6]) Let v be the union of an increasing sequence
〈vn〉n∈ω of two place relations on ωω such that

• the sets C = dom(v) and {f ∈ ωω : f vn g}, where n ∈ ω , g ∈ ωω , are closed
and have absolute definitions, that is, as Borel sets they have the same Borel
codes in all transitive models.

• ∀A ∈ [C]≤ℵ0∃g ∈ ωω∀f ∈ A(f v g).

Let N be a countable elementary submodel of H(Θ) for some sufficiently large Θ

containing v. We say that g ∈ ωω covers N if ∀f ∈ N ∩ C(f v g).

Following [3, Definition 6.1.7], we say that a poset P S-almost-preserves-v iff the
following holds: if N is a countable elementary submodel of H(Θ) for some sufficiently
large Θ, containing P, C, v and ω1 ∩ N ∈ S , g covers N , and p ∈ P ∩ N , then
there is an (N,P)-generic condition q extending p such that q  “g covers N[Ġ]”.
Similarly, we say that the forcing notion P S-preserves-v if P satisfies [3, Definition
6.1.10] with respect only to countable elementary submodels whose intersection with
ω1 is an element of the stationary set S . More precisely, P S-preserves-v if whenever
N is a countable elementary submodel of H(Θ) for some sufficiently large Θ which
contains P and v as elements and such that ω1 ∩ N ∈ S , whenever g covers N and
〈pn〉n∈ω is a sequence of conditions interpreting the P-names 〈ḟi〉i≤k ∈ N for functions
in C as the functions 〈f ∗i 〉i≤k , then there is an N -generic condition q ≤ p0 such that
q P “g covers N[Ġ]” and

∀n ∈ ω∀i ≤ k q P (f ∗i vn g→ ḟi vn g).

Furthermore we obtain the following analogue of Goldstern’s preservation theorem
(see [12] or [3, Theorem 6.1.3]).

Theorem 2.9 Let S be a stationary set and let 〈Pα, Q̇α : α < δ〉 be a countable support
iteration such that for all α < δ , α “Q̇α S-preserves- v ”. Then Pδ S-preserves-v.
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Of particular interest for us are the relations vrandom , vCohen and v∆ defined in
Definitions 6.3.7, 6.3.15, and on page 303, respectively, of [3]. For convenience of the
reader we define these relations below:

vrandom : Denote by Ω the set of all clopen subsets of 2ω . Then let

Crandom = {f ∈ Ωω : ∀n ∈ ω(µ(f (n)) ≤ 2−n)}

and for f ∈ Crandom let Af =
⋂

n∈ω
⋃

k≥n f (k). Now for f ∈ Crandom, x ∈ 2ω and
n ∈ ω define

f vrandom
n x ⇐⇒ ∀k ≥ n(x /∈ f (k)).

Let vrandom=
⋃

n∈ω vrandom
n . Note that f vrandom x if and only if x /∈ Af and that x

covers N with respect to vrandom if and only if x is random over N .

vCohen : Let
CCohen = {f ∈ ΩΩ : ∀U ∈ Ω(f (U) ⊆ U)}.

For f ∈ CCohen let Af :=
⋃

U∈Ω f (U). Note that Af is an open dense subset of 2ω

and that for every dense open set H ⊆ 2ω there is an f ∈ CCohen such that Af ⊆ H .
Fix some standard enumeration {Un}n∈ω of Ω and for f ∈ CCohen , x ∈ 2ω , n ∈ ω
define:

f vCohen
n x ⇐⇒ ∃k ≤ n(x ∈ f (Uk)).

Let vCohen=
⋃

n∈ω vCohen
n . Then f vCohen x if and only if x ∈ Af . Therefore x covers

N with respect to vCohen if and only if x is a Cohen real over N .

v∆ : Let Q+ = Q ∩ [0, 1], let ∆ = {f ∈ Qω
+ :
∑

n∈ω f (n) < 1} and let

C∆ := {f ∈ ((Q+)<ω)ω : ∀n
∑

i∈dom(f (n))

f (n)(i) < 2−(n+1)}.

For f ∈ C∆ let εf ∈ ∆ be defined by εf = f (0)af (1)a · · · . For f , g ∈ C∆ define

f v∆
n g ⇐⇒ ∀m ≥ n(εf (m) ≤ εg(m)).

Let v∆=
⋃

n∈ω v∆
n .

Each of those relations satisfies the properties of Definition 2.8. Thus Theorem 2.9
implies the following two theorems (analogous to Theorems 6.1.13 and 6.3.20, respec-
tively, from [3]).
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Theorem 2.10 If 〈Pα, Q̇α : α < δ〉 is a countable support iteration and for each
α < δ , α “Q̇α S-preserves- vrandom ”, then Pδ preserves outer measure. That is for
every set A ⊆ 2ω , VPδ � µ∗(A) = µ∗(A)V . In particular δ V ∩ 2ω /∈ N .

Theorem 2.11 If 〈Pα, Q̇α : α < δ〉 is a countable support iteration and for each
α < δ , α “Q̇α S-preserves- vCohen ”, then Pδ preserves non meager sets. That
is for every set A ⊆ 2ω which is not meager, VPδ � A is not meager. In particular
δ V ∩ 2ω /∈M.

Recall that a forcing notion P has the Sacks property if and only if for every P-name
ġ for a function in ωω there is a slalom S ∈ V , ie a function S ∈ ([ω]<ω)ω such that
|S(n)| ≤ 2n for all n, and such that P “∀n(ġ(n) ∈ S(n))”. By [3, Lemma 6.3.39] a
proper forcing notion P has the Sacks property if and only if P preserves v∆ . By [3,
Theorem 2.3.12] if P has the Sacks property then every measure zero set in VP is
covered by a Borel measure zero set in V and so P preserves the base of the ideal of
measure zero sets. We obtain the following analogue of [3, Theorem 6.3.40].

Theorem 2.12 If 〈Pα, Q̇α : α < δ〉 is a countable support iteration and for each
α < δ , α “Q̇α S-preserves- v∆ ”, then Pδ has the Sacks property and so preserves
the base of the ideal of measure zero sets.

No random and no amoeba reals: Some of the preservation theorems which we use to
show that certain iterations do not add amoeba or random reals, are based on a general
framework due to H. Judah and M. Repický [14].

Definition 2.13 ([3, Definition 6.1.17]) Let v be the union of an increasing chain
〈vn〉n∈ω of two place relations on ωω such that

• for all n ∈ ω and all h ∈ ωω the set {x : h vn x} is relatively closed in the
range of v,

• for every A ∈ [dom(v)]≤ℵ0 there is f ∈ dom(v) such that ∀g ∈ A∀n ∈ ω∃k ≥ n
such that ∀x(f vk x)→ g vk x), and

• the formula ∀x ∈ ωω(f vn x → g vn x) is absolute for all transitive models
containing f and g.

A real x is said to be v-dominating over V if for all y ∈ V ∩ dom(v), y v x .

We have the following S-proper analogue of Judah and Repický’s preservation theorem
(see [3, Theorem 6.1.18]).
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Theorem 2.14 If 〈Pα, Q̇α : α < δ〉, δ limit, is a countable support iteration of S-
proper posets, such that for all α < δ , Pα does not add a v-dominating real, then Pδ
does not add a v-dominating real.

Note that x ∈ 2ω vrandom-dominates V if and only if x is random over V . Further-
more the relation vrandom satisfies the conditions of definition 2.13 and so by the
above theorem we obtain the following S-proper analogue of Theorem 6.3.14 from [3].

Theorem 2.15 If 〈Pα, Q̇α : α < δ〉, δ limit, is a countable support iteration of S-
proper forcing notions and for each α < δ , Pα does not add random reals, then Pδ
does not add a random real.

Note that v∆ also satisfies the conditions of Definition 2.13. Then by Theorem 2.14
above, as well as [3, Theorem 2.3.12] we obtain the following analogue of [3, Theorem
6.3.41].

Theorem 2.16 If 〈Pα, Q̇α : α < δ〉, δ limit, is a countable support iteration of
S-proper posets and for all α < δ , α “

⋃
(N ∩V) /∈ N ”, then δ “

⋃
(N ∩V) /∈ N ”.

Other preservation theorems: We say that a forcing notion P is S-(f , h)-bounding,
if it satisfies [3, Definition 7.2.13] but instead of proper we require that P is S-
proper. That is, we say that P is S-(f , h)-bounding, if P is S-proper, for every k ∈ ω
limn→∞ h(n)k ·f−1(n) = 0 and for every f ′ ∈ VP∩∏n∈ω f (n) there is S ∈ V∩([ω]<ω)ω

such that for all n ∈ ω |S(n)| ≤ h(n) and for all n ∈ ω(f ′(n) ∈ S(n)). The proof of [3,
Lemma 7.2.15] remains true under this modification, and so we obtain that if P is
S-(f , h)-bounding then P does not add random or Cohen reals. Furthermore we have
the following analogue of Shelah’s theorem (see S. Shelah [16] or T. Bartoszynski and
H. Judah [3, Theorem 7.2.19]).

Theorem 2.17 If 〈Pα, Q̇α : α < δ〉, δ limit, is a countable support iteration such that
for all α , α “Q̇α is S-(f , h)-bounding”, then Pδ is S-(f , h)-bounding.

We will also use preservation theorems for the so called (F, g)-preserving posets.
For convenience of the reader we state the definition of (F, g)-preserving (see [3,
Definition 7.2.23]). Let g be a given real and for n ∈ ω let Pn = {a ⊆ g(n + 1) :
|a| = g(n + 1)/2n}. For a set A ⊆ Pn define norm(A) = min{|X| : ∀a ∈ A(X 6⊆ a)}.
Let F be a family of strictly increasing functions. For every f ∈ F choose a function
f + ∈ F and assume that for all f ∈ F , n ∈ ω we have that f (n) < g(n)/2n . A
forcing notion P is said to be (F, g)-preserving if for every f ∈ F and every P-name
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Ṡ which has the property that for all n, P Ṡ(n) ⊆ Pn and P norm(Ṡ(n)) < f (n),
there exists a function T ∈ V such that for all n, T(n) ⊆ Pn , norm(T(n)) < f +(n) and
P Ṡ(n) ⊆ T(n). Note that the countable support iteration of (F, g)-preserving posets
is (F, g)-preserving (see [3, Theorem 7.2.29]) and that (F, g)-preserving posets do not
add Cohen reals (see [3, Theorem 7.2.24]).

3 Coding with perfect trees

Let Y ⊆ ω1 be such that in L[Y] cofinalities have not been changed, and let µ̄ =

{µi}i∈ω1 be a sequence of L-countable ordinals such that µi is the least ordinal µ with
µ >

⋃{µj : j < i}, Lµ[Y ∩ i] � ZF− and Lµ � “ω is the largest cardinal”. A real r
is said to code Y below i if for all j < i, j ∈ Y if and only if Lµj[Y ∩ j, r] � ZF− .
Whenever T is a perfect tree, let |T| be the least i such that T ∈ Lµi[Y ∩ i].

Fix L[Y] as the ground model. The poset C(Y), to which we refer as coding with
perfect trees, consists of all perfect trees T ⊆ 2<ω such that every branch r through T
codes Y below |T|. For T0,T1 conditions in C(T) define T0 ≤ T1 if and only if T0 is
a subtree of T1 .1

Below we summarize some of the main properties of the poset C(Y). Note that T0 ≤ T1

if and only if [T0] ⊆ [T1], where [T] denotes the set of infinite branches through T .
For n ∈ ω , let T0 ≤n T1 if and only if T0 ≤ T1 and T0,T1 have the same first n
splitting levels. (For the notion of n-splitting level of a tree see for example [15].) For
T a perfect tree and m ∈ ω let Sm(T) be the set of nodes on the m-splitting level of T
(and so |Sm(T)| = 2m ), and for t ∈ T let T(t) = {η ∈ T : t ⊆ η or η ⊆ t}. Note that
by Π1

1 absoluteness, r codes Y below |T| even for branches through T in the generic
extension.

Lemma 3.1 [5, Lemma 5] If T ∈ C(Y) and |T| ≤ i < ω1 , then there is T∗ ≤ T such
that |T∗| = i.

Lemma 3.2 [5, Lemma 6] If G is C(Y)-generic and {R} =
⋂{[T] : T ∈ G}, then

for all j < ω1 we have that

j ∈ Y if and only if Lµj[Y ∩ j,R] � ZF−.

That is, R codes Y .

1C(Y) is non-empty, since the full tree 2<ω belongs to it.
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Lemma 3.3 [5, Lemmas 7 and 8] C(Y) is a proper, ωω -bounding forcing notion.

By [3, Lemma 2.2.4] for every meager set F ⊆ 2ω there are reals xF ∈ 2ω and fF ∈ ωω
such that

F ⊆ {x : ∀∞n∃i ∈ [fF(n), fF(n + 1))xF(i) 6= x(i)}.

We will refer to xF and fF as representatives of the meager set F .

Lemma 3.4 The coding with perfect trees forcing notion C(Y) preserves vCohen .

Proof Let N be a countable elementary submodel of LΘ[Y] for some sufficiently
large Θ, such that C(Y), µ̄ are elements of N . Let c be a Cohen real over N . Let T
be a condition in C(Y) ∩ N . It is enough to show that there is a condition T∗ which is
a (N, C(Y))-generic extension of T and which forces that “c is Cohen over N[Ġ]”.

Let {ẋn, ḟn}n∈ω and {Dn}n∈ω enumerate names for representatives of all meager sets
in NC(Y) and all dense subsets of C(Y) in N , respectively. Let N denote the transitive
collapse of N , let i = ω1 ∩ N . Note that N = Lµ[Y ∩ i] for some µ and since
Lµi[Y ∩ i] � “i is countable”, we have that Lµ[Y ∩ i] is an element of Lµi[Y ∩ i].
Let ī = {ik}k∈ω be an increasing cofinal sequence in i such that ī ∈ Lµi[Y ∩ i].
Recursively we will define a sequence of conditions τ = {Tn}n∈ω , such that for every
n, the condition Tn is an element of N , Tn+1 ≤n+1 Tn , |Tn| ≥ in and

(1) T2n C(Y) “c /∈ F(ẋn, ḟn)”, where F(ẋn, ḟn) denotes a name for the meager set
corresponding to the names ẋn, ḟn ,

(2) T2n+1 C(Y) “Ġ ∩ N ∩ Dn 6= ∅”, where Ġ is the canonical C(Y)-name for the
generic filter.

Furthermore the entire sequence τ will be an element of Lµi[Y ∩ i], since it will be
definable in Lµi[Y ∩ i]. Thus its fusion T∗ will also be an element of Lµi[Y ∩ i], and
so a condition in C(Y) which extends T and has the desired properties.

We will need the following two claims:

Claim Let R ∈ C(Y)∩N and let {ẋ, ḟ} be C(Y)-names in N (for reals), representing
a meager set in NC(Y) , let n ∈ ω and let α ∈ N ∩ ω1 such that α > |R|. Then there is
a condition R′ in N such that R′ ≤n R, |R′| ≥ α and every branch through R′ decides
ẋ , ḟ .
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Proof Let N0 be a sufficiently elementary submodel of N such that N � “N0 is countable”
and all relevant parameters are elements of N0 , that is R, C(Y), µ̄, ḟ , ẋ , n and α are
elements of N0 . Let N0 denote the transitive collapse of N0 and let j = ω1 ∩N0 . Note
that N0 is of the form Lµ[Y ∩ j] for some µ, and since Lµ[Y ∩ j] � “j is uncountable”
and Lµj[Y ∩ j] � “j is countable” we have that N0 = Lµ[Y ∩ j] ∈ Lµj[Y ∩ j]. On the
other hand, since Lµj[Y ∩ j] is definable from Y, j, and µj , and all of those are in N , we
obtain that Lµj[Y ∩ j] ∈ N . Let j̄ = {jm}m∈ω be an increasing cofinal in j sequence,
which is an element of Lµj[Y ∩ j].

The condition R′ will be obtained as the fusion of a sequence 〈Rm〉m∈ω such that the
entire sequence is definable in Lµj[Y ∩ j] and for all m, Rm ∈ N0 (and so Rm ∈ N0 ).
Let R0 = R. For every s ∈ Splitn(R0) and every t ∈ Succs(R0) find R0

t ≤ R0(t)
which decides ẋ�|t| and ḟ �|t|. By elementarity we can assume that R0

t ∈ N0 and
so R0

t ∈ N̄0 . Since the set of conditions in C(Y) of height strictly greater than
α and j0 is dense, again by elementarity we can assume that |R0

t | > α, j0 . Let
R1 =

⋃
s∈Splitn(R0)

⋃
t∈Succt(R0) R0

t . Then in particular R1 ∈ N0 and |R1| > α, i0 .
Now suppose Rm ∈ N0 is defined. Then for every s ∈ Splitn+m(Rm) and t ∈ Succs(Rm)
find Rm

t ≤ Rm(t) in N̄0 of height > α, jm , which decides ẋ�|t|, ḟ �|t|. Let Rm+1 =⋃
s∈Splitn+m(Rm)

⋃
t∈Succ(s) Rm

t . Then Rm+1 ≤m+n Rm , Rm+1 ∈ N0 and |Rm+1| >
α, jm . With this the inductive construction of the fusion sequence is complete. Since
〈Rm〉m∈ω is definable in Lµj[Y ∩ j], we obtain that R′ =

⋂
m∈ω Rm ∈ Lµj[Y ∩ j]. Then

in particular |R′| = j, which implies that R′ is indeed a condition in C(Y).

Claim Let R′ , ẋ , ḟ , n, α , N be as above and let c be a Cohen real over N . Then
there is a condition R′′ ∈ N such that R′′ ≤n R′ , |R′′| ≥ α, |R′| and R′′ forces that c
does not belong to the meager set determined by ẋ , ḟ .

Proof Just as in the previous claim let N0 be a sufficiently elementary submodel of N
such that N � “N0 is countable” and all relevant parameters are elements of N0 . Let
N0 denote the transitive collapse of N0 . Let j = ω1 ∩ N0 and let j̄ = {jm}m∈ω be an
increasing and cofinal in j sequence which is an element of Lµj[Y ∩ j]. The condition
R′′ will be obtained as the limit of a fusion sequence 〈Rm〉m∈ω which is definable in
Lµj[Y ∩ j] and whose elements are in N0 . Let R0 = R′ . For every s ∈ Splitn(R0) and
every t ∈ Succt(R0) find a branch bt ∈ N0 ∩ [R0] such that t ⊆ bt . Then bt gives an
interpretation of the names ẋ , ḟ as reals xt and f t in N0 . Since c is Cohen over N , it
is Cohen over N0 and so there is jt > |t| such that

xt
n�[f t(jt), f t(jt + 1)) = c�[f t(jt), f t(jt + 1)).
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Take any kt > jt . Let R1 =
⋃

s∈Splitn(R0)
⋃

t∈Succs(R0) R0(bt�kt). Thinning out once
again we can assume that |R0(bt�kt)| > j0, α . Also, clearly R1 ∈ N0 .

Suppose Rm is defined. Again, for every s ∈ Splitn+m(Rm) and t ∈ Succs(Rm) find a
branch bt ∈ [Rm]∩N0 such that t ⊆ bt . Then bt gives an interpretation xt, f t of ẋ, ḟ as
reals xt, f t in N0 . Using the fact that c is Cohen over N0 we can find {lta}1≤a≤m such
that |t| < lt1 , lta < lta+1 for a < m such that for every j ∈ {lta}1≤a≤m ,

xt�[f t(j), f t(j + 1)) = c�[f t(j), f t(j + 1)).

Take any kt > ltm . Let Rm+1 =
⋃

s∈Splitn+m(Rm)
⋃

t∈Succs(Rm) Rm(bt�kt). Passing

to an extension if necessary we can assume that |Rm(bt�kt)| > jm, α and so that
|Rm+1| > jm, α . Let R′′ = ∩m∈ωRm . Then R′′ is a condition in N with the desired
properties.

With this we can proceed with the construction of the fusion sequence 〈Tn〉n∈ω . Let
T0 = T . Reproducing the proof of [5, Lemma 7] find T1 ∈ N such that T1 ≤1 T0 ,
|T1| ≥ i1 and T1  Ġ ∩ N ∩ D1 6= ∅. Suppose T2n−1 is defined for some n ≥ 1.
Using the previous two claims find a condition T2n ∈ N ∩ C(Y) such that |T2n| ≥ i2n ,
T2n ≤2n T2n−1 , and T2n forces that c does not belong to the meager set corresponding
to {ẋn, ḟn}. Obtain T2n+1 as in the base case. With this the fusion sequence 〈Tn〉n∈ω
is defined. Let T∗ =

⋂
n∈ω Tn . Note that |T∗| = i and so in particular T ∈ C(Y).

Clearly, T∗ is (N, C(Y))-generic and T∗ C(Y) “c is Cohen over N[Ġ]”.

In order to show that the coding with perfect trees forcing notion preserves vrandom ,
we will use the fact that C(Y) is weakly bounding and that C(Y) preserves positive
outer measure (see below).

Lemma 3.5 Suppose that A is a set of positive outer measure. Then C(Y) µ
∗(A) > 0.

Proof Suppose not. Then there is a condition T ∈ C(Y) such that T  µ∗(A) = 0.
Let N be a countable elementary submodel of LΘ[Y] for some sufficiently large Θ

such that T, C(Y),A are elements of N . Then there is a sequence 〈İn〉n∈ω ∈ N of
names for rational intervals such that T  limm→∞

∑
n>m µ(İn) = 0 and T  A ⊆⋂

n∈ω
⋃

m≥n İm . Then in particular, there is a C(Y)-name for a function ġ in ωω

such that for all n, T 
∑

m≥ġ(n) µ(İm) < 2−(n2+n) . Since C(Y) is ωω -bounidng
(see Lemma 3.3), there is R ≤ T and a ground model real g, ie function in ωω

such that for all n ∈ ω , R  ġ(n) < ǧ(n). Then in particular, for all n ∈ ω ,
R 

∑
g(n)≤i<g(n+1) µ(İi) < 2−(n2+n) . Let i = ω1 ∩ N and let ī = {in}n∈ω be

Journal of Logic & Analysis 6:8 (2014)



14 Vera Fischer, Sy David Friedman and Yurii Khomskii

an increasing and cofinal in i sequence, which belongs to Lµi[Y ∩ i]. Recursively
define a fusion sequence 〈Rn〉n∈ω as follows. Let R0 = R. Suppose Rn has been
defined. For every n-splitting node t of Rn find Rt ≤ Rn(t) such that for some finite
sequence 〈In

t,j〉g(n)≤j<g(n+1) of rational intervals, for all j : g(n) ≤ j < g(n + 1) we
have Rt  İj = Ǐn

t,j . By elementarity we can assume that Rt is a condition which
is an element of N which is also of height ≥ in , and that 〈In

t,j〉g(n)≤j<g(n+1) ∈ N .
Let Rn+1 =

⋃
t∈Splitn(Rn) Rt and let Jn =

⋃
t∈Splitn(Rn)

⋃
g(n)≤j<g(n+1) In

t,j . Note that
Jn ∈ N and µ(Jn) < 2−n . Let R∗ be the fusion of the sequence 〈Rn〉n∈ω . Then R∗ is
a condition in C(Y) of height i, such that

R∗ 
⋂

n

⋃

m≥n

İm ⊆
⋂

n

⋃

m≥n

Jm.

Since J :=
⋂

n
⋃

m≥n Jm is a measure zero set, there is x ∈ A\J . However

R∗  x ∈
⋂

n

⋃

m≥n

İm

and so R∗  x ∈ J , which is a contradiction.

Lemma 3.6 The coding with perfect trees forcing notion C(Y) preserves vrandom.

Proof The proof proceeds similarly to the proof that Laver forcing preserves vrandom

(see [3, Theorem 7.3.39]). Let N be a countable elementary submodel of LΘ[Y] for
some sufficiently large Θ, let ḟ0 be an element of Ċrandom∩N , and let τ = 〈Tn〉n∈ω ∈
N be an approximating sequence for ḟ0 below T for some T ∈ C(Y) ∩ N . Let f ∗0 be
the approximation of ḟ0 determined by τ . Note that f ∗0 ∈ N ∩ ωΩ. Let x be a
random real over N . We have to show that there is an extension T∗ of T which is an
(N, C(Y))-generic condition, such that T∗  “x is random over N[Ġ]” and such that
for all n ∈ ω , T∗  (f ∗0 vn x→ ḟ0 vn x).

Let D be a dense open subset of C(Y). Denote by cl(D) = {T : ∃n∀t ∈ Split≥n(T)
(if there is Rt ≤0 T(t) such that Rt ∈ D then T(t) ∈ D)}. Note that for every n ∈ ω ,
cl(D) is n-dense (ie dense with respect to ≤n ) and open. Thus if {Dn}n∈ω is a
sequence of dense open sets, then

⋂
n∈ω cl(Dn) is n-dense for all n. Also, we have that

if S ≤ T ∈ cl(D), then there is s ∈ S such that T(s) ∈ D.

Let D denote the collection of all dense subsets of C(Y) which are in N . Since x is
random over N and f ∗0 ∈ N there is n0 such that for all k ≥ n0 , x /∈ f ∗0 (k). For every
n ≥ n0 let Yn

n be the set of all reals z ∈ 2ω such that there is Z ≤ Tn such that φn(z,Z)
holds, where φn(z,Z) is the conjunction of the following three formulas:
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(1) φ1(Z) ≡ for all D ∈ D ∩ N∃R ∈ cl(D) ∩ N(Z ≤ R), and

(2) φ2(z,T) ≡ for all ḟ ∈ Ċrandom ∩ N∀∞n(Z  z /∈ ḟ (n)),

(3) φn
3(z,T) ≡ for all k ≥ n, Z  z /∈ ḟ0(k).

Note that Z 6 z /∈ ḟ (n) iff there is Z′ ≤ Z such that Z′  z ∈ ḟ (n) iff there is Z′ ≤ Z
such that z ∈ ḟ (n)[Z′] which is equivalent to there is s ∈ Z such that z ∈ ḟ (n)[Zs] iff
there is R ∈ cl(Dḟ

n) ∩ N and there is s ∈ Z such that Z ≥ R and z ∈ ḟ (n)[Rs]. Since
the quantifiers of φ1, φ2, φ3 are relativized to subsets of N , all three of these formulas
are Borel.

For a partial order P and p ∈ P let P(p) = {q ∈ P : q ≤ p}. Recall that a forcing
notion P is weakly homogenous if for every p, q ∈ P there are p′ ≤ p and q′ ≤ q such
that P(p′) ∼= P(q′). To see that C(Y) is weakly homogeneous consider arbitrary T0 and
T1 in P. Without loss of generality |T0| ≤ |T1|. The properties of C(Y) imply that T0

has an extension T ′0 such that |T ′0| = |T1|. Then the order preserving bijection between
T ′0 and T1 extends to a partial order isomorphism between C(Y)(T ′0) and C(Y)(T1), and
so C(Y) is weakly homogenous. Now using this fact and the fact that C(Y) preserves
positive outer measure (see Lemma 3.5), one can easily modify the proof of [3, Lemma
7.3.41] to obtain that for every n ≥ n0 , the inner measure µ∗(Yn

n ) ≥ 1 − 2−n . This
implies that Y∗ :=

⋃
n≥n0

Yn
n is a set of measure 1.

Claim (see [3, Lemma 7.3.42]) There is a sequence 〈Bk : k ≥ n0〉 ∈ N of Borel sets
such that for all n, Bn ∈ N and Bn4Yn

n ⊆
⋃

(N ∩ N).

Proof Fix z ∈ 2ω and let G be an N[z]-generic filter for Coll(22ℵ0 ,ℵ0) (the algebra
for collapsing 22ℵ0 onto ℵ0 ). Now we have z ∈ Yn

n iff LΘ[Y] � ∃Z ≤ Tφn(z,Z) iff
N[z][G] � ∃Z ≤ Tφn(z,Z) iff N[z]  “ Coll(22ℵ0 ,ℵ0)

∃Z ≤ Tφn(z,Z)”. The second

equivalence follows from absoluteness of Σ1
1 formulas and the third from homogeneity

of Coll(22ℵ0 ,ℵ0).

Let φ∗n(z) denote the formula “ Coll(22ℵ0 ,ℵ0)
∃Z ≤ Tφn(z,Z)”. That is z ∈ Yn

n iff
N[z] � φ∗n(z). Let Bn be a Borel set in N representing the Boolean value [[φ∗n(ṙ)]]B
where ṙ is the canonical name for a random real. For a random real z over N we have,

z ∈ Yn
n ⇐⇒ N[z] � φ∗n(z) ⇐⇒ z ∈ Bn.

Therefore Bn4Yn
n ⊆

⋃
(N ∩ N).

Note that in particular µ(Bn) ≥ 1− 2−n .2 Using the fact that x is random over N we
obtain that there is n∗ ≥ n0 such that x ∈ Bn∗ . Again since Bn∗4Yn∗

n∗ ⊆
⋃

(N ∩ N),
2This follows from the facts that µ∗(Yn

n ) ≥ 1− 2−1 and Bn4Yn
n is null.
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x ∈ Yn∗
n∗ . Let T∗ be a witness to x ∈ Yn∗

n∗ . Then T∗ ≤ Tn∗ , T∗ is (N, C(Y))-generic,
T∗  “x is random over N” and for all k ≥ n∗ , T∗  x /∈ ḟ0(k). Then

T∗  f ∗0 �n∗ = ḟ0�n∗ ∧ ∀k ≥ n(x /∈ ḟ0(k))

which implies that for all n ∈ ω , T∗  (f ∗0 vn x→ ḟ0 vn x).

Recall that a forcing notion P:

• has the Laver property if and only if for every function f ∈ V ∩ ωω and a
P-name ġ such that P ∀n(ġ(n) ≤ f (n)) there is a slalom S ∈ V such that
P ∀nġ(n) ∈ S(n).

• has property Lf where f ∈ ωω , if for every p ∈ P, n ∈ ω and A ∈ [ω]<ω the
following holds: if p  ȧ ∈ A, then there is q ≤n p and B ⊆ A, |B| ≤ f (n) such
that q  ȧ ∈ B.

Lemma 3.7 Sacks coding C(Y) has the property Lf where f (n) = 2n for all n, and so
has the Laver property. It is ωω -bounding and so has the Sacks property. Furthermore it
is (F, g)-preserving for some F and g (see [3, Definition 7.2.23]) and is (f , h)-bounding
for all f and h.

Proof Suppose T ∈ C(Y), n ∈ ω and A ∈ [ω]<ω such that T  ȧ ∈ Ǎ. Let Sn(T)
be the n-th splitting level of T . Then |Sn(T)| = 2n and for every tj ∈ Sn(T) there
is T ′j ≤ T(tj) such that T ′j  ȧ = ǩj for some kj ∈ A. Let B = {kj}j∈2n ⊆ A,
T ′ =

⋃
j∈2n T ′j . Then T ′ ≤n T and T ′  ȧ ∈ B̌. By [3, Lemma 7.2.2], if P has the Lf

property for some f then P has the Laver property. Since C is ωω -bounding, by [3,
Lemma 6.3.38] it has the Sacks property. The Laver property implies also that C(Y) is
(F, g)-preserving for some F and g (see [3, Lemma 7.2.25] and is (f , h)-bounding for
all f and h (see [3, Lemma 7.2.16]).

4 Measure, category and projective wellorders

The underlying forcing construction is the construction from [5] forcing a ∆1
3 -w.o.

of the reals. For completeness of the argument we will give a brief outline of this
construction. Recall that a transitive ZF− model M is suitable if ωM

2 exists and
ωM

2 = ωLM

2 . Assume V is the constructible universe L . Let F : ω2 → Lω2 be a
bookkeeping function which is Σ1 -definable over Lω2 and let S̄ = (Sβ : β < ω2)
be a sequence of almost disjoint stationary subsets of ω1 which is Σ1 -definable over
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Lω2 with parameter ω1 , such that F−1(a) is unbounded in ω2 for every a ∈ Lω2

and whenever M,N are suitable models such that ωM
1 = ωN

1 then FM, S̄M agree with
FN , S̄N on ωM

2 ∩ ωN
2 . In addition, if M is suitable and ωM

1 = ω1 , then FM, S̄M equal
the restrictions of F ,S̄ to the ω2 of M . Let S be a stationary subset of ω1 which is
∆1 -definable over Lω1 and almost disjoint from every element of S̄ .

Recursively define a countable support iteration 〈〈Pα : α ≤ ω2〉, 〈Q̇α : α < ω2〉〉 such
that P = Pω2 will be a poset adding a ∆1

3 -definable wellorder of the reals. We can
assume that all names for reals are nice in the sense of [5] and that for α < β < ω2 all
Pα -names for reals precede in the canonical wellorder <L of L all Pβ -names for reals
which are not Pα -names. For each α < ω2 define <α as in [5]: that is, if x, y are reals
in L[Gα] and σαx , σ

α
y are the <L -least Pγ -names for x, y respectively, where γ ≤ α ,

define x <α y if and only if σαx <L σ
α
y . Note that <α is an initial segment of <β . If

G is a P-generic filter, then <G=
⋃{<G

α: α < ω2} will be the desired wellorder of
the reals.

In the recursive definition of Pω2 , P0 is defined to be the trivial poset and Q̇α is of
the form Q̇0

α ∗ Q̇1
α , where Q̇0

α is an arbitrary Pα -name for a proper forcing notion
of cardinality at most ℵ1 and Q̇1

α is defined as in [5] and so carries out the task of
forcing the ∆1

3 -w.o. of the reals. Note that Q1
α is the iteration of countably many

posets shooting clubs through certain stationary, co-stationary sets from S̄ (and so
each of those is S-proper and ω -distributive), followed by a “localization” forcing
which is proper and does not add new reals, followed by coding with perfect trees. In
the following we will use the fact that Q̇0

α is arbitrary, to force the various ℵ1 -ℵ2 -
admissible assignments to the cardinal characteristics of the Cichón diagram in the
presence of a ∆1

3 wellorder of the reals.

Theorem 4.1 The constellation determined by cov(M) = cov(N ) = ℵ2 and b = ℵ1

is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof Perform the countable support iteration described above, which forces a ∆1
3 -

w.o. of the reals and in addition specify Q̇0
α as follows. If α is even let α Q̇0

α = B be
the random real forcing, and if α is odd let α Q̇α = C be the Cohen forcing. Then in
VPω2 cov(M) = cov(N ) = ℵ2 . At the same time, since the countable support iteration
of S-proper, almost ωω -bounding posets is weakly bounding, the ground model reals
remain an unbounded family and so a witness to b = ℵ1 .

Theorem 4.2 The constellation determined by d = ℵ2 , non(M) = non(N ) = ℵ1 is
consistent with the existence of a ∆1

3 wellorder of the reals.
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Proof In the forcing construction described above, which forces a ∆1
3 -w.o. of the

reals, define Q̇0
α to be the rational perfect tree forcing PT defined in [3, Definition

7.3.43]. To claim that d = ℵ2 in the final generic extension, note that PT adds an
unbounded real. It remains to show that non(M) = non(N ) = ℵ1 . By [3, Theorem
7.3.46] the rational perfect tree forcing preserves vCohen , and by Lemma 3.4 the
coding with perfect tress C(Y) also preserves vCohen . Therefore by Theorem 2.11 in
VPω2 the set 2ω ∩ V is non meager and so VPω2  non(M) = ℵ1 . By [3, Theorem
7.3.47], the rational perfect tree forcing preserves vrandom and by Lemma 3.6 the
prefect tree coding C(Y) preserves vrandom. Therefore by Theorem 2.10 in the final
extension 2ω ∩ V is a non null set and so VPω2 � non(N ) = ℵ1 .

Theorem 4.3 The constellation determined by cov(N ) = d = non(N ) = ℵ2 , b =

cov(M) = ℵ1 is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For even α let Q̇0
α be the random real forcing B, and for α odd let Q̇0

α be
the Blass-Shelah forcing notion Q defined in [3, 7.4.D]. Since all iterands are almost
ωω -bounding, by Lemma 2.7 the ground model reals remain an unbounded family
and so a witness to b = ℵ1 . On the other hand Q adds an unbounded real and
Q “2ω ∩ V ∈ N ”, which implies that VPω2 � d = non(N ) = ℵ2 . Since cofinally
often we add random reals, we have that cov(N ) = ℵ2 in the final extension. To
show that no Cohen reals are added by the iteration, use the fact that all iterands are
(F, g)-preserving, as well as [3, Theorems 7.2.29 and 7.2.24].

Theorem 4.4 The constellation determined by non(M) = d = ℵ2 and cov(N ) =

b = non(N ) = ℵ1 is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For α even let Q̇0
α = PTf ,g , and for α odd let Q̇0

α = PT, where PTf ,g and
PT are defined in [3, Definition 7.3.43 and Definition 7.3.3] respectively. Since PTf ,g

2ω∩V ∈M and PT adds an unbounded real, VPω2 � non(M) = d = ℵ2 . All iterands
are almost ωω -bounding and so b remains small. All iterands S preserve vrandom ,
and so by Theorem 2.10 Pω2 preserves outer measure and so VPω2 � non(N ) = ℵ1 .
To see that the iteration does not add random reals, note that PT and C(Y) have the
Laver property and so are (f , g)-bounding for all f , g. On the other hand PTf ,g is
(f , h)-bounding for some appropriate h, which implies that all iterands are S-(f , h)-
bounding. Then by Theorem 2.17, Pω2 is S-(f , h)-bounding, which implies that is
does not add random reals.

Theorem 4.5 The constellation determined by cov(N ) = d = ℵ2 and b = non(N ) =

ℵ1 is consistent with the existence of a ∆1
3 wellorder of the reals.
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Proof For α even let Q̇0
α be the rational perfect tree forcing PT, and for α odd let

Q̇0
α be the random real forcing B. Then VPω2 � cov(N ) = d = 2ℵ0 . By [3, Theorem

6.3.12] B preserves vrandom, by [3, Theorem 7.3.47] PT preserves vrandom and by
Lemma 3.6 Sacks coding preserves vrandom. Then Theorem 2.10, VPω2 � 2ω ∩ V /∈
N . All iterands are almost ωω -bounding, and so by Theorem 2.7 the ground model
reals remain an unbounded family in VPω2 .

Theorem 4.6 The constellation determined by non(M) = cov(M) = ℵ2 and b =

cov(N ) = ℵ1 is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For α even let Q̇0
α be Cohen forcing, and for α odd let Q̇0

α be PTf ,g (see [3,
Definition 7.3.3]). Since PTf ,g

2ω ∩V ∈M, VPω2 � non(M) = ℵ2 . Since cofinally
often we add Cohen reals, clearly cov(M) = ℵ2 in the final generic extension. All
involved partial orders are almost ωω -bounding and so VPω2 � b = ω1 . To see that
the iteration does not add random reals, proceed by induction using Theorem 2.15 at
limit steps.

Alternative Proof: The result can be obtained using finite support iteration of ccc
posets. We will slightly modify the coding stage of the construction of [7]. Let
〈Pα, Q̇β : α ≤ ω2, β < ω2〉 be a finite support iteration such that P0 is the poset
defined in [7, Lemma 1]. Suppose Pα has been defined. If α is a limit, α = ω1 ·α′+ ξ

where ξ < ω1 and α′ > 0, define Qα as in Case 1 of the original construction. If
α is not of the above form, ie α is a successor or α < ω1 , let Q̇α be a name for the
following poset adding an eventually different real:

Qα = {〈s0, s1〉 : s0 ∈ ω<ω, s1 ∈ [o.t.(<̇G
α)]<ω}3,

where 〈t0, t1〉 ≤ 〈s0, s1〉 if and only if s0 is an initial segment of t0 , s1 ⊆ t1 , and for
all ξ ∈ s1 and all j ∈ [|s0|, |t0|) we have t0(j) 6= xξ(j), where xξ is the ξ -th real in
L[Gα]∩ωω according to the wellorder <̇Gα

α . The sets Ȧα are defined as in [7]. With this
the definition of Pω2 is complete. Following the proof of the original construction one
can show that Pω2 does add a ∆1

3 -definable wellorder of the reals (note that in our case
VPω2 � c = ℵ2 .) Since the eventually different forcing adds a Cohen real and makes
the ground model reals meager, we obtain that VPω2  cov(M) = non(M) = ℵ2 .
Since all iterands of our construction are σ -centered, by [3, Theorems 6.5.30 and
6.5.29] Pω2 does not add random reals and so VPω2 � cov(N ) = ℵ1 . The ground
model reals remain an unbounded family and so a witness to b = ℵ1 in VPω2 . We
should point out that the coding techniques of [7] allow one to obtain the consistency

3The relation <̇G
α was defined in the second paragraph of section 4.
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of the existence of a ∆1
3 wellorder of the reals with non(M) = cov(M) = ℵ3 and

b = cov(N ) = ℵ1 .

Theorem 4.7 The constellation determined by d = non(N ) = ℵ2 and cov(M) =

non(M) = ℵ1 is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For α even let Q̇0
α be the rational perfect tree forcing PT, and for α odd

let Q̇0
α be the poset Sg,g∗ (see [3, 7.3.C]). Note that Sg,g∗ 2ω ∩ V ∈ N and so

VPω2 � non(N ) = ℵ2 . On the other hand PT adds an unbounded real, which implies
that (d = ℵ2)V

Pω2 . Also Sg,g∗ , PT and C(Y) preserve vCohen , which by Theorem 2.11
implies that VPω2 � non(M) = ℵ1 . To see that there are no Cohen reals added by
the iteration we use the S-(f , g)-bounding property. More precisely, PT and C(Y)
have the Laver property and so are (f , g)-bounding for all f , g. The poset Sg,g∗ is
(g, g∗)-bounding, which implies that all iterands are S-(g, g∗)-bounding. Thus by
Theorem 2.17 Pω2 is S-(g, g∗)-bounding, and so the entire iteration does not add
Cohen reals.

Theorem 4.8 The constellation determined by cov(M) = ℵ2 , non(M) = ℵ1 is
consistent with the existence of a ∆1

3 wellorder of the reals.

Proof For every α < ω2 let Q̇0
α be Cohen forcing. By [3, Theorem 6.3.18] C

preserves vCohen and by Theorem 3.4 Sacks coding preserves vCohen . Then by
Theorem 2.11 the entire iteration Pω2 preserves non-meager sets and so in particular
VPω2 � 2ω ∩ V /∈M.

Theorem 4.9 The constellation determined by non(N ) = d = non(M) = ℵ2 and
cov(N ) = b = cov(M) = ℵ1 is consistent with the existence of a ∆1

3 wellorder of the
reals.

Proof For α an even successor let Q̇0
α be the rational perfect tree forcing PT, for α

an odd successor let Q̇0
α be PTf ,g (see [3, Definition 7.3.3]), and for α a limit let Q̇0

α =

Sg,g∗ . Clearly non(N ) = d = non(M) = ℵ2 . To show that cov(N ) = cov(M) = ℵ1

use the fact that all forcing notions used in the iteration are S-(f , h)-bounding and so
by Theorem 2.17 Pω2 is S-(f , h)-bounding. Thus no real in VPω2 is Cohen or random
over V . To show that b = ℵ1 in the final extension, use the facts that all iterands are
almost ωω -bounding.

Theorem 4.10 The constellation determined by add(N ) = ℵ2 is consistent with the
existence of a ∆1

3 wellorder of the reals.
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Proof Note that if A is amoeba forcing then VA �
⋃

(N ∩ V) ∈ N . Thus, in order
to obtain the desired result it is sufficient to require that for every every α < ω2 , Q̇0

α

is the amoeba forcing.

Theorem 4.11 The constellation determined by cof(N ) = ℵ1 is consistent with the
existence of a ∆1

3 wellorder of the reals.

Proof Sacks coding has the Sacks property and so by [3, Lemma 6.3.39] C(Y) pre-
serves v∆ (and so it S-preserves-v∆ ). For every α let Q̇α

0 be the trivial poset.
Then by theorem 2.12 Pω2 preserves the base of the ideal of measure zero sets, that is
VPω2 � cof(N ) = cof(N )V = ℵ1 .

Theorem 4.12 The constellation determined by add(M) = cov(N ) = ℵ2 and
add(N ) = ℵ1 is consistent with the existence of a ∆1

3 wellorder of the reals.

Proof For α an even successor let Q̇0
α be the random real forcing B, for α an odd

successor let Q̇0
α be Cohen forcing C, and for α a limit let Q̇0

α be Laver forcing LT.
Then clearly in VPω2 we have that add(M) = cov(N ) = ℵ2 . To show that there are no
amoeba reals in the final generic extension, and so add(N ) = ℵ1 , proceed by induction
using Theorem 2.16 at limit stages.

Theorem 4.13 The constellation determined by cof(N ) = ℵ2 and non(N ) = cof(M) =

ℵ1 is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For each α let Q0
α be the poset U defined in [3, Page 339]. This poset is ωω -

bounding, preserves vrandom , preserves vCohen and does not have the Sacks property.
By Theorem 2.6, the ground model reals dominate the reals in VPω2 and so d = ℵ1 . On
the other hand since all iterands S-preserves-vrandom and S-preserve-vCohen , in VPω2

we have non(M) = non(M) = ℵ1 . Thus in particular VPω2 � cof(M) = non(N ) =

ℵ1 . To see that cof(N ) = ℵ2 in VPω2 use the fact that U does not have the Sacks
property (see [3]).

Theorem 4.14 The constellation determined by cov(N ) = b = non(N ) = ℵ2 and
cov(M) = ℵ1 is consistent with the existence of a ∆1

3 wellorder of the reals.

Proof For α even let Q̇0
α be random real forcing, for α an odd successor let Q̇α be

the poset Sg,g∗ defined in [3, Section 7.3.C], and for α a limit let Q̇0
α be Laver forcing.

To see that cov(M) = ℵ1 in the final generic extension, note that all iterands are
(F, g)-preserving and so by [3, Theorems 7.2.29 and 7.2.24] Pω2 does not add Cohen
reals.
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Theorem 4.15 The constellation determined by non(M) = ℵ2 and non(N ) =

cov(N ) = d = ℵ1 is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For each α < ω2 let Q̇0
α be a Pα -name for PTf ,g . Note that by [3, Theorem

7.3.6] we have that VPTf ,g � V∩ωω ∈M. Therefore in VPω2 we have that non(M) =

ℵ2 . The poset PTf ,g is (f , h)-bounding for some h, and so all iterands are S-(f , h)-
bounding. Then by Theorem 2.17 Pω2 is S-(f , h)-bounding, which implies that Pω2

does not add random reals. Thus cov(N ) = ℵ1 in the final generic extension. Since
all iterands are ωω -bounding, by Theorem 2.6 the ground model reals are a witness to
d = ω1 in VPω2 . By [3, Theorem 7.3.15] the poset PTf ,g preserves vrandom, Sacks
coding preserves vrandom, and so by Theorem 2.10 Pω2 preserves outer measure.
Thus VPω2 � non(N ) = ℵ1 .

Theorem 4.16 The constellation determined by cov(N ) = b = ℵ2 and non(N ) = ℵ1

is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For α even let Q̇0
α be the random real forcing B and for α odd let Q̇0

α be Laver
forcing LT. Then we immediately get that cov(N ) = b = ℵ2 in VPω2 . By [3, Theorem
7.3.39] LT preserves vrandom, by [3, Theorem 6.3.12] B preserves vrandom and
Sacks coding preserves vrandom. Then by Theorem 2.10 VPω2 � 2ω ∩ N /∈ N and
so VPω2 � non(N ) = ℵ1 .

Theorem 4.17 The constellation determined by cov(N ) = ℵ2 and non(N ) = d = ℵ1

is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For each α , let Q̇0
α be the random real forcing B. Since B and the Sacks

coding preserve vrandom, Theorem 2.10 implies that VPω2 � non(N ) = ℵ1 . By
Lemma 2.6 Pω2 is ωω -bounding and so d = ℵ1 in the final generic extension.

Theorem 4.18 The constellation determined by add(M) = ℵ2 and cov(N ) = ℵ1 is
consistent with the existence of a ∆1

3 wellorder of the reals.

Proof For α even let Q̇0
α be the Cohen forcing C, and for α odd let Q̇0

α be the Laver
forcing. Clearly add(M) = min{b, cov(M)} = ℵ2 in VPω2 . To show that Pω2 does
not add random reals proceed by induction using Theorem 2.15 at limit steps.

Alternative proof: The result can be obtained using finite support iteration of ccc posets,
by slightly modifying the coding stage of the poset forcing a ∆1

3 definable wellorder

Journal of Logic & Analysis 6:8 (2014)
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of the reals from [7]. Let 〈Pα, Q̇β;α ≤ ω2, β < ω2〉 be a finite support iteration where
P0 is the poset defined in [7, Lemma 1]. Suppose Pα has been defined. If α is a limit
and α = ω1 · α′ + ξ where ξ < ω1 and α′ > 0, define Qα as in Case 1 of the original
construction. Otherwise, if α is a successor or α < ω1 let Qα be the poset from Case
2 of the same paper. Note that in this case Qα adds a dominating real. In either case
Aα is defined as in [7]. With this the definition of Pω2 is complete. Following the
proof of the original iteration, one can show that Pω2 adds a ∆1

3 -definable wellorder
of the reals. Note that in VPω2 we have add(M) = ℵ2 , since cofinally often we add
dominating and Cohen reals. To show that cov(N ) remains small, ie that random reals
are not added, use the fact that all iterands are σ -centered and [3, Theorems 6.5.30,
6.5.29]. We should point out that the coding techniques of [7] allow one to obtain the
consistency of the existence of a ∆1

3 wellorder of the reals with add(M) = ℵ3 and
cov(N ) = ℵ1 .

Theorem 4.19 The constellation determined by cof(M) = ℵ1 and non(N ) = ℵ2 is
consistent with the existence of a ∆1

3 wellorder of the reals.

Proof For each α let Q̇0
α be the poset Sg,g∗ defined in [3, Section 7.3.C]. Note

that VSg,g∗ � V ∩ 2ω ∈ N . Thus clearly VPω2 � non(N ) = ℵ2 . Now cof(N ) =

max{d, non(M)}. Thus it is sufficient to show that both d and non(M) remain small
in the final generic extension. However Sg,g∗ is ωω -bounding and preserves vCohen .
Then theorems 2.6 and 2.11 imply that d = non(M) = ℵ1 in VPω2 .

Theorem 4.20 The constellation determined by non(N ) = b = ℵ2 and cov(N ) =

cov(M) = ℵ1 is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For α even let Q̇0
α be Sg,g∗ , and for α odd let Q̇0

α be the Laver forcing LT .
Since all iterands are S-(g, g∗)-bounding, by Theorem 2.17 Pω2 is S-(g, g∗)-bounding,
which implies (see [3, Lemma 7.2.15]) that no real in VPω2 is Cohen or random over
V . Therefore cov(N ) = cov(M) = ℵ1 in VPω2 . Recall also that Sg,g∗ 2ω ∩V ∈ N
and LT adds a dominating real.

Theorem 4.21 The constellation determined by non(M) = non(N ) = ℵ2 and
cov(N ) = d = ℵ1 is consistent with the existence of a ∆1

3 wellorder of the reals.

Proof For α even let Q̇0
α be PTf ,g and for α odd, let Q̇0

α be Sg,g∗ . Since PTf ,g

2ω ∩ V ∈ M and Sg,g∗ 2ω ∩ V ∈ N , we have VPω2 � non(M) = non(N ) = ℵ2 . All
iterands are S-(f , h)-bounding and ωω -bounding, which implies that in VPω2 there are
no random reals over V and the ground model reals form a dominating family.

Journal of Logic & Analysis 6:8 (2014)
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Theorem 4.22 The constellation determined by b = ℵ2 and non(N ) = cov(N ) = ℵ1

is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For every α let Q̇0
α be the Laver forcing LT. Since LT adds a dominating func-

tion, clearly b = ℵ2 . Since LT and Sacks coding S-preserve-vrandom , by Theorem 2.10
the ground model reals V ∩ 2ω are not null in VPω2 . Since LT and Sacks coding have
the Laver property they are (f , g)-bounding, which implies that the iteration does not
add random reals.

Theorem 4.23 The constellation determined by cov(N ) = non(N ) = ℵ2 and d = ℵ1

is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For α even let Q̇0
α be the forcing notion Sg,g∗ defined in [3, Section 7.3.C], and

for α odd let Q̇0
α be the random real forcing B. Since Sg,g∗ makes the ground model

reals a null set, VPω2 � non(N ) = ℵ2 . Clearly cov(N ) is large in the final extension,
and since all iterands are ωω -bounding the ground model reals remain a witness to
d = ℵ1 in VPω2 .

5 Questions

We would like to conclude with some open questions. It is of interest whether all
of the constellations can in fact be obtained without the existence of a ∆1

3 wellorder
of the reals. Note that this would follow if one could simultaneously have that all
∆1

3 sets enjoy some regularity property that conflicts a ∆1
3 wellorder. Can we even

guarantee that there are no projective wellorders at all? Another direction is the
question whether an assignment of larger values to the cardinal invariants in the Cichón
diagram is consistent with the existence of a ∆1

3 wellorder. What about constellations
in which the invariants have more than two distinct values? Are those consistent with
the existence of a ∆1

3 wellorder of the reals?
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3.5 Regularity properties on the generalised reals

Sy David Friedman, Yurii Khomskii and Vadim Kulikov, Annals of Pure and Applied Logic
167, 2016, pp 408–430.

This publication began as a joint work of Friedman and Kulikov. Before I joined this
project, some basic results had already been established—preliminary versions of Theorems
3.10 and 3.13 and some parts of Theorem 4.9. After joining, we continued having regular
meetings with all three authors in addition to multiple informal collaborative meetings be-
tween Kulikov and Khomskii. The long technical result concerning Miller forcing (Lemma
4.4) as well as the technical parts of Lemma 4.9 are due to Khomskii. In detail:

• Section 3 (Definitions and ideas): Collaborative effort of all three authors

• Idea of Definition 3.6: Collaboration

• Lemma 3.8: Khomskii and Friedman

• Theorem 3.10: Khomskii, based on preliminary results by Friedman and Kulikov

• Lemma 3.12: Khomskii

• Theorem 3.13: Collaboration

• Corollary 3.14: Collaboration

• Observation 3.16: Khomskii

• Lemma 4.1: Khomskii

• Lemma 4.4: Khomskii

• Lemma 4.9: Collaboration

• Theorem 4.11: Collaboration

The paper was written by Khomskii.

99



Annals of Pure and Applied Logic 167 (2016) 408–430

Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

Regularity properties on the generalized reals

Sy David Friedman 1, Yurii Khomskii ∗,2, Vadim Kulikov ∗,3

Kurt Gödel Research Center for Mathematical Logic, University of Vienna, Währinger Straße 25, 
1090 Wien, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 July 2014
Accepted 18 July 2015
Available online 10 February 2016

MSC:
03E15
03E40
03E30
03E05

Keywords:
Generalized Baire spaces
Regularity properties
Descriptive set theory

We investigate regularity properties derived from tree-like forcing notions in the 
setting of “generalized descriptive set theory”, i.e., descriptive set theory on κκ and 
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© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Generalized Descriptive Set Theory is an area of research dealing with generalizations of classical de-
scriptive set theory on the Baire space ωω and Cantor space 2ω, to the generalized Baire space κκ and the 
generalized Cantor space 2κ, where κ is an uncountable regular cardinal satisfying κ<κ = κ. Some of the 
earlier papers dealing with descriptive set theory on (ω1)ω1 were motivated by model-theoretic concerns, see 
e.g. [24] and [30, Chapter 9.6]. More recently, generalized descriptive set theory became a field of interest 
in itself, with various aspects being studied for their own sake, as well as for their applications to different 
fields of set theory.

This paper is the first systematic study of regularity properties for subsets of generalized Baire spaces. 
We will focus on regularity properties derived from tree-like forcing partial orders, using the framework 
introduced by Ikegami in [16] (see Definition 3.1) as a generalization of the Baire property, as well as a num-
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ber of other standard regularity properties (Lebesgue measurability, Ramsey property, Sacks property etc.) 
In the classical setting, such properties have been studied by many people, see, e.g., [15,3,4,19]. Typically, 
these properties are satisfied by analytic sets, while the Axiom of Choice can be used to provide counterex-
amples. On the second projective level one obtains independence results, as witnessed by “Solovay-style” 
characterization theorems, such as the following:

Theorem 1.1. (See Solovay [29].) All Σ1
2 sets have the Baire property if and only if for every r ∈ ωω there 

are co-meager many Cohen reals over L[r].

Theorem 1.2. (See Judah–Shelah [15].) All Δ1
2 sets have the Baire property if and only if for every r ∈ ωω

there is a Cohen real over L[r].

These types of theorems make it possible to study the relationships between different regularity properties 
on the second level. Far less is known for higher projective levels, although some results exist in the presence 
of large cardinals (see [16, Section 5]) and some other results can be found in [1, Chapter 9] and in the 
recent works [8,6]. Solovay’s model [29] provides a uniform way of establishing regularity properties for all 
projective sets, starting from ZFC with an inaccessible.

When attempting to generalize descriptive set theory from ωω to κκ for a regular uncountable κ, at 
first many basic results remain intact after a straightforward replacement of ω by κ. But, before long, 
one starts to notice fundamental differences: for example, the generalized Δ1

1 sets are not the same as 
the generalized Borel sets; absoluteness theorems, such as Σ1

1- and Shoenfield absoluteness, are not valid; 
and in the constructible universe L, there is a Σ1

1-good well-order of κκ, as opposed to merely a Σ1
2-good 

well-order in the standard setting (see Section 2 for details). Not surprisingly, regularity properties also 
behave radically different in the generalized context. Halko and Shelah [13] first noticed that on 2κ, the 
generalized Baire property provably fails for Σ1

1 sets. On the other hand, it holds for the generalized Borel 
sets, and is independent for generalized Δ1

1 sets. This suggests that some of the classical theory on the Σ1
2

and Δ1
2 level corresponds to the Δ1

1 level in the generalized setting.
It should be noted that other kinds of regularity properties have been considered before, sometimes 

leading to different patterns in terms of consistency of projective regularity. For example, in [27] Schlicht 
shows that it is consistent relative to an inaccessible that a version of the perfect set property holds for all 
generalized projective sets. By [22], as well as recent results of Laguzzi and the first author, similar results 
hold for suitable modifications of the properties studied here.

This paper is structured as follows: Section 2 will be devoted to a brief survey of facts about the “gen-
eralized reals”. In Section 3 we introduce an abstract notion of regularity and prove that, under certain 
assumption, the following results hold:

1. Borel sets are “regular”.
2. Not all analytic sets are “regular”.
3. For Δ1

1 sets, the answer is independent of ZFC.

In Section 4 we focus on some concrete examples on the Δ1
1-level and generalize some classical results from 

the Δ1
2-level. Section 5 ends with a number of open questions.

2. Generalized Baire spaces

We devote this section to a survey of facts about κκ and 2κ which will be needed in the rest of the paper, 
as well as specifying some definitions and conventions. None of the results here are new, though some are 
not widely known or have not been sufficiently documented.
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Notation 2.1. κ<κ denotes the set of all functions from α to κ for some α < κ, similarly for 2<κ. We use 
standard notation concerning sequences, e.g., for s, t ∈ κ<κ we use s�t to denote the concatenation of s
and t, s ⊆ t to denote that s is an initial segment of t etc. κκ

↑ denotes the set of strictly increasing functions 
from κ to κ, and κ<κ

↑ the set of strictly increasing functions from α to κ for some α < κ. Also, we will 
frequently refer to elements of κκ or 2κ as “κ-reals” or “generalized reals”.

For finite sequences, it is customary to denote the length by |s|. In the generalized context, in order to 
avoid confusion with cardinality, we denote the length of a sequence (i.e., the unique α such that s ∈ κα or 
2α) by “len(s)”.

2.1. Topology

We always assume that κ is an uncountable, regular cardinal, and that κ<κ = κ holds. The standard 
topology on κκ is the one generated by basic open sets of the form [s] := {x ∈ κκ | s ⊆ x}, for s ∈ κ<κ; 
similarly for 2κ. Many elementary facts from the classical setting have straightforward generalizations to the 
generalized setting. The concepts nowhere dense and meager are defined as usual, and a set A has the Baire 
property if and only if A�O is meager for some open O. The following classical results are true regardless 
of the value of κ:

• Baire category theorem: the intersection of κ-many open dense sets is dense.
• Kuratowski–Ulam theorem (also called Fubini for category): if A ⊆ κκ × κκ has the Baire property then 

A is meager if and only if {x | Ax is meager} is comeager, where Ax := {y | (x, y) ∈ A}.

Definition 2.2. A tree is a subset of κ<κ or 2<κ closed under initial segments. For a node t ∈ T , we write 
SuccT (t) := {s ∈ T | s = t�〈α〉 for some α}. A node t ∈ T is called

• terminal if SuccT (t) = ∅,
• splitting if |SuccT (t)| > 1, and
• club-splitting if {α | t�〈α〉 ∈ T )} is a club in κ.

We use the notation Split(T ) to refer to the set of all splitting nodes of T .
A t ∈ T is called a successor node if len(t) is a successor ordinal and a limit node if len(t) is a limit ordinal. 

A tree is pruned if it has no terminal nodes, and <κ-closed if for every increasing sequence {si | i < λ} of 
nodes from T , for λ < κ, the limit 

⋃
i<λ si is also a node of T .

Notice that concepts such as club-splitting, successor and limit node, and <κ-closed are inherent to the 
generalized setting and have no classical counterpart. Most of the trees we consider will be pruned and 
<κ-closed.

A branch through T is a κ-real x ∈ κκ or 2κ such that ∀α (x�α ∈ T ), and [T ] denotes the set of all 
branches through T . As usual, [T ] is topologically closed and every closed set has the form [T ] for some 
tree T .

The Borel and projective hierarchies are defined in analogy to the classical situation: the Borel sets form 
the smallest collection of subsets of κκ or 2κ containing the basic open sets and closed under complements 
and κ-unions. A set is Σ1

1 iff it is the projection of a closed (equivalently: Borel) set; it is Π1
n iff its complement 

is Σ1
n; and it is Σ1

n+1 iff it is the projection of a Π1
n set, for n ≥ 1. It is Δ1

n iff it is both Σ1
n and Π1

n, and 
projective iff it is Σ1

n or Π1
n for some n ∈ ω.

In spite of the close similarity of the above notions to the classical ones, there are also fundamental 
differences:
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Fact 2.3. Borel 	= Δ1
1.

A proof of this fact can be found in [11, Theorem 18 (1)], and we also refer readers to Sections II and III 
of the same paper for a more detailed survey of the basic properties of κκ and 2κ.

2.2. The club filter

Sets that will play a crucial role in this paper are those related to the club filter. As usual, we may identify 
2κ with P(κ) via characteristic functions.

Fact 2.4. The set C := {a ⊆ κ | a contains a club} is Σ1
1.

Proof. For every c ⊆ κ, note that c is closed (in the “club”-sense) if and only if for every α < κ, c ∩ α is 
closed in α. Therefore, “being closed” is a (topologically) closed property. Being unbounded, on the other 
hand, is a Gδ property, so “being club” is Gδ. Then for all a ⊆ κ we have a ∈ C iff ∃c (c is club and c ⊆ a), 
which is Σ1

1. �
In [13] it was first noticed that the club filter provides a counterexample to the Baire property.

Theorem 2.5 (Halko–Shelah). The club filter C does not satisfy the Baire property.

We will prove a generalization of the above, see Theorem 3.10. An immediate corollary of Theorem 2.5
is that in the generalized setting, analytic sets do not satisfy the Baire property. Although the club filter 
clearly cannot be Borel (Borel sets do satisfy the Baire property, in any topological space satisfying the 
Baire category theorem), it can consistently be Δ1

1 for successors κ.

Theorem 2.6 (Mekler–Shelah; Friedman–Wu–Zdomskyy). For any successor cardinal κ, it is consistent that 
the club filter on κ is Δ1

1.

Proof. For κ = ω1, this was first prove in [23]. The argument contained a flaw, which was corrected in [14]. 
For arbitrary successor cardinals κ, this was proved using different methods in [12]. �

It is also consistent that the club filter is not Δ1
1—this will follow from Theorem 3.13.

2.3. Absoluteness

Two fundamental results in descriptive set theory are analytic (Mostowski) absoluteness and Shoenfield 
absoluteness. In general, this type of absoluteness does not hold for uncountable κ. For example, let κ = λ+

for regular λ, pick S ⊆ κ ∩ Cof(λ) such that both S and (κ ∩ Cof(λ)) \ S are stationary. Let P be a forcing 
for adding a club to S ∪ Cof(<λ). Then, if Φ is the Σ1

1 formula defining the club filter C ⊆ P(κ) from 
Fact 2.4, we have that V |= ¬Φ(S ∪ Cof(<λ)) while V P |= Φ(S ∪ Cof(<λ)), so Σ1

1-absoluteness fails even 
for κ+-preserving forcing extensions. On the other hand, Σ1

1-absoluteness does hold for generic extensions 
via <κ-closed forcings.

Lemma 2.7. Let P be a <κ-closed forcing. Then Σ1
1 formulas are absolute between V and V P.

Proof. Let φ(x) be a Σ1
1 formula with parameters in V . Let x ∈ κκ and assume V P |= φ(x). Let T (in V ) 

be a two-dimensional tree such that {x | φ(x)} = p[T ], i.e., the projection of T to the first coordinate. Let 
h ∈ κκ ∩ V P be such that V P |= (x, h) ∈ [T ] and let ḣ be a P-name for h.
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By induction, build an increasing sequence {pi | i < κ} of P-conditions, and an increasing sequence 
{ti ∈ κ<κ | i < κ}, such that each pi � ti ⊆ ḣ. This can be done since at limit stages λ < κ, we can define 
tλ :=

⋃
i<λ ti and pick pλ below pi for all i < λ. Since every pi forces (x̌, ḣ) ∈ [T ], it follows that for every i

we have (x�len(ti), ti) ∈ T . But then (in V ) let g :=
⋃

i<κ ti, so (x, g) ∈ [T ] and therefore φ(x) holds. �
2.4. Well-order of the reals

In the classical setting, it is well-known that in L there exists a Σ1
2 well-order of the reals. In fact, the 

well-order is “Σ1
2-good”, meaning that both the relation <L on the reals, and the binary relation defined 

by

Ψ(x, y) ≡ “x codes the set of <L-predecessors of y”

is Σ1
2. The proof uses absoluteness of <L and Ψ between L and initial segments Lδ for countable δ, and 

the fact that “E ⊆ ω × ω is well-founded” is a Π1
1-predicate on E. In the generalized setting, however, the 

predicate “E ⊆ κ × κ is well-founded” is closed, leading to the following result:

Lemma 2.8. In L, there is a Σ1
1-good well-order of κκ.

Proof. As usual, we have that for x, y ∈ κκ, x <L y iff ∃δ < κ+ such that x, y ∈ Lδ and Lδ |= x <L y. 
Using standard tricks, this can be re-written as “∃E ⊆ κ × κ (E is well-founded, x, y ∈ ran(πE) and 
(ω, E) |= ZFC∗ + V = L + x <L y)”, where πE refers to the transitive collapse of (ω, E) onto some (Lδ, ∈)
and ZFC∗ is a sufficiently large fragment of ZFC . The statement “E is well-founded” is closed because E
is well-founded iff ∀α < κ E ∩ (α×α) is well-founded. Thus we obtain a Σ1

1 statement. A similar argument 
works with <L replaced by Ψ(x, y), showing that the well-order is Σ1

1-good. �
2.5. Proper forcing

A ubiquitous tool in the study of the classical Baire and Cantor spaces is Shelah’s theory of proper 
forcing. It is a technical requirement on a forcing notion which is just sufficient to imply preservation of ω1, 
while itself being preserved by countable support iterations, and moreover having a multitude of natural 
examples. Over the years, there have been various attempts at generalizing this theory to higher cardinals 
(see e.g. [28,26,10] for some recent contributions). Of course, we can use the following straightforward 
generalization:

Definition 2.9. A forcing P is κ-proper if for every sufficiently large θ (e.g. θ > 2|P|), and for all elementary 
submodels M ≺ Hθ such that |M | = κ and M is closed under <κ-sequences, for every p ∈ P ∩ M there 
exists q ≤ p such that for every dense D ∈ M , D ∩ M is predense below q.

The above property follows both from the κ+-c.c. and a κ-version of Axiom A, and implies that κ+ is 
preserved, but the property itself is in general not preserved by iterations, see [25, Example 2.4]. Nevertheless, 
it is a useful formulation that we will need on some occasions.

While a uniform theory for κ-properness is lacking so far, preservation theorems are usually proved either 
using the κ+-c.c. or on a case-by-case basis.

Fact 2.10 (Baumgartner). A forcing Q is κ-linked iff Q =
⋃

α<κ Qα where each Qα consists of pairwise 
compatible conditions. A forcing Q is well-met iff for every two compatible conditions q1, q2 ∈ Q there is a 
greatest lower bound q ∈ Q.
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If Pα is an iteration of length α > κ with supports of size <κ, and every iterand is forced to be κ-linked, 
<κ-closed and well-met, then Pα has the κ+-c.c.

This was originally proved by Baumgartner in [2], and a modern treatment can be found e.g. in [20, 
Section V.5] (both expositions deal with κ = ω1 but the proof works for any regular uncountable κ satisfying 
κ<κ = κ).

Fact 2.11.

1. κ-Sacks forcing Sκ (see Example 3.2) was studied by Kanamori [17], where the following facts were 
proved:
(a) Sκ satisfies a generalized version of Axiom A (see Definition 3.6 (2)).
(b) Assuming �κ, iterations of Sκ with ≤κ-sized supports also satisfy a version of Axiom A.
(c) If κ is inaccessible, then Sκ is κκ-bounding (meaning that for every x ∈ κκ ∩ V Sκ there exists 

y ∈ κκ ∩ V such that x(i) < y(i) for sufficiently large i < κ), and so are arbitrary iterations of Sκ

with ≤κ-size supports.
2. κ-Miller forcing Mκ (see Example 3.2) was studied by Friedman and Zdomskyy [9], where the following 

facts were proved:
(a) Mκ satisfies a generalized version of Axiom A.
(b) Assuming κ is inaccessible, iterations of Mκ with ≤κ-sized supports satisfy a version of Axiom A.

In particular, Sκ, Mκ and their iterations are κ-proper in the sense of Definition 2.9 and thus preserve κ+.

3. Regularity properties

The regularity properties we will consider in this paper are those derived from definable tree-like forcing 
notions. In this section we give an abstract treatment following the framework introduced by Ikegami in 
[16], providing sufficient conditions so that the following facts can be proved uniformly:

1. Regularity for Borel sets is true.
2. Regularity for arbitrary Σ1

1 sets is false.
3. Regularity for arbitrary Δ1

1 sets is independent.

3.1. Tree-like forcings on κκ

Definition 3.1. A forcing notion P is called κ-tree-like iff

1. the conditions of P are pruned and <κ-closed trees on κκ or 2κ ordered by q ≤ p iff q ⊆ p,
2. the full tree (κ<κ or 2<κ) is an element of P,
3. for all T ∈ P and all s ∈ T the restriction T↑s := {t ∈ T | s ⊆ t or t ⊆ s} is also a member of P,
4. the statement “T is a P-tree” is absolute between models of ZFC, and
5. if 〈Tα | α < λ〉 is a decreasing sequence of conditions, with λ < κ, then 

⋂
α<λ Tα ∈ P.

The first three items are standard, and the fourth one is to make sure that the forcing notion has the 
same interpretation in all models (in particular in further forcing extensions). Item 5 is a strong form 
of <κ-closure of the forcing which is needed for technical reasons. Below are a few examples of κ-tree-
like forcings that have either been considered in the literature or are natural generalizations of classical 
notions.
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Example 3.2.

1. κ-Cohen forcing Cκ. Conditions are the trees corresponding to the basic open sets [s], for s ∈ 2<κ or 
κ<κ, ordered by inclusion.

2. κ-Sacks forcing Sκ. A tree T on 2κ is called a κ-Sacks tree if it is pruned, <κ-closed and
(a) every node t ∈ T has a splitting extension in T , and
(b) for every increasing sequence 〈si | i < λ〉, λ < κ, of splitting nodes in T , s :=

⋃
α<λ sα is a splitting

node of T .
Sκ is the partial order of κ-Sacks trees ordered by inclusion.

3. κ-Miller forcing Mκ. A tree T on κ<κ
↑ is called a κ-Miller tree if it is pruned, <κ-closed and

(a) every node t ∈ T has a club-splitting extension in T ,
(b) for every increasing sequence 〈si | i < λ〉, λ < κ, of club-splitting nodes in T , s :=

⋃
i<λ si is 

a club-splitting node of T . Moreover, continuous club-splitting is required, which is the following 
property: for every club-splitting limit node s ∈ T , if {si | i < λ} is the set of all club-splitting 
initial segments of s and Ci := {α | s�

i 〈α〉 ∈ T} is the club witnessing club-splitting of si for every 
i, then C := {α | s�〈α〉 ∈ T} =

⋂
i<λ Ci is the club witnessing club-splitting of s.

Mκ is the partial order of κ-Miller trees ordered by inclusion.
4. κ-Laver forcing Lκ. A tree T on κ<κ

↑ is a κ-Laver tree if all nodes s ∈ T extending the stem of T are 
club-splitting. Lκ is the partial order of κ-Laver trees ordered by inclusion.

5. κ-Mathias forcing Rκ. A κ-Mathias condition is a pair (s, C), where s ⊆ κ, len(s) < κ, C ⊆ κ is a club, 
and max(s) < min(C). The conditions are ordered by (t, D) ≤ (s, C) iff t ≤ s, D ⊆ C and t \ s ⊆ C. 
Formally, this does not follow Definition 3.1, but we can easily identify conditions (s, C) with trees 
T(s,C) on κ<κ

↑ defined by t ∈ T(s,C) iff ran(t) ⊆ s ∪ C.
6. κ-Silver forcing Vκ. If κ is inaccessible, let Vκ consist of κ-Sacks-trees T on 2<κ which are uniform, i.e., 

for s, t ∈ T , if len(s) = len(t) then s�〈i〉 ∈ T iff t�〈i〉 ∈ T . Alternatively, we can view conditions of 
Vκ as functions f : κ → {0, 1, {0, 1}}, such that f(i) = {0, 1} holds for all i ∈ C for some club C ⊆ κ, 
ordered by g ≤ f iff ∀i (f(i) ∈ {0, 1} → g(i) = f(i)).

The generalized κ-Sacks forcing was introduced and studied by Kanamori in [17], and the κ-Miller forcing 
is its natural variant, studied e.g. by Friedman and Zdomskyy in [9]. The requirement on the trees to be 
“closed under splitting-nodes” (2(b) and 3(b)) ensure that item 5 of Definition 3.1 is satisfied, and thus 
that the forcings are <κ-closed. The property called “continuous club-splitting” was introduced in [9] to 
facilitate the preservation of measurability. We should note that other generalizations of Miller forcing have 
also been considered, see e.g. [5].

κ-Silver is a natural generalization of Silver forcing, but the standard proof of Axiom A only works for 
inaccessible κ.

κ-Laver and κ-Mathias are, again, natural generalizations of their classical counterparts; however, since 
we require the trees to split into club-many successors at all branches above the stem, any two κ-Laver 
and κ-Mathias conditions with the same stem are compatible, so both Lκ and Rκ are κ+-centered and 
hence satisfy the κ+-c.c. Therefore they are perhaps more reminiscent of the classical Laver-with-filter and 
Mathias-with-filter forcings on ωω, rather than the actual Laver and Mathias forcing posets. Note that if 
we would drop club-splitting from the definition and only require stationary or κ-sized splitting instead, we 
would lose <κ-closure of the forcing.

Remark 3.3. One notion conspicuous by its absence from Example 3.2 is random forcing. To date, it is 
not entirely clear how random forcing should properly be generalized to uncountable κ. Recently Shelah 
proposed a definition for κ weakly compact, and a different approach was given by the first author and 
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Laguzzi in [7]. However, a consensus on the correct definition for arbitrary κ has not been reached so far, so 
in this work we choose to avoid random forcing, as well as the concept null ideal and Lebesgue measurability.

The following definition is based on [16, Definition 2.6 and Definition 2.8]. Let P be a fixed κ-tree-like 
forcing.

Definition 3.4. Let A be a subset of κκ or 2κ. Then

1. A is P-null iff ∀T ∈ P ∃S ≤ T such that [S] ∩ A = ∅. We denote the ideal of P-null sets by NP
2. A is P-meager iff it is a κ-union of P-null sets. We denote the κ-ideal of P-meager sets by IP.
3. A is P-measurable iff ∀T ∈ P ∃S ≤ T such that [S] ⊆∗ A or [S] ∩ A =∗ ∅, where ⊆∗ and =∗ refers to 

“modulo IP”.

For a wide class of tree-like forcing notions, the clause “modulo IP” can be eliminated from the above 
definition: see Lemma 3.8 (2).

3.2. Regularity of Borel sets

In ωω, it is not hard to prove that if P is proper then all analytic sets are P-measurable, using forcing-
theoretic arguments and absoluteness techniques (see e.g. [19, Proposition 2.2.3]). These methods are 
generally not available in the generalized setting. However, we would still like to know that, at least, all 
Borel subsets of κκ are P-measurable for all reasonable examples of P.

Remark 3.5. Closed sets are P-measurable for all P. To see this, let [U ] be an arbitrary closed set and 
let T ∈ P. If T ⊆ U then we are done, otherwise pick s ∈ T \ U , then by Definition 3.1 T↑s ∈ P and 
[T↑s] ∩ [U ] = ∅. It is also easy to see that being P-measurable is closed under complements and <κ-sized 
unions and intersections.

It remains to verify closure under κ-sized unions and intersections. For that we introduce some definitions 
that help to simplify the notion of P-measurability, and moreover will play a crucial role for the rest of this 
paper.

Definition 3.6. Let P be a κ-tree-like forcing notion on κκ or 2κ. Then we say that:

1. P is topological if {[T ] | T ∈ P} forms a topology base for κκ (i.e., for all S, T ∈ P, [S] ∩ [T ] is either 
empty or contains [R] for some R ∈ P).

2. P satisfies Axiom A iff there are orderings {≤α| α < κ}, with ≤0=≤, satisfying:
(a) T ≤β S implies T ≤α S, for all α ≤ β.
(b) If 〈Tα | α < λ〉 is a sequence of conditions, with λ ≤ κ (in particular λ = κ) satisfying

Tβ ≤α Tα for all α ≤ β,

then there exists T ∈ P such that T ≤α Tα for all α < λ.
(c) For all T ∈ P, D dense below T , and α < κ, there exists an E ⊆ D and S ≤α T such that |E| ≤ κ

and E is predense below S.
3. P satisfies Axiom A∗ if 2 above holds, but in 2 (c) we additionally require that “[S] ⊆ ⋃{[T ] | T ∈ E}”.

Example 3.7. In Example 3.2, κ-Cohen, κ-Laver and κ-Mathias are topological. By Fact 2.11, κ-Miller and 
κ-Sacks satisfy Axiom A, and it is not hard to see that in fact they satisfy Axiom A∗ as well (a direct 
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consequence of the construction). Assuming κ is inaccessible, a generalization of the classical proof shows 
that κ-Silver also satisfies Axiom A∗.

Lemma 3.8.

1. If P is topological then a set A is P-measurable iff it satisfies the property of Baire in the topology 
generated by P. In particular, all Borel sets are P-measurable.

2. If P satisfies Axiom A∗ then NP = IP, and consequently a set A is P-measurable iff ∀T ∈ P ∃S ≤ T ([S] ⊆
A or [S] ∩ A = ∅) (i.e., we can forget about “modulo IP”). Moreover, the collection of P-measurable 
sets is closed under κ-unions and κ-intersections.

The proofs are essentially analogous to the classical situation, but let us present them anyway since they 
are not widely known.

Proof. 1. First of all, notice that if P is topological then NP is exactly the collection of nowhere dense sets 
in the P-topology and IP is exactly the ideal of meager sets in the P-topology.

First assume A satisfies the P-Baire property, then let O be an open set in the P-topology such that 
A�O is P-meager. Given any T ∈ P, we have two cases: if [T ] ∩O = ∅ then we are done since [T ] ∩A =∗ ∅. 
If [T ] ∩ O is not empty then there exists a S ≤ T such that [S] ⊆ [T ] ∩ O. Then [S] ⊆∗ A holds, so again 
we are done.

The converse direction is somewhat more involved (cf. [18, Theorem 8.29]). Assume A is P-measurable. 
Let

• D1 be a maximal mutually disjoint subfamily of {T ∈ P | [T ] ⊆∗ A},
• D2 be a maximal mutually disjoint subfamily of {T ∈ P | [T ] ∩ A =∗ ∅}, and
• D := D1 ∪ D2.

Also write O1 :=
⋃{[T ] | T ∈ D1}, O2 :=

⋃{[T ] | T ∈ D2} and O := O1 ∪ O2. We will show that A�O1 is 
P-meager.

Claim 1. O is P-open dense.

Proof of Claim. Start with any T . By assumption there exists S ≤ T such that [S] ⊆∗ A or [S] ∩ A =∗ ∅. 
In the former case, note that by maximality, there must be some S′ ∈ D1 such that [S] ∩ [S′] 	= ∅. Then 
find S′′ such that [S′′] ⊆ [S] ∩ [S′]. Then [S′′] ⊆ O1. Likewise, in the case [S] ∩ A =∗ ∅ we find a stronger 
S′′ with [S′′] ⊆ O2. � (Claim 1).

Claim 2. A ∩ O2 and O1 \ A are P-meager.

Proof of Claim. Since the proof of both statements is analogous, we only do the first.
Enumerate D2 := {Tα | α < |κκ|}. For each α, let {Xα

i | i < κ} be a collection of P-nowhere dense sets, 
such that [Tα] ∩ A =

⋃
i<κ Xα

i . Now, for every i < κ, let Yi :=
⋃

α<|κκ| X
α
i . We will show that each Yi is 

P-nowhere dense. So fix i and pick any T ∈ P: if [T ] is disjoint from all [Tα]’s then clearly also [T ] ∩Yi = ∅. 
Else, let Tα be such that [T ] ∩ [Tα] 	= ∅. Then there exists S ≤ T such that [S] ⊆ [T ] ∩ [Tα]. By assumption, 
[Tα] is disjoint from all [Tβ ]’s, and hence from all Xβ

i ’s, for all β 	= α. Next, since Xα
i is P-nowhere dense, 

we can find S′ ≤ S such that [S′] ∩ Xα
i = ∅. But then [S′] ∩ Yi = ∅, proving that Yi is indeed P-nowhere 

dense.
Now clearly O2 ∩ A is completely covered by the collection {Yi | i < κ}, therefore it is mea-

ger. � (Claim 2).
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Now it follows from Claim 1 and Claim 2 that A�O1 = (O1 \A) ∪ (A ∩O2) ∪ (A \O) is a union of three 
meager sets, hence it is meager.

This proves that the set A has the property of Baire in the topology generated by P.
2. Assume P satisfies Axiom A∗, and let {Ai | i < κ} be a collection of P-null sets. We want to show 

that A :=
⋃

i<κ Ai is also P-null. For each i let Di := {T | [T ] ∩ Ai = ∅}. By assumption, each Di is dense. 
Now let T0 ∈ P be given. Using Axiom A∗ find, inductively, a sequence {Ti | i < κ} as well as a sequence 
{Ei ⊆ Di | i < κ} such that

• Tj ≤i Ti for all i ≤ j and
• [Ti] ⊆

⋃{[T ] | T ∈ Ei} for all i.

This can always be done by condition (c) of Axiom A∗. Then, by condition (b) there is a T such that T ≤ Ti

for all i, and hence, [T ] ⊆ ⋃{[S] | S ∈ Di} for all i. In particular, [T ] ∩ Ai = ∅ for all i < κ, proving that ⋂
Ai is P-null.
For the second claim, it suffices to show closure under κ-unions. Consider a collection {Ai | i < κ} of 

P-measurable sets, and let T ∈ P. We must find S ≤ T such that [S] ⊆ ⋃
i<κ Ai or [S] ∩⋃i<κ Ai = ∅. If 

for at least one i < κ, we can find S ≤ T such that [S] ⊆ Ai, we are done, so assume that’s not the case. 
Then we have Ai ∩ [T ] ∈ NP for all i, because for every S ∈ P, either S � T in which case we are done, or 
S ≤ T in which case, by P-measurability of Ai and the fact that IP = NP, there exists S′ ≤ S with [S′] ⊆ Ai

or [S′] ∩ Ai = ∅—but by our assumption the former is impossible and so the latter must hold. Therefore 
each Ai ∩ [T ] is in NP and again by the above we obtain 

⋃
i<κ(Ai ∩ [T ]) ∈ NP, so we can find S ≤ T with 

[S] ∩⋃i<κ Ai = ∅. �
Note that to prove point 2 above, we do not in fact need the full strength of Axiom A∗, but only need 

that for all T ∈ P, D dense below T , and α < κ, there exists S ≤α T such that [S] ⊆ ⋃{[T ] | T ∈ D}.

Corollary 3.9. If P is either topological or satisfies Axiom A∗ then all Borel sets are P-measurable.

3.3. Regularity of Σ1
1 sets

Let us abbreviate “all sets of complexity Γ are P-measurable” by “Γ(P)”. In the ωω case, ZFC proves 
Σ1

1(P), and by symmetry Π1
1(P), but Σ1

2(P) and Δ1
2(P) are independent of ZFC. But in the case that κ > ω

things are dramatically different since by the Halko–Shelah result (Theorem 2.5) Σ1
1(Cκ) is false, i.e., the 

Baire property fails for analytic sets. We attempt to find the essential requirements on P which would allow 
us to generalize this proof and show, in ZFC, that Σ1

1(P) fails, i.e., that there is an analytic set which is 
not P-measurable. It is most convenient to formulate this requirement in terms of the κ-Sacks and κ-Miller 
forcing notions, see Example 3.2.

Theorem 3.10. Let P be a tree-like forcing notion on 2κ whose conditions are κ-Sacks trees, or a tree-like 
forcing notion on κκ whose conditions are κ-Miller trees. Then Σ1

1(P) fails.

Proof. Let us start with the first case. Recall the club-filter C from Fact 2.4, considered as a subset of 2κ. 
If C were P-measurable then, in particular, we would have a T ∈ P such that [T ] ⊆∗ C or [T ] ∩ C =∗ ∅. 
First deal with the former case: let {Xi | i < κ} be P-null sets such that [T ] \ C =

⋃
i<κ Xi. Inductively, 

construct a decreasing sequence {Ti | i < κ} of conditions:

• T0 = T .
• Given Ti, first let T ′

i ≤ Ti be any condition with strictly longer stem, and then let Ti+1 ≤ T ′
i be such 

that [Ti+1] ∩ Xi = ∅.
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• At limit stages λ, first let T ′
λ :=

⋂
i<λ Tα, which is a P-condition by item 5 of Definition 3.1. Notice also 

that stem(T ′
λ) =

⋃
i<λ stem(Ti). That is because for every i < λ, 

⋃
i<λ stem(Ti) is in Ti and is the limit 

of an increasing sequence 〈stem(Tj) | i ≤ j < λ〉 of splitnodes of Ti, hence it is also a splitnode in Ti by 
condition 2(b) of Example 3.2. Therefore it is a splitnode in T ′

λ and so is the stem of T ′
λ.

Let Tλ ≤ T ′
λ be such that stem(Tλ) ⊇ stem(T ′

λ)�〈0〉.

Now let x :=
⋃

i<κ stem(Ti). Then x is a branch through T , x /∈ Xi for all i, and moreover, there exists a 
club c ⊆ κ such that x(i) = 0 for all i ∈ c. In particular, x /∈ C—contradiction.

To deal with the second case that [T ] ∩ C =∗ ∅, proceed analogously except that at limit stages, pick 
Tλ ≤ T ′

λ such that stem(Tλ) ⊇ stem(T ′
λ)�〈1〉; then it will follow that x ∈ C.

When P is a tree-like forcing on κκ whose conditions are κ-Miller trees, we apply the same argument, 
but using the following variant of the club-filter: let S be a stationary, co-stationary subset of κ and define

CS := {a ∈ κκ | ∃c ⊆ κ club such that ∀i ∈ c (x(i) ∈ S)}.

Clearly this set is Σ1
1 by the same argument as in Fact 2.4. Proceed exactly as before, choosing members 

from S or from κ \ S at limit stages, as desired, which can be achieved using the club-splitting of the 
trees. �

In the above result, an essential property of the trees T was that ∀x ∈ [T ], the set {i < κ | x�i is a splitting 
node of T} formed a club on κ. Recent work of Philipp Schlicht [27] and Giorgio Laguzzi [22] suggests that 
this property is directly related to the existence of Σ1

1-counterexamples, since for a version of Sacks-, Miller-
and Silver-measurability where the trees are not required to have this property, it is consistent that all 
projective sets are measurable.

3.4. Regularity of Δ1
1 sets

With Borel(P) being provable in ZFC and Σ1
1(P) inconsistent, we are left with the Δ1

1-level.

Lemma 3.11 (Folklore). If V = L then Δ1
1(P) is false for all tree-like P.

Proof. Use the Σ1
1-good wellorder of the reals of L from Lemma 2.8, and proceed as in the ωω-case, obtaining 

a Δ1
1-counterexample as opposed to a Δ1

2 one. �
This is not the only method to produce Δ1

1-counterexamples to P-measurability. A completely different 
method, innate to the generalized setting, is to produce models in which the club filter itself is Δ1

1, see 
Lemma 2.6.

It is known that the Baire property on κκ holds for Δ1
1 sets in κ+-product/iterations of κ-Cohen forcing, 

see e.g. [11, Theorem 49 (7)]. We would like to generalize this to other κ-tree-like forcings. First, we need the 
following technical result, a strengthening of the concept of κ-proper (Definition 2.9). This is again similar 
to the classical case.

Lemma 3.12. Let P be κ-tree-like, and assume that P either has the κ+-c.c. or satisfies Axiom A∗. Then for 
every elementary submodel M ≺ Hθ of a sufficiently large Hθ, with |M | = κ and M<κ ⊆ M , and for every 
T ∈ P ∩ M , there is T ′ ≤ T such that

[T ′] ⊆∗ {x ∈ κκ | x is P-generic over M}

where ⊆∗ means “modulo IP” and a κ-real x is P-generic over M if {S ∈ P ∩ M | x ∈ [S]} is a P-generic 
filter over M .
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Proof. First assume that P has the κ+-c.c. Let M be an elementary submodel with |M | = κ.

Claim. A real x is P-generic over M if and only if x /∈ B for every Borel P-null set B coded in M .

Proof. Suppose x is P-generic over M , and let B be a P-null set coded in M . Then by elementarity M |=
“B is P-null”, and D := {S ∈ P ∩ M | [S] ∩ B = ∅} is in M and M |= “D is dense”. Since x is P-generic, 
there exists S ∈ D such that x ∈ [S], and therefore, x /∈ B.

Conversely, suppose x /∈ B for every Borel P-null set coded in M . Let D ⊆ P be a dense set in M , and let 
A be a maximal antichain inside D. Let B := κκ \⋃{[S] | S ∈ (A ∩ M)} which is a Borel set since |A| = κ

and has a code in M . Moreover B ∈ NP since A is a maximal antichain. Therefore, by assumption, x /∈ B, 
and hence x ∈ [S] for some S ∈ A ∩ M , i.e., x is P-generic over M . � (Claim).

Now it is easy to see that X :=
⋃{B | B is a Borel set in NP with code in M} is a κ-union of P-null 

sets, hence it is itself in IP. In particular, there exists T ′ ≤ T such that [T ′] ⊆∗ {x | x is P-generic over 
M} = κκ \ X.

Next, assume instead that P satisfies Axiom A∗. Let {Di | i < κ} enumerate the dense sets in M , and 
let T ∈ P ∩ M . As usual, we can apply Axiom A∗ to inductively find a fusion sequence {Ti | i < κ} and 
a sequence {Ei ⊆ Di | i < κ} such that each Ei ∈ M and |Ei| ≤ κ, and hence Ei ⊆ M , and moreover 
[Ti] ⊆

⋃{[S] | S ∈ Ei}. Let T ′ be such that T ′ ≤ Ti for all i. Then for every i, [T ′] ⊆ ⋃{[S] | S ∈ Ei}, so, 
in particular, every x in [T ′] is P-generic over M , so we are done. �

Using this strengthening of κ-properness, we are almost in a position to prove that a κ+-iteration of P
satisfying either the κ+-c.c. or Axiom A∗ yields a model of for Δ1

1(P). However, we still have an obstacle, 
and that is the lack of an abstract preservation theorem for κ-properness, mentioned in Section 2.5. This 
obstacle makes it impossible to prove the next theorem in an abstract setting including the non-κ+-c.c. 
cases. We could formulate it under the assumption that κ-properness is preserved; but in fact we only need 
several consequences of κ-properness, namely, that κ+ is preserved and that all new κ-reals appear at some 
initial stage of the iteration.

Theorem 3.13. Let P be a tree-like forcing.

1. Suppose P is κ-linked and well-met (see Fact 2.10), and let Pκ+ be the κ+-iteration of P with supports 
of size <κ. Then V Pκ+ |= Δ1

1(P).
2. Suppose P satisfies Axiom A∗, and let Pκ+ be the κ+-iteration of P with supports of size ≤κ. Moreover, 

assume that Pκ+ preserve κ+ and, moreover, for every x ∈ κκ ∩ V Pκ+ , there is α < κ+ such that 
x ∈ κκ ∩ V Pα . Then V Pκ+ |= Δ1

1(P).

Proof. The proof works uniformly for both cases. In case 1 we use Fact 2.10 to conclude that Pκ+ has the 
κ+-c.c., hence preserves κ+ and has the well-known property that κ-reals in the final extension are caught 
at an initial stage of the iteration. Note that by Definition 3.1 (5), all tree-like forcings are <κ-closed.

In V [Gκ+ ], let A be Δ1
1, defined by Σ1

1-formulas φ and ψ. Let S ∈ P be arbitrary. By the assumption, 
there exists an α < κ+ such that all parameters of φ and ψ, as well as S, belong to V [Gα]. Moreover, there 
is a β > α such that S belongs to G(β + 1) (the (β + 1)-st component of the generic filter), since it is dense 
to force this for some β > α. Let xβ+1 be the real corresponding to G(β + 1), i.e., the next P-generic real 
over V [Gβ ].

We know that in the final model V [Gκ+ ], either φ(xβ+1) or ψ(xβ+1) holds. As φ and ψ are both Σ1
1 the 

situation is clearly symmetrical so without loss of generality assume the former. Since P is <κ-closed, any 
iteration of it is also <κ-closed, so by Lemma 2.7 we have Σ1

1-absoluteness between V [Gκ+ ] and V [Gβ+1]. 
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In particular, V [Gβ+1] = V [Gβ ][xβ+1] |= φ(xβ+1). By the forcing theorem, and since we have assumed 
S ∈ G(β + 1), there exists a T ∈ V [Gβ ] such that T ≤ S and T �P φ(ẋgen).

Now, still in V [Gβ ], take an elementary submodel M of a sufficiently large structure, of size κ, contain-
ing T . By elementarity, M |= “T �P φ(ẋgen)”. Going back to V [Gκ+ ], use Lemma 3.12 to find a T ′ ≤ T

such that [T ′] ⊆∗ {x | x is P-generic over M}. Now note that if x is P-generic over M and x ∈ [T ], then 
M [x] |= φ(x). By upwards-Σ1

1-absoluteness between M and V [Gκ+ ], we conclude that φ(x) really holds. 
Since this was true for arbitrary x ∈ [T ′], we obtain [T ′] ⊆∗ {x | φ(x)} = A. �

The above theorem can be applied to many forcing partial orders P, in particular those from Example 3.2.

Corollary 3.14. Δ1
1(P) is consistent for P ∈ {Cκ, Sκ, Mκ, Lκ, Rκ}, and if κ is inaccessible, also for P = Vκ.

Proof. The forcings Cκ, Lκ and Rκ have the following two properties: any two conditions with the same 
stem are compatible, and if S, T are two compatible conditions, then S ∩T is a condition. This implies that 
all three forcings are κ-linked and well-met.

By Fact 2.11 (1), iterations of Sκ with ≤κ-sized supports satisfy κ-properness assuming that �κ holds 
in the ground model, so Δ1

1(Sκ) holds in LSκ+ . By Fact 2.11 (2), iterations of Mκ with ≤κ-sized supports 
satisfy κ-properness for inaccessible κ. It seems very plausible that by an analogous argument to [17], the 
same holds for arbitrary κ assuming �κ. However, we will leave out the verification of this (potentially very 
technical) proof because Δ1

1(Mκ) also follows by a much easier argument, namely Theorem 4.9 (3). Finally, 
if κ is inaccessible then a straightforward modification of [17, Theorem 6.1] shows that iterations of κ-Silver 
with ≤κ-sized supports satisfies κ-properness (the only change in the argument involves the definition of the 
fusion sequence [17, Definition 1.7] and the amalgamation defined in [17, Page 103]). We leave the details 
to the reader. �
Remark 3.15. It is clear that in Theorem 3.13 it is enough to add P-generic reals cofinally often, provided 
that the iteration is <κ-closed and satisfies the other requirements. For example, we can obtain Δ1

1(Cκ) +
Δ1

1(Lκ) + Δ1
1(Rκ) simultaneously by employing a κ+-iteration of (Cκ ∗ Lκ ∗ Rκ) with supports of size <κ.

Recall that in the classical setting we had Solovay-style characterization theorems for Δ1
2 sets, such 

as Theorem 1.2 and related results (see [3,16]). In light of Theorem 3.13, one might expect that in the 
generalized setting, analogous characterization theorems exist for statements concerning Δ1

1 sets. However, 
the following observation shows that this is not the case.

Observation 3.16. Suppose κ is successor. There exists a generic extension of L in which the statement 
“∀r ∈ 2κ ∃x (x is κ-Cohen over L[r])” holds, yet there exists a Δ1

1 subset of 2κ without the Baire property.

Proof. Recall that by Theorem 2.6, it is consistent for the club filter C (Definition 2.4) to be Δ1
1-definable. 

The idea is to adapt the proof of [12, Theorem 1.1] due to Friedman, Wu and Zdomskyy. Since that proof 
is long and technical, we cannot afford to go into details here, so we only provide a sketch of the argument 
and leave the details to the reader. In that proof, a model where C is Δ1

1 is obtained by a forcing iteration, 
starting from L, in which cofinally many iterands have the κ+-c.c. One can then verify that the proof 
remains correct if, additionally, κ-Cohen reals are added cofinally often to this iteration (in fact, κ-Cohen 
reals are added naturally in the original proof). Thus we obtain a model in which the club filter is Δ1

1 and 
hence fails to have the Baire property, while clearly the statement “∀r ∈ 2κ ∃x (x is κ-Cohen over L[r])” is 
true. �

A similar argument can be applied to any κ-tree-like forcing P which satisfies the κ+-c.c., provided it 
also satisfies Theorem 3.10 (i.e., whose trees are κ-Sacks or κ-Miller trees).
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Table 1
Properties of forcings.

κ-Cohen
κ-Laver
κ-Mathias

Category 1: topological, κ+-c.c., ideal IP cannot be neglected; 
P-measurability equivalent to Baire property in P-topology.

κ-Sacks
κ-Miller
κ-Silver

Category 2: non-topological, Axiom A∗, IP = NP can be 
neglected.

4. Regularity properties for Δ1
1 sets

In the classical setting, regularity properties related to well-known forcing notions on ωω or 2ω have been 
investigated, and the exact relationship between statements Δ1

2(P) and Σ1
2(P) has been studied for various 

forcing notions P. As we saw in the previous section, for generalized reals the Δ1
1-level reflects some of these 

results. We will focus on the forcing notions from Example 3.2, i.e., κ-Cohen, κ-Sacks, κ-Miller, κ-Laver, 
κ-Mathias and κ-Silver.

Before proceeding, we make a further comment regarding κ-Laver and κ-Mathias, showing that the ideal 
ILκ

of Lκ-meager sets and the ideal IRκ
of Rκ-meager sets cannot be neglected when discussing the regularity 

property generated by them.

Lemma 4.1. The ideal NLκ
of Lκ-null sets is not equal to the ideal ILκ

of Lκ-meager sets. Also, there is an 
Fσ set A such that no κ-Laver tree is completely contained or completely disjoint from A. The same holds 
for Rκ.

Proof. Fix a stationary, co-stationary S ⊆ κ. For each i < κ define Ai := {x ∈ κκ
↑ | ∀j > i(x(j) ∈ S)} and 

A =
⋃

i<κ Ai. Then each Ai is Lκ-null, because any κ-Laver tree T can be extended to some T ′ ≤ T with 
stem s, such that len(s) > i and for some j > i we have s(j) /∈ S, so that clearly [T ′] ∩ Ai = ∅. On the 
other hand, A itself cannot be Lκ-null, because every κ-Laver tree T contains a branch x ∈ [T ] such that 
for all j longer then the stem of T we have x(j) ∈ S, and therefore x ∈ A. It is also clear that the set A
is Fσ but every κ-Laver tree T contains a branch x which is in A and another branch y which is not in A. 
The argument for κ-Mathias is analogous. �

Summarizing, the forcings we have introduced can be neatly divided into two categories as presented in 
Table 1.

4.1. Solovay-style characterizations

By Observation 3.16, we know that a Solovay-style characterization for Δ1
1(P) cannot be achieved in the 

generalized setting. However, in some cases we can obtain one half of such a characterization.

Lemma 4.2. Δ1
1(Cκ) implies that for every r ∈ κκ there exists a κ-Cohen real over L[r].

Proof. The proof is completely analogous to the classical case, see e.g. [1, Theorem 9.2.1], except that we 
obtain a Δ1

1-counterexample as opposed to a Δ1
2 one, using the Σ1

1-good wellorder of L (Lemma 2.8). 
A central ingredient of the classical proof is the Kuratowski–Ulam (Fubini for Category) theorem, which, 
as we mentioned, is valid on the generalized Baire space. A detailed argument has also been worked out in 
the PhD Thesis of Laguzzi, see [21, Theorem 75]. �
Lemma 4.3. Δ1

1(Sκ) implies that for every r ∈ κκ there is an x ∈ 2κ \ L[r].

Proof. This follows directly from Lemma 3.11. �
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Let us define, for x, y ∈ κκ, the eventual domination relation: x <∗ y iff ∃α∀β > α (x(β) < y(β)). We 
will simply say “y dominates x” for x <∗ y and if X ⊆ κκ we will say “y dominates X” iff ∀x ∈ X (x <∗ y). 
We will also say “y is unbounded over x” iff x ≯∗ y and “y is unbounded over X” iff ∀x ∈ X (x ≯∗ y). Note 
that for the next lemma, it is not relevant whether we talk about domination in the space of all elements 
of κκ or only the strictly increasing ones.

In [3, Theorem 6.1] it is proved that Δ1
2(M) implies the existence of unbounded reals over L[r] for every 

real r. This generalizes to the κκ-context assuming κ is an inaccessible.

Lemma 4.4. Suppose κ is inaccessible. Then Δ1
1(Mκ) implies that for every r ∈ κκ there is an x ∈ κκ

↑ which 
is unbounded over κκ

↑ ∩ L[r].

Proof. The proof is based on the proof of [3, Theorem 6.1]. Assuming that there are no unbounded re-
als over κκ

↑ ∩ L[r] we will construct a Σ1
1-definable sequence 〈fα | α < κ+〉 of reals in L[r] which is 

dominating, well-ordered by <∗, and satisfies some additional technical properties. This will yield two 
non-κ-Miller-measurable sets A and B defined by A := {x ∈ κκ

↑ | the least α such that x ≤∗ fα is even}
and B := {x ∈ κκ

↑ | the least α such that x ≤∗ fα is odd}, where, by convention, limit ordinals are 
considered even.

To begin with, we fix an enumeration 〈σi | i < κ〉 of κ<κ
↑ \ {∅}. Let �σ� denote i such that σ = σi, and 

also well-order κ<κ
↑ \ {∅} by �, defined by σ � τ iff �σ� ≤ �τ�. We also use the following notation: for all 

σ ∈ κ<κ
↑ of successor length, let σ(last) denote the last digit of σ, i.e., σ(len(σ) − 1).

Next, let C denote the set {σ ∈ κ<κ
↑ | len(σ) is a successor}. Define a fixed function ϕ0 : C → κ by letting 

ϕ0(σ) be the least i < κ such that σi(0) > σ(last). The function ϕ0 should be understood as a “lower 
bound” on potential other functions ϕ : C → κ satisfying σϕ(σ)(0) > σ(last).

Let T be a given κ-Miller tree T , and assume, without loss of generality, that every splitting node of T is 
club-splitting. We recursively define a collection 〈τ̃T

σ | σ ∈ κ<κ
↑ 〉 of split-nodes of T , and another collection 

〈τT
σ | σ ∈ C〉, as follows:

• τ̃T
∅ = stem(T ).

• Assuming τ̃T
σ is defined, and given a β < κ, let τT

σ�〈β〉 be σi for the least i such that
– τ̃T �

σ σi ∈ Split(T ), and
– σi(0) > β.
Then let τ̃T

σ�〈β〉 := τ̃T �
σ τT

σ�〈β〉.
• For σ with len(σ) = λ limit, let τ̃T

σ :=
⋃

α<λ τ̃T
σ�α. Note that τ̃T

σ ∈ Split(T ) by the assumption that 
limits of splitting nodes in T are splitting.

Intuitively, each τT
σ , for σ of successor length, gives us a �-minimal extension within the tree T , whose 

first digit is strictly higher then the a-priori-prescribed value σ(last). Define a function ϕT : C → κ by 
ϕT (σ) := �τT

σ �. This function will be used as a lower bound later. Notice that for any κ-Miller tree T we 
have ϕ0 ≤ ϕT , and in fact ϕ0 = ϕ(

κ<κ
↑

) (i.e., the ϕT for T = κ<κ
↑ = the trivial Mκ-condition).

It is worth noting that since the values of ϕT (σ) and ϕ0(σ) only depend on σ(last), these functions could 
also be construed as functions from κ to κ. However, for technical reasons, it is necessary to consider them 
as functions from C to κ.

Next, for a fixed function f : κ → κ, another function ϕ : κ<κ
↑ → κ satisfying ϕ0 ≤ ϕ, and an ordinal 

β < κ, we define a special set S = S(ϕ, f, β) of κ-reals. This set will be defined by specifying “fronts” Sα, 
for α < κ. Each Sα will be a subset of κ<κ

↑ , satisfying the following two requirements:

1. |Sα| < κ, and
2. ∀ρ ∈ Sα (len(ρ) ≥ α).
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Moreover, every ρ ∈ Sα+1 will be a proper extension of a ρ′ ∈ Sα. We construct the Sα recursively as 
follows:

• S0 := {σi | i ≤ β}.
• S1 := {ρ�σi | ρ ∈ S0, i ≤ ϕ(〈β〉) and σi(0) > β}.

Notice that since ϕ0(〈β〉) ≤ ϕ(〈β〉) there is at least one σi satisfying the above requirement. In particular, 
all elements of S1 have length ≥ 1. It is also clear that |S1| < κ.

• Let height(S1) := sup{len(ρ) | ρ ∈ S1} and let f∗(1) := sup({β} ∪ {f(ξ) | ξ < height(S1)}). Now let

S2 := {ρ�σi | ρ ∈ S1, i ≤ ϕ(〈β, f∗(1)〉) and σi(0) > f∗(1)}.

Again notice that since ϕ0(〈β, f∗(1)〉) ≤ ϕ(〈β, f∗(1)〉), there exists at least one σi as above, so all 
element of S2 have length ≥ 2. Also it is clear that |S2| < κ.

• Generally, assume Sα is defined as well as f∗(ξ) for all ξ < α. Let height(Sα) := sup{len(ρ) | ρ ∈ Sα}, 
which is an ordinal < κ by the inductive assumption that |Sα| < κ. Let f∗(α) := sup({β} ∪ {f(ξ) | ξ <

height(Sα)}). Then let

Sα+1 := {ρ�σi | ρ ∈ Sα, i ≤ ϕ(〈β, f∗(1), . . . , f∗(α)〉) and σi(0) > f∗(α)}.

As before, ϕ0(〈β, f∗(1), . . . , f∗(α)〉) ≤ ϕ(〈β, f∗(1), . . . , f∗(α)〉) implies that all members of Sα+1 have 
length ≥ α + 1. Also |Sα+1| < κ is clear.

• Suppose λ is limit. Let Sλ be the collection of ρ ∈ κ<κ
↑ such that ρ =

⋃
α<λ ρα for some strictly 

⊆-increasing sequence {ρα | α < λ} with ρα ∈ Sα. Clearly all such ρ have length ≥ λ. By the inductive 
assumption that |Sα| < κ for all α < λ, and the fact that κ is inaccessible, it follows that |Sλ| < κ.

Finally we let S = S(ϕ, f, β) to be the set of all κ-reals x such that x =
⋃

α<κ ρα for some strictly 
⊆-increasing sequence {ρα | α < κ} with ρα ∈ Sα. The essential properties of S(ϕ, f, β) are summarized in 
the next sublemma:

Sublemma 4.5.

1. For every S(ϕ, f, β), there exists a function g ∈ κκ which bounds S(ϕ, f, β) (i.e., ∀x ∈ S(ϕ, f, β) ∀i <
κ ((x(i) < g(i)))).

2. Every x ∈ S(ϕ, f, β) is cofinally often above f (i.e., x ≮∗ f).
3. For every κ-Miller tree T , f and ϕ satisfying ϕT <∗ ϕ, there exists β < κ such that [T ] ∩S(ϕ, f, β) 	= ∅.

Proof.

1. By construction, if ρ is any initial segment of any x ∈ S(ϕ, f, β) with len(ρ) = α, then ρ must be an 
initial segment of some sequence from Sα. We can thus define g by stipulating that g(α) be above ρ(α) for 
all ρ ∈ Sα+1, which can always be done since |Sα+1| < κ. Now it is clear that for every x ∈ S(ϕ, f, β), 
for every α we have x(α) < g(α) (another way to explain this is: the tree generated by 

⋃
α<κ Sα is 

<κ-branching).
2. By construction, each Sα+1 contains only those ρ�σi where σi(0) > f∗(α). In particular σi(0) >

f(len(ρ)). Therefore x(ξ) > f(ξ) happens cofinally often for every x ∈ S(ϕ, f, β).
3. This is the main point of the proof. First, note that since ϕT <∗ ϕ, there are only <κ-many σ satisfying 

ϕT (σ) ≥ ϕ(σ). In particular, we can pick β < κ such that
(a) β > �stem(T )�, and
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(b) ϕT (〈β〉�σ) < ϕ(〈β〉�σ) holds for all σ.
After β has been fixed, the set S(ϕ, f, β) is also fixed. In particular, f∗ can be computed from f as it 
was done in the construction of the Sα’s. Let

�f := 〈β〉�〈f∗(α) | 1 ≤ α < κ〉

and for all α < κ use the abbreviation:

ρα := τ̃T
�f�α.

Then x :=
⋃

α<κ ρα =
⋃

α<κ τ̃T
�f�α is a branch through [T ]. On the other hand, we claim that ρα ∈ Sα

for all α:
• Since �stem(T )� < β and ρ0 = τ̃T

∅ = stem(T ), by construction ρ0 ∈ S0.
• Since ϕT (〈β〉) < ϕ(〈β〉), �τT

〈β〉� = ϕT (〈β〉), τT
〈β〉(0) > β, and

ρ1 = τ̃T
〈β〉 = τ̃T �

∅ τT
〈β〉 = ρ�

0 τT
〈β〉,

by construction ρ1 ∈ S1.
• Assume ρα ∈ Sα. Since ϕT (�f�(α+1)) < ϕ(�f�(α+1)), �τT

�f�(α+1)� = ϕT (�f�(α+1)), τT
�f�(α+1)(0) > f∗(α)

and

ρα+1 = τ̃T
�f�(α+1) = τ̃T �

�f�α τT
�f�(α+1) = ρ�

α τT
�f�(α+1),

by construction ρα+1 ∈ Sα+1.
• For limits λ we have ρλ = τ̃T

f�λ =
⋃

α<λ τ̃T
f�α =

⋃
α<λ ρα. Since inductively ρα ∈ Sα, by definition we 

have ρλ ∈ Sλ.
Since ρα ∈ Sα for all α < κ we obtain x =

⋃
α<κ ρα ∈ S(ϕ, f, β), as had to be shown. � (Sublemma).

To complete the proof of the main lemma, assume, towards contradiction, that κκ
↑ ∩L[r] is a dominating 

set, for some r. Construct a sequence 〈fα | α < κ+〉 of elements of κκ
↑ ∩ L[r], and an auxiliary sequence 

〈ϕα | α < κ+〉 of elements of κC ∩ L[r], in such a way that:

1. 〈fα | α < κ+〉 and 〈ϕα | α < κ+〉 are well-ordered by <∗,
2. 〈fα | α < κ+〉 is a dominating subset of κκ

↑ ∩L[r] and 〈ϕα | α < κ+〉 is a dominating subset of κC ∩L[r],
3. all ϕα are pointwise strictly above ϕ0,
4. fα+1 dominates S(ϕα, fα, β) for all β, and
5. both sequences have Σ1

1-definitions.

To see that this can be done, at each step α inductively pick the <L[a]-least fα and ϕα dominating all 
the previous functions; to satisfy point 4 above, use Sublemma (1) to dominate each S(ϕα, fα, β) by a 
corresponding function gβ, and then dominate {gβ | β < κ} by another g.

Now, as suggested earlier, define A := {x ∈ κκ
↑ | the least fα which dominates x is even} and B := {x ∈

κκ
↑ | the least fα which dominates x is odd}. Clearly A ∩ B = ∅, and by assumption A ∪ B = κκ

↑ . Since 
the sequence of fα’s was Σ1

1-definable, the sets A and B are also Σ1
1-definable, hence they are both Δ1

1. To 
reach a contradiction, let T be a κ-Miller tree, and we will show that [T ] contains an element in A and an 
element in B. Since the sequence 〈ϕα | α < κ+〉 is dominating, there exists an α such that for all ξ ≥ α we 
have ϕT <∗ ϕξ. In particular ϕT <∗ ϕα and ϕT <∗ ϕα+1. By point 3 of the Sublemma, we can find β and 
β′ such that



S.D. Friedman et al. / Annals of Pure and Applied Logic 167 (2016) 408–430 425

[T ] ∩ S(ϕα, fα, β) 	= ∅, and

[T ] ∩ S(ϕα+1, fα+1, β
′) 	= ∅.

Without loss of generality α is even. Let y be an element of the first set. By point 2 of the Sublemma, 
y ≮∗ fα, and by construction, y <∗ fα+1. Hence y ∈ B. Likewise, let y′ be an element of the second set. 
Then by an analogous argument y′ ≮∗ fα+1 but y′ <∗ fα+2. Hence y′ ∈ A. This completes the proof. �
Question 4.6. Can Lemma 4.4 be proved without assuming that κ is inaccessible?

So far, these are the only generalizations of classical Solovay-style characterizations known to us. The 
other result due to Brendle and Löwe linked Laver-measurability with dominating reals. However, that 
proof does not seem to generalize to the κκ-setting because κ-Laver-measurability differs from classical 
Laver-measurability in the sense that the ideal IL cannot be neglected (see Lemma 4.1). Therefore the 
following is still open:

Question 4.7. Does Δ1
1(Lκ) imply that for every r ∈ κκ, there is an x which is dominating over L[r]?

Likewise, currently we do not have suitable Solovay-style consequences of the assumptions Δ1
1(Vκ) and 

Δ1
1(Rκ). In the classical setting, there is a connection between these properties and splitting/unsplit reals.

Question 4.8. Can the hypotheses Δ1
1(Vκ) and Δ1

1(Rκ) be linked to the existence of (a suitable generalization 
of) splitting/unsplit reals?

4.2. Comparing Δ1
1(P)

The next questions we want to ask are: for which P and Q does Δ1
1(P) imply Δ1

1(Q), and for which P and 
Q can we construct models where Δ1

1(P) + ¬Δ1
1(Q) holds? We will prove several implications for arbitrary 

pointclasses Γ in Lemma 4.9. Classical counterparts of such implications are well-known but generally much 
easier to prove, as the uncountable context provides combinatorial challenges not present when κ = ω.

Separating regularity properties is currently very difficult for the following two reasons:

1. We do not have good Solovay-style characterizations, and
2. We do not have good preservation theorems for forcing iterations.

We will finish this section with the only example of such a separation result currently known to us.

Lemma 4.9. Let Γ be a class of subsets of κκ or 2κ closed under continuous preimages (in particular Γ = Δ1
1). 

Then

1. Γ(Mκ) ⇒ Γ(Sκ).
2. Γ(Vκ) ⇒ Γ(Sκ).
3. Γ(Cκ) ⇒ Γ(Mκ).
4. Γ(Lκ) ⇒ Γ(Mκ).
5. Γ(Rκ) ⇒ Γ(Mκ).
6. If κ is inaccessible, then Γ(Cκ) ⇒ Γ(Vκ).
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Proof.

1. Let A ⊆ 2κ be a set in Γ and let T be a κ-Sacks tree. We must find a κ-Sacks tree below T whose 
branches are completely contained in or disjoint from A. Let ϕ be the natural order-preserving bijection 
identifying 2<κ with Split(T ), and ϕ∗ the induced homeomorphism between 2κ and [T ]. Further, fix a 
stationary, co-stationary set S ⊆ κ and enumerate S := {ξα | α < κ} and κ \ S := {ηα | α < κ}. Let ψ
be a map from κ<κ

↑ to 2<κ defined by:
• ψ(∅) = ∅.

• ψ(s�〈α〉) :=
{
ψ(s)�〈1〉�0β �〈1〉 if α ∈ S and α = ξβ

ψ(s)�〈0〉�0β �〈1〉 if α /∈ S and α = ηβ

where 0β denotes a β-sequence of 0’s.
• ψ(s) :=

⋃
α<λ ψ(s�α), if len(s) = λ for a limit ordinal.

The function ψ is different from a standard encoding of ordinals by binary sequences, but it is clear 
that ψ is bijective, since there is an obvious algorithm to compute ψ−1(s) for any s ∈ 2<κ. The reason 
for using this specific function is that we want ψ(s) to be a splitting node whenever s is a club-splitting 
node. Clearly, ψ induces a homeomorphism ψ∗ between κκ

↑ and 2κ \ Q, where we use Q to denote the 
generalized rationals, i.e., Q := {x ∈ 2κ | |{i | x(i) = 1}| < κ}.
Let A′ := (ϕ∗ ◦ ψ∗)−1[A], which is in Γ by assumption. By Γ(Mκ) we can find a κ-Miller tree R such 
that [R] ⊆ A′ or [R] ∩ A′ = ∅, w.l.o.g. the former. Let R′ := {ψ(s) | s ∈ R}. First, note that R′ is a 
κ-Sacks tree: this follows because for any s ∈ Split(R) there are α ∈ S and β /∈ S such that both s�〈α〉
and s�〈β〉 are in R, which implies that both ψ(s)�〈1〉 and ψ(s)�〈0〉 are in R′, so ψ(s) ∈ Split(R′). 
Moreover, since ψ∗ is a homeomorphism, we know that [R′] \ Q = (ψ∗)“[R] ⊆ (ϕ∗)−1[A]. But since Q
is a set of size κ we can easily find a refinement R′′ ⊆ R′, which is still a κ-Sacks tree and moreover 
[R′′] ⊆ (ψ∗)“[R] ⊆ (ϕ∗)−1[A]. Then (ϕ∗)“[R′′] generates a κ-Sacks tree which is completely contained 
in [T ] ∩ A.

2. Let A ∈ Γ and T ∈ Sκ and ϕ and ϕ∗ be as above. Then A′ := (ϕ∗)−1[A] is in Γ so there exists a κ-Silver 
tree S such that [S] ⊆ A or [S] ∩ A = ∅. As S is a κ-Sacks tree, clearly ϕ“S generates a κ-Sacks tree 
below T whose branches are completely contained in or completely disjoint from A.

3. Now let A ⊆ κκ
↑ be in Γ and let T be a κ-Miller tree. By shrinking if necessary, we may assume T

to have the property that all splitting nodes are club-splitting. Let ϕ be the natural order-preserving 
bijection between κ<κ

↑ and Split(T ), and ϕ∗ the induced homeomorphism between κκ
↑ and [T ]. Let 

A′ := (ϕ∗)−1[A]. As A′ has the Baire property by Γ(Cκ), let [s] be a basic open set such that [s] ⊆∗ A′

or [s] ∩ A′ =∗ ∅, and without loss of generality assume the former. Let {Xi | i < κ} be nowhere dense 
sets such that [s] \ A′ =

⋃
i<κ Xi. We will inductively construct a κ-Miller tree S such that [S] ⊆ A′

and [S] ∩ Xi = ∅ for all i < κ.
• Let S0 be the tree generated by {s}.
• Suppose Si has been defined for i < κ. Let Term(Si) be the collection of terminal branches of Si (i.e., 

those σ ∈ Si such that SuccSi
(σ) = ∅), and for each σ ∈ Term(Si) and α < κ, let τσ,α be an extension 

of σ�〈α〉 such that [τσ,α] ∩ Xi = ∅. Now let Si+1 be the tree generated by {τσ,α | σ ∈ Term(Si) and 
α < κ}.

• For limits λ < κ, let Sλ be the tree generated by cofinal branches through 
⋃

α<λ Sα.
By construction, S :=

⋃
i<κ Si is a κ-Miller tree (all splitting nodes of S are in fact fully splitting). 

Moreover [S] ⊆ [s] and [S] ∩Xi = ∅ for all i < κ. In particular, [S] ⊆ A′. But now it follows easily that 
ϕ“S generates a κ-Miller tree below T , whose branches are completely contained in A.

4. This follows a similar strategy as above, but using the topology generated by Lκ instead of the standard 
topology. Let A ∈ κκ

↑ be in Γ, T ∈ Mκ, ϕ and ϕ∗ be as above, and let A′ := (ϕ∗)−1[A]. As A′ is 
Lκ-measurable, there is a κ-Laver tree R such that [R] ⊆∗ A′ or [R] ∩A′ =∗ ∅, where ⊆∗ and =∗ means 
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“modulo ILκ
”. Without loss of generality assume the former and let {Xi | i < κ} be in NLκ

such that 
[R] \ A′ =

⋃
i<κ Xi. Again we will construct a κ-Miller tree S such that [S] ⊆ A′ and [S] ∩ Xi = ∅ for 

all i < κ.
We will need to perform a fusion argument on Mκ, so we introduce some terminology. For a κ-Miller 
tree S, a node s ∈ S is called an i-th splitting node iff s ∈ Split(S) and the set {j < i | s�j ∈ Split(S)}
has order-type i. Spliti(S) denotes the set of i-th splitting nodes of S. The standard fusion for Mκ (cf. 
Fact 2.11 (2)) is defined by S′ ≤i S iff S′ ≤ S and Spliti(S′) = Spliti(S). We will build a fusion sequence 
{Si | i < κ} of κ-Miller trees, but with the following additional property

(∗) ∀i ∀s ∈ Spliti(Si) (Si↑s is a κ-Laver tree with stem s).

Note that if s is as above, then every t ∈ Si extending s also has the property that Si↑t is a κ-Laver 
tree with stem t.
• Let S0 := R.
• Suppose Si has been defined for i < κ. Pick σ ∈ ⋃{SuccSi

(ρ) | ρ ∈ Spliti(Si)}. By (∗) we know 
that Si↑ρ, and therefore also Si↑σ, is a κ-Laver tree. So let Sσ ≤ Si↑σ be a κ-Laver tree such that 
[Sσ] ∩ Xi = ∅. Then let

Si+1 :=
⋃

{Sσ | σ ∈
⋃

{SuccSi
(ρ) | ρ ∈ Spliti(Si)}}.

By construction Si+1 is a κ-Miller tree, Si+1 ≤i Si, and condition (∗) is satisfied.
• For limits λ < κ, let Sλ :=

⋂
i<λ Si. By a standard fusion argument, Sλ is a κ-Miller tree and Sλ ≤i Si

for all i < λ. Moreover, any σ ∈ Splitλ(Sλ) is the extension of a λ-splitting node of Si for every i, so 
by condition (∗), Si↑σ is a κ-Laver tree with stem σ, for every i < λ. By <κ-closure of Lκ, it follows 
that Sλ↑σ =

⋂
i<λ(Si↑σ) is a κ-Laver tree with stem σ, hence Sλ satisfies condition (∗).

By construction, S :=
⋂

i<κ Si is a κ-Miller tree, [S] ⊆ [R], and [S] ∩Xi = ∅ for all i < κ. In particular, 
[S] ⊆ A′. Now it follows that ϕ“S generates a κ-Miller tree below T , whose branches are completely 
contained in A.

5. This part is completely analogous to 4. Note that κ-Mathias conditions are special kinds of κ-Laver 
trees, and Rκ is also <κ-closed.

6. Here it is easier to consider Cκ on 2κ as opposed to κκ. It is not hard to see that the two properties 
are equivalent for Γ. Let A ⊆ 2κ be in Γ, let T ∈ Vκ, let ϕ be the natural order-preserving bijection 
between 2κ and the splitnodes of T , and let ϕ∗ be the induced homeomorphism between 2κ and [T ]. 
Let A′ := (ϕ∗)−1[A], and using Γ(Cκ) let s ∈ 2<κ be such that [s] ⊆∗ A′ or [s] ∩ A′ =∗ ∅, without 
loss of generality the former. Let Xi be nowhere dense such that [s] \ A′ =

⋃
i<κ Xi. As before, we will 

inductively construct a κ-Silver tree S such that [S] ⊆ [s] and [S] ∩ Xi = ∅ for all i.
In this construction, it will be easier to view κ-Silver conditions as functions from κ to {0, 1, {0, 1}}. We 
will use the following notation: for f : α → {0, 1, {0, 1}} let

[f ] := {x ∈ 2α | ∀i (f(i) ∈ {0, 1} → x(i) = f(i))}.

Notice that if f : κ → {0, 1, {0, 1}} and f(i) = {0, 1} for club-many i, then the corresponding κ-Silver 
tree can be defined as Sf := {σ ∈ 2<κ | σ ∈ [f�len(σ)]}, and we have [Sf ] = [f ]. We will construct a 
function f as the limit of fα’s, defined as follows:
• f0 := s.
• Since X0 is nowhere dense, let τ1 be such that [s�〈0〉�τ1] ∩ X0 = ∅. Then let τ2 ⊇ τ1 be such that 

[s�〈1〉�τ2] ∩ X0 = ∅. Now set

f1 := s�〈{0, 1}〉�τ2.
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Notice that for any x ∈ 2κ extending any σ ∈ [f1] we have x /∈ X0.
• Suppose fi is defined for i < κ. Let {σα | α < 2i} enumerate all sequences in [f�

i 〈{0, 1}〉] and define 
{τα | α < 2i} by induction as follows:
– τ0 = ∅.
– If τα is defined let τα+1 ⊇ τα be such that [σ�

α τα+1] ∩ Xi = ∅.
– For limits λ let τλ :=

⋃
α<λ τα.

Then define τ2i :=
⋃

α<2i τα and notice that τ2i ∈ 2δ for δ < κ since κ was inaccessible. Now let

fi+1 := f�
i 〈{0, 1}〉�τ2i .

It is clear that any x ∈ 2κ extending any σ ∈ [fi+1] is not in Xi.
• For γ limit, let fγ :=

⋃
i<γ fi.

Finally, we let f :=
⋃

i<κ fi. By construction f(i) = {0, 1} for club-many i < κ, and clearly every x ∈ [f ]
is not in Xi for any i < κ. Hence Sf := {σ ∈ 2<κ | σ ∈ [f�len(σ)]} is a κ-Silver tree with [Sf ] ⊆ A′. Then 
ϕ“Sf generates a κ-Silver subtree of T which is completely contained in A, as had to be shown. �

Focusing on Γ = Δ1
1, we can summarize the contents of the above results in Fig. 1.4 Of particular interest 

are two implications which are present in the classical setting but still seem open in the general setting:
Δ1

1(Vκ) Δ1
1(Sκ)

Δ1
1(Rκ)

?

?

Δ1
1(Lκ) Δ1

1(Mκ)

Δ1
1(Cκ)

κ inacc.

Fig. 1. Diagram of implications for Δ1
1.

Question 4.10. Is Δ1
1(Rκ) ⇒ Δ1

1(Lκ) true? Is Δ1
1(Rκ) ⇒ Δ1

1(Vκ) (at least for κ inaccessible) true?

As mentioned, currently we can prove only the following separation theorem.

Theorem 4.11. Suppose κ is inaccessible. Then it is consistent that Δ1
1(Vκ) and Δ1

1(Sκ) hold whereas 
Δ1

1(Rκ), Δ1
1(Lκ), Δ1

1(Cκ) and Δ1
1(Mκ) fail.

Proof. It is sufficient to establish Δ1
1(Vκ) + ¬Δ1

1(Mκ). Perform a κ+-iteration of κ-Silver forcing, starting 
in L, with supports of size κ. An argument completely analogous to [17, Theorem 6.1] shows that this 
iteration of κ-Silver forcing is κ-proper (so the conditions necessary to apply Theorem 3.13 are satisfied, 
i.e., κ+ is preserved and κ-reals in the final extension are captured by an initial segment), and moreover, 
is κκ-bounding, i.e., every function f ∈ κκ in the extension is dominated by a g ∈ κκ in the ground model. 
By Theorem 3.13 the generic extension satisfies Δ1

1(Vκ), while the statement “∀r ∃x (x is unbounded over 
κκ ∩ L[r])” is false, so by Lemma 4.4 Δ1

1(Mκ) fails. �
4 We arrange the diagram in this particular way in order to be consistent with previous presentations of similar diagrams, e.g. 

in [6].
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Notice that by Remark 3.15 and Lemma 4.9 we can obtain Δ1
1(P) for all P ∈ {Cκ, Sκ, Mκ, Lκ, Rκ}, and 

also for P = Vκ if κ is inaccessible, simultaneously in one model, namely L(Cκ∗Lκ∗Rκ)ω1 .

5. Open questions

We have carried out an initial study of regularity properties related to forcing notions on the generalized 
reals; but many questions remain open, particularly with regard to the specific examples presented in 
Section 4.

Question 5.1.

1. Can Lemma 4.4 be proved without assuming that κ is inaccessible?
2. Does Δ1

1(Lκ) imply that for every r ∈ κκ, there is an x which is dominating over L[r]?
3. Can the hypotheses Δ1

1(Vκ) and Δ1
1(Rκ) be linked to the existence of (a suitable generalization of) 

splitting/unsplit reals?

A more long-term goal would be to find a complete diagram of implications for generalized Δ1
1 sets.

Question 5.2. Which additional implications from Fig. 1 can be proved in ZFC? Which are consistently 
false? Specifically, does Δ1

1(Rκ) ⇒ Δ1
1(Lκ) and Δ1

1(Rκ) ⇒ Δ1
1(Vκ) (at least for κ inaccessible) hold?

In a more conceptual direction, one should try to better understand the exact role of the club filter, which 
provides counterexamples for Σ1

1-regularity. For example, perhaps one could prove that the club filter, up to 
some adequate notion of equivalence, is the only Σ1

1-counterexample. Alternatively, one could try to focus 
on regularity properties such as the ones considered in [27,22], and try to gain a better understanding why 
the club filter is a counterexample for some regularity properties but not for others. For example, by recent 
results of Laguzzi and the first author, projective measurability is consistent for a version of Silver forcing 
in which the splitting levels occur on a normal measure on κ as opposed to the club filter.
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We investigate two closely related partial orders of trees on ωω: the full-splitting 
Miller trees and the infinitely often equal trees, as well as their corresponding 
σ-ideals. The former notion was considered by Newelski and Rosłanowski while 
the latter involves a correction of a result of Spinas. We consider some Marczewski-
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a question of Fremlin whether one can add an infinitely often equal real without 
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1. Introduction

A common theme in descriptive set theory and forcing theory on the reals are perfect-set-style dichotomy 
theorems—statements asserting that all Borel (or analytic) sets are either in a σ-ideal I on ωω, or else 
contain the branches of a certain kind of tree. When P denotes the partial order of these trees ordered by 
inclusion, such a theorem guarantees that there is a dense embedding

P ↪→d B(ωω) \ I

from P to the partial order of Borel sets positive with respect to I (also ordered by inclusion), and hence that 
the two posets are forcing-equivalent. The most famous result of this kind is the original perfect set theorem, 
showing that the Sacks partial order (perfect trees ordered by inclusion) densely embeds into the partial 
order of uncountable Borel sets. Jindřich Zapletal [18,19] developed an extensive theory of idealized forcing, 
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i.e., forcing with B(ωω) \ I for various σ-ideals I on the reals. In Zapletal’s framework, properties of the 
forcing can be studied directly using properties of the σ-ideal. On the other hand, there is a long-established 
tradition of studying forcing properties using combinatorics on trees. A dichotomy theorem provides the 
best of both worlds, since it allows us to freely switch back and forth between the “idealized” and the “tree” 
framework, depending on which suits the situation better.

In this paper we consider two closely related dichotomies. The following two definitions are due to 
Newelski and Rosłanowski [14].

Definition 1.1. A tree T ⊆ ω<ω is called a full-splitting Miller tree iff every t ∈ T has an extension s ∈ T

such that s is full-splitting, i.e., s� 〈n〉 ∈ T for every n. Let FM denote the partial order of full-splitting 
Miller trees ordered by inclusion.

Definition 1.2. For f : ω<ω → ω, let

Df := {x ∈ ωω | ∀∞n (x(n) �= f(x�n))}.

Then Dω := {A ⊆ ωω | A ⊆ Df for some f}.

The original motivation of [14] was the connection to infinite games of the same kind as used by Morton 
Davis in [4] in the proof of the perfect set theorem from determinacy, but played on ωω instead of 2ω. Let 
G∗(A) be the game in which Player I chooses si ∈ ω<ω \ {∅} and Player II chooses ni ∈ ω, and I wins iff 
s0

� 〈n0〉 �s1
� 〈n1〉 � · · · ∈ A. It is easy to see (cf. [15]) that Player I wins G∗(A) if and only if there exists 

a tree T ∈ FM such that [T ] ⊆ A, and Player II wins G∗(A) if and only if A ∈ Dω. General properties 
of so-called Mycielski ideals (i.e., ideals of sets for which II wins a corresponding game) imply that Dω

is a σ-ideal on ωω. Using Solovay’s “unfolding” method (see e.g. [9, Exercise 27.14]) it follows from the 
determinacy of closed games that analytic sets are either Dω-small or contain [T ] for some T ∈ FM.

The next concept is due to Spinas [16].

Definition 1.3. For every x ∈ ωω let Kx := {y ∈ ωω | ∀∞n (x(n) �= y(n))}, and let Iioe be the σ-ideal 
generated by Kx, for x ∈ ωω.

In [16], Iioe-positive sets were called “countably infinitely often equal families”, since a set A is 
Iioe-positive if and only if for every countable sequence of reals {xi | i < ω} there exists a ∈ A which 
hits every xi infinitely often. The following result was claimed in [16, Theorem 3.3]: “every analytic set is 
either Iioe-small or contains [T ] for some T ∈ FM”. This dichotomy is clearly in error, as the simple example 
below shows:

Example 1.4. Let T be the tree on ω<ω defined as follows:

• If |s| is even then succT (s) = {0, 1}.

• If |s| is odd then succT (s) =
{

2N if s(|s| − 1) = 0
2N + 1 if s(|s| − 1) = 1

where succT (s) := {n | s� 〈n〉 ∈ T}. Clearly T is Iioe-positive but cannot contain a full-splitting subtree.

The correct dichotomy for the ideal Iioe involves a subtle modification of the concept of a full-splitting 
tree, suggested by Spinas in private communication.
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Definition 1.5 (Spinas). A tree T ⊆ ωω is called an infinitely often equal tree, or simply ioe-tree, if for each 
t ∈ T there exists N > |t|, such that for every k ∈ ω there exists s ∈ T extending t such that s(N) = k. Let 
IE denote the partial order of ioe-trees ordered by inclusion.

Clearly FM ⊆ IE while the converse is false by Example 1.4. It is not hard to see that the proof of [16, 
Theorem 3.3] does yield the following correct dichotomy theorem: “every analytic set is either Iioe-small 
or contains [T ] for some T ∈ IE.” This dichotomy, like the one of Newelski–Rosłanowski, also allows for an 
easy analysis in terms of infinite games, see Definition 4.5 and Theorem 4.6. Moreover, an argument as in 
Theorem 4.2 provides an alternative, arguably more elementary, proof of the dichotomy. The partial order 
IE has been considered in unpublished work of Goldstern and Shelah [7], but hasn’t been studied elsewhere 
to our knowledge.

Summarizing the situation, we have two closely related perfect-set-style dichotomy theorems leading to 
the following dense embeddings:

FM ↪→d B(ωω) \ Dω

IE ↪→d B(ωω) \ Iioe

We will study these objects from various points of view. In Section 2 we look at some general properties 
of these two forcings/ideals, relating them to one another as well as to Cohen forcing and the meager ideal. 
In Section 3 we consider regularity properties generated by these forcings/ideals which are closely related 
to the property of Baire, and in Section 4 we focus on the dichotomies themselves, but for projective classes 
above analytic. Section 5 is devoted to an interesting problem concerning the forcing IE and Cohen reals.

We use standard set-theoretic notation; for a tree T ⊆ ω<ω and t ∈ T , we write succT (t) = {n | t� 〈n〉 ∈
T} and T↑t to denote {s ∈ T | s ⊆ t or t ⊆ s}. We will frequently use the notation Df and Kx to refer to the 
generators of the σ-ideals Dω and Iioe, as in Definitions 1.2 and 1.3. Also, we will say that two reals x, y ∈ ωω

are infinitely often equal (ioe) if ∃∞n (x(n) = y(n)) and eventually different (evd) if ∀∞n (x(n) �= y(n)).
We would like to thank Martin Goldstern, Otmar Spinas and Wolfgang Wohofsky for some useful dis-

cussion and advice.

2. Some general properties

The first easy observations involve the relationships between Dω, Iioe and the ideal M of meager subsets 
of ωω.

Lemma 2.1. Iioe � Dω � M.

Proof. For every x ∈ ωω let fx : ω<ω → ω be defined by fx(s) := x(|s|). Then it is easy to see that Kx ⊆ Dfx
, 

and since Dω is a σ-ideal Iioe ⊆ Dω follows. On the other hand, if T is the tree from Example 1.4 then 
[T ] ∈ Dω (because [T ] does not contain an FM-subtree) but [T ] /∈ Iioe.

To see Dω � M notice that for f : ω<ω → ω the sets Df,N := {y | ∀n > N (y(n) �= f(y�n))} are nowhere 
dense, so Df =

⋃
N∈ω Df,N is meager. On the other hand {x | ∀n (x(2n) = 0)} is meager but contains a 

full-splitting Miller tree, hence it is not in Dω. �
Lemma 2.2 (Newelski–Rosłanowski). There exists a continuous function ϕ : ωω → ωω such that for all 
meager A, ϕ−1[A] ∈ Dω.

Proof. Given a fixed enumeration {si | i < ω} of ω<ω, let ϕ be defined by

ϕ(x) = sx(0)
�sx(1)

�sx(2)
� . . .
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Also let ϕ′ : ω<ω → ω<ω be a function on initial segments such that ϕ(x) =
⋃

n∈ω ϕ′(x�n). Then, given a 
nowhere dense set X ⊆ ωω, define f : ω<ω → ω as follows: given s ∈ ω<ω find t such that [ϕ′(s)�t] ∩X = ∅, 
and let i be such that t = si. Then set f(s) = i. One can easily verify that ϕ−1[X] ⊆ Df , which is sufficient 
since Dω is a σ-ideal.

An alternative way to view this is as follows: given an arbitrary FM-tree T , ϕ“[T ] is non-meager. �
The relationship between Iioe, Dω and M is also apparent by considering cardinal invariants. Recall the 

definitions of cov(I), add(I), cof(I) and non(I) for σ-ideals on ωω (see e.g. [1, Section 1.3]). The following 
result is an easy generalization of [14, Theorem 3.1 and Corollary 3.3].

Theorem 2.3.

1. cov(Iioe) = cov(Dω) = cov(M) and non(Iioe) = non(Dω) = non(M).
2. add(Iioe) = add(Dω) = ω1 and cof(Iioe) = cof(Dω) = 2ℵ0 .

Proof.

1. Since Iioe ⊆ Dω ⊆ M it immediately follows that cov(M) ≤ cov(Dω) ≤ cov(Iioe). For the other 
direction, we recall Bartoszyński’s characterization [1, Theorem 2.4.1] saying that cov(M) is the least 
size of an eventually different family, i.e., a family F ⊆ ωω such that for every x ∈ ωω there exists y ∈ F

which is eventually different from x. From this it easily follows that cov(Iioe) ≤ cov(M). The proof for 
non is dual.

2. This follows from the following claim, proved by Newelski and Rosłanowski in [14, Theorem 3.2].

Claim 2.4 (Newelski–Rosłanowski). Let {xα | α < 2ℵ0} be a collection of reals such that ∀α �=
β ∃∞n (xα(n) �= xβ(n)), and for each α put Xα := {x | ∀n (x(n) �= xα(n))}. Then for every un-
countable F ⊆ 2ℵ0 , 

⋃
α∈F Xα /∈ Dω.

Since each Aα ∈ Iioe ⊆ Dω while 
⋃

α∈F Xα /∈ Dω ⊇ Iioe, the above claim implies the result for both 
Dω and Iioe. �

Turning to forcing properties, let us recall some results of Zapletal.

Definition 2.5. A σ-ideal I on ωω is σ-generated by closed sets if every set in I is contained in an Fσ-set 
in I.

Theorem 2.6 (Zapletal). If I is a σ-ideal on ωω σ-generated by closed sets then the forcing B(ωω) \ I is 
proper and preserves Baire category (non-meager ground-model sets remain non-meager in the extension).

Proof. See [19, Theorem 4.1.2]. �
Corollary 2.7. FM and IE are proper and preserve Baire category. In particular, they do not add dominating 
or random reals.

Proof. The generators Df and Kx are clearly Fσ sets, so the results follows by Zapletal’s theorem. It 
is not too hard to provide direct Axiom A-style proofs for this, in fact for FM it was already done in
[14, Section 2]. �

The following concept is very practical when dealing with idealized forcing notions, and was first explicitly 
defined in [3,8].
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Definition 2.8. Let I be a σ-ideal on the reals, and assume that membership of Borel sets in the ideal is a 
Σ1

2 predicate (on Borel codes). Let M be a model of set theory containing all countable ordinals and the 
defining parameter of I. Then a real x is called I-quasigeneric over M if and only if for every Borel set 
B ∈ I with Borel code in M , x /∈ B.

The importance of Σ1
2-definability is that the statement B ∈ I should be absolute between M and V . In 

general, being an I-quasigeneric real is much weaker then being a (B(ωω) \ I)-generic real. For example, 
a real is Sacks-quasigeneric (i.e., Ictbl-quasigeneric, where Ictbl is the ideal of countable subsets of ωω) over M
if and only if x /∈ M ; and it is Miller-quasigeneric (i.e., Kσ-quasigeneric, where Kσ is the ideal of σ-compact
subsets of ωω) over M if and only if it is unbounded over ωω ∩ M . However, a (B(ωω) \ I)-generic real is 
always I-quasigeneric. When I is a ccc ideal then the two notions are equivalent.

Definition 2.9. A real x is called infinitely often equal (ioe) over a model M , iff ∀y ∈ ωω ∩ M ∃∞n (x(n) =
y(n)). A real x is called infinitely often following (iof ) over a model M , iff ∀f ∈ ω(ω<ω) ∩ M ∃∞n (x(n) =
f(x�n)).

Lemma 2.10. Let M be a model of set theory with ω1 ⊆ M and x a real. Then:

1. x is Iioe-quasigeneric over M iff it is ioe over M , and
2. x is Dω-quasigeneric over M iff it is iof over M .

Proof. The proofs of both statements are analogous so let us only show the first. If x avoids Iioe-small Borel 
sets coded in M , then for any y ∈ ωω ∩ M , Ky is a Borel Iioe-small set coded in M , so x /∈ Ky, so x is 
ioe to y. Conversely, suppose x is ioe over M and B ∈ Iioe is a Borel set coded in M . Since “B ∈ Iioe” is 
a Σ1

2 statement on the code of B, by absoluteness M |= B ∈ Iioe. Therefore there are xi ∈ M such that 
B ⊆ ⋃i<ω Kxi

(this statement is Π1
1, hence absolute). But x is ioe to all xi, so by definition x /∈ Kxi

for all 
i, hence x /∈ B. �

Therefore, IE canonically adds an ioe real, whereas FM canonically adds an iof real. From Lemma 2.1 it 
immediately follows that a Cohen real is an iof real, and an iof real is an ioe real. Also, from Lemma 2.2 it 
follows that if x is an iof real then ϕ(x) is a Cohen real (so FM adds a Cohen real). Moreover, the following 
is well-known:

Fact 2.11 (Bartoszyński/Folklore). If V0 ⊆ V1 ⊆ V2 are models of set theory, in V1 there is an ioe real over 
V0 and in V2 there is an ioe real over V1, then in V2 there is a Cohen real over V0.

Corollary 2.12. IE ∗ IE adds a Cohen real.

So C, FM and IE all have a very similar effect on the structure of the real line. For example, an ω2-iteration 
of FM or IE with countable supports yields the same values for the cardinal invariants in Cichoń’s diagram as 
an ω2-iteration/product of Cohen forcing, namely ω1 = non(M) < cov(M) = ω2. Newelski and Rosłanowski
observed that “it seems that forcing FM is the best one for adding Cohen reals in countable support 
iterations.” In fact, we do not know the answer to the following basic question:

Question 2.13. What is a “natural” forcing property (e.g. adding or not adding certain types of reals) which 
distinguishes FM from Cohen forcing?

The situation with IE and adding Cohen reals is much more subtle, and is closely related to issues of 
homogeneity, which we will now describe.
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Definition 2.14 (Zapletal). A σ-ideal I on ωω is homogeneous if for every I-positive Borel set B, there exists 
a Borel function f : ωω → B such that f -preimages of I-small sets are I-small.

Remark 2.15. The meager ideal is well-known to be homogeneous, and for Dω, observe that for every 
full-splitting Miller tree T there exists a natural homeomorphism ψ between ωω and [T ] (generated by the 
identification of ω<ω with the split-nodes of T ), with the additional property that for every full-splitting 
tree S, ψ“[S] generates a full-splitting sub-tree of T . It follows that Dω is homogeneous.

On the other hand, Iioe fails to be homogeneous—this will indirectly follow both from Corollary 3.6 and 
from Lemma 5.2. The crucial point is the following idea from unpublished work of Goldstern and Shelah 
[7]:

Definition 2.16. A tree T ⊆ ω<ω is called an almost full-splitting Miller tree iff every t ∈ T has an extension 
s ∈ T such that ∀∞n (s� 〈n〉 ∈ T ).

Lemma 2.17 (Goldstern–Shelah). There exists a TGS ∈ IE such that every IE-subtree of TGS is an almost 
full-splitting Miller tree.

Proof. Construct TGS in such a way that:

1. Every splitting note t ∈ TGS is full-splitting.
2. If s �= t are splitting nodes of TGS then |s| �= |t|.
3. If t ∈ TGS is a non-splitting node of T then t(|t| − 1) = 0.

Such a tree can easily be constructed inductively after fixing some bijection f : ω<ω ∼= ω. It is not hard to 
see that if S is any sub-tree of TGS which is an ioe-tree, then it has to be an almost full-splitting, since the 
only way that a node of S can be extended to “hit” an arbitrary k > 0 on some fixed level, is to extend 
that node to a t ∈ S such that t� 〈k〉 ∈ S for all k > 0. �

An argument just as in the proof of Lemma 2.2 easily extends to show that if T is an almost full-splitting 
Miller tree then ϕ“[T ] is non-meager, implying that TGS �IE “ϕ(ẋG) is a Cohen real”. Nevertheless, since 
Iioe is not homogeneous, there is no a priori reason why there could not be some other IE-condition forcing 
that no Cohen reals are added. We shall return to this question in Section 5.

3. Marczewski-type regularity properties

A vast array of “Marczewski-type” regularity properties have been considered in the literature, where a 
set A ⊆ ωω is considered “measurable” if every set in a certain partial order can be shrunk to a smaller 
set in the same partial order, which is completely contained in, or disjoint from, the given set A, possibly 
modulo a suitable ideal. Polish mathematicians had a strong interest in such properties for a long time, 
e.g. [17]. More modern treatments include [2,3,5], while [8,12,11] provide more abstract treatments in the 
setting of forcing with trees or idealized forcing. See also [13] for a related treatment in terms of category 
bases. The Baire property, Lebesgue measurability, the Ramsey property and many other properties can be 
formulated as Marczewski-type properties. Following this setting we define:

Definition 3.1. A set A ⊆ ωω is called

• FM-measurable iff ∀T ∈ FM ∃S ∈ FM (S ≤ T and [S] ⊆ A or [S] ∩ A = ∅).
• IE-measurable iff ∀T ∈ IE ∃S ∈ IE (S ≤ T and [S] ⊆ A or [S] ∩ A = ∅).
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We also define weak (local) versions of the above.

Definition 3.2. A set A ⊆ ωω is

• weakly FM-measurable iff ∃S ∈ FM ([S] ⊆ A or [S] ∩ A = ∅).
• weakly IE-measurable iff ∃S ∈ IE ([S] ⊆ A or [S] ∩ A = ∅).

If Γ is some pointclass of sets (e.g. Borel, projective etc.) we follow standard practice and use the notation 
Γ(FM), Γ(IE), Γ(wFM) and Γ(wIE) to refer to the statements “all sets in Γ are FM-measurable”, “. . . are 
IE-measurable”, “. . . are weakly FM-measurable” and “. . . are weakly IE-measurable”, respectively. Γ(Baire)
refers to “all sets in Γ have the property of Baire”.

Usually, the homogeneity of the ideal/partial order of trees (in the sense of Definition 2.14) ensures that 
for sufficiently nice pointclasses Γ, the “weak” notion of measurability is equivalent to the strong one.

Observation 3.3. Let Γ be a pointclass closed under continuous pre-images. Since Dω is homogeneous (in 
fact witnessed by a continuous reduction) it is easy to see that Γ(FM) ⇔ Γ(wFM).

Theorem 3.4. Let Γ be a pointclass closed under continuous pre-images. Then the following are equivalent:

1. Γ(Baire)
2. Γ(FM)
3. Γ(IE)

Proof.

• 1 ⇒ 2. Let A ⊆ ωω be a set in Γ. By Γ(Baire) we can find a basic open set [s] such that [s] ⊆∗ A or 
[s] ∩A =∗ ∅, where ⊆∗ and =∗ stand for “modulo a meager set”. Without loss of generality, assume the 
former. Then there is a Gδ set B ⊆ A which is co-meager in [s]. Since Dω ⊆ M, B cannot be Dω-small, 
hence it contains an FM-tree. By Observation 3.3 this is sufficient.

• 2 ⇒ 3. We say that an ioe-tree T is in strict form if it can be written as follows:
– for every σ ∈ ω<ω, there exists Nσ ⊆ ωn, for some n ≥ 1, such that

∗ ∀k ∃!s ∈ Nσ (s(n − 1) = k), and
∗ for m < (n − 1), there is some k such that s(m) �= k for all s ∈ Nσ.
We use len(Nσ) = n to denote the length of Nσ, and we canonically enumerate Nσ as {sσ

k | k < ω}, 
in such a way that sσ

k(n − 1) = k.
– T is the tree generated by sequences of the form

s∅
n0

�s〈n0〉
n1

�s〈n0,n1〉
n2

� . . .�s〈n0,n1,n2,...,n�−1〉
n�

for some sequence 〈n0, n1, . . . , n�〉.
Ioe-trees in strict form are somewhat easier to visualize and deal with. If T is in strict form, t ∈ T , 
and we need to find the first N such that ∀k ∃s ⊇ t with s(N) = k, we only need to find the (unique) 
shortest sequence σ such that t ⊆ s∅

σ(0)
�sσ�1

σ(1)
� . . .�s

σ�|σ|−1
σ(|σ|−1), and then we have N =

∑|σ|
i=0 Nσ�i. Every 

ioe-tree T can be pruned to an ioe-subtree S ≤ T in strict form.
So, let A ∈ Γ and let T be an ioe-tree, assuming, without loss of generality, that T is in strict form. 
Define a function ψ′ : ω<ω → T inductively by ψ′(∅) = ∅ and ψ′(σ� 〈n〉) := ψ′(σ)�sσ

n. This gives rise 
to a natural homeomorphism ψ : ωω ∼= [T ]. Since ψ−1[A] is also in Γ we can find a full-splitting tree S
such that [S] ⊆ ψ−1[A] or [S] ∩ψ−1[A] = ∅. So we will be done if we can show that ψ“[S] generates an 
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ioe-subtree of T . But this follows from the definition of ψ′ and the fact that the last digit of every sσ
n

is n.
• 3 ⇒ 1. Recall the function ϕ from Lemma 2.2. Let A ∈ Γ and let A′ := ϕ−1[A], also in Γ. Now recall 

the Goldstern–Shelah tree TGS from Lemma 2.17. Since A′ is IE-measurable, there exists S ≤ TGS such 
that [S] ⊆ A or [S] ∩A = ∅, without loss of generality the former. But since S is an almost full-splitting 
tree, ϕ“[S] is not meager, but it is analytic, so it is comeager in some basic open [s]. Then [s] ⊆∗ A. 
This is sufficient because Γ(Baire) is equivalent to the assertion that for all A ∈ Γ there exists a basic 
open [s] such that [s] ⊆∗ A or [s] ∩ A =∗ ∅. �

In the “3 ⇒ 1”-direction of the above proof, the Golstern–Shelah tree was used in a quintessential way; 
this suggests that the property called weak IE-measurability behaves substantially different. Indeed, the 
following theorem is the most surprising result of this section.

Theorem 3.5. Δ1
2(Baire) ⇒ Σ1

2(wIE).

Corollary 3.6. It is consistent that Σ1
2(wIE) is true while Σ1

2(IE) is false; in particular IE- and weak 
IE-measurability are not classwise equivalent.

Proof. We know that the ω1-Cohen model LCω1 |= Δ1
2(Baire) + ¬Σ1

2(Baire) ([1, Sections 9.3 and 9.3]). 
Therefore, by Theorems 3.4 and 3.5 we have LCω1 |= Σ1

2(wIE) + ¬Σ1
2(IE). �

This is the first instance we know of where such a situation occurs in the context of a very naturally 
defined ideal.

Proof of Theorem 3.5. Assume Δ1
2(Baire). Let A ⊆ ωω be a Σ1

2 set. We have to find an IE-tree T such that 
[T ] ⊆ A or [T ] ∩ A = ∅.

We may assume that for some r, ωL[r]
1 = ω1, since otherwise Σ1

2(wIE) follows easily (for example from 
Σ1

2(Baire)). We may also assume, without loss of generality, that the parameters in the definition of A are in 
L[r]. Using the Borel decomposition of Σ1

2 sets we can write A =
⋃

α<ω1
Bα, where Bα are Borel sets coded 

in L[r]. If there exists at least one α such that Bα /∈ Iioe, then there is an IE-tree T with [T ] ⊆ Bα ⊆ A

and we are done. So suppose that all Bα are Iioe-small. For each α, since L[r] |= Bα ∈ Iioe, we can fix a 
sequence 〈xα

i | i < ω〉 of reals in L[r] such that Bα ⊆ ⋃i<ω Kxα
i
.

Let ρ : ωω → ωω be defined by ρ(x) := 〈x(0), x(2), x(4), . . . 〉. By Δ1
2(Baire), we know that in V there is 

a Cohen real c over L[r] ([1, Theorem 9.2.1]). Then c is infinitely often equal over L[r], and in particular, 
infinitely often equal to ρ(xα

i ) for all α < ω1, i < ω. Let Tc be the FM-tree such that

[Tc] = {y | ρ(y) = c}.

We claim that [Tc] ∩ A = ∅. Let a ∈ A, then there is some α < ω1 such that a ∈ Bα. By absoluteness 
of “Bα ⊆ ⋃i<ω Kxα

i
”, there is some i < ω such that a is eventually different from xα

i . Let N ∈ ω be 
such that ∀n > N (a(n) �= xα

i (n)). But since c is ioe to ρ(xα
i ), we can easily find n > N such that 

c(n) = xα
i (2n) �= a(2n). By definition this implies that a /∈ [Tc]. �

4. The dichotomy for higher projective sets

Definition 4.1. Let us say that a set A ⊆ ωω satisfies the FM-dichotomy if A is either Dω-small or contains 
[T ] for an FM-tree T , and that is satisfies the IE-dichotomy if A is either Iioe-small or contains [T ] for some 
IE-tree T . We use Γ(FM-dich) and Γ(IE-dich) to abbreviate “all sets in Γ have the FM-dichotomy” and 
“all sets in Γ have the IE-dichotomy”, respectively.
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So we know that Σ1
1(FM-dich) and Σ1

1(IE-dich) are true, but we can also ask to which higher projective 
levels the dichotomies can be extended. Note that these properties are stronger then their Marczewski-
counterparts, i.e., Γ(FM-dich) ⇒ Γ(FM) and Γ(IE-dich) ⇒ Γ(IE) for all projective pointclasses Γ. The 
main result of this section concerns the consistency strength of Σ1

2(FM-dich) and Σ1
2(IE-dich). In general, 

statements of this kind have a rather unpredictable behavior: for example, Kσ-regularity (see [10]) for Σ1
2

sets is equiconsistent with ZFC, while the perfect set property for Σ1
2 (even Π1

1) sets has the strength of 
an inaccessible. In yet other cases, it is actually inconsistent (Zapletal, see [11, Proposition 2.4.4]). The 
properties considered here will fall into the second category.

First we prove a “Mansfield–Solovay-style” theorem for FM and IE. Its proof uses a completely classical 
Cantor-Bendixson analysis and it is worth noting that an analogous argument replacing trees on ω × ω1 by 
trees on ω×ω provides alternative (arguably more elementary) proofs of the Newelski–Rosłanowski and the 
Spinas dichotomy theorems, i.e., Σ1

1(FM-dich) and Σ1
1(IE-dich).

Lemma 4.2.

1. For any Σ1
2(r) set A, either there exists an FM-tree U ∈ L[r], such that [U ] ⊆ A, or A can be covered 

by Dω-small Borel sets coded in L[r].
2. For any Σ1

2(r) set A, either there exists an IE-tree U ∈ L[r], such that [U ] ⊆ A, or A can be covered by 
Iioe-small Borel sets coded in L[r].

Proof. 1. Let T ∈ L[r] be a tree on ω × ω1 such that A = p[T ] (where p denote the projection to the first 
coordinate). For any tree S on ω × ω1 define

S′ := {(s, h) ∈ S | ∃s′ ⊇ s ∀n ∃h′ ⊇ h ((s′� 〈n〉 , h′) ∈ S)}.

Next define inductively T (0) := T , T (α+1) := (T (α))′ and T (λ) =
⋂

α<λ T (α). As the above construction is 
absolute, it follows that all T (α) are in L[r].

Let α be least such that T (α) = T (α+1), and consider two cases:

• T (α) �= ∅. Then every (s, h) ∈ T (α) has the property that there exists s′ such that for every n there is 
h′ extending h with (s′� 〈n〉 , h′) ∈ T (α). Using this it is easy to inductively construct a tree U ⊆ ω<ω, 
such that every s ∈ U has a full-splitting extension s′ ∈ U , i.e., U is an FM-tree, and moreover, such 
that given any branch x ∈ [U ], there is a corresponding branch g ∈ ω1

ω such that (x, g) ∈ [T (α)] ⊆ [T ]. 
Therefore x ∈ p[T ] = A.

• T (α) = ∅. In this case, for every γ < α and every h ∈ (ω1)<ω we define a function fγ,h : ω<ω → ω by:

fγ,h(s) = n :⇐⇒ ∃h′ ⊇ h ((s, h′) ∈ T (γ)) and

n is least such that ∀h′′ ⊇ h ((s� 〈n〉 , h′′) /∈ T (γ))

if such an n exists, and fγ,h(s) = 0 otherwise.
Since each fγ,h is explicitly constructed from T (γ) and h, clearly it is in L[r]. Also let Dfγ,h

:= {x |
∀∞n (x(n) �= fγ,h(x�n))} be the Borel Dω-small sets corresponding to fγ,h, clearly also coded in L[r]. 
We will finish the proof by concluding that A ⊆ ⋃{Dfγ,h

| γ < α, h ∈ (ω1)<ω}.
Take any x ∈ A, and let g ∈ ω1

ω be such that (x, g) ∈ [T ]. Let γ < α be least such that (x, g) ∈ [T (γ)] \
[T (γ+1)], and let s ⊆ x and h ⊆ g be such that (s, h) ∈ T (γ) \ T (γ+1). By definition of T (γ+1) := (T (γ))′

we know that for any s′ extending s there exists n such that (s′� 〈n〉 , h′) /∈ T (γ) for any h′ extending h. 
Take any k > |s|. Then (x�k, g�k) ∈ T (γ), and let n be least such that (x�k� 〈n〉 , h′) /∈ T (γ) for 
any h′ extending h. But then, the definition of fγ,h implies that fγ,h(x�k) = n. On the other hand, 
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(x�(k + 1), g�(k + 1)) is also in T (γ), and so x(k) cannot have value n. In particular x(k) �= fγ,h(x�k). 
Since this argument applies for all k > |s|, this proves x ∈ Dfγ,h

.

2. The argument is completely analogous, so we only mention the changes that need to be made. Here, the 
pruning operation for a tree S on ω × ω1 is defined as follows:

S′ := {(s, h) ∈ S | ∃N > |s| ∀k ∃s′ ⊇ s ∃h′ ⊇ h

((s′, h′) ∈ S, |s′| = N + 1 and s′(N) = k)}.

Then, in the case that T (α) = ∅ proceed as follows: for every γ < α, s ∈ ω<ω and h ∈ (ω1)<ω define a real 
xγ,s,h ∈ ωω by:

xγ,s,h(N) = k :⇐⇒ (s, h) ∈ T (γ) and N > |s| and

k is least s.t. ∀s′ ⊇ s ∀h′ ⊇ h ((s′, h′) ∈ T (γ) ∧ |s′| = N + 1 → s′(N) �= k)

if such a k exists, and 0 otherwise. The proof is completed by showing that A ⊆ ⋃{K(xγ,s,h) | γ < α, s ∈
ω<ω, h ∈ (ω1)<ω}; details are left to the reader. �

We are now ready to prove the main theorem of this section. Recall that by Lemma 2.10 iof reals are 
Dω-quasigeneric and ioe reals are Iioe-quasigeneric, which will be frequently used in the proof.

Theorem 4.3. The following are equivalent:

1. Σ1
2(FM-dich)

2. Σ1
2(IE-dich)

3. ∀r ∈ ωω {x | x is not iof over L[r]} ∈ Dω

4. ∀r ∈ ωω {x | x is not ioe over L[r]} ∈ Iioe
5. ∀r ∈ ωω (ωL[r]

1 < ω1)

Proof. First we prove 1 ⇔ 3 ⇔ 5.

• 1 ⇒ 3. Fix an arbitrary r and let X := {x | x is not iof over L[r]}. It is not hard to see that X is a 
Σ1

2(r) set, so by assumption either X ∈ Dω or there is some T ∈ FM such that [T ] ⊆ X. We will show 
that the second option is impossible.
From Σ1

2(FM-dich) we have Σ1
2(FM), and by Theorem 3.4 also Σ1

2(Baire). In particular, there is a 
Cohen real c, which is an iof real, over L[r, T ]. Let T ∈ FM and recall that there is a homeomorphism 
ψ : ωω ∼= [T ] such that ψ-preimages of Dω-small sets are Dω-small (Remark 2.15). Since being an iof 
real is the same as being Dω-quasigeneric, it easily follows that ψ(c) is an iof real in [T ]. This contradicts 
[T ] ⊆ X.

• 3 ⇒ 1. Notice that Lemma 4.2(1) actually says: every Σ1
2 set A either contains [T ] for T ∈ FM or 

A ⊆ {x | x is not Dω-quasigeneric over L[r]} = {x | x is not iof over L[r]}, from which the result follows.
• 5 ⇒ 3. If ωL[r]

1 < ω1 then {x | x is not iof over L[r]} =
⋃{B | B is a Borel Dω-small set coded in L[r]}

is a countable union of Dω-small sets.
• 3 ⇒ 5. Recall Claim 2.4 used in the proof of add(Dω) = ω1, which, in particular, implies that for any 

family F = {xα | α < ω1} of reals satisfying ∀α �= β ∃∞n (xα(n) �= xβ(n)), and letting Xα := {x |
∀n (x(n) �= xα(n))}, we have
– Xα ∈ Iioe ⊆ Dω for all α < ω1, and
–
⋃

α<ω1
Xα /∈ Dω.
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If ωL[r]
1 = ω1 for some r, then we have an F as above satisfying F ⊆ ωω ∩ L[r]. But then {x | x is not 

iof over L[r]} =
⋃{B | B is a Borel Dω-small coded in L[r]} ⊇ ⋃{Xα | α < ω1} cannot be Dω-small.

The proofs of 2 ⇐ 4 ⇔ 5 are analogous. For 2 ⇒ 4 we must be more careful since the ideal Iioe is not 
homogeneous, so we cannot conclude that there is an ioe real inside [T ] for every T ∈ IE, just from the 
existence of ioe reals. However, using the same trick as in the “2 ⇒ 3”-direction of the proof of Theorem 3.4
we can argue as follows: given a T ∈ IE in strict form, find a homeomorphism ψ between ωω and [T ] such 
that ψ-preimages of Iioe-small sets are Dω-small. Then, if c is an iof real, ψ(c) is an ioe real. �

The consistency of the FM- and IE-dichotomies beyond Σ1
2 sets can be established in the Solovay model 

and from determinacy hypotheses. Here we should note that, while the remaining results of this section 
are not particularly surprising, they are nevertheless not “trivial” results, since, as we already mentioned, 
there are dichotomies which are true for analytic sets but are inconsistent for Σ1

2 sets, so there is no a priori 
reason to believe that our dichotomies for higher projective sets are consistent.

In the next theorem we will assume familiarity with the Solovay model (see e.g. [9, Section 11] for details). 
Col(ω,<κ) will denote the standard Lévy partial order for collapsing an inaccessible κ to ω1.

Theorem 4.4. Let κ be inaccessible and let G be Col(ω,<κ)-generic over V . Then in V [G] all sets definable 
from countable sequences of ordinals satisfy the FM- and the IE-dichotomy, and in L(R)V [G] all sets of reals 
satisfy the FM- and IE-dichotomy.

Proof. The proofs of both dichotomies are similar; we prove the FM-case in detail and leave the IE-case to 
the reader.

Let A ⊆ ωω be a set in V [G], defined by φ and a countable sequence of ordinals a. By well-known 
properties of the Lévy collapse, there is a formula φ̃ such that for all x:

V [G] |= φ(a, x) ⇐⇒ V [a][x] |= φ̃(a, x).

Assume that A /∈ Dω. In particular, A cannot be covered by Borel Dω-small sets coded in V [a], since 
V [a] only contains countably many reals. So there is an x ∈ A which is Dω-quasigeneric over V [a], i.e., 
iof over V [a]. By another standard property of the Lévy collapse, there is a Col(ω,<κ)-generic H such 
that V [G] = V [a][H], and moreover, a complete suborder Q of Col(ω,<κ) in V [a], such that |Q| < κ and 
x ∈ V [a][H ∩ Q]. Then in V [a], there is a Q-name ẋ for x and a condition p ∈ Q ∩ H satisfying:

p �Q φ̃(a, ẋ) ∧ “ẋ is iof over V [a]”.

Since ωV [G]
1 is inaccessible in V [a], in V [G] there are only countably many Q-dense sets in V [a]. Let {Di |

i < ω} enumerate all of them.
In V [G], by induction we will construct U ⊆ ω<ω, and for every t ∈ U a corresponding Q-condition pt, 

such that

1. s ⊆ t ⇐⇒ pt ≤ ps,
2. for every t, pt � t ⊆ ẋ,
3. for every t, pt ∈ Di, where i = |{s ∈ U | s ⊆ t}|, and
4. the downward-closure of U is an FM-tree.

Let p∅ ≤ p be any condition in D0. Suppose s ∈ U has been constructed, ps ∈ Q satisfies ps � s ⊆ ẋ, and 
i := |{s′ ∈ U | s′ ⊆ s}|. Extend ps to p′

s ∈ Di.
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Claim. There exists t ⊇ s such that for all n, there is q ≤ p′
s such that q � t� 〈n〉 ⊆ ẋ.

Proof. Suppose not: so for any t ⊇ s there is n such that no q ≤ p′
s forces t� 〈n〉 ⊆ ẋ, so that p′

s � t� 〈n〉 �⊆ ẋ. 
Define a function f : ω<ω → ω in V [a] by letting f(t) be such n as above, for all t ⊇ s, and f(t) = 0 for 
other t. Then we have

p′
s � ∀t ⊇ s (t� 〈f(t)〉 �⊆ ẋ).

Since also p′
s � s ⊆ ẋ, in particular we have

p′
s � ∀n > |s| (ẋ�n� 〈f(ẋ�n)〉 �⊆ ẋ)

and so

p′
s � ∀n > |s| (ẋ(n) �= f(ẋ�n)),

contradicting the fact that p′
s � “ẋ is iof over V [a]”. � (Claim).

By the claim, we can fix such a t, and for every n, a condition pt�〈n〉 ≤ p′
s forcing t� 〈n〉 ⊆ ẋ. Finally 

we add all these t� 〈n〉 to the set U , and this completes the inductive construction.

Let T (U) be the tree generated by U . It is clear that T (U) ∈ FM, so it only remains to show that 
[T (U)] ⊆ A. In V [G], let y be any real in [T (U)]. We have to show that V [G] |= φ(a, y). By construction, 
y can be viewed as the limit of some {tn | n < ω}, where all tn ∈ U . Let Gy := {q ∈ Q | ∃n (ptn

≤ q)}. Since 
Gy meets every Di, it is Q-generic over V [a], and since ptn

�Q tn ⊆ ẋ for every n, we know that ẋ[Gy] = y. 
Also, since p �Q V [a][ẋ] |= φ̃(a, ẋ), it follows that V [a][y] |= φ̃(a, y), and therefore V [G] |= φ(a, y). This 
completes the proof of the FM-dichotomy.

The proof of the IE-dichotomy is analogous, replacing Dω by Iioe, FM by IE and “iof reals” by “ioe 
reals”. The corresponding claim must read as follows: “There is N > |s| such that for all k ∈ ω there are t
and q ≤ p′

s such that t ⊇ s, |t| = N + 1, t(N) = k and q � t ⊆ ẋ.” The claim is proved by assuming the 
contrary and producing a real z ∈ V [a] such that p′

s � ∀N > |s| (ẋ(N) �= z(N)), contradicting p′
s � “ẋ is 

ioe over V [a]”. �
Another way to extend the dichotomy beyond Σ1

2 sets is by the use of infinite games; the FM-dichotomy 
was originally motivated by a Morton Davis-like game. The following game corresponds to the IE-dichotomy.

Definition 4.5. Let GIE(A) be the game in which players I and II play as follows:

I: N0 s0 N1 s1 N2 . . . . . .

II: k0 k1 k2 . . .

where si ∈ ω<ω \ {∅}, Ni ≥ 1, ki ∈ ω, and the following rules must be obeyed for all i:

• |si| = Ni,
• si(Ni − 1) = ki.

Then player I wins iff z := s0
�s1

�s2
� · · · ∈ A. For technical reasons, we formalize the game as if Player I 

makes two consecutive moves rather than a pair (si, Ni+1).
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Theorem 4.6.

1. Player I has a winning strategy in GIE(A) iff there is an IE-tree T such that [T ] ⊆ A.
2. Player II has a winning strategy in GIE(A) iff A ∈ Iioe.

Proof. We will only show the left-to-right direction of 2. Let τ be a winning strategy for player II. Suppose 
p = 〈N0, k0, s0, N1, . . . , k�−1, s�−1〉 is a position of the game of length 3� (and p = ∅ if � = 0). Then we 
define p∗ := s0

� . . .�s�−1 (and p∗ = ∅ if p = ∅), and for an x ∈ ωω we say

• p is compatible with x iff p∗ ⊆ x, and
• p rejects x iff p is compatible with x but for any N�, k� := τ(p� 〈N�〉) is such that p� 〈N�, k�, s�〉 is 

incompatible with x for any s� satisfying s�(N�) = k�—in other words, for any N�, x(
∑�

i=0 Ni −1) �= k�.

Let Hp := {x | p rejects x}. For any x ∈ A there must be a p which rejects it, otherwise x would be a play 
according to τ . So A ⊆ ⋃p Hp, and we shall be done if we can show that Hp ∈ Iioe for any p.

Fix p of length 3� as before, let M :=
∑�−1

i=0 Ni, and define a real z as follows: for N < M let z(N) = 0, 
and for N ≥ M , let N� := N − M + 1 and let z(N) := τ(p� 〈N�〉). Suppose p rejects x, which by definition 
means that for any N�, x(

∑�
i=0 Ni − 1) �= τ(p� 〈N�〉). In particular, for any N ≥ M we have

x(N) = x(M + N� − 1) = x(
�∑

i=0
Ni − 1) �= τ(p� 〈N�〉) = z(N).

Hence Hp ⊆ Kz = {x | ∀∞n (x(n) �= z(n)} which completes the proof. �
5. Half a Cohen real

Recall Fact 2.11, which says that if we iteratively add two ioe reals to a model of set theory then we add 
a Cohen real; for that reason, an ioe real has sometimes received the name “half a Cohen real”. A natural 
questions which appeared in Fremlin’s list of open problems [6] is:

Question 5.1 (Fremlin). Is it possible to add an ioe real without adding a Cohen real?

This question was recently answered in the positive by Zapletal [20] using rather unorthodox methods.

Theorem 5.2 (Zapletal 2013). Let X be a compact metrizable space which is infinite-dimensional, and all of 
its compact subsets are either infinite-dimensional or zero-dimensional. Let I be the σ-ideal σ-generated by 
the compact zero-dimensional subsets of X. Then B(X) \ I adds an ioe real but not a Cohen real.

In spite of the beauty of this result, Zapletal himself mentions: “as the usual approach towards forcing 
problems includes a direct combinatorial construction of a suitable poset, the following question is natu-
ral: . . . is there a combinatorial description of a forcing satisfying [Theorem 5.2] which does not mention 
topological dimension?”

As IE seems, in a sense, to be a “minimal” forcing for adding ioe reals, we may wonder whether IE does 
not add Cohen reals below some condition, thus providing an alternative solution to Fremlin’s problem. The 
main purpose of this section is to prove the following property for IE:

Theorem 5.3. For every continuous function f : ωω → ωω there exists a T ∈ IE such that f“[T ] is meager.

The relation between this result and Fremlin’s problem is given by the following:
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Fact 5.4 (Zapletal). If I is a σ-ideal generated by closed sets then B(ωω) \ I has the continuous reading of 
names: for every ẋ and B such that B � ẋ ∈ ωω, there exists C ≤ B and a continuous f : C → ωω (in the 
ground model) such that C � ẋ = f(ẋgen).

Since Iioe is σ-generated by closed sets, the above fact can be applied to IE. So if we can find an 
IE-condition T0 and strengthen Theorem 5.3 to “for every S ≤ T0 and every continuous f : [S] → ωω, there 
exists T ≤ S such that f“[T ] is meager”, it will follow that IE does not add Cohen reals below T0: for any 
ẋ, find f and S ≤ T0 such that S � ẋ = f(ẋgen), then find T ≤ S such that f“[T ] is meager, implying that 
T � “ẋ is not Cohen” since T � ẋ ∈ f“[T ].

Proof of Theorem 5.3. The proof is quite unusual in the following sense: first we prove that it holds under the 
assumption that add(M) < cov(M), and then argue that the assumption can be dropped by absoluteness.

Lemma 5.5. Assume add(M) < cov(M). Then for every continuous function f : ωω → ωω there exists a 
T ∈ IE such that f“[T ] is meager.

Proof. Towards contradiction, assume that the theorem is false and fix an f : ωω → ωω such that f“[T ] is 
non-meager for every T ∈ IE. This is equivalent to saying that f -preimages of meager sets are Iioe-small. 
Let {Xα | α < add(M)} be a collection of meager sets such that 

⋃
α Xα is non-meager. We will derive 

a contradiction by showing that for every basic open [s] there is a basic open [t] ⊆ [s] such that [t] ∩⋃
α Xα =∗ ∅.
Fix [s] and a homeomorphism ψ : ωω ∼= [s]. Every X ′

α := ψ−1[Xα] is still meager, so every Yα := f−1[X ′
α]

is Iioe-small. For each α let 〈xα
i | i < ω〉 be such that Yα ⊆ ⋃i Kxα

i
. Now, letting ρ be the function defined 

by ρ(x) := 〈x(0), x(2), . . . 〉, using add(M) < cov(M) and Bartoszyński’s characterization of cov(M), we 
find that {ρ(xα

i ) | i < ω, α < add(M)} is not an eventually different family, hence there exists c which is 
infinitely often equal to all ρ(xα

i ).
Construct Tc such that [Tc] = {y | ρ(y) = c}, and by exactly the same argument as in the proof of 

Theorem 3.5 we know that [Tc] ∩ Yα = ∅ for every α. But then, by assumption, f“[Tc] is non-meager, and 
then also ψ“f“[Tc] is non-meager; but it is analytic, hence comeager in a basic open [t]. This completes the 
proof since [t] avoids 

⋃
α Xα modulo meager. � (Lemma)

To conclude the theorem from the lemma we use a simple absoluteness argument, i.e., we check the 
complexity of the statement “for all continuous f : ωω → ωω there is T ∈ IE such that f“[T ] is meager”. 
Note the following:

1. “f : ωω → ωω is a continuous function” can be expressed as “f ′ : ω<ω → ω<ω is monotone and 
unbounded along each real”, which is Π1

1 on (the code of) f ′.
2. “T ∈ IE” is arithmetic on the code of T .
3. f“[T ] is an analytic set whose code is recursive in f ′ and T .
4. For an analytic set to be meager is Π1

1.

Then the statement in question can be expressed as:

∀f ′ (f ′ is continuous → ∃T (T ∈ IE ∧ f“[T ] ∈ M))

which is a Π1
3 sentence, hence downward absolute between forcing extensions of V and V itself. So the 

proof is completed by going to any forcing extension V P satisfying add(M) < cov(M) (e.g., add ω2 Cohen 
reals), applying the lemma and then applying absoluteness to conclude that the statement was already true 
in V . �
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Unfortunately, we do not know whether the proposed strengthening of Theorem 5.3 is valid below some 
condition T0, i.e., whether there is T0 such that for any S ≤ T0 and any continuous f : [S] → ωω there is 
T ≤ S such that f“[T ] is meager. Certainly, a sufficient condition for this would be a T0 such that for every 
S ≤ T0, IE�S is homogeneous (in the sense of Definition 2.14).

On the other hand, by Lemma 2.17 we know that such a T0 certainly cannot be the trivial condition, 
since the tree TGS forces that Cohen reals are added. It is not so hard to find other IE-conditions, aside of 
TGS, which also add Cohen reals, but it is not clear whether such conditions are dense.

Notice that the question of IE adding Cohen reals can also be formulated in the setting of the following 
(closed) game:

Definition 5.6. Let GIE
¬C be the game defined as follows:

I: S ≤ T0, f : [S] → ωω continuous . . .

II: T0 ∈ IE T ≤ S

(s0, x(0)) (s1, x(1)) . . .

. . . t0 t1 . . .

where si, ti ∈ ω<ω \ {∅} and x(i) ∈ ω are such that x ∈ [T ]. Assuming all the rules are followed, Player I 
wins iff f(x) = s0

�t0
�s1

�t1
� . . . .

Lemma 5.7. If Player I wins GIE
¬C then every IE-condition forces that Cohen reals are added. If Player II 

wins GIE
¬C then, letting T0 be II’s first move, T0 � “there are no Cohen reals”.

Proof. After the first three moves have been played and f : [S] → ωω and T ≤ S have been chosen, the 
rest of the game is essentially Solovay’s unfolded version of the Banach–Mazur game, and by a standard 
argument (see, e.g., [9, Exercise 27.14]) it follows that if Player I wins that game, then f“[T ] is comeager 
in a basic open set, whereas if Player II wins that game, then f“[T ] is meager. The rest is clear. �
6. Questions

The most interesting question seems to be the following:

Question 6.1. Is there an IE-condition forcing that no Cohen reals are added, or does IE always add Cohen 
reals? This can be formulated as “who wins the game GIE

¬C?”.

In Section 3 we completely solved the question of projective regularity for FM- and IE-measurability, but 
not yet for the (arguably more interesting) weak IE-measurability. We have the following implications:

Δ1
2(IE) ⇔ Δ1

2(Baire) ⇒ Σ1
2(wIE) ⇒ Δ1

2(wIE),

where the first equivalence is due to Theorem 3.4, the second implication due to Theorem 3.5 and the third 
one trivial. But we do not know anything about the reverse implications. In particular

Question 6.2. Are Δ1
2(Baire) and Δ1

2(wIE) equivalent? If not, then are Δ1
2(Baire) and Σ1

2(wIE) equivalent, 
or are Σ1

2(wIE) and Δ1
2(wIE) equivalent?
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A related question is:

Question 6.3. Can Δ1
2(wIE) and Σ1

2(wIE) be characterized in terms of the existence of quasi-generic reals 
over L[r]?

Finally, in Theorem 4.3 we characterized Σ1
2(FM-dich) and Σ1

2(IE-dich), but did not talk about the Δ1
2-

and Π1
1-levels.

Question 6.4. Can Π1
1(FM-dich) and Π1

1(IE-dich) be added to the list of equivalent statements in Theo-
rem 4.3?
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3.7 Almost disjoint refinements and mixing reals

Barnabas Farkas, Yurii Khomskii and Zoltán Vydyánszki, Fundamenta Mathematicae, to
appear.

This paper was largely the initiative of Farkas. My contribution began with some descrip-
tive set theoretic ideas which then led to the proof of Theorem 1.6. Following this, the rest
of the paper was conducted following informal collaborative meetings, mostly between Farkas
and Khomskii at the KGRC in Vienna and, separately, between Farkas and Vydyánszki in
Budapest. The contributions are roughly as follows:

• Theorem 1.6: Farkas, with contributions by Khomskii

• Corollary 1.8: Farkas, with contributions by Khomskii

• Theorem 1.9, cf. Propositions 5.2, Proposition 5.3: Farkas, with contributions
by Khomskii and Vydyánszki,

• Proposition 1.10: Farkas

• Theorem 1.12, cf. Theorem 6.1 and Fact 6.2: Farkas and Vydyánszki

• Proposition 1.14, cf. Proposition 7.2 and Proposition 7.3: Collaboration of
all three author

The paper was written by Farkas.
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ALMOST DISJOINT REFINEMENTS AND MIXING REALS

BARNABÁS FARKAS, YURII KHOMSKII, AND ZOLTÁN VIDNYÁNSZKY

ABSTRACT. We investigate families of subsets ofω with almost disjoint refine-
ments in the classical case as well as with respect to given ideals on ω. More
precisely, we study the following topics and questions:

1) Examples of projective ideals.
2) We prove the following generalization of a result due to J. Brendle:

If V ⊆ W are transitive models, ωW
1 ⊆ V , P(ω) ∩ V 6= P(ω) ∩W , and I is

an analytic or coanalytic ideal coded in V , then there is an I-almost disjoint
refinement (I-ADR) of I+ ∩ V in W , that is, a family {AX : X ∈ I+ ∩ V } ∈ W
such that (i) AX ⊆ X , AX ∈ I+ for every X and (ii) AX ∩ AY ∈ I for every
distinct X and Y .

3) The existence of perfect I-almost disjoint (I-AD) families; and the exis-
tence of a “nice” ideal I on ω with the property: Every I-AD family is count-
able but I is nowhere maximal.

4) The existence of (I, Fin)-almost disjoint refinements of families of I-
positive sets in the case of everywhere meager (e.g. analytic or coanalytic)
ideals. We show that under Martin’s Axiom if I is an everywhere meager
ideal and H ⊆ I+ with |H| < c, then H has an (I, Fin)-ADR, that is, a family
{AH : H ∈H} such that (i) AH ⊆ H, AH ∈ I

+ for every H and (ii) AH0
∩ AH1

is
finite for every distinct H0, H1 ∈H.

5) Connections between classical properties of forcing notions and adding
mixing reals (and mixing injections), that is, a (one-to-one) function f :ω→
ω such that | f [X ] ∩ Y | = ω for every X , Y ∈ [ω]ω ∩ V . This property is
relevant concerning almost disjoint refinements because it is very easy to
find an almost disjoint refinement of [ω]ω ∩ V in every extension V ⊆ W
containing a mixing injection over V .

1. INTRODUCTION

Let us begin with our motivations which led us to work on almost disjoint
refinements and their generalizations. First of all, the following easy fact seems
to be somewhat surprising (see also Proposition 1.10):
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Key words and phrases. analytic ideal, coanalytic ideal, almost disjoint family, almost disjoint
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2 BARNABÁS FARKAS, YURII KHOMSKII, AND ZOLTÁN VIDNYÁNSZKY

Fact 1.1. If H ⊆ [ω]ω(= {X ⊆ ω : |X | = ω}) is of size < c, then H has
an almost-disjoint refinement {AH : H ∈ H}, that is, (i) AH ∈ [H]

ω for every
H ∈H and (ii) |AH ∩ AK | <ω for every H 6= K from H.

The following theorem due to B. Balcar and P. Vojtáš is probably the most
well-know general result on the existence of almost-disjoint refinements.

Theorem 1.2. (see [BaV80]) Every ultrafilter on ω has an almost-disjoint re-
finement.

B. Balcar and T. Pazák, and independently J. Brendle proved the following
theorem:

Theorem 1.3. (see [BaP10], [LS08]) Assume that V ⊆W are transitive models
and P(ω) ∩ V 6= P(ω) ∩W. Then [ω]ω ∩ V has an almost-disjoint refinement
in W (where by transitive model we mean a transitive model of a “large enough”
finite fragment of ZFC).

One of our main results is a generalization of this theorem in the context
of “nice” ideals on ω, that is, we change the notion of smallness in the setting
above by replacing finite with element of an ideal I.

In order to formulate our generalization and to give a setting to our other re-
lated results, we have to introduce some notations and the appropriate versions
of the classical notions.

Let I be an ideal on a countably infinite set X . We always assume that
[X ]<ω = {Y ⊆ X : |Y | < ω} ⊆ I and X /∈ I. Let us denote by I+ = P(X ) \ I the
family of I-positive sets, and by I∗ = {X \A : A∈ I} the dual filter of I. If Y ∈ I+

then let I ↾ Y = {A∈ I : A⊆ Y } = {B ∩ Y : B ∈ I} be the restriction of I to Y (an
ideal on Y ). If X is clear from the contex, then the ideal of finite subsets of X
will be denoted by Fin.

Definition 1.4. We say that a non-empty family A ⊆ I+ is I-almost-disjoint (I-
AD) if A∩ B ∈ I for every distinct A, B ∈ A. A family A ⊆ I+ is (I, Fin)-AD if
|A∩ B| <ω for every distinct A, B ∈A.

Definition 1.5. Let H ⊆ I+. We say that a family A = {AH : H ∈ H} is an
I-AD refinement (I-ADR) of H if (i) AH ⊆ H, AH ∈ I+ for every H, and (ii)
AH0
∩ AH1

∈ I for every distinct H0, H1 ∈H (in paticular, A is an I-AD family).
If I = Fin we simply say AD-refinement (ADR).

We say that a family A = {AH : H ∈H} is an (I, Fin)-AD refinement ((I, Fin)-
ADR) of H if (i) holds and (ii)’ |AH0

∩ AH1
| <ω for every distinct H0, H1 ∈H.

Notice that an ideal on a countably infinite X can be regarded as a subset of
the Polish space 2X ≃ 2ω using a bijection between X and ω. Thus, it makes
sense to talk about Borel, analytic, etc ideals and about certain descriptive
properties of ideals, such as the Baire property or meagerness (it is easy to see
that these properties do not depend on the choice of the bijection). In the past
two decades the study of certain definable (e.g. Borel, analytic, coanalytic,
etc.) ideals has become a central topic in set theory. It turned out that they
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play an important role in combinatorial set theory, and in the theory of cardinal
invariants of the continuum as well as the theory of forcing (see e.g. [Ma91],
[So99], [F], [Hr11] and many other publications).

Now we can formulate our generalization of Theorem 1.3:

Theorem 1.6. Assume that V ⊆W are transitive models, ωW
1 ⊆ V , P(ω)∩ V 6=

P(ω) ∩W, and I is an analytic or coanalytic ideal coded in V . Then there is an
I-ADR of I+ ∩ V in W.

We say that an ideal I on X (where |X | = ω) is everywhere meager if I ↾ Y
is meager in P(Y ) for every Y ∈ I+. In particular, analytic and coanalytic
ideals are everywhere meager because their restrictions are also analytic and
coanalytic, respectively, hence have the Baire property, and we can apply the
following well-known characterisation theorem (due to Sierpiński (1)↔(2),
and Talagrand (2)↔(3), for the proofs see e.g. [BrJ, Thm 4.1.1-2]).

Theorem 1.7. Let I be an ideal on ω. Then the following are equivalent: (1) I

has the Baire property, (2) I is meager, and (3) there is a partition {Pn : n ∈ ω}
of ω into finite sets such that {n ∈ω : Pn ⊆ A} is finite for each A∈ I.

From now on, when working with partitions of a set, we always assume that
every element of the partition is nonempty. From this theorem we can also
deduce the following important corollary:

Corollary 1.8. If I is a meager ideal, then there is a perfect (I, Fin)-AD family. In
particular, if I is everywhere meager, then there are perfect (I, Fin)-AD families on
every X ∈ I+.

Proof. It is easy to define a perfect AD family A on ω (e.g. consider the
branches of 2<ω in P(2<ω)). Fix a partition (Pn)n∈ω of ω into finite sets
such that {n ∈ ω : Pn ⊆ A} is finite for every A ∈ I. For each A ∈ A let
A′ =
⋃

{Pn : n ∈ A} ∈ I+, and let A′ = {A′ : A∈A}. Then |A′ ∩ B′| <ω for every
distinct A, B ∈A hence A′ is an (I, Fin)-AD family. The function P(ω)→ P(ω),
A 7→ A′ is injective and continuous hence A′ is perfect. �

Concerning the reverse implications in Corollary 1.8, we prove the following.

Theorem 1.9.
(a) The existence of a perfect (I, Fin)-AD family does not imply that I is mea-

ger.
(b) If b = c then there is an non-meager ideal I such that there are perfect
(I, Fin)-AD families on every X ∈ I+. Here c stands for the continuum
and b for the bounding number, that is, b = min{|F | : F ⊆ ωω is ≤∗-
unbounded} where f ≤∗ g iff the set {n ∈ω : f (n)> g(n)} is finite.

(c) There is an ideal I such that every I-AD family is countable but I is
nowhere maximal, that is, I ↾ X is not a prime ideal for any X ∈ I+

(in particular, there are infinite I-AD families).
(d) It is independent from ZFC whether the example in (c) can be chosen as
Σ
∼

1
2.
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Corollary 1.8 has an easy but important application. Clearly, if I is an ideal
on ω then there is a family (e.g. I+) of size c which does not have any I-ADR’s.
Conversely, we have the following very special case of results from [BgHM84]
and [BaSV81]:

Proposition 1.10. If I is an everywhere meager ideal and H ∈ [I+]<c, then H

has an I-ADR.

Proof. Let H = {Hα : α < κ}. Applying Corollary 1.8, we can fix an I-AD family
A= {Aξ : ξ < κ+} on H0 and for every β < κ let Tβ = {ξ < κ

+ : Hβ ∩Aξ ∈ I
+},

furthermore let R = {β < κ : |Tβ | ≤ κ} (we know that 0 /∈ R). By induction on
α ∈ κ \ R we can pick a

ξα ∈ Tα \
�
⋃

β∈R

Tβ ∪
�

ξα′ : α
′ ∈ α \ R
	

�

because |Tα| = κ
+ and |
⋃

{Tβ : β ∈ R}| ≤ κ, and let Eα = Hα ∩ Aξα ∈ I
+. Then

the family {Eα : α ∈ κ \ R} is an I-ADR of {Hα : α ∈ κ \ R}. We can continue
the procedure on {Hβ : β ∈ R} because Eα ∩ Hβ ∈ I for every α ∈ κ \ R and
β ∈ R. �

This proposition motivates the following:

Question 1.11. Let I be an everywhere meager ideal and H ∈ [I+]<c. Does H
have an (I, Fin)-ADR?

We answer this question, at least consistently:

Theorem 1.12. Assume MAκ and let I be an everywhere meager ideal, then every
H ∈ [I+]≤κ has an (I, Fin)-ADR.

We also define new notions of mixing and injective mixing reals, and inves-
tigate connections between adding (injective) mixing reals and classical prop-
erties of forcing notions (such as adding Cohen/random/splitting/dominating
reals and the Laver/Sacks-properties).

Definition 1.13. Let P be a forcing notion. We say that an f ∈ ωω ∩ VP is
a mixing real over V if | f [X ] ∩ Y | = ω for every X , Y ∈ [ω]ω ∩ V . If f is
one-to-one, then we call it an injective mixing real or mixing injection.

Our results are summarized in the following proposition.

Proposition 1.14. Let P be a forcing notion.
(i) If P adds random reals, then it adds mixing reals.

(ii) If P adds dominating reals, then it adds mixing reals.
(iii) If P adds Cohen reals, then it adds mixing injections.
(iv) If P adds mixing injections, then it adds unbounded reals.
(v) If P has the Laver-property, then it does not add injective mixing reals.

Our paper is organized as follows. In Section 2 we recall some notations and
classical results of descriptive set theory we will need later.
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The next two sections are focused on descriptive aspects of nice ideals and
almost disjoint refinements. In Section 3 we present a plethora of examples
of Borel and projective ideals on ω. In Section 4 we prove Theorem 1.6 by
modifying Brendle’s proof of Theorem 1.3.

The next two sections contain rather combinatorial results. In Section 5 we
prove Theorem 1.9, as well as study some problems concerning the possible
generalizations of Corollary 1.8 on the second level of the projective hierarchy.
In Section 6 we prove Theorem 1.12.

In Section 7 we study the notions of mixing and injective mixing reals. In
this section we will heavily use standard facts about forcing notions, for the
details see [BrJ].

Finally, in Section 8, we list some open questions concerning our results.

2. DESCRIPTIVE SET THEORY AND IDEALS

As usual, Σ
∼

0
α,Π
∼

0
α will stand for the αth level of the Borel hierarchy while we

denote by Σ
∼

1
n,Π
∼

1
n the levels of the projective hierarchy. If r is a real, the appro-

priate relativised versions are denoted by Σ0
α(r),Π

0
α(r), etc. For the ambiguous

classes we write ∆
∼

i
α and ∆i

α(r).
Suppose that I is an ideal on the set X . As mentioned before, if X is count-

able then we can talk about complexity of ideals: I is Fσ, Σ
∼

0
α, Π
∼

1
n, etc if

I ⊆ P(X ) ≃ 2X is an Fσ, Σ
∼

0
α, Π
∼

1
n, etc set in the usual compact Polish topol-

ogy on 2X . If we fix a bijection between ω and X we can define the collection
of Σ0

α(r),Π
0
α(r), etc subsets of 2X as well. If X = ωn,∆ = {(n, m) ∈ ω2 : m ≤

n}, [ω]n, 2<ω,ω<ω,Q(= {rational numbers}) then the we will always assume
that the bijection is the usual, recursive one.

For example, Fin= [ω]<ω is an Fσ ideal, Z= {A⊆ω : |A∩n|/n→ 0} is Fσδ,
and Conv = {A ⊆ Q ∩ [0,1] : A has only finitely many accumulation points}
is Fσδσ, etc (see more examples in Section 3). Similarly, we can associate
descriptive complexity to any X ⊆ P(ω), and we can also talk about the Baire
property and measurability of subsets of P(ω). Clearly, if Y ∈ I+ then I ↾ Y
belongs to the same Borel or projective class in P(Y ) as I in P(ω) (simply
because I ↾ Y is a continuous preimage of I).

For a family H ⊂ 2X we will denote by id(H) the ideal generated by the sets
in H. We say that an ideal I on a countably infinite set X is

• tall if every infinite subset of X contains an infinite element of I;
• a P-ideal if for every sequence An ∈ I (n ∈ ω), there is an A ∈ I such

that An ⊆
∗ A, that is, |An \ A|<ω for every n.

We will need the following two fundamental results of descriptive set theory
(see e.g. in [J]):

Theorem 2.1. (Shoenfield Absoluteness Theorem) If V ⊆W are transitive mod-
els, ωW

1 ⊆ V , and r ∈ ωω ∩ V , then Σ1
2(r) formulas are absolute between V and

W.
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Corollary 2.2. If X ⊆ P(ω) is an analytic or coanalytic set in the parameter
r ∈ωω, then the statement “X is an ideal” is absolute for transitive models V ⊆W
with ωW

1 ⊆ V and r ∈ V .

Proof. Let ϕ(x , r) be a Σ1
1(r) or Π1

1(r) definition of X (r ∈ ωω). Then the
statement “X is an ideal” is the conjunction of the following formulas (i) ∀
a ∈ Fin ϕ(a, r), (ii) ∀ x , y (x * y or ¬ϕ(y, r) or ϕ(x , r)), and (iii) ∀ x , y
(¬ϕ(x , r) or ¬ϕ(y, r) or ϕ(x ∪ y, r)). In particular, “X is an ideal” is Π1

2(r) and
hence we can apply the Shoenfield Absoluteness Theorem. �

Theorem 2.3. (Mansfield-Solovay Theorem) If A* L[r] is a Σ1
2(r) set, then A

contains a perfect subset.

Other than these notions and results above, we will use descriptive set the-
oretic tools such as Γ-completeness, Γ-hardness, etc which can all be found in
[K].

Let Tree = {T ⊆ ω<ω : T is a tree} be the usual Polish space of all trees on
ω (a closed subset on P(ω<ω)) and as usual, we denote by [T] = {x ∈ωω : ∀
n x ↾ n ∈ T} the body of T , i.e. the set of all branches of T .

3. EXAMPLES OF BOREL AND PROJECTIVE IDEALS

There are many classical examples of Borel ideals. Here we present some
of those that have easily understandable definitions, and the reader can see
that these examples are motivated by a wide variety of backgrounds. For the
important role of these ideals, especially in characterisation results, see [Hr11].

Some Fσ ideals:

Summable ideals. Let h :ω→ [0,∞) be a function such that
∑

n∈ω h(n) =∞.
The summable ideal associated to h is

Ih =

�

A⊆ω :
∑

n∈A

h(n)<∞
�

.

It is easy to see that a summable ideal Ih is tall iff limn→∞ h(n) = 0, and
that summable ideals are Fσ P-ideals. The classical summable ideal is I1/n = Ih
where h(n) = 1/(n+ 1), or h(0) = 1 and h(n) = 1/n if n > 0. We know that
there are tall Fσ P-ideals which are not summable ideals: Farah’s example (see
[F, Example 1.11.1]) is the following ideal:

IF =

�

A⊆ω :
∑

n<ω

min
�

n, |A∩ [2n, 2n+1)|
	

n2 <∞

�

.

The eventually different ideals.

ED =
n

A⊆ω×ω : lim sup
n→∞

|(A)n|<∞
o

where (A)n = {k ∈ ω : (n, k) ∈ A}, and EDfin = ED ↾ ∆ where ∆ = {(n, m) ∈
ω×ω : m≤ n}. ED and EDfin are not P-ideals.
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The van der Waerden ideal:

W=
�

A⊆ω : A does not contain arbitrary long arithmetic progressions
	

.

Van der Waerden’s well-known theorem says that W is a proper ideal. W is not
a P-ideal. For some set-theoretic results about this ideal see e.g. [Fl09] and
[Fl10].

The random graph ideal:

Ran= id
��

homogeneous subsets of the random graph
	�

where the random graph (ω, E), E ⊆ [ω]2 is up to isomorphism uniquely de-
termined by the following property: If A, B ∈ [ω]<ω are nonempty and dis-
joint, then there is an n ∈ ω \ (A ∪ B) such that {{n, a} : a ∈ A} ⊆ E and
{{n, b} : b ∈ B} ∩ E = ;. A set H ⊆ ω is (E-)homogeneous iff [H]2 ⊆ E or
[H]2 ∩ E = ;. Ran is not a P-ideal.

The ideal of graphs with finite chromatic number:

Gfc =
�

E ⊆ [ω]2 : χ(ω, E) <ω
	

.

It is not a P-ideal.
Solecki’s ideal: Let CO(2ω) be the family of clopen subsets of 2ω (it is easy to

see that |CO(2ω)| =ω), and let Ω = {A∈ CO(2ω) : λ(A) = 1/2} where λ is the
usual product measure on 2ω. The ideal S on Ω is generated by {Ix : x ∈ 2ω}
where Ix = {A∈ Ω : x ∈ A}. S is not a P-ideal.

Some Fσδ ideals:
Density ideals. Let (Pn)n∈ω be a sequence of pairwise disjoint finite subsets

of ω and let ~µ = (µn)n∈ω be a sequences of measures, µn is concentrated on Pn
such that lim supn→∞µn(ω)> 0. The density ideal generated by ~µ is

Z~µ =
n

A⊆ω : lim
n→∞

µn(A) = 0
o

.

A density ideal Z~µ is tall iff max{µn({i}) : i ∈ Pn}
n→∞
−−−→ 0, and density ideals

are Fσδ P-ideals. The density zero ideal Z=
�

A⊆ω : limn→∞ |A∩ n|/n= 0
	

is a
tall density ideal because let Pn = [2

n, 2n+1) and µn(A) = |A∩ Pn|/2
n. It is easy

to see that I1/n ( Z, and Szemerédi’s famous theorem implies that W⊆ Z (see
[Sz75]). The stronger statement W⊆ I1/n is a still open Erdős prize problem.

The ideal of nowhere dense subsets of the rationals:

Nwd =
�

A⊆ Q : int(A) = ;
	

where int(·) stands for the interior operation on subsets of the reals, and A is
the closure of A in R. Nwd is not a P-ideal.

The trace ideal of the null ideal: Let N be the σ-ideal of subsets of 2ω with
measure zero (with respect to the usual product measure). The Gδ-closure of a
set A⊆ 2<ω is [A]δ =

�

x ∈ 2ω : ∃∞ n x ↾ n ∈ A
	

, a Gδ subset of 2ω. The trace
of N is defined by

tr(N) =
�

A⊆ 2<ω : [A]δ ∈N
	

.
It is a tall Fσδ P-ideal.
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Some tall Fσδσ (non P-)ideals:
The ideal Conv is generated by those infinite subsets of Q∩ [0,1] which are

convergent in [0,1], in other words

Conv =
�

A⊆ Q∩ [0,1] : |accumulation points of A (in R)| <ω
	

.

The Fubini product of Fin by itself:

Fin⊗ Fin=
�

A⊆ω×ω : ∀∞ n ∈ω |(A)n| <ω
	

.

Some non-tall ideals:
An important Fσ ideal:

Fin⊗ {;} =
�

A⊆ω×ω : ∀∞ n ∈ω (A)n = ;
	

,

and its Fσδ brother (a density ideal):

{;}⊗ Fin =
�

A⊆ω×ω : ∀ n ∈ω |(A)n|<ω
	

.

Applying the Baire Category Theorem, it is easy to see that there are no Gδ
(i.e. Π
∼

0
2) ideals and we already presented many Fσ (i.e. Σ

∼
0
2) ideals. In general,

we have Borel ideals at arbitrary high levels of the Borel hierarchy:

Theorem 3.1. (see [C85] and [C88]) There are Σ
∼

0
α- and Π

∼
0
α-complete ideals for

every α≥ 3.

About ideals on the ambiguous levels of the Borel hierarchy see [E94].
We also present some (co)analytic examples.

Theorem 3.2. (see [Z90, page 321]) For every x ∈ ωω let Ix = {s ∈ ω
<ω : x ↾

|s| � s} where ≤ is the coordinatewise ordering on every ωn. Then the ideal on
ω<ω generated by {Ix : x ∈ωω} is Σ

∼
1
1-complete.

Theorem 3.3. The ideal of graphs without infinite complete subgraphs,

Gc =
�

E ⊆ [ω]2 : ∀ X ∈ [ω]ω [X ]2 * E
	

is a Π
∼

1
1-complete (in P([ω]2)), tall, non P-ideal.

Proof. Tallness is trivial. If for every n ∈ω, we define En = {{k, m} : k ≤ n, m 6=
k} ∈ Gc and En ⊆

∗ E ⊆ [ω]2 for every n, then E contains a complete subgraph
(see also in [Me09]), hence Gc is not a P-ideal.

Let WF= {T ∈ Tree : [T] = ;} be the Π
∼

1
1-complete set of well-founded trees.

Furthermore, let Tree′ be the family of those trees T such that (i) every t ∈ T
is strictly increasing and (ii) if {t ∈ T : n ∈ ran(t)} 6= ; then it has a ⊆-minimal
element (n ∈ω). Then it is not hard to see that Tree′ is also closed in P(ω<ω)
hence Polish. Finally, let WF′ = {T ∈ Tree′ : [T] = ;}, clearly, it is also Π1

1.
We will construct Wadge-reductions WF≤W WF′ ≤W Gc.
WF ≤W WF′: Fix an order preserving isomorphism j between ω<ω and

a T0 ∈ Tree′. More precisely, for a t = (k0, k1, . . . , km−1) ∈ ω
<ω let j(t) =

(p1
k0

, p1
k0

p2
k1

, . . . , p1
k0

p2
k1

. . . pm
km−1
) where pi denotes the ith prime number. Then

j is one-to-one, order preserving, and T0 = j[ω<ω] is a tree containing strictly
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increasing sequences. To show that T0 satisfies (ii), assume that n ∈ ran( j(t))
for some n ∈ ω and t ∈ ω<ω. Then, by the definition of j, n = p1

k0
p2

k1
. . . pm

km−1

where s = (k0, k1, . . . , km−1) ≤ t, and if n ∈ ran( j(t′)) for some t′ ∈ ω<ω then
s ≤ t′, hence j(s) is ⊆-minimal in {h ∈ T0 : n ∈ ran(h)}.

The map Tree → Tree′, T 7→ j[T] is a continuous reduction of WF to WF′.
Continuity is trivial, and also that [T] = ; iff [ j[T]] 6= ;, in other words,
T ∈WF iff j[T] ∈WF′.

WF′ ≤W Gc: For every T ∈ Tree′ let ET =
⋃

{[ran(t)]2 : t ∈ T}. We show
that the function T 7→ ET is continuous. If u, v ∈

�

[ω]2
�<ω are disjoint then it

is easy to see that the preimage of the basic clopen set [u, v] = {E ⊆ [ω]2 : u ⊆
E, v ∩ E = ;} ⊆ P([ω]2) is
�

T ∈ Tree′ :
�

∀ {x , y} ∈ u ∃ t ∈ T x , y ∈ ran(t)
�

and
�

∀ t ∈ T v∩[ran(t)]2 = ;
�	

.

Although, as the collection of the sets satisfying the second part of the condition
is a countable intersection of clopen sets, this set seems to be closed (and it
is enough to prove that Gc is Π

∼
1
1-complete), actually, it is open in Tree′: Let

m = max(∪v) + 1. Then the set {T ∈ Tree′ : ∀ t ∈ T v ∩ [ran(t)]2 = ;} is the
intersection of Tree′ and the clopen set (in P(ω<ω))
�

;,
�

t ∈ m≤m : t is strictly increasing and v ∩ [ran(t)]2 6= ;
	�

.

The function T 7→ ET is a reduction of WF′ to Gc: Clearly, if T ∈ Tree′ and x ∈
[T] then X = ran(x) ∈ [ω]ω shows that ET /∈ Gc (i.e. [X ]2 ⊆ E). Conversely, if
[X ]2 ⊆ ET and X = {k0 < k1 < . . . }, then for every n there is a tn ∈ T such that
kn, kn+1 ∈ ran(tn), we can assume that tn is minimal in {s ∈ T : kn+1 ∈ ran(s)}.
It yields that t0 ⊆ t1 ⊆ t2 ⊆ . . . is an infinite chain in T . �

In the following example, we show that a seemingly “very” Π1
2 definition can

also give us a Π
∼

1
1-complete ideal.

Theorem 3.4. The ideal

I0 =
�

A⊆ω×ω : ∀ X , Y ∈ [ω]ω ∃ X ′ ∈ [X ]ω ∃ Y ′ ∈ [Y ]ω A∩ (X ′× Y ′) = ;
	

is a Π
∼

1
1-complete (in P(ω×ω)), tall, non P-ideal.

Proof. Tallness is trivial because injective partial functions from ω to ω belong
to I0. The failure of the P property is also easy: Consider the sets n×ω ∈ I0. If
for some A we have n×ω ⊆∗ A for every n then every vertical section of A is
co-finite, and such a set is clearly I0-positive.

First we show that this ideal is Π
∼

1
1, for which the next claim is clearly enough.

For X , Y ∈ [ω]ω define T ↑(X , Y ) = {(n, k) ∈ X × Y : n < k} and T ↓(X , Y ) =
{(n, k) ∈ X × Y : n> k}.

Claim. A ∈ I0 iff for every infinite X and Y the set A does not contain T ↑(X , Y )
or T ↓(X , Y ).
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Proof of the Claim. The “only if” part is trivial. Conversely, assume that A /∈ I0,
i.e. there exist X , Y ∈ [ω]ω such that A∩ (X ′ × Y ′) 6= ; for every X ′ ∈ [X ]ω

and Y ′ ∈ [Y ]ω. Fix increasing enumerations X = {x0 < x1 < x2 < . . . } and
Y = {y0 < y1 < y2 < . . . }. By shrinking the sets X and Y , we can assume
that x0 < y0 < x1 < y1 < . . . , in particular X ∩ Y = ;. Consider the following
coloring c : [ω]2 → 2 × 2: for m < n let c(m, n) = (χA(xm, yn),χA(xn, ym))

where χA(x , y) = 1 iff (x , y) ∈ A.
Applying Ramsey’s theorem, there exists an infinite homogeneous subset S ⊆

ω. Let S = Z ∪W be a partition into infinite subsets such that the elements of
Z and W follow alternatingly in S. Then the elements of the sets X ′ = {xm :
m ∈ Z} and Y ′ = {yn : n ∈W} follow alternatingly in ω as well.

S cannot be homogeneous in color (0,0), otherwise A∩ (X ′× Y ′) = ; would
hold. Similarly, if S is homogeneous in color (1,1) then X ′ × Y ′ ⊂ A and we
are done. Now suppose that S is homogeneous in color (1,0) (for (0,1) the
same argument works). If xm ∈ X ′, yn ∈ Y ′ and xm < yn then m < n because
Z ∩W = ;. Hence by the homogeneity of S we can conclude (xm, yn) ∈ A, so
T ↑(X ′, Y ′)⊆ A. �

Now we show that I0 is Π
∼

1
1-complete. We will use (see [K, 27.B]) that the

set

S =
�

C ∈K(2ω) : ∀ x ∈ C ∀∞ n ∈ω x(n) = 0
	

is Π
∼

1
1-complete where K(2ω) stands for the family of compact subsets of 2ω

equipped with the Hausdorff metric, i.e. with the Vietoris topology, we know
that K(2ω) is a compact Polish space.

To finish the proof, we will define a Borel map K(2ω)→ P(ω×ω), C 7→ AC
such that C ∈ S iff AC ∈ I0. Fix an enumeration {sm : m ∈ω} of 2<ω, for every
s ∈ 2<ω define [s] = {x ∈ 2ω : s ⊆ x} (a basic clopen subset of 2ω), and let

AC =
�

(m, n) : |sm| > n, sm(n) = 1, and [sm]∩ C 6= ;
	

.

For C ∈ S we show that AC ∈ I0. Let X , Y ∈ [ω]ω be arbitrary. If the set
{m ∈ X : [sm]∩ C = ;} is infinite then we are done, since

AC ∩
��

m ∈ X : [sm]∩ C = ;
	

× Y
�

= ;.

Otherwise, using the compactness of C we can choose an {m0 < m1 < . . . } =
X ′ ∈ [X ]ω and a convergent sequence (x i)i∈ω such that x i ∈ [smi

] ∩ C for
every i. If x i → x then x ∈ C ∈ S so x(n) = 0 for every n ≥ n0 for some n0.
If n ∈ Y \ n0 then for every large enough i we have n < |smi

| and smi
(n) =

x(n) = 0, hence the section {m : (m, n) ∈ (AC ∩ (X
′ × Y ))} is finite. On the

other hand, for a fixed m if |sm| ≤ n then (m, n) /∈ AC , therefore the section
{n : (m, n) ∈ (AC ∩(X

′×Y ))} is also finite. By an easy induction, one can define
an X ′′ ∈ [X ′]ω and a Y ′′ ∈ [Y ]ω such that AC ∩ (X

′′ × Y ′′) = ;.
Now we show that if C 6∈ S then AC 6∈ I0. Let x ∈ C be so that Y = {n :

x(n) = 1} is infinite and let X = {m : x ∈ [sm]}. Now clearly, if (m, n) ∈ X × Y
then (m, n) ∈ AC if and only if n < |sm|. In particular, for every n ∈ Y the set
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{m ∈ X : (m, n) 6∈ AC} is finite, and it clearly implies that the rectangle X × Y
witnesses that AC /∈ I0. �
Remark 3.5. One can give an alternate proof of Theorem 3.3 constructing a
Borel reduction of the set C to Gc.

Theorem 3.6. There exist Σ
∼

1
n and Π

∼
1
n-complete tall ideals for every n≥ 1.

Proof. First we will construct Σ
∼

1
n-complete ideals. Let J be a tall Borel ideal,

A be a perfect J-AD family, and let An be a Σ
∼

1
n-complete subset of the Polish

space A. Define In = id(J∪An), i.e. In is the ideal generated by J∪An. Then
In is a tall proper (because An is infinite) ideal. In is Σ

∼
1
n because

In =
�

X ⊆ω : ∃ k ∈ω ∃ (Ai)i<k ∈A
k
n X \
�

A0 ∪ A1 ∪ · · · ∪ Ak−1
�

∈ J
	

In order to see that In is Σ
∼

1
n-complete, we know that if B is a Σ

∼
1
n set in a Polish

space X, then it can be reduced to An with a continuous map f : X → A ⊆

P(ω), furthermore applying the trivial observation that An = In∩A, we obtain
that this map is in fact a reduction of B to In as well.

Now we proceed with Π
∼

1
n ideals. Again, there exists a Π

∼
1
n-complete set Bn ⊆

A. The previous argument gives that the ideal I′n = id(J∪Bn) is Π
∼

1
n-hard, so it

is enough to prove that I′n is Π
∼

1
n. In order to see this just notice that since A is

an J-AD-family, if I0 = id(J∪A) then we have

X ∈ I0 \ I
′
n iff X ∈ I0 and ∃ A∈ A \Bn A∩ X ∈ J+.

This implies, as I0 is clearly Σ
∼

1
1, that I0 \I

′
n is a Σ
∼

1
n set, and hence I′n is Π

∼
1
n (here

we used that I′n ⊆ I0). �

The idea of the above proof can be used to construct Σ
∼

0
α-complete ideals for

α≥ 3 as well.

4. PROOF OF THEOREM 1.6

Proof. Applying Corollary 1.8, we can fix perfect I-AD families AX on every
X ∈ I+. The statement “AX is an I-AD family” is (at most) Π

∼
1
2 hence absolute

because if AX = [T] is coded by the perfect tree T ∈ Tree2 = {T ⊆ 2<ω : T is a
tree} then “AX is an I-AD family”≡

∀ x , y ∈ [T]
�

x ∈ I+ and (x = y or x ∩ y ∈ I)
�

where of course we are working on 2ω and (x ∩ y)(n) = x(n) · y(n) for every
n.

For every X , Y ∈ I+ let B(X , Y ) = {A ∈ AX : A ∩ Y ∈ I+}. Then it is a
continuous preimage of I+ (under AX → P(ω), A 7→ A ∩ Y ), hence if I is
analytic then B(X , Y ) is coanalytic, and similarly, if I is coanalytic then B(X , Y )
is analytic.

Let κ = |cV |W and fix an enumeration {Xα : α < κ} of the set I+ ∩ V in W .
Working in W , we will construct the desired I-AD refinement {Aα : α < κ},



12 BARNABÁS FARKAS, YURII KHOMSKII, AND ZOLTÁN VIDNYÁNSZKY

Aα ⊆ Xα by recursion on κ. During this process, we will also define a sequence
(Bα)α<κ in I+.

Assume that {Aξ : ξ < α} and (Bξ)ξ<α are done. Let γα be minimal such
that B(Xγα , Xα) contains a perfect set. This property, namely, that an analytic
or coanalytic set H ⊆ P(ω) contains a perfect set, is absolute because if it is
analytic then “H contains a perfect subset” iff “H is uncountable” is of the form
“∀ f ∈ P(ω)ω ∃ x (x ∈ H and x /∈ ran( f ))” hence it is Π

∼
1
2; and if H is coanalytic

then “H contains a perfect set” is of the form “∃ T ∈ Tree2 (T is perfect and ∀
x ∈ [T] x ∈ H)” hence it is Σ

∼
1
2. In particular, γα ≤ α. We also know that if C is

a perfect set coded in V , then in W it contains κmany new elements: We know
it holds for 2ω e.g. because of the group structure on it, and we can compute
new elements of C along a homeomorphism between C and 2ω fixed in V . Let

Bα ∈ B(Xγα , Xα) \
�

V ∪ {Bξ : ξ < α}
�

be arbitrary,

and finally, let Aα = Xα ∩ Bα ∈ I
+. We claim that {Aα : α < κ} is an I-AD family

(it is clearly a refinement of I+ ∩ V ). Let α,β < κ, α 6= β .
If γα = γβ = γ then Bα, Bβ ∈AXγ are distinct, and hence Aα∩Aβ ⊆ Bα∩Bβ ∈ I

(actually, we can assume that it is finite).
If γα < γβ , then because of the minimality of γβ , we know that B(Xγα , Xβ )

does not contain perfect subsets. It is enough to see that B(Xγα , Xβ ) is the same
set in V and W , i.e. if ψ(x , r) is a Σ1

1(r) or Π1
1(r) definition of this set then ∀

x ∈W (ψ(x , r)→ x ∈ V ). Why? Because then Bα /∈ B(Xγα , Xβ) but Bα ∈ AXγα
,

hence it yields that Aα ∩ Aβ ⊆ Bα ∩ Xβ ∈ I.
The set K := B(Xγα , Xβ) is analytic or coanalytic and does not contain perfect

subsets (neither in V nor in W ). Applying the Mansfield-Solovay theorem, we
know that K ⊆ L[r] (r ∈ V ). We also know that (L[r])V ∩P(ω) = (L[r])W ∩
P(ω) holds because ωW

1 ⊆ V , hence KV = KW . �
Remark 4.1. It is natural to ask the following: Assume that V ⊆ W are tran-
sitive models, W contains new reals, and let C be a perfect set coded in W .
Does C contain at least |cV |W many new elements in W? In other words: Does
|CW \V |W ≥ |cV |W hold? Surprisingly, the answer is no! Moreover, it is possible
that there is a perfect set of groundmodel reals in the extension, see [VW98].

Remark 4.2. What can we say about possible generalizations of Theorem 1.6,
for example, can we weaken the condition on the complexity of the ideal? In
general, this statement is false. Let ϕ(x) be a Σ1

2 definition of a Σ1
2 (i.e. ∆1

2)
prime P-ideal I in L. (How to construct such an ideal? Using a ∆1

2-good well-
order ≤ on P(ω), by the most natural recursion, at every stage extending our
family with a ≤-minimal element which can be added without generating P(ω)
and also with a ≤-minimal pseudounion of the previous elements, avoiding
universal quantification by applying goodness, we obtain such an ideal.) We
cannot expect that ϕ(x) defines an ideal in general but we can talk about the
generated ideal: x ∈ J iff “∃ y ∈ I x ⊆ y” which is Σ1

2 too. If r is a Sacks real
over L, then J is still a prime P-ideal in L[r] (see [BrJ, Lemma 7.3.48]) hence
J+ ∩ L does not have any J-ADR’s in L[r].
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5. ON THE EXISTENCE OF PERFECT (I, Fin)-AD FAMILIES

First of all, we show that the reverse implication in the first part of Corollary
1.8 does not hold.

Example 5.1. The assumption that there is a perfect (I, Fin)-AD family does
not imply that I is meager: Fix a prime ideal J on ω. For every partition
P = (Pn)n∈ω of ω into finite sets, fix an XP ∈ [ω]

ω such that AP =
⋃

{Pn :
n ∈ XP} ∈ J (notice that J cannot be meager); and let the ideal I on 2<ω be
generated by the sets of the form A′P =

⋃

{2k : k ∈ AP}.
Clearly, the family {{ f ↾ n : n ∈ ω} : f ∈ 2ω} of branches of 2<ω is a perfect

AD family. We show that { f ↾ n : n ∈ ω} ∈ I+. Notice that {dom(s) : s ∈ A′P} =
AP ∈ J for every P. Thus, a set of the form B f = { f ↾ n : n ∈ ω} cannot be an
element of the ideal because {dom(s) : s ∈ B f }=ω.

I is not meager: Assume the contrary, then by Theorem 1.7 there exists a
partition Q = (Qn)n∈ω of 2<ω into finite sets such that {n ∈ω : Qn ⊆ A} is finite
for every A∈ I. Then there is a partition P = (Pn)n∈ω of ω into finite sets such
that for every n there is an m with Qm ⊆

⋃

{2k : k ∈ Pn}. We know that A′P ∈ I,
a contradiction because A′P contains infinitely many Qm’s.

What can we say if there are perfect (I, Fin)-AD families on every X ∈ I+? In
this case we have only consistent counterexamples.

Theorem 5.2. Assume that b = c. Then there is a non-meager ideal I on ω such
that there are perfect (I, Fin)-AD families on every X ∈ I+.

Proof. Let [ω]ω = {Xα : α < c} and {partitions of ω into finite sets} = {Pα =
(Pαn )n∈ω : α < c} be enumerations. We will construct the desired ideal I as an
increasing union

⋃

{Iα : α < c} of ideals by recursion on α < c. At the αth stage
we will make sure that

(i) Iα is generated by |α| many elements;
(ii) Pα cannot witness that Iα is meager;
(iii) either Xα belongs to Iα or there is a perfect (Iα, Fin)-AD family on Xα;
(iv) we do not destroy the (Iβ , Fin)-AD families we may have constructed

in previous stages.
Let I0 = Fin and fix a perfect AD family A0 on X0. At stage α > 0 we already

have the ideals Iβ for every β < α, let I<α =
⋃

{Iβ : β < α}. We also have
perfect (I<α, Fin)-AD families Aβ on Xβ ∈ I

+
<α for certain β ∈ Dα ⊆ α.

If we can add Xα to I<α, that is, Aβ ∩ id(I<α ∪ {Xα}) = ; for every β ∈ Dα,
then let I′α = id(I<α ∪ {Xα}) and D′α = Dα.

Suppose that we cannot add Xα to I<α, that is, Aβ ∩ id(I<α ∪ {Xα}) 6= ; for
some β ∈ Dα. Since I<α is generated by < b = c many sets, it is an everywhere
meager ideal (see [So77] or [Bl10, Thm. 9.10]). We can apply Corollary
1.8 to obtain a perfect (I<α, Fin)-AD family Aα on Xα, let I′α = I<α, and let
D′α = Dα ∪ {α}.

Fix a partition Q = (Qn)n∈ω of ω into finite sets such that {n ∈ ω : Qn ⊆ A}
is finite for every A∈ I′α (we know that I′α is meager).
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Claim. There exist partitions Qβ ,B = (Q
β ,B
n )n∈ω for every β ∈ D′α and B ∈ I′α such

that A∩Qβ ,B
n \ B 6= ; for every β ∈ D′α, A∈Aβ , B ∈ I′α, and n ∈ω.

Proof of the Claim. Let β ∈ D′α and B ∈ I′α. We know that Aβ is compact as a
subset of P(ω). Basic open sets in P(ω) are of the form [s, t] = {A⊆ω : s∩A=
; and t ⊆ A} for disjoint, finite s, t ⊆ ω. Then Aβ ⊆

⋃

{[;, {n}] : n ∈ ω \ B}
because A \ B is infinite for every A ∈ Aβ . Therefore Aβ ⊆

⋃

{[;, {n}] : n ∈

N0 \ B} for an N0 ∈ω, in particular, A∩N0 \ B 6= ; for every A∈Aβ . Let Qβ ,B
0 =

[0, N0). We can proceed by the same argument: Aβ ⊆
⋃

{[;, {n}] : n ∈ [N0,ω)\
B} hence there is an N1 > N0 such that Aβ ⊆

⋃

{[;, {n}] : n ∈ [N0, N1) \ B}, in

other words, A∩ [N0, N1) \ B 6= ; for every A∈Aβ . Let Qβ ,B
1 = [N0, N1) etc. �

Now we have the family Q = {Pα}∪{Q}∪{Qβ ,B : β ∈ D′α, B ∈ Cα} of partitions
where Cα ⊆ I′α is a cofinal family, |Cα| ≤ max{|α|,ω}. |Q| < c = b hence
there is a partition R = (Rm)m∈ω which dominates all of these partitions, that
is, ∀ P = (Pn)n∈ω ∈ Q ∀∞ m ∃ n Pn ⊆ Rm (see [Bl10, Thm. 2.10]). Let
Y =
⋃

{R2n : n ∈ω} and Iα = id(I′α ∪ {Y }).
Then (i) is clearly satisfied, in order to see (ii) notice that by the fact that the

partition Rm was dominating and Pα ∈ Q, for almost every m there exists an n
with Pαn ⊂ R2m. Condition (iii) is also clear if Xα ∈ I

′
α.

If Xα 6∈ I
′
α then by definition α ∈ D′α so to see (iii) and (iv) we have to show

that for every β ∈ D′α the family Aβ is not just an (I′α, Fin)-AD family, but also
an (Iα, Fin)-AD family. In other words, it is enough to check that for every
A ∈ Aβ and B ∈ I′α we have A\ (B ∪ Y ) 6= ;. Fix such A and B, we can assume

that B ∈ Cα. Then for almost every m, there is an nm such that Qβ ,B
nm
⊆ R2m+1,

and by the claim we know that A∩Qβ ,B
nm
\B 6= ;. Therefore, A\(B∪Y ) is infinite,

hence Aβ ∩ Iα = ; for every β ∈ D′α. �

What can we say about ideals on the second level of the projective hierarchy,
do there always exist perfect or at least uncountable (I, Fin)-AD families? If all
Σ
∼

1
2 and Π

∼
1
2 sets have the Baire property, then of course, yes because then Σ

∼
1
2

andΠ
∼

1
2 ideals are meager and we can apply Corollary 1.8. On the other hand, if

I is a Σ1
2 (i.e. ∆1

2) prime ideal (e.g. in L) then every I-AD family is a singleton.
Similarly, we can construct a Σ1

2-ideal J in L such that there are infinite J-AD
families but all of them are countable: Copy the above ideal I to the elements
of a partition {Pn : n ∈ω} ⊆ [ω]ω of ω, and let J be the generated ideal.

This last example is very artificial in the sense that, this ideal is constructed
from maximal ideals in a very “obvious” way, many of its restrictions are prime
ideals. However, we can construct even more peculiar ideals:

Proposition 5.3. Suppose that there exists a ∆
∼

1
n prime ideal on ω for some n.

Then there exists a ∆
∼

1
n ideal I such that I is nowhere maximal but every I-AD

family is countable. In particular, there exists such a ∆
∼

1
2 ideal in L.
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Proof. Let U be an ultrafilter and define µ : P(ω)→ [0,1] as µ(A) = limU
|A∩n|

n
where limU stands for the U-limit operation on sequences in topological spaces,
that is, limU(an) = a iff {n ∈ ω : an ∈ V} ∈ U for every neighbourhood V of
a. It is easy to see that if {an : n ∈ω} is compact, then limU(an)n∈ω exists, in
particular, µ is defined on every A ∈ P(ω). It is also straightforward to show
that µ is a finitely additive non-atomic probability measure on P(ω), that is,
µ(;) = 0, µ(A∪ B) = µ(A) + µ(B) if A∩ B = ;, µ(ω) = 1, and if µ(X ) = ǫ > 0
then for every δ ∈ (0,ǫ) there is a Yδ ⊆ X with µ(Yδ) = δ.

Let I = {A ⊆ ω : µ(A) = 0}. Then I is an ideal. I is nowhere maximal
because of µ is non-atomic (in particular, there are infinite I-AD families). We
show that every I-AD family is countable. If there was an uncountable I-AD
family A, then An = {A ∈ A : µ(A) > 1/n} would be uncountable for some
n ∈ ω and therefore among every n many element of An there would be two
with I-positive intersection.

Notice that if U is ∆
∼

1
n (n ≥ 2) then I is also ∆

∼
1
n because A ∈ I iff ∀ k ∈ ω

{n ∈ ω : |A∩ n|/n < 2−k} ∈ U, and the function A 7→ {n ∈ ω : |A∩ n|/n < 2−k}

is continuous (for every k). �

6. ON (I, Fin)-ADR’S

In this section, we study Question 1.11.

Theorem 6.1. Assume MAκ and let I be an everywhere meager ideal, then every
H ∈ [I+]≤κ has an (I, Fin)-ADR.

Proof. Let H = {Hα : α < κ} be an enumeration. Define p ∈ P = P(H) iff p is
a function, dom(p) ∈ [κ]<ω, and p(α) ∈ [Hα]

<ω for every α ∈ dom(p); p ≤ q
iff dom(p) ⊇ dom(q), ∀ α ∈ dom(q) p(α) ⊇ q(α), and ∀ {α,β} ∈ [dom(q)]2

p(α)∩ p(β) = q(α)∩ q(β).

Then P is a poset. First of all, we show that P has the ccc. Let {pξ : ξ <
ω1} ⊆ P. Then {dom(pξ) : ξ < ω1} ⊆ [κ]

<ω. We can assume that this family
forms a ∆-system, dom(pξ) = Dξ ∪ R. There are at most ω many functions
R→ Fin, hence we can also assume that there is a q ∈ P such that pξ ↾ R = q
for every ξ < ω1. Clearly, pξ ∪ pζ ∈ P and pξ ∪ pζ ≤ pξ for every ξ,ζ < ω1.

It is easy to see that for every α < κ the set Dα = {p ∈ P : α ∈ dom(p)}
is dense in P. If G is a {Dα : α < κ}-generic filter, then let FG : κ → P(ω),
FG(α) =
⋃

{p(α) : p ∈ G}. Clearly, FG(α)⊆ Hα for every α.

We show that FG(α) ∩ FG(β) is finite for every distinct α,β < κ. Let p ∈
Dα ∩G, q ∈ Dβ ∩G, and r ∈ G be a common lower bound of them. It is easy to
see that FG(α)∩ FG(β) = r(α)∩ r(β).

If somehow we can make sure that FG(α) ∈ I+, then we are done because
{FG(α) : α < κ} will be an (I, Fin)-ADR of H. We show that if G is (V,P)-
generic then FG(α) is a Cohen-real in P(Hα) over V . It is enough because then
FG(α) /∈ I ↾ Hα (we know that I ↾ Hα is meager) and to show that V[FG(α)] |=
FG(α) /∈ I ↾ Hα, it is enough to use countable many dense sets. Why? For every
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α we can fix a countable family Cα = {C
α
n : n ∈ ω} of closed nowhere dense

subsets of P(Hα) which covers I ↾ Hα, and hence have countable many dense
subsets of the Cohen forcing such that if a filter is generic for this family then
the generic real is not covered by any element of Cα. More precisely, we have to
translate these dense subsets of the Cohen forcing to dense subsets in P, it can
be done by applying the (inverse of the) projection P→ C(Hα) defined below.

Fix an α < κ, let C(Hα) = {s : s is a finite partial function form Hα to 2}
where s ≤ t iff s ⊇ t (then C(Hα) adds a Cohen subset of Hα over V ), and
define the map e = eα : P→ C(Hα) as follows:

(i) dom(e(p)) =
⋃

{p(β)∩Hα : β ∈ dom(p)};
(ii) e(p)(n) = 1 iff n ∈ p(α).

We show that e is a projection (see e.g. [A11, page 335]) , that is,

(1) e is order-preserving, onto, and e(;) = ;;

(2) ∀ p ∈ P ∀ s ∈ C(Hα)
�

s ≤ e(p)→ ∃ p′ ≤ p e(p′) = s
�

.

Clearly, e(;) = ;. Assume that p ≤ q. Then clearly dom(e(p)) ⊇ dom(e(q)).
If n ∈ dom(e(q)) and n ∈ q(α) ⊆ p(α) then e(q)(n) = e(p)(n) = 1; if n ∈
dom(e(p)) and n ∈ q(β) \ q(α) for some β 6= α then, as p(α) ∩ p(β) = q(α)∩
q(β), n ∈ p(β) \ p(α) and hence e(q)(n) = e(p)(n) = 0. This yields that e is
indeed order preserving.

To show that e is onto, we have to assume that Hα ⊆
⋃

{Hβ : β 6= α} (and
w.l.o.g. we can do so by extending H to be a cover of ω and adding ω as an
element to H). For an s ∈ C(Hα) define p ∈ P as follows: Fix a finite D ⊆ κ
containing α such that dom(s) ⊆

⋃

{Hβ : β ∈ D}, let dom(p) = D, and define
p(α) = s−1(1) and p(β) = {n ∈ Hβ ∩Hα : s(n) = 0}. Then e(p) = s.

To show that e satisfies (2), fix a p ∈ P, an s ∈ C(Hα), and assume that
s ≤ e(p). Define p′ ∈ P as follows: For every n ∈ J = (s \ e(p))−1(0) pick a
γn ∈ κ\ {α} such that n ∈ Hγn

. Let dom(p′) = dom(p)∪{γn : n ∈ J} and define
p′(α) = p(α)∪s−1(1), if β ∈ dom(p′)\{α} then p′(β) = p(β)∪{n ∈ J : β = γn}.
It is straightforward to see that p′ ∈ P, p′ ≤ p, and e(p′) = s.

We know that if G is (V,P)-generic then e[G] generates a (V,C)-generic filter
G′. Notice that the Cohen real defined from G′ is FG(α), so we are done. �

Unfortunately, at this moment, we do not know whether we really needed
Martin’s Axiom in the previous theorem or it holds in ZFC. We show that if we
attempt to construct a counterexample, that is, say a tall Borel ideal I and a
family H ∈ [I+]<c without a (I, Fin)-ADR, we have to be careful. Let us define
the following cardinal invariants of tall ideals on ω: The star-additivity of I is

add∗(I) =min
�

|X| : X⊆ I and ∄ A∈ I ∀ X ∈ X X ⊆∗ A
	

,

the Fodor number of I is

F(I) =min
�

|H| : H ⊆ I+ has no I-ADR
	

,

and the star-Fodor number of I is

F∗(I) =min
�

|H| : H ⊆ I+ has no (I, Fin)-ADR
	

.
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Clearly, I is a P-ideal iff add∗(I) > ω. Proposition 1.10 says that F(I) = c
whenever I is everywhere meager; and clearly, F∗(I)≤ F(I).

Fact 6.2. If add∗(I)< F(I) then add∗(I)< F∗(I). If add∗(I) = F(I) then F(I) =
F∗(I).

Proof. Assume that H = {Hα : α < κ} ⊆ I+ where κ = add∗(I) < F(I). First fix
an I-ADR {Aα : α < κ} of H (Aα ⊆ Hα). Then for every α < κ fix a Bα ∈ I such
that Aα ∩ Aβ ⊆

∗ Bα for every β < α, and let A′α = Aα \ Bα. Then {A′α : α < κ}
is an (I, Fin)-ADR of H. The second statement can be proved by the same
argument. �

In particular, if I is an everywhere meager P-ideal and F∗(I)< c, then F∗(I)<
F(I) hence add∗(I)< F(I) and so ω1 ≤ add∗(I)< F∗(I)< c, therefore c≥ω3.

7. MIXING REALS

In this section, we study two closely related properties of forcing notions,
one of which is slightly stronger then “[ω]ω ∩ V has an ADR in VP”.

Definition 7.1. Let P be a forcing notion. We say that an f ∈ ωω ∩ VP is
a mixing real over V if | f [X ] ∩ Y | = ω for every X , Y ∈ [ω]ω ∩ V . If f is
one-to-one, then we call it an injective mixing real or mixing injection.

Clearly, in the definition above, it is enough to require that f [X ]∩ Y 6= ; for
every X , Y ∈ [ω]ω ∩ V .

Proposition 7.2. Let P be a forcing notion. Then the following are equivalent:
(i) There is a mixing real f ∈ωω ∩ V P over V .

(ii) There is an f ∈ωω ∩ V P such that f [X ] =ω for all X ∈ [ω]ω ∩ V .
(iii) There is a partition (Yn)n∈ω of ω into infinite sets in VP such that ∀

X ∈ [ω]ω ∩ V ∀ n |X ∩ Yn| =ω.
(iii)’ There is a partition (Yn)n∈ω of ω into infinite sets in VP such that ∀

X ∈ [ω]ω ∩ V ∀ n X ∩ Yn 6= ;.

Proof. (ii)→(i) and (iii)↔(iii)’ are trivial. (ii)↔(iii)’ because let Yn = f −1(n)
(and vice versa). Finally, (i) implies (ii): Fix a partition (Cn)n∈ω of ω into
infinite sets in V and let g : ω→ ω, g ↾ Cn ≡ n. If f is a mixing real over V ,
then h= g ◦ f has the required property. �

(iii) says that mixing reals can be seen as “infinite splitting parititions”. Re-
call that a set S ⊆ ω is a splitting real over V if |X ∩ S| = |X \ S| = ω for every
X ∈ [ω]ω ∩ V , in other words, P = {S,ω \ S} is a partition of ω such that ∀
X ∈ [ω]ω ∩ V ∀ Y ∈ P |X ∩ Y | =ω.

Why is this property relevant to almost-disjoint refinements? Fix an AD
family A = {Aα : α < c} in V , and let {Xα : α < c} be an enumeration of
[ω]ω in V . If f ∈ ωω ∩ V P is a mixing injection over V , then the family
{ f [Aα]∩ Xα : α < c} ∈ V P is an ADR of [ω]ω ∩ V .

Proposition 7.3. Let P be a forcing notion.
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(i) If P adds random reals then it adds mixing reals.
(ii) If P adds dominating reals, then it adds mixing reals.
(iii) If P adds Cohen reals then it adds mixing injections.
(iv) If P adds mixing injections then it adds unbounded reals.
(v) If P has the Laver-property, then it does not add injective mixing reals.

Proof. (i): Let λ be the usual probability measure on ωω, that is, λ is uniquely
determined by the values λ([s]) = 2−s(0)−s(1)−···−s(n−1)−n where s : n→ ω and
[s] = { f ∈ ωω : s ⊆ f }. If Nλ = {A ⊆ ω

ω : λ(A) = 0}, then it is well-know
that Borel(ωω)/Nλ is forcing equivalent to the random forcing. It is enough to
see that the set AX ,Y = { f ∈ω

ω : | f [X ]∩ Y | < ω} is a null set in ωω for every
X , Y ∈ [ω]ω: AX ,Y =

⋃

n∈ω{ f ∈ ω
ω : f [X ] ∩ Y ⊆ n} and if X = {xk : k ∈ ω}

and n ∈ ω then { f : f [X ] ∩ Y ⊆ n} = { f : ∀ k f (xk) ∈ n ∪ (ω \ Y )}. Clearly,
∑

{2−m−1 : m ∈ n ∪ (ω \ Y )} = ǫ < 1 and hence λ({ f : f [X ] ∩ Y ⊆ n}) ≤
limk→∞ ǫ

k = 0.

(ii): Trivial modification of the proof of the fact (see e.g. [Hb, Fact 20.1])
that adding a dominating real implies adding a splitting real works here as
well: Adding a dominating real is equivalant to adding a dominating partition
(Pn)n∈ω of ω into finite sets (see [Bl10, Thm. 2.10]), that is, for every partition
(Qm)m∈ω ∈ V of ω into finite sets, ∀∞ n ∃ m Qm ⊆ Pn. Now any infinite
partition of ω containing of unions of infinitely many Pn’s satisfy (iii) from
Proposition 7.2.

(iii): We can talk about injective Cohen-reals. Simply consider the forcing
notion (Inj,⊇) where Inj = {s ∈ ω<ω : s is one-to-one}, or the forcing notion
(Borel(INJ) \M(INJ),⊆) where INJ = { f ∈ωω : f is one-to-one} is a nowhere
dense closed subset onωω and M(INJ) is the meager ideal on this Polish space.
It is not difficult to see that these forcing notions are forcing equivalent to the
Cohen forcing (moreover, INJ is homemomorphic to ωω).

If c is an injective Cohen-real over V , then c is mixing: For every X , Y ∈
[ω]ω, the set A′X ,Y = AX ,Y ∩ INJ =

⋃

n∈ω

�

f ∈ INJ : f [X ] ∩ Y ⊆ n
	

is meager
because { f ∈ INJ : f [X ]∩ Y ⊆ n} is closed and nowhere dense in INJ.

(iv): Let f ∈ INJ∩V P be a mixing injection and assume on the contrary that
there is a strictly increasing g ∈ ωω ∩ V such that f , f −1 < g (where of course
f −1 < g means that f −1(k)< g(k) for every k ∈ ran( f )).

We define X = {xk : k ∈ ω}, Y = {yk : k ∈ ω} ∈ [ω]ω in V as follows:
x0 = 0, y0 = g(0), xn = max{g(yk) : k < n}, and yn = g(xn). Suppose that
f (xk) = yl for some k, l ∈ω. If k ≤ l then

f (xk)< g(xk) = g
�

max
m<k

g(ym)
�

≤ g
�

max
m<l

g(ym)
�

= x l < g(x l) = yl ,

a contradiction. Now, if k > l then

xk = f −1(yl)< g(yl)≤max{g(ym) : m< k} = xk

which is again impossible. Thus, f [X ]∩ Y = ;, so f cannot be a mixing injec-
tion.
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(v): Fix a sequence (an)n∈ω ∈ ω
ω ∩ V satisfying an+1 − an > (n + 2)2n+1

and a0 > 1. Assume that p � ḟ ∈ INJ. Let ġ be a P-name for a function
on ω such that p � ġ(n) = ḟ ∩ (an × an) = {(k, l) ∈ an × an : f (k) = l}
for every n (in particular, p �“ ġ(n) is an injective partial function from an to
an”). Then p � ġ ∈

∏

n∈ωP(an × an) hence, applying the Laver property of
our forcing notion to the name ġ for a function from ω to [ω×ω]<ω, there is
a q ≤ p and a “slalom” S : ω →

�

[ω×ω]<ω
�<ω in V which catches ġ, that

is, S(n) ⊆ P(an × an), |S(n)| ≤ 2n, and q � ġ(n) ∈ S(n) for every n. Without
loss of generality we can assume that all elements of S(n) are injective partial
functions an→ an.

Working in V , we will define the sets X = {xn : n ∈ ω}, Y = {yn : n ∈ ω} ∈
[ω]ω by recursion on n such that q � ḟ [X ]∩ Y = ;.

Let x0 ∈ a0 be arbitrary. We know that there is a y0 ∈ a0 such that (x0, y0) /∈
⋃

S(0) (a function cannot cover {(x0, k) : k < a0}).
Assume that we already have Xn = {xk : k ≤ n} and Yn = {yk : k ≤ n} such

that (Xn× Yn)∩
⋃

k≤n

⋃

S(k) = ;. There is an xn+1 ∈ an+1 \ an such that

�

s(xn+1) : s ∈ S(n+ 1), xn+1 ∈ dom(s)
	

∩ Yn = ;.

Why? If for every m ∈ an+1 \ an there is an sm ∈ S(n+ 1) such that sm(m) ∈ Yn
then there is a set H ∈ [an+1 \ an]

n+2 such that sm = s does not depend on
m ∈ H (because |an+1 \ an| > (n+ 2)2n+1 and |S(n+ 1)| ≤ 2n+1). But it would
mean that H ⊆ dom(s) and |s[H]| ≤ |Yn| = n + 1 which is a contradiction
because s is injective.

We also want to fix a yn+1 ∈ an+1 \ an such that yn+1 6= s(xk) for any k ≤
n+ 1, s ∈ S(n+1) if xk ∈ dom(s). The set of forbidden values is of size at most
2n+1(n+ 2) hence there is such a yn+1. �

In the diagram below, we summarize logical implications between classical
properties of forcing notions and the ones we defined above. We will show
that arrows without an ∗ above them are strict (i.e. not equivalences), and that
there are no other implications between these properties. The arrow ✲

with question mark means that we do not know whether this implication holds
(but the reverse implication is false). Of course, C stands for the Cohen forcing,
B is the random forcing, and to keep the diagram small, we did not put “P adds
. . . ” and “P has the . . . ” before the properties we deal with.
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C-reals dom. reals

inj. mixing ✲

∗

✲

unb. reals
✲

B-reals ✲ mix. reals
❄✲

∗✲ spl. real

¬Laver prop.
❄

✲
✲

¬Sacks prop.
❄

?

✲

The non-trivial non-implications in the diagram are the following:

• ¬Laver prop. 9 splitting reals: The infinitely equal forcing EE is ωω-
bounding, preserves P-points (hence cannot add splitting reals), and
�E“2

ω∩V is a null set” (see [BrJ, Lemma 7.4.13-15]). EE cannot have
the Laver property because otherwise it would have the Sacks property
as well but then it could not force 2ω ∩ V to be of measure zero (it
follows from e.g. [BrJ, Thm. 2.3.12]).
• unbounded reals9 splitting reals: The Miller forcing (see [BrJ, 7.3.E]).
• spl. reals 9 ¬Sacks prop.: The Silver forcing adds splitting reals (see
[Hb, Lemma 2.3]) and it is straightforward to show that it satisfies the
Sacks property.

We list the remaining questions in the next section.

8. RELATED QUESTIONS

We already presented Σ
∼

1
n- and Π

∼
1
n-complete ideals but our construction was

pretty artificial.

Question 8.1. Can we define “natural” Σ
∼

1
n- and Π

∼
1
n-complete ideals?

Question 8.2. Assume that V,W and I are as in Theorem 1.6. Does there exist
an (I, Fin)-ADR of I+ ∩ V in W? Or at least an I-ADR {AX : X ∈ I+ ∩ V} ∈ W
such that for every distinct X , Y ∈ I+ ∩ V (using the notiations from the proof
of Theorem 1.6) there is a BX ,Y ∈ I∩ V such that AX ∩ AY ⊆ BX ,Y ?

Question 8.3. Does there exist a non-meager ideal I (in ZFC) such that there
are perfect (I, Fin)-AD families on every X ∈ I+?

In Example 5.3, assuming that there is a ∆
∼

1
2 ultrafilter, we constructed a ∆

∼
1
2

ideal I such that every I-AD family is countable but I is nowhere maximal.

Question 8.4. Is it consistent that there are no ∆
∼

1
2 ultrafilters but there is a Σ

∼
1
2

ideal I such that every I-AD family is countable but I is nowhere maximal?
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A remark to Question 8.4: We know (see [BrJ, Thm. 9.3.9 (2)]) that if
there are no dominating reals over L[r] for any r ∈ ωω, then there is a Σ1

2
unbounded hence non-meager filter. If every ∆

∼
1
2 set is Lebesgue measurable

or has the Baire property, then there are no ∆
∼

1
2 ultrafilters. For instance, these

conditions above hold in the Cohen and random models over V = L (see [BrJ,
Thm. 9.2.1]). In these models a non-meager Σ1

2 ideal I must be nowhere
maximal (otherwise a restriction of I would be a ∆1

2 prime ideal). It would be
interesting to know the possible sizes of I-AD families in these models.

Question 8.5. Is it consistent that for some (tall) Borel (P-)ideal I a family
H ∈ [I+]<c does not have an (I, Fin)-ADR (i.e. F∗(I)< c)?

Question 8.6. Does adding mixing injections imply adding Cohen reals?

Question 8.7. Does the Sacks property of a forcing notion imply that it does
not add mixing reals?

Proposition 7.2 motivates the following notion: Let n ≥ 2. We say that a
forcing notion adds an n-splitting partition, if there is a partition (Yk)k<n of
ω into infinite sets in VP such that |X ∩ Yk| = ω for every X ∈ [ω]ω ∩ V
and k < n. In particular, adding 2-splitting partitions is the same as adding
splitting reals, and addingω-splitting (infinite splitting) partitions is equivalent
to adding mixing reals.

It is easy to see that if P adds a splitting real then the n stage iteration of
P adds a 2n-splitting partition. In fact, splitting reals and n-splitting partitions
cannot be separated in terms of cardinal invariants. Let us denote sn (2 ≤ n <
ω) the least size of a family Sn of partitions of ω into n many infinite sets such
that

(∗) ∀ X ∈ [ω]ω ∃ P = (Pk)k<n ∈ Sn ∀ k < n |X ∩ Pk| =ω.

Of course, this definition makes sense for n = ω as well but sω stands for
an already defined and studied cardinal invariant. To avoid confusions, let us
denote this cardinal by smix.

Then sn = s = s2 for every 2 ≤ n < ω. For the non-trivial direction, assume
that we have a family S of splitting partitions of size s and consider all possible
“(n− 1)-long iterated nestings” of these partitions. For example, if n = 3 then
to every pair (P = (P0, P1),Q = (Q0,Q1)) of partitions from S we associate a
partition of ω into three infinite sets as follows: Let e0 :ω→Q0 be the increas-
ing bijection and take the partition (e0[P0], e0[P1],Q1). We obtain sn−1 = s
many partitions of ω into n many infinite sets, the family Sn of these partitions
satisfies (∗), and hence sn ≤ s.

Question 8.8. Does adding n-splitting partitions (2 ≤ n < ω) imply adding
(n+ 1)-splitting partitions?

Question 8.9. Is smix = s? Does adding splitting reals (or n-splitting partitions
for every n) imply adding mixing reals? What can we say about the Silver
forcing? (It is straightforward to see that it adds n-splitting partitions for every
n.)



22 BARNABÁS FARKAS, YURII KHOMSKII, AND ZOLTÁN VIDNYÁNSZKY

REFERENCES

[A11] U. Abraham: Proper forcing, Handbook of Set Theory, eds. M. Foreman, M. Magidor,
and A. Kanamori, Springer-Verlag, Berlin (2011), pages 333-394.

[BaP10] B. Balcar, T. Pazák: Quotients of Boolean algebras and regular subalgebras, Arch. Math.
Logic 49 (2010), pages 329-342.

[BaV80] B. Balcar, P. Vojtáš: Almost disjoint refinements of families of subsets of N, Proc. Amer.
Math. Soc. Vol. 79/3 (1980), pages 465-470.

[BaSV81] B. Balcar, P. Simon, P. Vojtáš: Refinement properties and extensions of filters in Boolean
algebras, Trans. Amer. Math. Soc. 267 (1981), no. 1, pages 265-283.

[BrJ] T. Bartoszynski, H. Judah: Set Theory: On the Structure of the Real Line, A.K. Peters,
1995.
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3.8 Cofinalities of Marczewski ideals

Jörg Brendle, Yurii Khomskii and Wolfgang Wohofsky, Colloquium Mathematicum, to ap-
pear.

Originally, this was a project between Wohofsky and Khomskii. Having established some
basic ideas, we involved Brendle in the collaboration who proved the important results The-
orem 14, Theorem 16 and Proposition 17.

• Definition 4 and Proposition 5: Khomskii and Wohofsky

• Proposition 7: Khomskii

• Proposition 9: Khomskii

• Propositoin 10: Khomskii and Wohofsky

• Theorem 14: Brendle

• Theorem 16: Brendle

• Proposition 17 and Corollary 18: Brendle

The paper was mostly written by Brendle, with some proofs of Section 2 taken from earlier
notes by Khomskii.
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ideal ℓ0 (related to Laver forcing L) are larger than the size of the
continuum c.

1 Introduction

The purpose of this note is to prove (in ZFC) that the ideals naturally

related to Laver forcing L and to Miller forcing M, the Laver ideal ℓ0 and

the Miller ideal m0, have cofinality strictly larger than c, the size of the

continuum (Corollary 18 below). We will phrase our result in a more general

framework and show that cof(t0) > c holds for all tree ideals t0 derived from

tree forcings T satisfying a certain property (Theorem 13 in Section 3). This

was known previously for the Marczewski ideal s0 [JMS] and the nowhere

Ramsey ideal r0 [Ma], but it is unclear whether the method of proof for

these two ideals works for ℓ0 and m0 (see the discussion in Section 2), and

our approach is more general. We emphasize that while there is a close

connection to the corresponding forcing notions, our results are in ZFC and

no knowledge of forcing theory is required for understanding them.

For n ≤ ω let ωn = {f : n → ω} be the collection of all functions from

n to ω or, equivalently, the collection of all sequences of length n of natural

numbers. ωω is the Baire space, and ω<ω =
∪

n∈ω ωn is the collection of

finite sequences of natural numbers. A subset T of ω<ω is called a tree (or

a subtree of ω<ω) if it is closed under initial segments, that is, if s ∈ T and

n ∈ ω then s↾n ∈ T . For a tree T , [T ] = {x ∈ ωω : x↾n ∈ T for all n ∈ ω}
denotes the set of branches through T .

Definition 1 (Combinatorial tree forcing). A collection T of subtrees of

ω<ω is a combinatorial tree forcing if

1. ω<ω ∈ T,

2. (closure under subtrees) if T ∈ T and s ∈ T , then the tree Ts = {t ∈
T : s ⊆ t or t ⊆ s} also belongs to T,

3. (large disjoint antichains) there is a continuous function f : ωω → 2ω

such that for all x ∈ 2ω, f−1({x}) is the set of branches of a tree in T,

4. (homogeneity) if T ∈ T, then there is an order-preserving injection

i : ω<ω → T such that the map g : ωω → [T ] given by g(x) =∪{i(x↾n) : n ∈ ω} is a homeomorphism and for any subtree S ⊆ ω<ω,

S ∈ T iff the closure of i(S) under initial segments belongs to T.

T is partially ordered by inclusion, that is, for S, T ∈ T, S ≤ T if S ⊆ T .
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Homogeneity says that the partial order looks the same below each ele-

ment. In view of homogeneity, “large disjoint antichains” implies that

5. each T ∈ T splits into continuum many trees with pairwise disjoint

sets of branches, that is, there are Tα ∈ T, α < c, with Tα ⊆ T such

that [Tα] ∩ [Tβ] = ∅ for α ̸= β.

Recall here that S, T ∈ T are incompatible if there is no U ∈ T with U ≤
S, T . A set T ⊆ T is an antichain if any two distinct elements of T are

incompatible. An antichain T is a maximal antichain if for each S ∈ T
there is T ∈ T compatible with S. A partial order T satisfies the countable

chain condition (ccc for short) if every antichain in T is at most countable.

Clause 5 then says that there are c-sized antichains in a combinatorial tree

forcing T so that T is not ccc and some classical forcing notions like Cohen

and random forcing do not fit into this framework.

For partial orders whose elements are subtrees of 2<ω like Sacks forcing

S, an analogous definition applies, with ω<ω and ωω replaced by 2<ω and

the Cantor space 2ω, respectively.

Definition 2 (Tree ideal). The tree ideal t0 associated with the combina-

torial tree forcing T consists of all X ⊆ ωω such that for all T ∈ T there is

S ≤ T with X ∩ [S] = ∅.

For a tree T (in ω<ω or 2<ω) and t ∈ T , succT (t) = {n ∈ ω : t̂ n ∈ T} is

the set of successors of t in T . A node s ∈ T is called a splitting node of T if

succT (s) has at least two elements. The stem of T , stem(T ), is the smallest

splitting node. A subtree T ⊆ 2<ω is a Sacks tree (or perfect tree) if for each

t ∈ T there is a splitting node s ⊇ t in T . Sacks forcing S, the collection of

all Sacks trees, is a combinatorial tree forcing: “large disjoint antichains” is

witnessed by f : 2ω → 2ω given by f(x)(n) = x(2n) for x ∈ 2ω and n ∈ ω.

The Marczewski ideal s0 is the corresponding tree ideal. A subtree T ⊆ ω<ω

is a Laver tree [La] if for all t ∈ T containing stem(T ), succT (t) is infinite.

T ⊆ ω<ω is a Miller tree [Mi] (or superperfect tree) if for all t ∈ T there is

s ⊇ t in T such that succT (s) is infinite. Laver forcing L (Miller forcing M,

respectively) is the collection of all Laver trees (Miller trees, resp.). Both

are combinatorial tree forcings in the above sense for f : ωω → 2ω given by

f(x)(n) = x(n) mod 2 for all x ∈ ωω and n ∈ ω witnesses “large disjoint

antichains”. The Laver and Miller ideals ℓ0 and m0 are the corresponding

tree ideals. For basic facts about such tree ideals, like non-inclusion between

different ideals, see e.g. [Br].
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Definition 3 (Cofinality of an ideal). Given an ideal I on ωω or 2ω, its

cofinality cof(I) is the smallest cardinality of a family J ⊆ I such that

every member of I is contained in a member of J .

A family like J in this definition is said to be a basis of I (or: cofinal in

I).

While the topic of our work are cofinalities of tree ideals, we note that

other cardinal invariants of tree ideals t0, such as the additivity add(t0) (the

least size of a subfamily J ⊆ t0 whose union is not in t0) and the covering

number cov(t0) (the least size of a subfamily J ⊆ t0 whose union is ωω)

have been studied as well. If there is a fusion argument for T, t0 is a σ-ideal,

and one has ω1 ≤ add(t0) ≤ cov(t0) ≤ c, while the exact value of these

two cardinals depends on the model of set theory. Furthermore, by “large

disjoint antichains”, the uniformity non(t0) of a tree ideal t0 (the smallest

cardinality of a subset of ωω not belonging to t0) is always equal to c. Since

cof(I) ≥ non(I) for any non-trivial ideal I, cof(t0) ≥ c follows, and the

main problem about cofinalities of tree ideals is whether they can be equal

to c or must be strictly above c.

The question whether cof(ℓ0) and cof(m0) are larger than c was discussed

in private communication with M. Dečo and M. Repický, and Repický [Re]

in the meantime used our result to obtain a characterization of cof(ℓ0) as

d((ℓ0)c).

2 The disjoint maximal antichain property

Definition 4. Let T be a combinatorial tree forcing. T has the disjoint

maximal antichain property if there is a maximal antichain (Tα : α < c) in

T such that [Tα] ∩ [Tβ] = ∅ for all α ̸= β.

The following has been known for some time (see also [Re, Theorem

1.2]).

Proposition 5. Assume T has the disjoint maximal antichain property.

Then cf(cof(t0)) > c.

Proof. Let (Tα : α < c) be a disjoint maximal antichain in T. Also let

κ = cf(cof(t0)) and assume κ ≤ c. We shall derive a contradiction. Assume

Xα ⊆ t0, α < κ, are of size < cof(t0). We shall show that X =
∪{Xα : α <

κ} is not cofinal in t0. By homogeneity of the tree forcing T, we know that

Xα is not cofinal below Tα, that is, there is Xα ∈ t0, Xα ⊆ [Tα], such that
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Xα ̸⊆ Y for all Y ∈ Xα. Let X =
∪{Xα : α < κ}. By disjointness of the

maximal antichain, we see that X ∈ t0. Obviously X ̸⊆ Y for all Y ∈ X ,

and we are done.

Note that for only showing cof(t0) > c, the homogeneity of the forcing

is not needed (that is, properties 1, 2, and 5 of Definition 1 are enough).

Definition 6. Let T be a combinatorial tree forcing. T has the incompat-

ibility shrinking property if for any T ∈ T and any family (Sα : α < µ),

µ < c, in T such that Sα is incompatible with T for all α, one can find

T ′ ≤ T such that [T ′] is disjoint from all the [Sα].

For the next proof recall that a set D in a partial order T is dense if for

all S ∈ T there is T ≤ S belonging to D. If T is a maximal antichain in

T, then the set D = {S ∈ T : S ≤ T for some T ∈ T } is easily seen to be

dense.

Proposition 7. Let T be a combinatorial tree forcing. The incompatibility

shrinking property for T implies the disjoint maximal antichain property for

T. In fact, it implies that any maximal antichain can be refined to a disjoint

maximal antichain.

Proof. Let (Tα : α < c) be a dense set of trees in T all of which lie below

a given maximal antichain of size c. We construct A ⊆ c of size c and

{Sα : α ∈ A} ⊆ T such that

• Sα ≤ Tα for α ∈ A,

• if α /∈ A, then Tα is compatible with some Sβ for β < α with β ∈ A,

• [Sα] ∩ [Sβ] = ∅ for α ̸= β from A.

Clearly, these conditions imply that (Sα : α ∈ A) is a disjoint maximal

antichain. Also A must necessarily have size c.

Suppose we are at stage α < c of the construction. If Tα is compatible

with some Sβ where β < α, β ∈ A, let α /∈ A, and we are done. If this is

not the case, let α ∈ A. By the incompatibility shrinking property we find

T ′ = Sα as required.

Say that a Laver tree T ⊆ ω<ω is a Mathias tree if stem(T ) is a strictly

increasing sequence and there is an infinite A ⊆ ω such that for all t ∈ T

containing stem(T ), succT (t) = A \ (t(|t| − 1) + 1). Mathias forcing R is the

collection of Mathias trees, and the ideal r0 of nowhere Ramsey sets is the
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corresponding tree ideal. A Sacks tree T ⊆ 2<ω is a Silver tree if there are

an infinite B ⊆ ω and g : ω \ B → 2 such that t ∈ T iff t↾(ω \ B) = g↾|t|
(in particular, t ∈ T is a splitting node iff |t| ∈ B). Silver forcing V is the

collection of Silver trees, and v0 is the corresponding Silver ideal. Both R
and V are combinatorial tree forcings (in the case of R, in Definition 1, use

the collection of strictly increasing finite sequences and the space of strictly

increasing functions instead of ω<ω and the Baire space ωω, respectively).

Example 8. Sacks forcing S, Mathias forcing R, and Silver forcing V have

the incompatibility shrinking property and thus also the disjoint maximal

antichain property.

To see this, simply use that for any two incompatible S, T ∈ S, [S] ∩ [T ]

is at most countable, while in the case of V, this intersection is finite, and

for R, even empty.

From this we obtain that cf(cof(s0)) > c [JMS, Theorem 1.3], that

cf(cof(r0)) > c [Ma], and that cf(cof(v0)) > c.

We also note that if t0 is a σ-ideal (which is the case if there is a fusion

argument for T), then the continuum hypothesis CH implies the incom-

patibility shrinking property and thus also the disjoint maximal antichain

property. For Laver and Miller forcings, a weaker hypothesis is sufficient.

Proposition 9. Assume b = c. Then Laver forcing L has the incompatibil-

ity shrinking property and thus also the disjoint maximal antichain property.

Recall here that the unbounding number b is the least size of an F ⊆ ωω

that is unbounded in the partial order (ωω,≤∗), where f ≤∗ g if f(n) ≤ g(n)

holds for all but finitely many n ∈ ω. The dominating number d is the least

size of an F ⊆ ωω that is cofinal in (ωω, ≤∗). It is well-known and easy to

see that ℵ1 ≤ b ≤ d ≤ c.

Proof. Fix T ∈ L, µ < c, and any family (Sα : α < µ) in L such that Sα

is incompatible with T for all α. Since T ∩ Sα does not contain a Laver

tree, by [GRSS, Lemma 2.3], there is a function gα : ω<ω → ω such that if

x ∈ [T ] ∩ [Sα], then there are infinitely many n with x(n) < gα(x↾n). By

b = c, there is f : ω<ω → ω eventually dominating all gα. Let T ′ = {s ∈
T : s(n) > f(s↾n) for all n ∈ dom(s) beyond the stem of T}. Clearly T ′

is still a Laver tree with the same stem as T . Furthermore, [T ′] ∩ [Sα] = ∅
for if x belonged to the intersection, we would have x(n) < gα(x↾n) for

infinitely many n and x(n) > f(x↾n) for all n beyond the stem of T ′, a

contradiction.
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A similar argument which we leave to the reader shows:

Proposition 10. Assume d = c. Then Miller forcing M has the incom-

patibility shrinking property and thus also the disjoint maximal antichain

property.

Question 11. Do L or M have the disjoint maximal antichain property in

ZFC?

3 The selective disjoint antichain property

We now consider a property weaker than the disjoint maximal antichain

property which is sufficient to show that the cofinalities of the Laver ideal

ℓ0 and the Miller ideal m0 are larger than c in ZFC.

Definition 12. Let T be a combinatorial tree forcing. T has the selective

disjoint antichain property if there is an antichain (Tα : α < c) in T such

that

• [Tα] ∩ [Tβ] = ∅ for all α ̸= β,

• for all T ∈ T there is S ≤ T such that

– either S ≤ Tα for some α < c,

– or |[S] ∩ [Tα]| ≤ 1 for all α < c.

We note that for our applications, it would be enough to have |[S] ∩
[Tα]| ≤ ℵ0 in the last clause.

Theorem 13. Assume T has the selective disjoint antichain property. Then

cf(cof(t0)) > c.

Proof. Let (Tα : α < c) be a selective disjoint antichain in T. Also assume

that (Sβ : β < c) is a list of all trees S in T such that |[S] ∩ [Tα]| ≤ 1 for all

α < c. Put κ = cf(cof(t0)) and assume κ ≤ c. Also assume Xα ⊆ t0, α < κ,

are of size < cof(t0). As in the proof of Proposition 5, we shall show that

X =
∪{Xα : α < κ} is not cofinal in t0.

By “large disjoint antichains”, we find T ′
α ≤ Tα such that [T ′

α]∩∪
β<α[Sβ] =

∅. By homogeneity, there is Xα ∈ t0 with Xα ⊆ [T ′
α] such that Xα ̸⊆ Y for

all Y ∈ Xα. Let X =
∪{Xα : α < κ}. Obviously X ̸⊆ Y for all Y ∈ X . We

need to show that X belongs to t0. To this end, let T ∈ T.
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First assume there is S ≤ T such that S ≤ Tα for some α < c. Then

[S] ∩ X ⊆ Xα. Since Xα ∈ t0, there is S ′ ≤ S such that [S ′] ∩ Xα = ∅, and

[S ′] ∩ X = ∅ follows.

Next assume there is S ≤ T such that |[S] ∩ [Tα]| ≤ 1 for all α < c.

Then S = Sβ for some β < c. By construction, we know that Xα ∩ [Sβ] = ∅
for α > β. Hence [Sβ] ∩ X ⊆ ∪

α≤β[Sβ] ∩ [Tα] and therefore |[Sβ] ∩ X| < c.

Using again “large disjoint antichains”, we see that there is S ′ ≤ Sβ such

that [S ′]∩X = ∅, as required. This completes the proof of the theorem.

Again note that for only showing cof(t0) > c, the homogeneity of the

forcing is not needed (that is, properties 1, 2, and 5 of Definition 1 are

enough).

The next property of a combinatorial tree forcing T implies that T adds a

minimal real and, in fact, standard proofs of minimality go via this property.

Definition 14. Let T be a combinatorial tree forcing. T has the constant

or one-to-one property if for all T ∈ T and all continuous f : [T ] → 2ω,

there is S ≤ T such that f↾[S] is either constant or one-to-one.

It is known that both Miller forcing and Laver forcing have the constant

or one-to-one property. For the former, this is implicit in work of Miller [Mi,

Section 2], for the latter, in work of Gray [Gra] (see also [Gro, Theorems

2 and 7] for similar arguments). These results are formulated in terms of

minimality. For completeness’ sake, we include a proof of the more difficult

case of Laver forcing in our formulation. Note also that the result for M is

a trivial consequence of the result for L.

Theorem 15 (Miller). Miller forcing M has the constant or one-to-one

property.

Theorem 16 (Gray). Laver forcing L has the constant or one-to-one prop-

erty.

Proof. Fix f and T . The pure decision property of Laver forcing (see, e.g.,

[BJ, Lemma 7.3.32]) implies:

Claim 16.1. Let n ∈ ω and τ ∈ T with stem(T ) ⊆ τ . There are T ′ ≤0 Tτ

and s ∈ 2n such that [T ′] ⊆ f−1([s]).

Here, T ′ ≤0 T if T ′ ≤ T and stem(T ) = stem(T ′).

Claim 16.2. Let τ ∈ T with stem(T ) ⊆ τ . There are T ′ ≤0 Tτ and x = xτ ∈
2ω such that if (kn

τ : n ∈ ω) is the increasing enumeration of succT ′(τ) then

[T ′
τ k̂n

τ
] ⊆ f−1([x↾(|τ | + n)]).
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Proof. Using Claim 16.1, construct a ≤0-decreasing sequence (Sn : n ∈ ω)

with S0 ≤0 Tτ and a ⊂-increasing sequence (sn ∈ 2n+|τ | : n ∈ ω) such that

[Sn] ⊆ f−1([sn]) for all n. Let kn
τ = min(succSn(τ)\(kn−1

τ +1)) where we put

k−1
τ = −1. Let T ′ be such that succT ′(τ) = {kn

τ : n ∈ ω} and T ′
τ k̂n

τ
= Sn

τ k̂n
τ
.

Also let x =
∪

n sn ∈ 2ω. Then T ′ ≤0 Tτ and [T ′
τ k̂n

τ
] = [Sn

τ k̂n
τ
] ⊆ [Sn] ⊆

f−1([sn]) = f−1([x↾(|τ | + n)]).

By Claim 16.2 and a fusion argument we see

Claim 16.3. There are T ′ ≤0 T , (xτ : τ ∈ T ′, stem(T ) ⊆ τ), and ((kn
τ :

n ∈ ω) : τ ∈ T ′, stem(T ) ⊆ τ) such that (kn
τ : n ∈ ω) is the increasing

enumeration of succT ′(τ) for all τ and [T ′
τ k̂n

τ
] ⊆ f−1([xτ↾(|τ | + n)]) for all n

and all τ . In particular [T ′
τ ] ⊆ f−1([xτ↾|τ |]) for all τ .

The properties of the xτ imply in particular that xτ k̂n
τ

converges to xτ

as n goes to infinity. Now define a rank function for τ ∈ T ′ as follows.

• ρ(τ) = 0 ⇐⇒ ∃∞k ∈ succT ′(τ) such that xτ k̂ ̸= xτ ,

• for α > 0, ρ(τ) = α ⇐⇒ ¬ρ(τ) < α ∧ ∃∞k ∈ succT ′(τ) (ρ(τ k̂) < α).

By the convergence property of the xτ , we see that ρ(τ) = 0 implies in

particular that the set {xτ k̂n
τ

: n ∈ ω} is infinite.

Case 1. ρ(τ) = ∞ for some τ ∈ T ′ (i.e., the rank is undefined).

Then we can easily construct a Laver tree S ≤ T ′ such that stem(S) = τ and

xσ = xτ for all σ ∈ S with σ ⊇ τ . We claim that f↾[S] is constant with value

xτ . Indeed let y ∈ [S]. Fix k ≥ |τ |. By construction y ∈ [Sy↾k] ⊆ f−1([xτ↾k]).

Since this holds for all k, f(y) = xτ , and we are done.

Case 2. ρ(τ) is defined for all τ ∈ T ′.

Recall that F ⊆ T ′ is a front if for all y ∈ [T ′] there is a unique n with

y↾n ∈ F . We build a subtree S of T ′ by specifying fronts Fn, n ∈ ω, such

that for every σ ∈ Fn+1 there is a (necessarily unique) τ ∈ Fn with τ ⊂ σ.

That is, S will be the tree generated by the fronts: σ ∈ S iff there are n ∈ ω

and τ ∈ Fn with σ ⊆ τ . Additionally, we shall guarantee that there are

sτ ⊆ xτ for τ ∈ ∪
n Fn such that

• if σ ̸= σ′ both are in Fn then [sσ] ∩ [sσ′ ] = ∅,

• [Sτ ] ⊆ f−1([sτ ]) for τ ∈ ∪
n Fn,

• if σ ⊂ τ with σ ∈ Fn and τ ∈ Fn+1 then sσ ⊂ sτ ,

• if σ ⊂ τ with σ ∈ Fn and τ ∈ Fn+1 then for every k with |σ| ≤ k < |τ |,
xτ↾k = xσ and ρ(σ) > ρ(τ↾|σ| + 1) > ... > ρ(τ↾|τ | − 1) = 0.
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We first verify that this is enough to guarantee that f↾[S] is one-to-one. If

y, y′ ∈ [S] are distinct, then there are n, i, i′ ∈ ω such that y↾i and y′↾i′
are distinct elements of Fn. Then y ∈ f−1([sy↾i]), y′ ∈ f−1([sy′↾i′ ]) by the

second clause, and [sy↾i] and [sy′↾i′ ] are disjoint by the first clause. Hence

f(y) ̸= f(y′) as required. Thus it suffices to construct the Fn and sτ .

n = 0. We let F0 = {stem(T ′)} = {stem(S)}. Also let sstem(S) =

xstem(S)↾|stem(S)|.
Suppose Fn and sσ for σ ∈ Fn have been constructed. We shall construct

Fn+1, sσ for σ ∈ Fn+1, as well as the part of the tree S in between Fn and

Fn+1. Fix σ ∈ Fn. By An
σ we denote the part of S between σ and Fn+1,

that is, An
σ = {τ ∈ S : σ ⊆ τ and τ ⊂ υ for some υ in Fn+1}. An

σ will be

constructed recursively so as to satisfy the forth clause above.

Put σ into An
σ. Suppose some τ ⊇ σ has been put into An

σ, xτ = xσ and,

in case τ ⊃ σ, ρ(σ) > ρ(τ). In case ρ(τ) = 0, no successor of τ will be in An
σ

and the successors of τ will belong to Fn+1, as explained below. If ρ(τ) > 0,

then xτ k̂ = xτ for almost all k ∈ succT ′(τ) and ρ(τ k̂) < ρ(τ) for infinitely

many k ∈ succT ′(τ). Hence we can prune the successor level of τ to succS(τ)

such that xτ k̂ = xτ and ρ(τ k̂) < ρ(τ) for all k ∈ succS(τ). The forth clause

is clearly satisfied. This completes the construction of An
σ.

Now fix τ ∈ An
σ with ρ(τ) = 0. By pruning succT ′(τ), if necessary,

we may assume without loss of generality that the xτ k̂m
τ

, m ∈ ω, are all

pairwise distinct and converge to xτ = xσ and that, in fact, there is a strictly

increasing sequence (imτ : m ∈ ω) such that imτ = min{i : xτ k̂m
τ

(i) ̸= xτ (i)}.

Unfixing τ , we may additionally assume that if τ ̸= τ ′ are both in An
σ of rank

0 and m,m′ ∈ ω, then imτ ̸= im
′

τ ′ . Finally we may assume that all such imτ
are larger than |sσ|. This means in particular that sσ ⊆ xτ k̂m

τ
for all τ and

m because sσ ⊆ xσ = xτ . Now choose sτ k̂m
τ

⊆ xτ k̂m
τ

such that |sτ k̂m
τ
| > imτ .

Then sσ ⊂ sτ k̂m
τ

and the sτ k̂m
τ

for distinct pairs (τ, m) with τ ∈ An
σ of rank

0 and m ∈ ω are pairwise incompatible.

Unfix σ ∈ Fn. Let Fn+1 = {τ k̂m
τ : τ ∈ An

σ for some σ ∈ Fn, ρ(τ) = 0, and

m ∈ ω}. The third clause is immediate. To see the first clause, take distinct

τ, τ ′ ∈ Fn+1. There are σ, σ′ ∈ Fn such that σ ⊂ τ and σ′ ⊂ τ ′. If σ ̸= σ′,

then [sτ ] ∩ [sτ ′ ] = ∅ because [sσ] ∩ [sσ′ ] = ∅ and sσ ⊂ sτ and sσ′ ⊂ sτ ′ . If

σ = σ′, then [sτ ] ∩ [sτ ′ ] = ∅ by the construction in the previous paragraph.

Finally, to see the second clause, by pruning T ′
τ for τ ∈ Fn+1 if necessary, we

may assume [T ′
τ ] ⊆ f−1([sτ ]) (see Claim 16.3). This completes the recursive

construction and the proof of the theorem.

Proposition 17. Assume T is a combinatorial tree forcing with the constant
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or one-to-one property. Then T has the selective disjoint antichain property.

Proof. Let f : ωω → 2ω be a continuous function witnessing “large disjoint

antichains” of T. Let {xα : α < c} be an enumeration of 2ω. Let Tα ∈ T
be such that [Tα] = f−1({xα}). We check that (Tα : α < c) witnesses the

selective disjoint antichain property. Clearly [Tα]∩ [Tβ] = ∅ for α ̸= β. Given

T ∈ T, find S ≤ T such that f↾[S] is constant or one-to-one. In the first

case, S ≤ Tα for some α, and in the second case, |[S] ∩ [Tα]| ≤ 1 for all α,

and we are done.

We are finally ready to complete the proof of the main result of this note.

Corollary 18. cf(cof(ℓ0)) > c and cf(cof(m0)) > c.

Proof. This follows from Theorem 16, Theorem 15, Proposition 17, and

Theorem 13.

4 Problems

For some natural tree forcings, we still do not know whether the cofinality of

the corresponding tree ideal is larger than c in ZFC. A Miller tree T ⊆ ω<ω

is a full splitting Miller tree if whenever s ∈ T is a splitting node then

ŝ n ∈ T for all n ∈ ω. Full splitting Miller forcing FM, originally introduced

by [NR] (see also [KL]), consists of all full splitting Miller trees, and fm0 is

the full splitting Miller ideal. FM is also a combinatorial tree forcing.

Question 19. Is cof(fm0) > c?

By the discussion in Section 2 (before Proposition 9), we know this is

true under CH.

More generally, one may ask:

Question 20. Are there combinatorial tree forcings T which consistently

fail to have the disjoint maximal antichain property? Which consistently

fail to satisfy cof(t0) > c? For which t0 consistently has a Borel basis?

Note that the existence of a Borel basis implies cof(t0) = c. By the

above comment fm0 has no Borel basis under CH, but this is open in ZFC.

Question 20 is also of interest for tree forcings which do not necessarily

satisfy all the clauses of Definition 1, e.g., for non-homogeneous forcing

notions.

By [JMS, Theorems 1.4 and 1.5], we know that cof(s0) can consistently

assume arbitrary values ≤ 2c whose cofinality is larger than c and it is easy



12 J. Brendle, Y. Khomskii, and W. Wohofsky

to see that the same arguments work for other tree ideals like m0 and ℓ0.

(In these models CH holds.)

Question 21. Can we consistently separate the cofinalities of different tree

ideals? E.g., are cof(s0) < cof(m0) or cof(m0) < cof(s0) consistent?

Added to the revised version: Shelah and Spinas [SS] recently proved the

consistency of, e.g., cof(m0) < cof(s0) and cof(ℓ0) < cof(s0). The consis-

tency of cof(s0) < cof(m0), however, remains open.
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Abstract

We study σ-ideals and regularity properties related to the “filter-Laver” and “dual-
filter-Laver” forcing partial orders. An important innovation which enables this study
is a dichotomy theorem proved recently by Miller [Mil].

1 Introduction

In this paper, F will always be a filter on ω (or a suitable countable set), containing at least
the cofinite sets. We will use F− to refer to the ideal of all a ⊆ ω such that ω \ a ∈ F , and
F+ to the collection of a ⊆ ω such that a /∈ F−. Cof and Fin denote the filter of cofinite
subsets of ω and the ideal of finite subsets of ω, respectively.

Definition 1.1. An F -Laver tree is a tree T ⊆ ω<ω such that for all σ ∈ T extending
stem(T ), SuccT (σ) ∈ F . An F+-Laver-tree is a tree T ⊆ ω<ω such that for all σ ∈ T
extending stem(T ), SuccT (σ) ∈ F+. We use LF and LF+ to denote the partial orders of
F -Laver and F+-Laver trees, respectively, ordered by inclusion.

If F = Cof then LF+ is the standard Laver forcing L, and LF is (a version of) the
standard Hechler forcing D. Both LF and LF+ have been used as forcing notions in the
literature, see, e.g., [Gro87]. As usual, the generic real added by these forcings can be defined
as the limit of the stems of conditions in the generic filter. It is easy to see that in both
cases, this generic real is dominating. It is also known that if F is not an ultrafilter, then
LF adds a Cohen real, and if F is an ultrafilter, then LF adds a Cohen real if and only if
F is not a nowhere dense ultrafilter (see Definition 4.9). Moreover, LF is σ-centered and
hence satisfies the ccc, and it is known that LF+ satisfies Axiom A (see [Gro87, Theorem]
and Lemma 2.5 (3)).

In this paper, we consider σ-ideals and regularity properties naturally related to LF and
LF+ , and study the regularity properties for sets in the low projective hierarchy, following
ideas from [BL99, Ike10, Kho12]. An important technical innovation is a dichotomy theorem
proved recently by Miller in [Mil] (see Theorem 3.6), which allows us to simplify the σ-ideal
for LF+ when restricted to Borel sets, while having a Σ1

2 definition regarding the membership
of Borel sets in it.

∗This research was partially done whilst the author was a visiting fellow at the Isaac Newton Institute
for Mathematical Sciences in the programme Mathematical, Foundational and Computational Aspects of
the Higher Infinite (HIF) funded by EPSRC grant EP/K032208/1.
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One question may occur to the reader of this paper: why are we not considering the
filter-Mathias forcing alongside the filter-Laver forcing, when clearly the two forcing notions
(and their derived σ-ideals and regularity properties) are closely related? The answer is
that, although the basic results from Section 2 do indeed hold for filter-Mathias, there is no
corresponding dichotomy theorem like Theorem 3.6. In fact, by a result of Sabok [Sab12],
even the σ-ideal corresponding to the standard Mathias forcing is not a Σ1

2-ideal on Borel
sets, implying that even in this simple case, there is no hope of a similar dichotomy theorem.
It seems that in the Mathias case, a more subtle analysis is required.

In Section 2 we give the basic definitions and prove some easy properties. In Section 3
we present Miller’s dichotomy and the corresponding σ-ideal. In Section 4 we study direct
relationships that hold between the regularity properties regardless of the complexity of F ,
whereas in Section 5 we prove stronger results under the assumption that F is an analytic
filter.

2 (LF )- and (LF+)-measurable sets.

In [Ike10], Ikegami provided a natural framework for studying σ-ideals and regularity prop-
erties related to tree-like forcing notions, generalising the concepts of meager and Baire
property. This concept proved to be very useful in a number of circumstances, see, e.g.,
[Kho12, Lag14, KL15].

Definition 2.1. Let P be LF or LF+ and let A ⊆ ωω.

1. A ∈ NP iff ∀T ∈ P ∃S ≤ T ([S] ∩A = ∅)}.
2. A ∈ IP iff A is contained in a countable union of sets in NP.

3. A is P-measurable iff ∀T ∈ P ∃S ≤ T ([S] ⊆∗ A or [S] ∩ A =∗ ∅), where ⊆∗ and =∗

stands for “modulo a set in IP”.

Lemma 2.2. The collection {[T ] | T ∈ LF } forms a topology base. The resulting topology
refines the standard topology and the space satisfies the Baire category theorem (i.e., [T ] /∈
ILF for all T ∈ LF ).

Proof. Clearly, for all S, T ∈ LF the intersection S ∩ T is either empty or an LF -condition.
A basic open set in the standard topology trivially corresponds to a tree in LF . For the
Baire category theorem, let An be nowhere dense and, given an arbitrary T ∈ LF , build a
sequence T = T0 ≥ T1 ≥ T2 ≥ . . . with strictly increasing stems such that [Tn] ∩ An = ∅
for all n. Then the limit of the stems is an element in [T ] \⋃nAn.

We use τLF to denote the topology on ωω generated by {[T ] | T ∈ LF }. Clearly NLF is
the collection of τLF -nowhere dense sets and ILF the collection of τLF -meager sets. Moreover,
we recall the following fact, which is true in arbitrary topologal spaces (the proof is similar
to [Kec95, Theorem 8.29]):

Fact 2.3. Let X be any topological space, and A ⊆ X . Then the following are equivalent:

1. A satisfies the Baire property.

2. For every basic open O there is a basic open U ⊆ O such that U ⊆∗ A or U ∩A =∗ ∅,
where ⊆∗ and =∗ refer to “modulo meager”.
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In particular, A ⊆ ωω is LF -measurable iff A satisfies the τLF -Baire property.

What about the dual forcing LF+? Notice that a topological approach cannot work in
general:

Lemma 2.4. The collection {[T ] | T ∈ LF+} forms a topology base iff F is an ultrafilter.

Proof. If F is not an ultrafilter, fix Z such that Z ∈ F+ and (ω \ Z) ∈ F+ and consider
trees S, T ∈ LF+ defined so that ∀σ ∈ S (SuccS(σ) = Z ∪ {0}) and ∀τ ∈ T (SuccT (τ) =
(ω \ Z) ∪ {0}).

Instead, to study LF+ , we rely on combinatorial methods familiar from Laver forcing.
For every n, define ≤n by:

S ≤n T :⇔ S ≤ T and S ∩ ω≤k+n = T ∩ ω≤k+n,

where k = |stem(T )|. If T0 ≥0 T1 ≥1 . . . is a decreasing sequence then T :=
⋂
n Tn ∈ LF+

and T ≤ Tn for every n.

Lemma 2.5. Let F be a filter on ω. Then:

1. LF+ has pure decision, i.e., for every φ and every T ∈ LF+ , there is S ≤0 T such that
S  φ or S  ¬φ.

2. For all A ⊆ ωω, the following are equivalent:

(a) A ∈ NLF+ ,

(b) ∀T ∈ LF+ ∃S ≤0 T ([S] ∩A = ∅).

3. NLF+ = ILF+ .

4. For all A ⊆ ωω, the following are equivalent:

(a) A is (LF+)-measurable,

(b) ∀T ∈ LF+ ∃S ≤ T ([S] ⊆ A or [S] ∩A = ∅),

(c) ∀T ∈ LF+ ∃S ≤0 T ([S] ⊆ A or [S] ∩A = ∅).

5. The collection of (LF+)-measurable sets forms a σ-algebra.

Proof. Since many of the arguments here are similar, we prove the first assertion and only
sketch the others.

1. Fix φ and T and let u := stem(T ). For σ ∈ T extending u, say:

• σ is positive-good if ∃S ≤0 T↑σ such that S  φ,

• σ is negative-good if ∃S ≤0 T↑σ such that S  ¬φ,

• σ is bad if neither of the above holds.

Here “T↑σ” denotes {τ ∈ T | τ ⊆ σ ∨ σ ⊆ τ}.

We claim that u is good, completing the proof. Assume that u is bad. Partition
SuccT (u) into Z0, Z1 and Z2 by setting n ∈ Z0 iff u_ 〈n〉 is positive-good, n ∈ Z1 iff
u_ 〈n〉 is negative-good, and n ∈ Z2 iff u_ 〈n〉 is bad. One of the three components
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must be in F+. But if it is Z0, then let Sn ≤0 T↑(u_ 〈n〉) be such that Sn  φ, and
then take S :=

⋃
n∈Z0

Sn. Then we get S ≤0 T↑u and S  φ, thus u is positive-good
contrary to assumption. Analogously, if Z1 is in F+ then u is negative-good contrary
to assumption. Hence, Z2 must be in F+. Now, for each n ∈ Z2, use the same
argument to obtain an F+-positive set Z2,2 of successors of u_ 〈n〉 such that for all
m ∈ Z2,2, u_ 〈n,m〉 is bad, and so on.

This way we construct a tree T ∗ ≤ T such that all σ ∈ T ∗ are bad. But there is a
T ∗∗ ≤ T ∗ deciding φ, which means that stem(T ∗∗) is either positive-good or negative-
good, leading to a contradiction.

2. Let A ∈ NLF+ , fix T , and let u = stem(T ). For σ ∈ T extending u, say that σ is good
if ∃S ≤0 T↑σ such that [S] ∩ A = ∅, and σ is bad otherwise. By the same argument
as above we prove that u is good.

3. Suppose An ∈ NLF+ for all n. Fix T ∈ LF+ . Clearly it is enough to produce a fusion
sequence T ≥0 T0 ≥1 T1 ≥2 . . . such that for all n, [Tn] ∩ An = ∅. So suppose
we have constructed Tn. Let {ui | i < ω} enumerate all the nodes in Tn of length
|stem(Tn)| + n. For each ui, use (2) to find Si ≤0 Tn↑ui with [Si] ∩ An+1 = ∅. Let
Tn+1 :=

⋃
i Si. Then clearly Tn+1 ≤n Tn and [Tn+1] ∩An+1 = ∅ as required.

4. For (a)⇒ (b), use the fact that ILF+ = NLF+ . For (b)⇒ (c), use the same argument
as in (1).

5. It suffices to show closure under countable unions. Suppose An is LF+ -measurable and
fix T ∈ LF+ . If for one n, there is S ≤ T with [S] ⊆ An then we are done. Otherwise
(using the equivalence from (4)) for every n, there is S ≤ T such that [S] ∩ An = ∅.
Then an argument like in (3) shows that there is S ≤ T such that [S]∩⋃nAn = ∅.

Remark 2.6. Note that an argument like in (4) above in fact shows that LF+ satisfies a
stronger form of properness, namely, for all countable elementary models M ≺ Hθ and all
T ∈ LF+ , there exists S ≤ T such that every x ∈ [S] is LF+ -generic over M .

Again it is interesting to ask whether any of the “simplifications” (1)–(4) from the above
Lemma might go through for LF , too.

Lemma 2.7. If we replace LF+ with LF in Lemma 2.5, then the statements (1)–(4) are all
equivalent to each other, and equivalent to the statement “F is an ultrafilter”.

Proof. If F is not an ultrafilter, let Z be such that Z ∈ F+ and (ω \ Z) ∈ F+, let An :=
{x ∈ ωω | ∀m ≥ n (x(m) ∈ Z)} and A =

⋃
nAn = {x ∈ ωω | ∀∞m (x(m) ∈ Z)}. Also, xG

denotes the LF -generic real. We leave it to the reader to verify that

• the statement “xG(0) ∈ Z” cannot be decided by any LF -condition with empty stem
(falsifying (1)),

• Zω ∈ NLF but for every T ∈ LF with empty stem we have [T ] ∩ Zω 6= ∅ (falsifying
(2)),

• An ∈ NLF for all n, but A /∈ NLF (falsifying (3)), and

• A is LF -measurable (see Theorem 2.8), but for every T ∈ LF we have [T ] 6⊆ A and
[T ] ∩A 6= ∅ (falsifying (4)).
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Thus, the situation can be neatly summarized as follows: when F is not an ultrafilter, LF
generates a topology but does not satisfy properties 1–4 from Lemma 2.5, while LF+ satisfies
those properties but does not generate a topology. LF -measurability is the Baire propery in
the τLF -topology, whereas LF+ -measurability is the “Marczewski”-property corresponding
to the partial order LF+ , and ILF+ is the “Marczewski”-ideal corresponing to LF+ .

In the interesting scenario when F is an ultrafilter everything coincides, and the ideal
ILF of τLF -meager sets is the same as the ideal of τLF -nowhere dense sets. In this context,
the ideal has been studied by Louevau in [Lou76] and is sometimes called the Louveau ideal.

Theorem 2.8. Let F be a filter on ω. Every analytic and co-analytic set A ⊆ ωω is both
LF -measurable and LF+-measurable.

Proof. Since τLF refines the standard topology on ωω, analytic (co-analytic) sets are also
analytic (co-analytic) in τLF . By classical results, such sets have the τLF -Baire property.

For LF+ , suppose A is analytic, defined by a Σ1
1(r) formula φ. Let T ∈ LF+ . Let S ≤ T be

a stronger condition forcing φ(ẋG) or ¬φ(ẋG), without loss of generality the former. Let M
be a countable elementary submodel of a sufficiency large Hθ with S, r, F ∈M . By Remark
2.6, we can find an S′ ≤ S such that all x ∈ [S′] are LF+ ∩M -generic over M . Then for
all such x we have M [x] |= φ(x). By Σ1

1-absoluteness, φ(x) is really true. Thus we have
[S′] ⊆ A. The co-analytic case is analogous.

A different (forcing-free) proof of the second assertion will follow from Theorem 3.6.

From the above it follows that there we have dense embeddings LF ↪−→d Borel(ω
ω)/ILF

and LF+ ↪−→d Borel(ω
ω)/ILF+ .

Definition 2.9. Let Γ be a projective pointclass. The notation Γ(LF ) and Γ(LF+) ab-
breviates the propositions “all sets of complexity Γ are LF -measurable” and “all sets of
complexity Γ are LF+ -measurable”, respectively.

The statements Σ1
2(LF ) and Σ1

2(LF+) are independent of ZFC, and we will study the
exact strength of these statements in Section 4 (for arbitrary F ) and Section 5 (for definable
F ).

3 A dichotomy theorem for LF+

While ILF is a ccc Borel-generated ideal exhibiting many familiar properties, ILF+ is a
“Marczewski-style” ideal, which is not Borel-generated and rather difficult to study. The
rest of the paper depends crucially on the dichotomy result presented in this section, which
simplifies the ideal ILF+ when it is restricted to Borel sets. The proof, as well as several
key insights, are due to Arnold Miller [Mil]. For motivation, recall the Laver dichotomy,
originally due to Goldstern et al [GRSS95].

Definition 3.1. If f : ω<ω → ω and x ∈ ωω, we say that x strongly dominates f if
∀∞n (x(n) ≥ f(x�n)). A family A ⊆ ωω is called strongly dominating if for every f : ω<ω →
ω there exists x ∈ A which strongly dominates f . D denotes the ideal of sets A which are
not strongly dominating.
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It is easy to see that if T ∈ L then [T ] /∈ D, and the classical result [GRSS95, Lemma
2.3] shows that if A is analytic, then either A ∈ D or there is a Laver tree T such that
[T ] ⊆ A. The ideal D was discovered independently by Zapletal (cf. [Zap03, Lemma 3.3.])
and was studied, among others, in [DR13, Deč15]. Generalising this, we obtain the following
definitions:

Definition 3.2. Let F be a filter on ω. If ϕ : ω<ω → F and x ∈ ωω, we say that x
F -dominates ϕ iff ∀∞n (x(n) ∈ ϕ(x�n)). A family A ⊆ ωω is F -dominating if for every
ϕ : ω<ω → F there exists x ∈ A which dominates ϕ. DF+ denotes the ideal of sets A which
are not F -dominating. In other words:

A ∈ DF+ :⇐⇒ ∃ϕ : ω<ω → F ∀x ∈ A ∃∞n (x(n) /∈ ϕ(x�n)).

In the above context, the terminology “F -dominates” might seem inappropriate, but we
choose it in order to retain the analogy with Definition 3.1. Note that D = DCof+ .

Lemma 3.3. DF+ is a σ-ideal.

Proof. Suppose Ai ∈ DF+ for i < ω. Let ϕi witness this for each i, and define ϕ by setting
ϕ(σ) :=

⋂
i<|σ| ϕi(σ). We claim that ϕ witnesses that A =

⋃
i<ω Ai ∈ DF+ . Pick x ∈ A.

There is i such that x ∈ Ai, hence for infinitely many n we have x(n) /∈ ϕi(x�n). But if n > i
then ϕ(x�n) ⊆ ϕi(x�n). Therefore, for infinitely many n we also have x(n) /∈ ϕ(x�n).

Lemma 3.4. Let A ⊆ ωω. The following are equivalent:

1. A ∈ DF+ .

2. ∀σ ∈ ω<ω ∃T ∈ LF with stem(T ) = σ, such that [T ] ∩A = ∅.

3. ∀S ∈ LF ∃T ≤0 S ([S] ∩A = ∅)

Proof. The equivalence between 2 and 3 is clear, so we prove the equivalence between 1 and
2.

First, note that if ϕ : ω<ω → F and σ ∈ ω<ω, then there is a unique Tσ,ϕ ∈ LF such
that stem(Tσ,ϕ) = σ and ∀τ ⊇ σ, SuccTσ,ϕ(τ) = ϕ(τ). Conversely, for every T ∈ LF with
stem(T ) = σ, there exists a (not unique) ϕ such that T = Tσ,ϕ.

Now suppose A ∈ DF+ , as witnessed by ϕ, and let σ ∈ ω<ω. Then A ∩ [Tσ,ϕ] = ∅, since if
x ∈ A ∩ [Tσ,ϕ] then ∀n > |σ| (x(n) ∈ ϕ(x�n)), contrary to the assumption.

Conversely, suppose for every σ there is Tσ ∈ LF such that stem(Tσ) = σ and A∩ [Tσ] = ∅.
For each σ, let ϕσ : ω<ω → F be such that Tσ = Tσ,ϕσ . Then define ϕ : ω<ω → F by

ϕ(σ) =
⋂

τ⊆σ
ϕτ (σ).

We claim that ϕ witnesses that A ∈ DF+ . Let x ∈ A be arbitrary. Let σ ⊆ x. Then
x /∈ [Tσ] = [Tσ,ϕσ ], hence, there is n > |σ| such that x(n) /∈ ϕσ(x�n). But by definition,
since σ ⊆ x�n, we have ϕ(x�n) ⊆ ϕσ(x�n). Therefore also x(n) /∈ ϕ(x�n).

The following are easy consequences of the above; the proofs are left to the reader.

Lemma 3.5.
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1. DF+ ⊆ NLF .

2. DF+ ⊆ ILF+ (in particular, if T ∈ LF+ then [T ] /∈ DF+).

3. If F is an ultrafilter then DF+ = NLF = ILF = ILF+ .

4. If F is not an ultrafilter then there is a closed witness to DF+ 6= NLF .

Theorem 3.6 (Miller). For every analytic A, either A ∈ DF+ or there is T ∈ LF+ such
that [T ] ⊆ A.

Proof. See the proof of Theorem 3 and the comment after Theorem 8 in [Mil].1 We need
a slight modification of this proof: rather than talking about trees with empty stem, we
consider trees with a fixed stem σ. If A /∈ DF+ , then by Lemma 3.4 (2), there exists
σ ∈ ω<ω such that for all S ∈ LF with stem(S) = σ, [S] ∩ A 6= ∅. By applying the same
argument as in [Mil, Theorem 3], we obtain a T ∈ LF+ (with stem(T ) = σ) such that
[T ] ⊆ A.

Remark 3.7. As a direct consequence of this theorem, we obtain an alternative (forcing-
free) proof of the second part of Theorem 2.8. Namely: let A be analytic and let T ∈ LF+

be arbitrary, so A ∩ [T ] is analytic. If there exists S ∈ LF+ with [S] ⊆ A ∩ [T ] we are done,
and if A ∩ [T ] ∈ DF+ , use Lemma 3.4 to find a tree U ∈ LF with stem(U) = stem(T ) and
[U ] ∩A ∩ [T ] = ∅. Notice that T ∩ U ∈ LF+ , so we are done.

Also, we now have a dense embedding LF+ ↪−→d Borel(ωω)/DF+ , with DF+ being a
Borel-generated σ-ideal which is far easier to study than ILF+ . This will be of particular
importance in Section 5 where we look at analytic filters.

4 Direct implications

We first look at some straightforward implications between various statements of the form
Γ(LF ), Γ(LF+) and Γ(P) for other well-known forcings P. Here Γ denotes an arbitrary
boldface pointclass, i.e., a collection of subsets of ωω closed under continuous pre-images and
intersections with closed sets. No further assumptions on the complexity of F are required.

Recall the following reducibility relations for filters on a countable set:

Definition 4.1. Let F,G be filters on dom(F ) and dom(G), respectively. We say that:

1. G is Katetov-reducible to F , notation G ≤K F , if there is a map π : dom(F )→ dom(G)
such that a ∈ G⇒ π−1[a] ∈ F .

2. G is Rudin-Keisler-reducible to F , notation G ≤RK F , if there is a map π : dom(F )→
dom(G) such that a ∈ G⇔ π−1[a] ∈ F .

Remark 4.2. Note that G ≤K F and G ≤RK F are equivalent to the reducibility relation
between ideals (i.e., between G− and F−). Also, it is clear that if π witnesses G ≤K F , then
a ∈ F+ ⇒ π[a] ∈ G+, and if π witnesses G ≤RK F then, in addition, a ∈ F ⇒ π[a] ∈ G.

1Here we should also note that Miller’s Theorem 3 is, in fact, a direct consequence of Goldstern et al’s
dichotomy [GRSS95, Lemma 2.3]. However, the point is that its generalisation to filters does not follow
from the proof in [GRSS95], which uses infinite games and determinacy. Miller’s proof, on the other hand,
uses only classical methods and generalises directly to filters.
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Notation 4.3. We use the following slight abuse of notation: if F is a filter and a ∈ F+,
then F �a denotes the set {b ⊆ a | (a \ b) ∈ F−}. In other words, F �a is the filter with
dom(F �a) = a which is dual to the ideal (F−)�a.

Definition 4.4. A filter F is called K-uniform if for every a ∈ F+, F �a ≤K F .

Lemma 4.5. Suppose G�a ≤K F for all a ∈ G+. Then Γ(LF+)⇒ Γ(LG+). In particular,
this holds if G is K-uniform and G ≤K F .

Proof. Let A ∈ Γ and T ∈ LG+ arbitrary. For all σ ∈ T extending stem(T ), let Xσ :=
SuccT (σ) and fix πσ witnessing G�Xσ ≤K F . Define f ′ : ω<ω → ω<ω by f ′(∅) := stem(T )
and f ′(τ_ 〈n〉) := f ′(τ)_

〈
πf ′(τ)(n)

〉
, and let f : ωω → ωω be the limit of f ′. Let A′ :=

f−1[A]. Then A ∈ Γ, so by assumption there is an S ∈ LF+ such that [S] ⊆ A′ or
[S] ∩A′ = ∅, without loss of generality the former.

By assumption, we know that for every σ ∈ S extending stem(S), πf ′(σ)[SuccS(σ)] ∈ G+. To
make sure that the image under f is the set of branches through an LG+ -tree, prune S to S∗ ⊆
S, so that stem(S∗) = stem(S), and for all σ ∈ S∗ extending stem(S∗), πf ′(σ)[SuccS∗(σ)] =
πf ′(σ)[SuccS(σ)], and πf ′(σ)�SuccS∗(σ) is injective. Then f [S∗] is the set of branches through
an LF+ -tree, and moreover f [S∗] ⊆ [T ] ∩A.

Lemma 4.6. Suppose G�a ≤K F for all a ∈ G+. Then Γ(LF )⇒ Γ(LG+). In particular, if
F is K-uniform then Γ(LF )⇒ Γ(LF+)

Proof. Let A ∈ Γ and T ∈ LG+ be arbitrary. Let f and A′ := f−1[A] be as above. By the
same argument, it suffices to find S ∈ LF+ such that [S] ⊆ A′ or [S] ∩A′ = ∅.

By assumption, there is an LF -tree U with [U ] \A′ ∈ ILF or [U ]∩A′ ∈ ILF , without loss of
generality the former. Since ILF is Borel-generated, let B be a Borel ILF -positive set such
that B ⊆ A′ ∩ [U ]. By Lemma 3.5 B is also DF+ -positive. But then, by Theorem 3.6 there
exists an S ∈ LF+ such that [S] ⊆ B, which completes the proof.

Lemma 4.7. Suppose G ≤RK F . Then Γ(LF )⇒ Γ(LG).

Proof. Let π witness G ≤RK F and let f : ωω → ωω be defined by f(x)(n) := π(x(n)).
Clearly f is continuous in the standard sense. Moreover, we claim the following:

Claim. f is continuous and open as a function from (ωω, τLF ) to (ωω, τLG).

Proof. If [T ] is a basic open set in τLG , then T ∈ LG and so f−1[T ] is a union of LF -trees
(one for each f -preimage of the stem of T ), so it is open in τLF . Conversely, if [S] is basic
open in τLF , then S ∈ LF . Although f [S] is not necessarily the set of branches through
an LG-tree, we can argue as follows: given y ∈ f [S], let x ∈ [S] be such that f(x) = y.
Then prune S to S∗ in a similar way as in the proof of Lemma 4.5, in such a way that
the function π restricted to SuccS∗(σ) is injective for each σ while the image π[SuccS∗(σ)]
remains unchanged. Moreover, we can do this so that x ∈ [S∗]. Then f [S∗] is indeed the
set of branches through an LG-tree, and moreover y ∈ f [S∗] ⊆ f [S]. Since this can be done
for every y ∈ f [S], it follows that f [S] is open in τLG . � (Claim)

From this, it is not hard to conclude that if A ∈ ILG then f−1[A] ∈ ILF . To complete the
proof, let A ∈ Γ and let O be τLG-open. It suffices to find a non-empty τLG -open U ⊆ O
such that U ⊆∗ A or U ∩A =∗ ∅, where ⊆∗ and =∗ refers to “modulo ILG .
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Let A′ := f−1[A] and O′ := f−1[O]. Since A′ has the Baire property in τLF , there is an
open U ′ ⊆ O′ such that U ′ ⊆∗ A′ or U ′ ∩ A′ =∗ ∅ (wlog the former) where ⊆∗ and =∗

refers to “modulo ILF ”. Then there is a Borel set B such that B /∈ ILF and B ⊆ A′ ∩ U ′.
Hence f [B] is an analytic subset of A∩O, and by the Claim, f [B] /∈ ILG . By the τLG -Baire
property of analytic sets, there is an τLG -open U such that U ⊆∗ f [B]. Hence U ∩O ⊆∗ A′,
which completes the proof.

The relationships established in the above three lemmas are summarised in Figure 1.

Γ(LG)
G K-uniform +3 Γ(LG+)

(∗) ∀a ∈ G+(G�a ≤K F )

Γ(LF )
F K-uniform +3

G≤RKF

KS

(∗)

8@

Γ(LF+)

(∗)

KS

Figure 1: Implications between the properties for filters F and G.

In particular, since Cof�a ≤K F holds for every F and every infinite a, we obtain the
following corollary:

Corollary 4.8. Γ(LF )⇒ Γ(L) and Γ(LF+)⇒ Γ(L) for all F .

Next, we look at the relationship between LF -measurability and the classical Baire prop-
erty. In accordance to common usage, we denote the statement “all sets in Γ have the Baire
property” by Γ(C) (C denoting the Cohen forcing partial order). It is known that if F is
not an ultrafilter then LF adds a Cohen real. Specifically, if Z is such that Z /∈ F and
(ω \ Z) /∈ F , and f : ωω → 2ω is defined by

f(x)(n) :=

{
1 if x(n) ∈ Z
0 if x(n) /∈ Z

then f is continuous with the property that if A is meager then f−1[A] ∈ ILF .

Concerning ultrafilters, the following is known.

Definition 4.9. Let NWD ⊆ 2<ω denote the ideal of nowhere dense subsets of 2<ω, that
is, those H ⊆ 2<ω such that ∀σ ∃τ ⊇ σ ∀ρ ⊇ τ (ρ /∈ H). An ultrafilter U is called nowhere
dense iff NWD 6≤K U−.

It is known that LU adds a Cohen real iff U is not a nowhere dense ultrafilter. Specifically,
if U is not nowhere dense and π : ω → 2<ω is a witness to NWD ≤K U−, then we can define
a continuous function f : ωω → 2ω by f(x) := π(x(0))_π(x(1))_ . . . . We leave it to the
reader to verify that if A is meager then f−1[A] ∈ ILU . This easily leads to the following:

Lemma 4.10. If F is not an ultrafilter, or a non-nowhere dense ultrafilter, then Γ(LF )⇒
Γ(C).
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Proof. In either case, we have a continuous f : ωω → 2ω such that f -preimages of meager
sets are ILF -small, as above. Let A ∈ Γ and σ ∈ 2<ω arbitrary. Let ϕ be a homeomorphism
from 2ω to [σ] and A′ := (ϕ◦f)−1[A]. Then A′ ∈ Γ, so let B be a Borel ILF -positive set with
B ⊆ A′ or B ∩A′ = ∅, without loss the former. Then (ϕ ◦ f)[B] is an analytic non-meager
subset of A ∩ [σ], so there exists [τ ] ⊆ [σ] such that [τ ] ⊆∗ A, which is sufficient.

Finally, an argument from [Mil] yields the following implication. Recall that a set A ⊆
[ω]ω is Ramsey iff there exists H ∈ [ω]ω such that [H]ω ⊆ A or [H]ω ∩A = ∅.

Lemma 4.11. If U is an ultrafilter then Γ(LU )⇒ Γ(Ramsey).

Proof. In fact, we prove a stronger statement: if A ⊆ ω↑ω (strictly increasing sequences) is
LU -measurable then {ran(x) | x ∈ A} is Ramsey. First note that, by Lemma 2.5 (4), there
exists a T ∈ LU with empty stem, such that [T ] ⊆ A or [T ] ∩ A = ∅. Also, without loss of
generality, we can assume that [T ] ⊆ ω↑ω.

Now proceed inductively:

• Let n0 ∈ SuccT (∅) be arbitrary.

• Let n1 ∈ SuccT (∅) ∩ SuccT (〈n0〉).

• Let n2 ∈ SuccT (∅) ∩ SuccT (〈n0〉) ∩ SuccT (〈n1〉) ∩ SuccT (〈n0, n1〉).

• etc.

Since U is a filter we can always continue this process and make sure that for any k, any
subsequence of the sequence 〈n0, . . . , nk〉 is an element of T . It then follows that any infinite
subsequence of the sequence 〈ni | i < ω〉 is an element of [T ]. This is exactly what we
need.

If U is not an ultrafilter, then the above result does not hold in general. For example,
considering the cofinite filter, both implications Γ(L)⇒ Γ(Ramsey) and Γ(D)⇒ Γ(Ramsey)
are consistently false for Γ = ∆1

2 (see [FFK14, Section 6]).

5 Analytic filters

In this section, we focus on analytic filters (or ideals). This is important if we want the
forcings to be definable, and if we want to apply results from [Ike10, Kho12]. Note that just
for absoluteness of the forcing, it would have been sufficient to consider Σ1

2 or Π1
2 filters, by

Shoenfield absoluteness. However, we also require the ideals and other related notions to
have a sufficiently low complexity. For this reason, in this section the following assumption
will hold:

Assumption. F is an analytic filter on ω.

It is clear that the statement “T ∈ LF ” is as complex as F itself. Recall from [BJ95,
Section 3.6]) that a forcing notion is Suslin ccc if it is ccc and the statements “T ∈ LF ”,
“T ⊥ S” and “S ≤ T” are Σ1

1-relations on the codes of trees. The following is clear:

Fact 5.1. Let F be analytic. Then LF is a Suslin ccc forcing notion.

Lemma 5.2. Let F be analytic. Then the ideals ILF and DF+ are Σ1
2 on Borel sets (i.e.,

the membership of Borel sets in the ideal is a Σ1
2-property on the Borel codes).
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Proof. A Borel set B is in DF+ iff ∃ϕ : ω<ω → F ∀x (x ∈ B → ∃∞n (x(n) /∈ ϕ(x�n))). This
is easily seen to be a Σ1

2 statement if F is Σ1
1.

For ILF , let B be a Borel set. Notice that B is τLF -nowhere dense iff there exists a τLF -open
dense set O such that B ∩ O = ∅, iff there is a maximal antichain A ⊆ LF such that
B ∩⋃{[T ] | T ∈ A} = ∅. By the ccc, one such maximal antichain can be coded by a real.
The resulting computation yields a Σ1

2 statement.

In [BHL05, Ike10] the concept of quasi-generic real was introduced—a real avoiding all
Borel sets in a certain σ-ideal coded in the ground model. This concept coincides with
generic reals for ccc ideals, but yields a weaker concept for other (combinatorial) ideals, see
e.g. [Kho12, Section 2.3].

In the case of LF , “quasi-generic reals” are the LF -generic ones, whereas in the case of
LF+ , they have a simple characterisation due to the combinatorial ideal DF+ .

Lemma 5.3. Let M be a model of set theory. A real x is LF -generic over M iff x /∈ B for
every Borel set B ∈ ILF with code in M .

Proof. See [Kho12, Lemma 2.3.2].

Definition 5.4. Let M be a model of set theory. We will call a real x ∈ ωω F -dominating
over M if for every ϕ : ω<ω → F with ϕ ∈M , x F -dominates ϕ, i.e., ∀∞n (x(n) ∈ ϕ(x�n))
(note that the statement ϕ : ω<ω → F is absolute for between M and larger models).

Lemma 5.5. Let M be a model of set theory with ω1 ⊆M . A real x is F -dominating over
M iff x /∈ B for every Borel set B ∈ DF+ with code in M .

Proof. This is easy to verify from the definition, using Σ1
2-absoluteness between M and V

and the fact that B ∈ DF+ is a Σ1
2-statement for Borel sets.

As an immediate corollary of the above and the general framework from [Ike10] and
[Kho12], we immediately obtain the following four characterizations for (LF )- and (LF+)-
measurability.

Corollary 5.6. Let F be an analytic filter. Then:

1. ∆1
2(LF ) ⇐⇒ ∀r ∈ ωω ∀T ∈ LF ∃x ∈ [T ] (x is LF -generic over L[r]).

2. Σ1
2(LF ) ⇐⇒ ∀r ∈ ωω {x | x not LF -generic over L[r]} ∈ ILF .

3. ∆1
2(LF+)⇐⇒ ∀r ∈ ωω ∀T ∈ LF+ ∃x ∈ [T ] (x is F -dominating over L[r]).

4. Σ1
2(LF+) ⇐⇒ ∀r ∈ ωω {x | x not F -dominating over L[r]} ∈ ILF+ .

Proof. See [Ike10, Theorem 4.3 and Theorem 4.4] and [Kho12, Theorem 2.3.7 and Corollary
2.3.8]. Note that both ideals LF and DF+ are Σ1

2, the forcings have absolute definitions and
are proper, so the above results can be applied.

We are interested in more elegant characterizations of the four above statements.

Theorem 5.7. Σ1
2(LF ) ⇐⇒ ∀r ∈ ωω (ω

L[r]
1 < ω1).

The proof uses methods similar to [LR95, Theorem 6.2] (see also [BL99, Theorem 5.11]).
It follows using a series of definitions and lemmas.
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Definition 5.8. For every open dense set D ⊆ LF , define a rank function rkD : ω<ω → ω1

by

• rkD(σ) := 0 iff there is T ∈ D with stem(T ) = σ and

• rkD(σ) := α iff rkD(σ) 6< α and ∃Z ∈ F+ ∀n ∈ Z (rkD(σ_ 〈n〉) < α).

A standard argument shows that rkD(σ) is well-defined for every σ.

Definition 5.9. An (F−)-mad family is a collection A ⊆ F+ such that ∀a 6= b ∈ A
(a ∩ b) ∈ F−, and ∀a ∈ F+ there exists b ∈ A such that (a ∩ b) ∈ F+.

Fact 5.10. For every analytic filter F , there exists an (F−)-mad family of size 2ℵ0 .

Proof. See [FKV, Corollary 1.8].

Lemma 5.11. Let A be an (F−)-mad family. For each a ∈ A, let Xa := {x ∈ ωω |
ran(x) ∩ a = ∅} ∈ NLF . Then, for any X ∈ ILF , the collection {a ∈ A | Xa ⊆ X} is at
most countable.

Proof. Let X ⊆ ⋃nXn where Xn are closed nowhere dense in τLF , and let Dn := {T |
[T ] ∩ Xn = ∅}. Then the Dn are open dense in LF . Consider a countable elementary
submodel N of some sufficiently large Hθ containing A, the Dn, and the defining parameter
of F (i.e., the r ∈ ωω such that F ∈ Σ1

1(r)). The proof will be completed by showing that
if a ∈ A \N , then there exists x ∈ Xa ∩

⋂
n

⋃{[T ] | T ∈ Dn}, hence x ∈ Xa \X.

Sublemma. For every Dn, every a ∈ A \ N , and every T ∈ LF , if ran(stem(T )) ∩ a = ∅
then there exists S ≤ T with S ∈ Dn and such that ran(stem(S)) ∩ a = ∅ as well.

Proof. Let Y := {τ ∈ T | stem(T ) ⊆ τ and ran(τ)∩ a = ∅}. Let τ ∈ Y be of least Dn-rank.
We claim that rkDn(τ) = 0, which completes the proof. Towards contradiction, assume
rkDn(τ) = α > 0 and let Z ∈ F+ witness this. By elementarity and using the fact that all
relevant objects are in N and F is absolute for N as well, it follows that Z ∈ N .

By elementarity and absoluteness of F , N |= “A is an (F−)-mad family”, hence there exists
b ∈ A ∩ N such that Z ∩ b ∈ F+. Since b 6= a, it follows that b ∩ a ∈ F−, so there exists
n ∈ (Z \ a). Then τ_ 〈n〉 is an element of Y with Dn-rank less than α, contradicting the
minimality of τ . � (Sublemma)

Now, it is clear that we can inductively apply the sublemma to find a sequence T0 ≥ T1 ≥
T2 ≥ . . . , with strictly increasing stems, such that Tn ∈ Dn for every n, and moreover
ran(stem(Tn)) ∩ a = ∅ for every n. Then x :=

⋃
n stem(Tn) has all the required properties,

i.e., x ∈ Xa \X.

Proof of Theorem 5.7. We need to prove the equivalence between

1. ∀r {x | x not LF -generic over L[r]} ∈ ILF and

2. ∀r (ω
L[r]
1 < ω1).
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By Lemma 5.3, the former statement is equivalent to ∀r ⋃{B | B is a Borel ILF -small set
with code in L[r]} ∈ ILF . The direction from 2 to 1 is thus immediate.

Conversely, fix r and assume that ω
L[r]
1 = ω1. Let A be an (F−)-mad family such that

|A ∩ L[r]| = ω1 (this can be done by extending an (F−)-almost disjoint family of size ω1

in L[r]). For every a ∈ A ∩ L[r], Xa is a Borel ILF -small set with code in L[r]. If 1 was
true, then in V there would be an X ∈ ILF such that Xa ⊆ X for all such a, contradicting
Lemma 5.11.

Remark 5.12. The same argument yields add(ILF ) = ω1 and cof(ILF ) = 2ℵ0 for ana-
lytic filters (where add and cof denote the additivity and cofinality numbers of the ideal,
respectively).

Next, we consider ∆1
2(LF ) and ∆1

2(LF+). In [BS99, Theorem 2], the covering number
of ILU for an ultrafilter U was determined to be the minimum of b and a certain combi-
natorial characteristic of U called πp(U). This was generalised by Hrusak and Minami in
[HM14, Theorem 2] to arbitrary filters. Similar proofs yield characterisations of ∆1

2(LF )
and ∆1

2(LF+).

Definition 5.13. Let M be a model of set theory and F an analytic filter. We say that a
real C ∈ [ω]ω is

1. F -pseudointersecting over M if C ⊆∗ a for all a ∈ F ∩M .

2. F -separating over M if it is F -pseudointersecting over M , and additionally, for all
b ∈ (F+) ∩M , |C ∩ b| = ω.

We use the shorthand “∃F -pseudoint” and “∃F -sep” to abbreviate the statements “∀r ∈
ωω ∃C (C is F -pseudointersecting/separating over L[r])”.

Question 5.14. Are there natural regularity properties equivalent to “∃F -pseudoint” and
“∃F -sep” for ∆1

2 sets of reals?

Recall that Σ1
2(C) is equivalent to ∆1

2(C)∧∆1
2(L) and equivalent to ∆1

2(D), where C,L
and D stand for the Baire property, Laver- and Hechler-measurability, respectively. Also,
recall that ∆1

2(C) is equivalent to the existence of Cohen reals over L[r], ∆1
2(L) is equivalent

to the existence of dominating reals over L[r], and ∆1
2(D) is equivalent to the existence of

Hechler-generic reals over L[r]. See [BL99, Theorem 4.1 and Theorem 5.8].
The next two theorems would have a cleaner look if the forcings LF and LF+ were

homogeneous in a certain sense. Since in general they might not be, one of the direction
in the following two theorems requires an additional assumption. Say that a filter F is
principal∗ iff there is an a such that F = {x ⊆ dom(F ) | a ⊆∗ x}.
Theorem 5.15. ∆1

2(LF ) =⇒ Σ1
2(C) ∧ ∃F -sep. If F is not principal∗, then the converse

direction holds as well.

Proof. By Corollary 4.8 and Lemma 4.10, we know that ∆1
2(LF ) implies ∆1

2(L) and ∆1
2(C),

which in turns implies Σ1
2(C) as mentioned above. Moreover, a standard density argument

shows that LF generically adds an F -separating real, specifically, if x is LF -generic then
ran(x) is F -separating.

For the converse direction, first note the following: by an easy argument (see [MZ16, Lemma
3]), every filter F which is not principal∗, and everyX ∈ F , there exists a bijection π : ω → X
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such that for all a ⊆ X, a ∈ F ⇔ π−1[a] ∈ F . We leave it to the reader to verify that this
implies homogeneity of LF , in the sense that if there exists an LF -generic real then there
also exists an LF -generic real inside T for every T ∈ LF . Therefore, by Corollary 5.6 (1), it
suffices to prove that for every r ∈ ωω there exists an LF -generic real over L[r].

So, fix r ∈ ωω and let C be F -separating over L[r]. Let DC denote Hechler forcing as defined
on Cω (i.e., the conditions are trees in C<ω with branching into all of C except for finitely
many points). Clearly DC is isomorphic to the ordinary Hechler forcing. Notice that for
every T ∈ LF ∩ L[r], if ran(stem(T )) ⊆ C then T ∩ C<ω ∈ DC .

For every D ∈ L[r] dense in LF , let D′ := {T ∩ C<ω | T ∈ D and ran(stem(T )) ⊆ C}. We
claim that D′ is predense in DC . Let S ∈ DC be arbitrary, with σ := stem(S). Recall the
rank-function from Definition 5.8. Since D ∈ L[r], we consider the rank function rkD as
defined inside L[r]. If rkD(σ) = 0 then there is T ∈ D with stem(T ) = σ, hence S and T
are compatible. Otherwise, let rkD(σ) = α. By definition of rkD and the fact that rkD is
in L[r], there exists Z ∈ F+ with Z ∈ L[r], such that rkD(σ_ 〈n〉) < α for all n ∈ Z. Since
SuccS(σ) ∩ Z is also in F+, by assumption, there is n ∈ C ∩ SuccS(σ) ∩ Z. Continuing this
process, we arrive at some τ extending σ, such that τ ∈ S, ran(τ) ⊆ C and rkD(τ) = 0.
Then we are done as before.

By the remark above, Σ1
2(C) implies ∆1

2(D), which implies the existence of Hechler-generic
reals. In particular, there is a d ∈ Cω which is DC-generic real over L[r][C]. But then
d is LF -generic over L[r], since for every D ∈ L[r] dense in LF , we find T ∈ D with
d ∈ [T ∩ C<ω].

A similar argument can be used to simplify ∆1
2(LF+). Here, the homogeneity of LF+ is

guaranteed by the K-uniformity of F .

Theorem 5.16. ∆1
2(LF+) =⇒ ∆1

2(L) ∧ ∃F -pseudoint. If F is K-uniform, then the
converse implication holds.

Proof. By Corollary 4.8 we know that ∆1
2(LF+)⇒∆1

2(L). Let x be F -dominating over L[r]
and let C := ran(x). For each a ∈ F ∩L[r] let ϕ be the function given by ϕ(σ) := a \ |σ| for
all σ ∈ ω<ω. Since ∀∞n (x(n) ∈ ϕ(x�n)), clearly C is infinite and C ⊆∗ a.

Conversely, assume that F is K-uniform. We leave it to the reader to verify that, if T ∈ LF+ ,
then there exists a continuous function f : ωω → [T ] such that f -preimages of DF+ -small
sets are DF+ -small. In particular, the statements

• ∃x (x is F -dominating over L[r]), and

• for all T ∈ LF+ ∃x ∈ [T ] (x is F -dominating over L[r])

are equivalent. Therefore, by Corollary 5.6 (3), it suffices to prove that for every r there
exists an F -dominating real over L[r].

So, fix r ∈ ωω, and let C be F -pseudointersecting over L[r]. For each ϕ : ω<ω → F from
L[r], define gϕ : ω<ω → ω by gϕ(σ) := min{n | C \n ⊆ ϕ(σ)}. Then all gϕ are in L[r][C], by
∆1

2(L) there is a dominating real g over L[r][C], so, in particular, g dominates all gϕ. Let
x ∈ ωω be such that x(n) ∈ C and x(n) ≥ g(x�n) for every n. Clearly for every ϕ ∈ L[r]
we have ∀∞n (x(n) ∈ ϕ(x�n)), hence x is F -dominating over L[r]. This suffices by what we
mentioned above.
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Currently, we do not have a similarly elegant characterization for Σ1
2(LF+).

Question 5.17. Is there a characterization of Σ1
2(LF+) similar to the above? Is Σ1

2(LF )
equivalent to ∆1

2(LF+)?
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its relation to other regularity properties. Math. Proc. Cambridge Philos. Soc.,
138(1):135–149, 2005.
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Definable Maximal Independent Families

Jörg Brendle∗ and Yurii Khomskii†

July 15, 2017

Abstract

We study maximal independent families for sets in the projective hierarchy. Our
main result shows that in the Cohen model, there are no maximal independent families.
We also consider a new cardinal invariant related to the question of destroying and
preserving maximal independent families.

1 Introduction

In descriptive set theory, one often looks at objects defined in a con-constructive way, such as
ultrafilters, Bernstein-type sets, maximal almost disjoint families etc., and asks the question
“how low in the projective hierarchy do such objects first appear”? In this paper, we look
at maximal independent families, a close relative of the maximal almost disjoint families
studied in this way by the same authors in [1].

Definition 1.1. A family I ⊆ [ω]ω is called independent if whenever we choose finite disjoint
F,G ⊆ I, we get

σ(F ;G) :=

( ⋂

A∈F
A

)
∩
( ⋂

B∈G
(ω \B)

)
is infinite.

A family I ⊆ [ω]ω is called a maximal independent family (m.i.f.) if it is independent and
maximal with regard to this property.

Note that maximality of I is equivalent to:

∀X ∈ [ω]ω ∃F ∈ [I]<ω ∃G ∈ [I \ F ]<ω (σ(F ;G) ⊆∗ X ∨ σ(F ;G) ∩X =∗ ∅).

By identifying the space [ω]ω with 2ω via characteristic functions, one can consider
independent families as subsets of the reals and study their complexity in the projective
hieararchy.

Remark 1.2. If I is a Σ1
n m.i.f. then it is ∆1

n.
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Proof. Suppose I is a Σ1
n m.i.f. Then ∀X ∈ [ω]ω :

X /∈ I ⇐⇒ ∃F ∈ [I]<ω ∃G ∈ [I \ F ]<ω

(X /∈ F ∧X /∈ G ∧ (σ(F ;G) ⊆∗ X ∨ σ(F ;G) ∩X =∗ ∅)).

The last statement is easily seen to be Σ1
n.

Theorem 1.3 (Miller; [2]). There is no analytic m.i.f.

An analysis of Miller’s proof shows the following stronger result: Σ1
n(C) ⇒ @Σ1

n-
m.i.f., for all n, where we use “Σ1

n(C)” to denote the statement “all Σ1
n sets have the Baire

property”. In particular, it follows that in the Cohen model there is no Σ1
2 m.i.f., that in

the Solovay and the Shelah model (for projective Baire Property without inaccessible) there
is no m.i.f. at all, and that AD⇒ there is no m.i.f.

In this paper, we prove a much stronger result, namely, that in the Cohen model there is
no projective m.i.f. Since Σ1

2(C) is false in the Cohen model, this will show that the above
implication cannot be reversed in general.

On the other hand, it is easy to construct a m.i.f. by induction using a wellorder of the
reals. In particular, it is easy to see that in L, there exists a Σ1

2 m.i.f. In [2], Miller used
sophisticated coding techniques to show that, in fact, there is a Π1

1 m.i.f. in L. Building
on an idea due to Asger Törnquist [4], we will show that in fact this proof is unneccessary,
since one can show directly in ZFC that if there exists a Σ1

2 m.i.f. then there exists a Π1
1

m.i.f.

The paper is structured as follows: in Section 2, we prove the implication mentioned
above. In Section 3 we present a break-down of Miller’s original proof necessary for further
development. In Section 4 we prove the main theorem about projective m.i.f.’s in the Cohen
model, and in Section 5 we study a cardinal invariant related to the question of preserving
or destroying a m.i.f.

2 Σ1
2 and Π1

1 m.i.f ’s

Theorem 2.1. If there exists a Σ1
2 m.i.f. then there exists a Π1

1 m.i.f.

Proof. Suppose I0 is a Σ1
2 maximal independent family. Let F0 ⊆ ([ω]ω)

2
be a Π1

1 set such
that I0 is the projection of F0. Consider the space ω ∪̇ 2<ω as a disjoint union, and consider
the mapping

g :
([ω]ω)

2 −→P (ω ∪̇ 2<ω)
(x, y) 7−→ x ∪ {χy�n | n < ω}

where χy is the characteristic function of y. It is not hard to see that g is a continuous
function (in the sense of the space P(ω ∪̇ 2<ω)).

By Π1
1-uniformization, there exists a Π1

1 set F ⊆ F0 which is the graph of a function, i.e.,
∀x ∈ I0 ∃!y ((x, y) ∈ F ). We let I := g[F ] and claim that I is a Π1

1 m.i.f.

To see that I is Π1
1, note that for z ∈ [ω ∪̇ 2<ω]ω, there is an explicit way to recover

x and y such that g(x, y) = z, if such x and y exist. More precisely: for B ⊆ 2<ω, let
lim(B) := {y ∈ 2ω | ∀n (y�n ∈ B)}. Note that if B is infinite then lim(B) 6= ∅. Then we
can say the following: z ∈ I if and only if
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1. ∀y, y′ (y ∈ lim(z ∩ 2<ω) ∧ y′ ∈ lim(z ∩ 2<ω) → y = y′), and

2. ∀y (y ∈ lim(z ∩ 2<ω) → (z ∩ ω, y) ∈ F ).

This gives a Π1
1 definition of I.

To see that I is independent, suppose we have z1, . . . zn and w1, . . . w` ∈ I, the z’s being
different from the w’s. Write ai := zi ∩ ω and bj := wj ∩ ω. Then all ai and bj are in
dom(F ) = I0, and moreover, since F is a function, the ai’s are different from the bj ’s. But
then we have that σ(z1, . . . , zn;w1, . . . , w`) ⊇ σ(a1, . . . , an; b1, . . . , b`) is infinite, since the
latter set is infinite by the independence of I0.

To show maximality of I, suppose W ∈ [ω ∪̇ 2<ω]ω and W /∈ I. Let A := W ∩ ω. By maxi-
mality of I0, there are a1, . . . , an and different b1, . . . , b` such that σ(a1, . . . , an, A; b1, . . . b`)
is finite or σ(a1, . . . , an; b1, . . . b` ∪ {A}) is finite, w.l.o.g. the former. Then there are
z1, . . . , zn and different w1, . . . , w` such that ai = zi ∩ ω and bj = wj ∩ ω. To make sure
that the “2<ω-part” of the zi’s and the wj ’s does not make the intersection infinite, we pick
two additional t0 6= t1 ∈ I, different from the zi’s and the wj ’s. Let t0 = g(x0, y0) and
t1 = g(x1, y1). If y0 = y1, then (t0 \ t1)∩ 2<ω = ∅, hence σ(x1, . . . , xn,W, t0; b1, . . . b`, t1) is
finite. If, on the other hand, y0 6= y1, then the sets {χy0�n | n < ω} and {χy1�n | n < ω}
are almost disjoint, so (t0 ∩ t1)∩ 2<ω is finite. In that case, σ(x1, . . . , xn,W, t0, t1; b1, . . . b`)
is finite. So in any case, I ∩ {W} is not independent, completing the proof.

3 Perfect almost disjoint and almost covering sets

Next, we turn our attention to Miller’s original proof of the non-existence of analytic m.i.f.’s.,
using it to prove a stronger result and breaking it down a bit, using the following definition.

Definition 3.1. A tree T ⊆ 2<ω is called perfect almost disjoint (perfect a.d.) if it is a
perfect tree and ∀x, y ∈ [T ] {n | x(n) = y(n) = 1} is finite. A tree S ⊆ 2<ω is called perfect
almost covering (perfect a.c.) if it is a perfect tree and ∀x, y ∈ [T ] {n | x(n) = y(n) = 0} is
finite.

Definition 3.2.

1. A set A ⊆ 2ω satisfies the perfect-a.d.-a.c. property, abbreviated by Sad-ac, if there
exists a perfect a.d. tree T with [T ] ⊆ A, or there exists a perfect a.c. tree S with
[S] ∩A = ∅.

2. A set A ⊆ 2ω satisfies the perfect-a.c.-a.d. property, abbreviated by Sac-ad, if there
exists a perfect a.c. tree S with [S] ⊆ A, or there exists a perfect a.d. tree T with
[T ] ∩A = ∅.

Question 3.3. Do the statements Γ(Sad-ac) or Γ(Sac-ad) have any interesting characterisa-
tions and/or has anything like this ever been studied previously, for example for Γ = ∆1

2 or
Γ = Σ1

2?

Lemma 3.4. Γ(C)⇒ Γ(Sad-ac) ∧ Γ(Sac-ad) for any projective pointclass Γ.

Proof. Let A ⊆ 2ω be in Γ. If A has the Baire property, in particular there is a basic open
set [s] such that [s] ⊆∗ A or [s] ∩ A =∗ ∅ (here ⊆∗ and =∗ denote modulo meager). If we
assume the former, we will find both a perfect a.d. tree T and a perfect a.c. tree S such that
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[T ] ⊆ A and [S] ⊆ A. Analogously, if we assume the latter, we will find both a perfect a.d.
tree T and a perfect a.c. tree S such that [T ] ∩ A = ∅ and [S] ∩ A = ∅. Thus, it is clear
that in effect we prove both Γ(Sad-ac) and Γ(Sac-ad). We only show how to construct the
perfect almost disjoint tree T in the former case; the other cases are similar.

So, assume [s] ⊆∗ A and let Bn be nowhere dense so that [s] \A ⊆ ⋃nBn.

• Let s∅ be an extension of s with at least one (new) non-zero digit, and such that
[s∅] ∩B0 = ∅. Let k0 := |s∅|.

• Let s〈0〉 be an extension of s∅, with at least one new non-zero digit, and such that
[s〈0〉] ∩B1 = ∅. Let k1 := |s〈0〉|.

• Let s〈1〉 be an extension of s∅ consisting only of 0’s on the interval [k0, k1), followed by
an arbitrary extension with at least one non-zero digit, and such that [s〈1〉]∩B1 = ∅.
Let k2 := |s〈1〉|.

• Let s〈0,0〉 be an extension of s〈0〉, consisting only of 0’s on the interval [k1, k2), followed
by an arbitrary extension with at least one non-zero digit, and such that [s〈0,0〉]∩B2 =
∅. Let k3 := |s〈0,0〉|.

• Let s〈0,1〉 be an extension of s〈0〉, consisting only of 0’s on the interval [k1, k3), followed
by an arbitrary extension with at least one non-zero digit, and such that [s〈0,1〉]∩B2 =
∅. Let k4 := |s〈0,0〉|.

• Continue in the same way: sσ_〈i〉 extends sσ with only 0’s until the largest kj which
has been defined, followed by an arbitrary extension with at least one non-zero digit,
such that [sσ_〈i〉] ∩B|σ|+1 = ∅.

Finally let T be the tree generated by {sσ | σ ∈ 2<ω}. This is a perfect tree (because of the
“new non-zero digit”), and clearly [T ] ⊆ [s] ∩ A. The construction clearly guarantees that
[T ] is an almost disjoint tree.

To construct the perfect almost covering tree S in A, proceed analogously replacing “0” by
“1” in the proof above.

Remark 3.5. An equivalent formulation of the above lemma is: “for every countable model
M there exists a perfect almost disjoint set and perfect almost covering set of Cohen reals
over M”.

Lemma 3.6. Σ1
n(Sad-ac)⇒ @Σ1

n-m.i.f. and Σ1
n(Sac-ad)⇒ @Σ1

n-m.i.f..

Proof. We prove both statements simultaneously. Let I be Σ1
n, and assume, towards con-

tradiction, that I is a m.i.f. Let

H := {X | ∃F ∈ [I]<ω ∃G ∈ [I \ F ]<ω (σ(F ;G) ⊆∗ X)}
K := {X | ∃F ∈ [I]<ω ∃G ∈ [I \ F ]<ω (σ(F ;G) ∩X =∗ ∅)}

Then both H and K are Σ1
n sets. Moreover, by maximality of I, [ω]ω = H ∪K.

Assume that Σ1
n(Sad-ac) was true. Then, applying this property to H, we either obtain

a perfect almost disjoint tree T with [T ] ⊆ H, or a perfect almost coverting tree S with
[S]∩H = ∅, hence [S] ⊆ K (note that here, and in the rest of the proof, we identify subsets
of ω with their characteristic function).
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Alternatively, assume that Σ1
n(Sac-ad) was true. Then, applying this property to K, we

either obtain a perfect almost covering tree S with [S] ⊆ K, or a perfect almost disjoint tree
T with [T ] ∩K = ∅, and therefore [T ] ⊆ H.

In both cases, the proof proceeds analogously.

First assume there is a perfect almost disjoint T with [T ] ⊆ H. For each X ∈ [T ] let FX , GX
witness the fact that X ∈ H, and apply the ∆-systems Lemma to find distinct X,Y ∈ [T ]
such that (FX ∪ FY ) ∩ (GX ∪ GY ) = ∅. Then σ(FX ∪ FY ;GX ∪ GY ) ⊆∗ X ∩ Y =∗ ∅,
contradicting the independence of I.

Similarly, assume there is a perfect almost covering S with [S] ⊆ K, and proceed analogously.
Then we obtain σ(FX ∪ FY ;GX ∪GY ) ∩ (X ∪ Y ) =∗ ∅. But by assumption (X ∪ Y ) =∗ ω
so this implies that σ(FX ∪FY ;GX ∪GY ) =∗ ∅, again contradicting the independence of I.

Corollary 3.7. Σ1
n(C)⇒ @Σ1

n m.i.f.

Remark 3.8. A curious aspect of this corollary is that the proof can proceed either via
Sad-ac or via Sac-ad; in fact, considering just any one of these dichotomy properties would
be sufficient (see Figure 1), and in the proof of Lemma 3.6 it would be sufficient for just H
or just K to be Σ1

2.

Γ(C) +3

"*

Γ(Sad-ac) Σ1
n(Sad-ac)

$,
Γ(Sac-ad) Σ1

n(Sad-ac) +3 @Σ1
n m.i.f.

Figure 1: Impications in ZFC.

Question 3.9. Can we strengthen Lemma 3.6 to ∆1
n(Sad-ac) ⇒ @Σ1

n-m.i.f.? (Note that
∆1
n(Sad-ac) and ∆1

n(Sac-ad) are equivalent).

4 Projective m.i.f ’s

The general question is: in which models do m.i.f.’s of complexity Γ exist? A recent abstract
result of Schrittesser [3] shows:

Fact 4.1 (Schrittesser 2016). In the iterated Sacks model (of any length) starting from L,
there exists a (lightface) ∆1

2 m.i.f.

Theorem 4.2. In the Cohen model there are no projective m.i.f.’s

What we actually show is that in the Cohen model all projective sets (and even all sets
in L(R)) satisfy Sad-ac and Sac-ad. The main point is the following Lemma, closely related
to Lemma 3.4:

Lemma 4.3. If c ∈ [s] is Cohen over V , then in V [c] there exists a perfect almost disjoint
set and a perfect almost covering set of Cohen reals over V , contained in [s].
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Proof. Let P denote the partial order consisting of finite trees T ⊆ 2<ω with the following
property: ∃k0 < k1 < · · · < k` such that T ⊆ 2≤k` , and for every i < `, there is at most one
t ∈ T where t�[ki, ki+1) is not constantly 0 (notice that the tree constructed in the proof of
Lemma 3.4 has this property). The trees are ordered by end-extension.

Notice that P generically adds a perfect tree TG, defined as the limit of the trees in G.
Moreover, using an analogous idea to Lemma 3.4, we can see that T is almost disjoint and
that every x ∈ [TG] is Cohen-generic over the ground model.

Since P is countable, it is isomorphic to Cohen forcing. Therefore, if V [c] is a Cohen extension
of V , it is also a P-generic extension of V , so there exists a perfect almost disjoint set [TG]
of Cohen reals. W.l.o.g. TG can be assumed to be within [s].

To obtain a perfect almost covering set of Cohen reals in [s], apply the same argument with
“0” replaced by “1”.

Proof of Theorem 4.2. Let W := V Cκ (for any κ), and let A be a set in W defined by a
formula φ(x) with real or ordinal parameters, w.l.o.g. all of which are in V (so we can
forget about them). In W , let c be Cohen over V , and assume w.l.o.g. that φ(c). Then
V [c] |= “p Q φ(č)”, where Q is the remainder forcing leading from V [c] to W and p is some
Q-condition. However, since Cκ is the product forcing, Q is isomorphic to Cκ. Moreover,
since Cκ is homogeneous we can assume that p is the trivial condition, hence we really have:

V [c] |= “ Cκ φ(č)”

Let [s] be a Cohen condition with c ∈ [s] forcing this statement in V . By Lemma 4.3, first
we find a perfect a.d. tree T with T ∈ V [c] , [T ] ⊆ [s] and such that all x ∈ [T ] are Cohen
over V . Note that this fact remains true in W , since “being a perfect set of Cohen reals” is
upwards absolute. Now, for any such x ∈ [T ] (in W ), we have that x ∈ [s], and therefore
V [x] satisfies whatever [s] forces, in particular

V [x] |= “ Cκ φ(x̌)”

But, again, the remainder forcing leading from V [x] to W is isomorphic to Cκ, and it follows
that W |= φ(x).

Similarly, we also find a perfect a.c. tree S with exactly the same properties. Thus A satisfies
both Sad-ac and Sac-ad, and the rest follows by Lemma 3.6.

5 ℵ1-Borel and ℵ1-closed m.i.f ’s

The question of definable m.i.f’s is closely related to questions concerning certain cardinal
invariants (compare with [1]).

Definition 5.1.

1. i is the least size of a m.i.f.

2. icl is the least κ such that there exists a collection {Cα | α < κ}, where each Cα is a
closed independent family, and

⋃
α<κ Cα is a m.i.f.

3. iB is the least κ such that there exists a collection {Bα | α < κ}, where each Bα is a
Borel independent family, and

⋃
α<κBα is a m.i.f.
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It is clear that iB ≤ icl ≤ i. It is also known that r ≤ i and d ≤ i, where d and r denote
the dominating and reaping numbers, respectively. Notice that if iB > ℵ1, then there are
no Σ1

2 m.i.f.’s (since Σ1
2-sets are ℵ1-unions of Borel sets).

Theorem 5.2. cov(M) ≤ iB.

Proof. Let κ < cov(M) and let {Bα | α < κ} be a collection of Borel independent families.
We need to show that I :=

⋃
α<κBα is not maximal.

Suppose otherwise, and for every finite E ⊆ κ define

HE := {X | ∃F ∈ [
⋃
α∈E Bα]<ω ∃G ∈ [

⋃
α∈E Bα \ F ]<ω (σ(F ;G) ⊆∗ X)}

KE := {X | ∃F ∈ [
⋃
α∈E Bα]<ω ∃G ∈ [

⋃
α∈E Bα \ F ]<ω (σ(F ;G) ∩X =∗ ∅)}

Notice that by maximality of I =
⋃
α<κBα, we have

⋃
{HE ∪KE | E ∈ [κ]<ω} = [ω]ω.

Since κ < d = cov(Kσ), there must exist a finite E ⊆ κ such that HE ∪KE /∈ M. Suppose
HE /∈ M: since HE is analytic, there exists a basic open [s] with [s] ⊆∗ HE . By the
argument from Lemma 3.4, there exists a perfect a.d. tree T with [T ] ⊆ HE . But then, by
the argument from Lemma 3.6, it follows that

⋃
α∈E Bα is not independent, contrary to the

assumption. Likewise, if KE /∈M then using the argument from Lemma 3.4, there exists a
perfect a.c. tree S with [S] ⊆ HK , and the rest is the same.

We end this section with the following open questions:

Question 5.3.

1. Is it consistent that icl < d or iB < d?

2. Is it consistent that icl < r or iB < r?

3. Is it consistent that icl < i or iB < i?

4. Can we have d > ℵ1 or r > ℵ1 together with a Σ1
2 m.i.f.?

5. Does the existence of a Σ1
n+1 m.i.f. imply the existence of a Π1

n m.i.f. for n > 2?
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