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1 Introduction

There are various ways of forcing ∆1
3 wellorders of the reals. In [13], relying on

the method of almost disjoint coding, L. Harrington produces a generic extension in
which there is a boldface ∆1

3 wellorder of the reals and MA holds. Similar techniques
can be found in J. Bagaria and H. Woodin [2]. Later work by R. David [4] and
the second author [10, Theorem 8.52] made use of the method of Jensen coding to
obtain such wellorders when ω1 is inaccessible to reals. More recently, the present
authors, A. Törnquist and L. Zdomskyy have developed and used further techniques
to produce generic extensions in which there are lightface ∆1

3 wellorders of the reals
in the presence of a large continuum, as well as other combinatorial properties hold.
For example, in V. Fischer and S. D. Friedman [5] the method of coding with perfect
trees is used to obtain the consistency of the existence of a lightface ∆1

3 wellorder
on the reals with each of the following inequalities between some of the well-known
combinatorial cardinal characteristics of the continuum: d < c, b < a = s, b < g.
In V. Fischer, S. D. Friedman and L. Zdomskyy [7] the method of almost disjoint
coding is used to show that the existence of a lightface ∆1

3 wellorder of the reals is
consistent with b = c = ℵ3 and the existence of a Π1

2 definable ω -mad subfamily of
[ω]ω . The same method has been used in V. Fischer, S. D. Friedman and A. Törnquist
[6] to show the existence of a generic extension in which there is a lightface ∆1

3
wellorder of the reals, there is a Π1

2 definable maximal family of orthogonal measures,
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while b = c = ω3 and there are no Σ1
2 -definable maximal families of orthogonal

measures. The method of Laver-like almost disjoint coding which strongly preserves
splitting reals is used in V. Fischer, S. D. Friedman and Y. Khomskii [9] to obtain the
consistency of a Π1

1 definable mad family in the presence of a lightface ∆1
3 wellorder

of the reals and b = c = ℵ3 , thus improving some of the results of [7]. In V. Fischer,
S. D. Friedman and L. Zdomskyy [8] the method of specializing Suslin trees is
used to obtain further applications to the combinatorial cardinal characteristics of the
continuum, more precisely to obtain the consistency of p = b = ℵ2 < a = s = c = ℵ3

with a lightface ∆1
3 wellorder, as well as to answer a question of L. Harrington by

showing that a lightface ∆1
3 wellorder of the reals is consistent with MA and c = ℵ3 .

Even though finite support iterations of ccc posets are often preferred, since they can
produce for example models with arbitrarily large continuum, there are cases as we will
see shortly in which such iterations cannot be used and we must make use of countable
support iterations.

In this paper we study the classical cardinal characteristics associated to the ideals of
measure and category, and the Cichoń diagram, which completely describes the ZFC
inequalities between those characteristics. An excellent introduction to the subject can
be found in T. Bartoszynski and H. Judah [3]. We will show that every admissible
assignment of ℵ1 -ℵ2 to these cardinal characteristics can be realized in a model in
which there is a ∆1

3 wellorder of the reals. The fact that such assignments can be
realized in forcing extensions (without the wellorder) is well known (see [3]). Given
any such admissible constellation, our strategy will be to provide an iteration of length
ℵ2 simultaneously forcing the constellation and the ∆1

3 wellorder. Note that with every
invariant in the Cichoń diagram one can associate a forcing notion which increases its
value without affecting the values of the other invariants. Thus to a certain extent
the problem of realizing such ℵ1 -ℵ2 assignments in a generic extension and adding
a projective wellorder to the reals reduces to iterating certain posets, on the one hand
posets which control the corresponding invariants and on the other hand posets which
provide the wellorder, without introducing undesirable reals.

Finite support iterations of ccc posets are known to add Cohen reals. This implies
that constellations in which the covering of the meager ideal, cov(M), has size ℵ1

while c = ℵ2 remain beyond the reach of such finite support ccc iterations. If we are to
provide indeed a uniform method of adding a projective wellorder, which can be used in
all 23 cases which we have to consider, the posets which we iterate to force the wellorder
should add no unbounded reals (for constellations in which d = ℵ1 ), no dominating
reals (for constellations in which b = ℵ1 ), no Cohen reals (for constellations in which
cov(M) = ℵ1 ), no random reals (for constellations in which cov(N ) = ℵ1 ), etc.
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Furthermore it is well-known that the iterations of posets which do not add a certain
type of real, for example dominating reals, might very well add such reals (see U.
Abraham [1]). Thus we need a poset with strong combinatorial properties which
guarantee not only that the poset but also that its iterations do not add undesirable reals.

To achieve our goal, we use the method of coding with perfect trees. The method was
introduced in V. Fischer and S. D. Friedman [5], which to the best knowledge of the
authors is the first work discussing cardinal characteristics in the context of projective
wellorders of the reals. As shown in [5], the poset of coding with perfect trees C(Y) is
ωω -bounding and proper (see also Lemma 3.3) and so its countable support iterations
preserve the ground model reals as a dominating family. As we will see in this paper,
C(Y) has other strong combinatorial properties which guarantee for example that its
iterations do not add Cohen and random reals (see Lemmas 3.4 and 3.6). The fact that
the combinatorial properties of the coding with perfect trees poset are strong enough
to obtain every admissible constellation is one of the main results of this paper.

Of course there are cases in which other methods can be used as well. For example
it is well-known that finite support iterations of σ -centered posets do not add random
reals. Relying on this fact, in two instances we provide alternative proofs for obtaining
the corresponding admissible assignments in the presence of a ∆1

3 wellorder using the
method of almost disjoint coding (see also [7]). However, we have to point out that
whenever we choose to use a different method to force the projective wellorder of the
reals, we have to guarantee that the corresponding iteration does not add undesirable
reals, and so guarantee that the iterands themselves satisfy a number of strong com-
binatorial properties. The task of verifying what kind of reals are added by a certain
partial order, and what kind of reals are not added is in general highly nontrivial and
lies at the heart of many open problems in the field.

The poset which forces the definable wellorder of the reals and is introduced in [5]
can be presented in the form 〈Pα, Q̇α : α < ω2〉 where Qα = Q0

α ∗ Q̇1
α is a two-step

iteration: an arbitrary S-proper poset Q0
α of size at most ℵ1 , for some stationary

S ⊆ ω1 chosen in advance, followed by a three step iteration Q1
α = K0

α ∗K̇1
α ∗K̇2

α . The
poset K0

α shoots closed unbounded sets through certain components of a countable
sequence of stationary sets (see [5, Definition 3]), K1

α is a poset known as localization
(see [5, Definition 1]), and K2

α is the forcing notion for coding with perfect trees (see [5,
Definition 3]). The poset Q(T) for shooting a club through a stationary, co-stationary
set T is ω1\T -proper and ω -distributive. The localization poset L(φ) is proper and
does not add new reals. The only poset of these three forcing notions which does add
a real is the coding with perfect trees partial order. The freedom at each stage α of
using an arbitrary S-proper poset Q0

α allows us to provide in addition each admissible
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ℵ1 -ℵ2 assignment to the characteristics in the Cichoń diagram.

The paper is organized as follows: in section 2 we establish the relevant preservation
theorems for S-proper rather than proper iterations, in section 3 we study the combina-
torial properties of the coding with perfect trees poset C(Y) and in section 4 we show
that each admissible assignment is consistent with the existence of a ∆1

3 -w.o. on R.

2 Preservation theorems

Throughout this section S denotes a stationary subset of ω1 .

For T ⊆ ω1 a stationary, co-stationary set let Q(T) denote the poset of all countable
closed subsets of ω1\T with extension relation given by end-extension. Note that if G
is a Q(T)-generic set, then

⋃
G is a closed unbounded subset of ω1 which is disjoint

from T . Thus Q(T) destroys the stationarity of T . One of the main properties of Q(T)
which will be used throughout the paper is the fact that Q(T) is ω -distributive and so
does not add new reals (see T. Jech [15]).

Since Q(T) destroys the stationarity of T , it is not proper. However Q(T) is ω1\T -
proper.

Definition 2.1 Let T ⊆ ω1 be a stationary set. A poset Q is T -proper, if for every
countable elementary submodel M of H(Θ), where Θ is a sufficiently large cardinal,
such thatM∩ω1 ∈ T , every condition p ∈ Q∩M has an (M,Q)-generic extension
q.

The proofs of the following two statements can be found in M. Goldstern [11].

Lemma 2.2 If Q is S-proper then Q preserves ω1 . Also Q preserves the stationarity
of every stationary subset S′ of ω1 which is contained in S .

Lemma 2.3 If 〈〈Pα : α ≤ δ〉, 〈Q̇α : α < δ〉〉 is a countable support iteration of
S-proper posets then Pδ is S-proper.

The proofs of the following two statements follow very closely the corresponding
“proper forcing iteration” case (see [1, Theorem 2.10 and 2.12]).

Lemma 2.4 Assume CH . Let 〈Pα : α ≤ δ〉 be a countable support iteration of length
δ ≤ ω2 of S-proper posets of size ω1 . Then Pδ is ℵ2 -c.c.
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Lemma 2.5 Assume CH . Let 〈Pα : α ≤ δ〉 be a countable support iteration of length
δ < ω2 of S-proper posets of size ω1 . Then CH holds in VPδ .

Preserving V ∩ 2ω as a dominating or as an unbounded family: A forcing notion P is
said to be ωω -bounding if the ground model reals V ∩ ωω form a dominating family
in VP . This property is preserved under countable support iteration of proper forcing
notions. A forcing notion P is said to be weakly bounding if the ground model reals
V∩ωω form an unbounded family in VP . In contrast to the ωω -bounding property, this
property of weak unboundedness is not preserved under countable support iterations
of proper posets. There are well-known examples of two-step iterations of weakly
bounding posets, which add a dominating real over V (see [1]). An intermediate
property, which preserves the ground model reals as an unbounded family in countable
support iterations of proper posets, is the almost ωω -boundedness. A forcing notion P
is said to be almost ωω -bounding if for every P-name for a real ḟ , ie a P-name for a
function in ωω , and for every condition p ∈ P, there is a real g ∈ ωω ∩V such that for
every A ∈ [ω]ω ∩ V there is an extension q ≤ p such that q  ∃∞i ∈ Ǎ(ḟ (i) ≤ ǧ(i)).
These are our main tools in providing that the ground model reals remain a dominating
or an unbounded family in the various models which we are to consider in section 4.

The proofs of the two preservation theorems below follow very closely the proofs of
the classical preservation theorems concerning preservation of the ωω -bounding and
the almost ωω -bounding properties respectively under countable support iterations of
proper forcing notions (see [1] or [11]).

Lemma 2.6 Let 〈〈Pi : i ≤ δ〉, 〈Q̇i : i < δ〉〉 be a countable support iteration of
length δ ≤ ω2 of S-proper, ωω -bounding posets. That is, assume that for all i < δ ,
Pi “Q̇i is ωω-bounding and S-proper”. Then Pδ is ωω -bounding and S-proper.

Lemma 2.7 Let 〈〈Pi : i ≤ δ〉, 〈Q̇i : i < δ〉〉 be a countable support iteration of length
δ ≤ ω2 of S-proper, almost ωω -bounding posets. That is, assume that for all i < δ ,
Pi “Q̇i is almost ωω-bounding and S -proper”. Then Pδ is weakly bounding and
S-proper.

Keeping non(M), non(N ) and cof(N ) small: Recall that with every ideal I on a set
X we can associate the following invariants:

• add(I) = min{|A| : A ⊆ I and
⋃
A /∈ I},

• cov(I) = min{|A| : A ⊆ I and
⋃
A = X},

• non(I) = min{|Y| : Y ⊆ X and Y /∈ I}, and
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• cof(I) = min{|A| : A ⊆ I and ∀B ∈ I∃A ∈ A(B ⊆ A)}.

Following standard notation we denote by M and N the ideals of meager and null
subsets of the real line, respectively. Thus add(M), cov(M), non(M), cof(M) and
add(N ), cov(N ), non(N ), cof(N ) denote the above defined cardinal invariants for
the ideals M and N .

To preserve small witnesses to non(M), non(N ) and cof(N ) we will use preservation
theorems which follow the general framework developed by M. Goldstern in [12].

Definition 2.8 ([3, Definition 6.1.6]) Let v be the union of an increasing sequence
〈vn〉n∈ω of two place relations on ωω such that

• the sets C = dom(v) and {f ∈ ωω : f vn g}, where n ∈ ω , g ∈ ωω , are closed
and have absolute definitions, that is, as Borel sets they have the same Borel
codes in all transitive models.

• ∀A ∈ [C]≤ℵ0∃g ∈ ωω∀f ∈ A(f v g).

Let N be a countable elementary submodel of H(Θ) for some sufficiently large Θ

containing v. We say that g ∈ ωω covers N if ∀f ∈ N ∩ C(f v g).

Following [3, Definition 6.1.7], we say that a poset P S-almost-preserves-v iff the
following holds: if N is a countable elementary submodel of H(Θ) for some sufficiently
large Θ, containing P, C, v and ω1 ∩ N ∈ S , g covers N , and p ∈ P ∩ N , then
there is an (N,P)-generic condition q extending p such that q  “g covers N[Ġ]”.
Similarly, we say that the forcing notion P S-preserves-v if P satisfies [3, Definition
6.1.10] with respect only to countable elementary submodels whose intersection with
ω1 is an element of the stationary set S . More precisely, P S-preserves-v if whenever
N is a countable elementary submodel of H(Θ) for some sufficiently large Θ which
contains P and v as elements and such that ω1 ∩ N ∈ S , whenever g covers N and
〈pn〉n∈ω is a sequence of conditions interpreting the P-names 〈ḟi〉i≤k ∈ N for functions
in C as the functions 〈f ∗i 〉i≤k , then there is an N -generic condition q ≤ p0 such that
q P “g covers N[Ġ]” and

∀n ∈ ω∀i ≤ k q P (f ∗i vn g→ ḟi vn g).

Furthermore we obtain the following analogue of Goldstern’s preservation theorem
(see [12] or [3, Theorem 6.1.3]).

Theorem 2.9 Let S be a stationary set and let 〈Pα, Q̇α : α < δ〉 be a countable support
iteration such that for all α < δ , α “Q̇α S-preserves- v ”. Then Pδ S-preserves-v.
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Of particular interest for us are the relations vrandom , vCohen and v∆ defined in
Definitions 6.3.7, 6.3.15, and on page 303, respectively, of [3]. For convenience of the
reader we define these relations below:

vrandom : Denote by Ω the set of all clopen subsets of 2ω . Then let

Crandom = {f ∈ Ωω : ∀n ∈ ω(µ(f (n)) ≤ 2−n)}

and for f ∈ Crandom let Af =
⋂

n∈ω
⋃

k≥n f (k). Now for f ∈ Crandom, x ∈ 2ω and
n ∈ ω define

f vrandom
n x ⇐⇒ ∀k ≥ n(x /∈ f (k)).

Let vrandom=
⋃

n∈ω vrandom
n . Note that f vrandom x if and only if x /∈ Af and that x

covers N with respect to vrandom if and only if x is random over N .

vCohen : Let
CCohen = {f ∈ ΩΩ : ∀U ∈ Ω(f (U) ⊆ U)}.

For f ∈ CCohen let Af :=
⋃

U∈Ω f (U). Note that Af is an open dense subset of 2ω

and that for every dense open set H ⊆ 2ω there is an f ∈ CCohen such that Af ⊆ H .
Fix some standard enumeration {Un}n∈ω of Ω and for f ∈ CCohen , x ∈ 2ω , n ∈ ω
define:

f vCohen
n x ⇐⇒ ∃k ≤ n(x ∈ f (Uk)).

Let vCohen=
⋃

n∈ω vCohen
n . Then f vCohen x if and only if x ∈ Af . Therefore x covers

N with respect to vCohen if and only if x is a Cohen real over N .

v∆ : Let Q+ = Q ∩ [0, 1], let ∆ = {f ∈ Qω
+ :

∑
n∈ω f (n) < 1} and let

C∆ := {f ∈ ((Q+)<ω)ω : ∀n
∑

i∈dom(f (n))

f (n)(i) < 2−(n+1)}.

For f ∈ C∆ let εf ∈ ∆ be defined by εf = f (0)af (1)a · · · . For f , g ∈ C∆ define

f v∆
n g ⇐⇒ ∀m ≥ n(εf (m) ≤ εg(m)).

Let v∆=
⋃

n∈ω v∆
n .

Each of those relations satisfies the properties of Definition 2.8. Thus Theorem 2.9
implies the following two theorems (analogous to Theorems 6.1.13 and 6.3.20, respec-
tively, from [3]).

Journal of Logic & Analysis 6:8 (2014)
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Theorem 2.10 If 〈Pα, Q̇α : α < δ〉 is a countable support iteration and for each
α < δ , α “Q̇α S-preserves- vrandom ”, then Pδ preserves outer measure. That is for
every set A ⊆ 2ω , VPδ � µ∗(A) = µ∗(A)V . In particular δ V ∩ 2ω /∈ N .

Theorem 2.11 If 〈Pα, Q̇α : α < δ〉 is a countable support iteration and for each
α < δ , α “Q̇α S-preserves- vCohen ”, then Pδ preserves non meager sets. That
is for every set A ⊆ 2ω which is not meager, VPδ � A is not meager. In particular
δ V ∩ 2ω /∈M.

Recall that a forcing notion P has the Sacks property if and only if for every P-name
ġ for a function in ωω there is a slalom S ∈ V , ie a function S ∈ ([ω]<ω)ω such that
|S(n)| ≤ 2n for all n, and such that P “∀n(ġ(n) ∈ S(n))”. By [3, Lemma 6.3.39] a
proper forcing notion P has the Sacks property if and only if P preserves v∆ . By [3,
Theorem 2.3.12] if P has the Sacks property then every measure zero set in VP is
covered by a Borel measure zero set in V and so P preserves the base of the ideal of
measure zero sets. We obtain the following analogue of [3, Theorem 6.3.40].

Theorem 2.12 If 〈Pα, Q̇α : α < δ〉 is a countable support iteration and for each
α < δ , α “Q̇α S-preserves- v∆ ”, then Pδ has the Sacks property and so preserves
the base of the ideal of measure zero sets.

No random and no amoeba reals: Some of the preservation theorems which we use to
show that certain iterations do not add amoeba or random reals, are based on a general
framework due to H. Judah and M. Repický [14].

Definition 2.13 ([3, Definition 6.1.17]) Let v be the union of an increasing chain
〈vn〉n∈ω of two place relations on ωω such that

• for all n ∈ ω and all h ∈ ωω the set {x : h vn x} is relatively closed in the
range of v,

• for every A ∈ [dom(v)]≤ℵ0 there is f ∈ dom(v) such that ∀g ∈ A∀n ∈ ω∃k ≥ n
such that ∀x(f vk x)→ g vk x), and

• the formula ∀x ∈ ωω(f vn x → g vn x) is absolute for all transitive models
containing f and g.

A real x is said to be v-dominating over V if for all y ∈ V ∩ dom(v), y v x .

We have the following S-proper analogue of Judah and Repický’s preservation theorem
(see [3, Theorem 6.1.18]).
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Theorem 2.14 If 〈Pα, Q̇α : α < δ〉, δ limit, is a countable support iteration of S-
proper posets, such that for all α < δ , Pα does not add a v-dominating real, then Pδ
does not add a v-dominating real.

Note that x ∈ 2ω vrandom-dominates V if and only if x is random over V . Further-
more the relation vrandom satisfies the conditions of definition 2.13 and so by the
above theorem we obtain the following S-proper analogue of Theorem 6.3.14 from [3].

Theorem 2.15 If 〈Pα, Q̇α : α < δ〉, δ limit, is a countable support iteration of S-
proper forcing notions and for each α < δ , Pα does not add random reals, then Pδ
does not add a random real.

Note that v∆ also satisfies the conditions of Definition 2.13. Then by Theorem 2.14
above, as well as [3, Theorem 2.3.12] we obtain the following analogue of [3, Theorem
6.3.41].

Theorem 2.16 If 〈Pα, Q̇α : α < δ〉, δ limit, is a countable support iteration of
S-proper posets and for all α < δ , α “

⋃
(N ∩V) /∈ N ”, then δ “

⋃
(N ∩V) /∈ N ”.

Other preservation theorems: We say that a forcing notion P is S-(f , h)-bounding,
if it satisfies [3, Definition 7.2.13] but instead of proper we require that P is S-
proper. That is, we say that P is S-(f , h)-bounding, if P is S-proper, for every k ∈ ω
limn→∞ h(n)k ·f−1(n) = 0 and for every f ′ ∈ VP∩

∏
n∈ω f (n) there is S ∈ V∩([ω]<ω)ω

such that for all n ∈ ω |S(n)| ≤ h(n) and for all n ∈ ω(f ′(n) ∈ S(n)). The proof of [3,
Lemma 7.2.15] remains true under this modification, and so we obtain that if P is
S-(f , h)-bounding then P does not add random or Cohen reals. Furthermore we have
the following analogue of Shelah’s theorem (see S. Shelah [16] or T. Bartoszynski and
H. Judah [3, Theorem 7.2.19]).

Theorem 2.17 If 〈Pα, Q̇α : α < δ〉, δ limit, is a countable support iteration such that
for all α , α “Q̇α is S-(f , h)-bounding”, then Pδ is S-(f , h)-bounding.

We will also use preservation theorems for the so called (F, g)-preserving posets.
For convenience of the reader we state the definition of (F, g)-preserving (see [3,
Definition 7.2.23]). Let g be a given real and for n ∈ ω let Pn = {a ⊆ g(n + 1) :
|a| = g(n + 1)/2n}. For a set A ⊆ Pn define norm(A) = min{|X| : ∀a ∈ A(X 6⊆ a)}.
Let F be a family of strictly increasing functions. For every f ∈ F choose a function
f + ∈ F and assume that for all f ∈ F , n ∈ ω we have that f (n) < g(n)/2n . A
forcing notion P is said to be (F, g)-preserving if for every f ∈ F and every P-name

Journal of Logic & Analysis 6:8 (2014)



10 Vera Fischer, Sy David Friedman and Yurii Khomskii

Ṡ which has the property that for all n, P Ṡ(n) ⊆ Pn and P norm(Ṡ(n)) < f (n),
there exists a function T ∈ V such that for all n, T(n) ⊆ Pn , norm(T(n)) < f +(n) and
P Ṡ(n) ⊆ T(n). Note that the countable support iteration of (F, g)-preserving posets
is (F, g)-preserving (see [3, Theorem 7.2.29]) and that (F, g)-preserving posets do not
add Cohen reals (see [3, Theorem 7.2.24]).

3 Coding with perfect trees

Let Y ⊆ ω1 be such that in L[Y] cofinalities have not been changed, and let µ̄ =

{µi}i∈ω1 be a sequence of L-countable ordinals such that µi is the least ordinal µ with
µ >

⋃
{µj : j < i}, Lµ[Y ∩ i] � ZF− and Lµ � “ω is the largest cardinal”. A real r

is said to code Y below i if for all j < i, j ∈ Y if and only if Lµj[Y ∩ j, r] � ZF− .
Whenever T is a perfect tree, let |T| be the least i such that T ∈ Lµi[Y ∩ i].

Fix L[Y] as the ground model. The poset C(Y), to which we refer as coding with
perfect trees, consists of all perfect trees T ⊆ 2<ω such that every branch r through T
codes Y below |T|. For T0,T1 conditions in C(T) define T0 ≤ T1 if and only if T0 is
a subtree of T1 .1

Below we summarize some of the main properties of the poset C(Y). Note that T0 ≤ T1

if and only if [T0] ⊆ [T1], where [T] denotes the set of infinite branches through T .
For n ∈ ω , let T0 ≤n T1 if and only if T0 ≤ T1 and T0,T1 have the same first n
splitting levels. (For the notion of n-splitting level of a tree see for example [15].) For
T a perfect tree and m ∈ ω let Sm(T) be the set of nodes on the m-splitting level of T
(and so |Sm(T)| = 2m ), and for t ∈ T let T(t) = {η ∈ T : t ⊆ η or η ⊆ t}. Note that
by Π1

1 absoluteness, r codes Y below |T| even for branches through T in the generic
extension.

Lemma 3.1 [5, Lemma 5] If T ∈ C(Y) and |T| ≤ i < ω1 , then there is T∗ ≤ T such
that |T∗| = i.

Lemma 3.2 [5, Lemma 6] If G is C(Y)-generic and {R} =
⋂
{[T] : T ∈ G}, then

for all j < ω1 we have that

j ∈ Y if and only if Lµj[Y ∩ j,R] � ZF−.

That is, R codes Y .

1C(Y) is non-empty, since the full tree 2<ω belongs to it.
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Lemma 3.3 [5, Lemmas 7 and 8] C(Y) is a proper, ωω -bounding forcing notion.

By [3, Lemma 2.2.4] for every meager set F ⊆ 2ω there are reals xF ∈ 2ω and fF ∈ ωω
such that

F ⊆ {x : ∀∞n∃i ∈ [fF(n), fF(n + 1))xF(i) 6= x(i)}.

We will refer to xF and fF as representatives of the meager set F .

Lemma 3.4 The coding with perfect trees forcing notion C(Y) preserves vCohen .

Proof Let N be a countable elementary submodel of LΘ[Y] for some sufficiently
large Θ, such that C(Y), µ̄ are elements of N . Let c be a Cohen real over N . Let T
be a condition in C(Y) ∩ N . It is enough to show that there is a condition T∗ which is
a (N, C(Y))-generic extension of T and which forces that “c is Cohen over N[Ġ]”.

Let {ẋn, ḟn}n∈ω and {Dn}n∈ω enumerate names for representatives of all meager sets
in NC(Y) and all dense subsets of C(Y) in N , respectively. Let N denote the transitive
collapse of N , let i = ω1 ∩ N . Note that N = Lµ[Y ∩ i] for some µ and since
Lµi[Y ∩ i] � “i is countable”, we have that Lµ[Y ∩ i] is an element of Lµi[Y ∩ i].
Let ī = {ik}k∈ω be an increasing cofinal sequence in i such that ī ∈ Lµi[Y ∩ i].
Recursively we will define a sequence of conditions τ = {Tn}n∈ω , such that for every
n, the condition Tn is an element of N , Tn+1 ≤n+1 Tn , |Tn| ≥ in and

(1) T2n C(Y) “c /∈ F(ẋn, ḟn)”, where F(ẋn, ḟn) denotes a name for the meager set
corresponding to the names ẋn, ḟn ,

(2) T2n+1 C(Y) “Ġ ∩ N ∩ Dn 6= ∅”, where Ġ is the canonical C(Y)-name for the
generic filter.

Furthermore the entire sequence τ will be an element of Lµi[Y ∩ i], since it will be
definable in Lµi[Y ∩ i]. Thus its fusion T∗ will also be an element of Lµi[Y ∩ i], and
so a condition in C(Y) which extends T and has the desired properties.

We will need the following two claims:

Claim Let R ∈ C(Y)∩N and let {ẋ, ḟ} be C(Y)-names in N (for reals), representing
a meager set in NC(Y) , let n ∈ ω and let α ∈ N ∩ ω1 such that α > |R|. Then there is
a condition R′ in N such that R′ ≤n R, |R′| ≥ α and every branch through R′ decides
ẋ , ḟ .
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Proof Let N0 be a sufficiently elementary submodel of N such that N � “N0 is countable”
and all relevant parameters are elements of N0 , that is R, C(Y), µ̄, ḟ , ẋ , n and α are
elements of N0 . Let N0 denote the transitive collapse of N0 and let j = ω1 ∩N0 . Note
that N0 is of the form Lµ[Y ∩ j] for some µ, and since Lµ[Y ∩ j] � “j is uncountable”
and Lµj[Y ∩ j] � “j is countable” we have that N0 = Lµ[Y ∩ j] ∈ Lµj[Y ∩ j]. On the
other hand, since Lµj[Y ∩ j] is definable from Y, j, and µj , and all of those are in N , we
obtain that Lµj[Y ∩ j] ∈ N . Let j̄ = {jm}m∈ω be an increasing cofinal in j sequence,
which is an element of Lµj[Y ∩ j].

The condition R′ will be obtained as the fusion of a sequence 〈Rm〉m∈ω such that the
entire sequence is definable in Lµj[Y ∩ j] and for all m, Rm ∈ N0 (and so Rm ∈ N0 ).
Let R0 = R. For every s ∈ Splitn(R0) and every t ∈ Succs(R0) find R0

t ≤ R0(t)
which decides ẋ�|t| and ḟ �|t|. By elementarity we can assume that R0

t ∈ N0 and
so R0

t ∈ N̄0 . Since the set of conditions in C(Y) of height strictly greater than
α and j0 is dense, again by elementarity we can assume that |R0

t | > α, j0 . Let
R1 =

⋃
s∈Splitn(R0)

⋃
t∈Succt(R0) R0

t . Then in particular R1 ∈ N0 and |R1| > α, i0 .
Now suppose Rm ∈ N0 is defined. Then for every s ∈ Splitn+m(Rm) and t ∈ Succs(Rm)
find Rm

t ≤ Rm(t) in N̄0 of height > α, jm , which decides ẋ�|t|, ḟ �|t|. Let Rm+1 =⋃
s∈Splitn+m(Rm)

⋃
t∈Succ(s) Rm

t . Then Rm+1 ≤m+n Rm , Rm+1 ∈ N0 and |Rm+1| >
α, jm . With this the inductive construction of the fusion sequence is complete. Since
〈Rm〉m∈ω is definable in Lµj[Y ∩ j], we obtain that R′ =

⋂
m∈ω Rm ∈ Lµj[Y ∩ j]. Then

in particular |R′| = j, which implies that R′ is indeed a condition in C(Y).

Claim Let R′ , ẋ , ḟ , n, α , N be as above and let c be a Cohen real over N . Then
there is a condition R′′ ∈ N such that R′′ ≤n R′ , |R′′| ≥ α, |R′| and R′′ forces that c
does not belong to the meager set determined by ẋ , ḟ .

Proof Just as in the previous claim let N0 be a sufficiently elementary submodel of N
such that N � “N0 is countable” and all relevant parameters are elements of N0 . Let
N0 denote the transitive collapse of N0 . Let j = ω1 ∩ N0 and let j̄ = {jm}m∈ω be an
increasing and cofinal in j sequence which is an element of Lµj[Y ∩ j]. The condition
R′′ will be obtained as the limit of a fusion sequence 〈Rm〉m∈ω which is definable in
Lµj[Y ∩ j] and whose elements are in N0 . Let R0 = R′ . For every s ∈ Splitn(R0) and
every t ∈ Succt(R0) find a branch bt ∈ N0 ∩ [R0] such that t ⊆ bt . Then bt gives an
interpretation of the names ẋ , ḟ as reals xt and f t in N0 . Since c is Cohen over N , it
is Cohen over N0 and so there is jt > |t| such that

xt
n�[f

t(jt), f t(jt + 1)) = c�[f t(jt), f t(jt + 1)).
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Take any kt > jt . Let R1 =
⋃

s∈Splitn(R0)
⋃

t∈Succs(R0) R0(bt�kt). Thinning out once
again we can assume that |R0(bt�kt)| > j0, α . Also, clearly R1 ∈ N0 .

Suppose Rm is defined. Again, for every s ∈ Splitn+m(Rm) and t ∈ Succs(Rm) find a
branch bt ∈ [Rm]∩N0 such that t ⊆ bt . Then bt gives an interpretation xt, f t of ẋ, ḟ as
reals xt, f t in N0 . Using the fact that c is Cohen over N0 we can find {lta}1≤a≤m such
that |t| < lt1 , lta < lta+1 for a < m such that for every j ∈ {lta}1≤a≤m ,

xt�[f t(j), f t(j + 1)) = c�[f t(j), f t(j + 1)).

Take any kt > ltm . Let Rm+1 =
⋃

s∈Splitn+m(Rm)
⋃

t∈Succs(Rm) Rm(bt�kt). Passing

to an extension if necessary we can assume that |Rm(bt�kt)| > jm, α and so that
|Rm+1| > jm, α . Let R′′ = ∩m∈ωRm . Then R′′ is a condition in N with the desired
properties.

With this we can proceed with the construction of the fusion sequence 〈Tn〉n∈ω . Let
T0 = T . Reproducing the proof of [5, Lemma 7] find T1 ∈ N such that T1 ≤1 T0 ,
|T1| ≥ i1 and T1  Ġ ∩ N ∩ D1 6= ∅. Suppose T2n−1 is defined for some n ≥ 1.
Using the previous two claims find a condition T2n ∈ N ∩ C(Y) such that |T2n| ≥ i2n ,
T2n ≤2n T2n−1 , and T2n forces that c does not belong to the meager set corresponding
to {ẋn, ḟn}. Obtain T2n+1 as in the base case. With this the fusion sequence 〈Tn〉n∈ω
is defined. Let T∗ =

⋂
n∈ω Tn . Note that |T∗| = i and so in particular T ∈ C(Y).

Clearly, T∗ is (N, C(Y))-generic and T∗ C(Y) “c is Cohen over N[Ġ]”.

In order to show that the coding with perfect trees forcing notion preserves vrandom ,
we will use the fact that C(Y) is weakly bounding and that C(Y) preserves positive
outer measure (see below).

Lemma 3.5 Suppose that A is a set of positive outer measure. Then C(Y) µ
∗(A) > 0.

Proof Suppose not. Then there is a condition T ∈ C(Y) such that T  µ∗(A) = 0.
Let N be a countable elementary submodel of LΘ[Y] for some sufficiently large Θ

such that T, C(Y),A are elements of N . Then there is a sequence 〈İn〉n∈ω ∈ N of
names for rational intervals such that T  limm→∞

∑
n>m µ(İn) = 0 and T  A ⊆⋂

n∈ω
⋃

m≥n İm . Then in particular, there is a C(Y)-name for a function ġ in ωω

such that for all n, T 
∑

m≥ġ(n) µ(İm) < 2−(n2+n) . Since C(Y) is ωω -bounidng
(see Lemma 3.3), there is R ≤ T and a ground model real g, ie function in ωω

such that for all n ∈ ω , R  ġ(n) < ǧ(n). Then in particular, for all n ∈ ω ,
R 

∑
g(n)≤i<g(n+1) µ(İi) < 2−(n2+n) . Let i = ω1 ∩ N and let ī = {in}n∈ω be
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an increasing and cofinal in i sequence, which belongs to Lµi[Y ∩ i]. Recursively
define a fusion sequence 〈Rn〉n∈ω as follows. Let R0 = R. Suppose Rn has been
defined. For every n-splitting node t of Rn find Rt ≤ Rn(t) such that for some finite
sequence 〈In

t,j〉g(n)≤j<g(n+1) of rational intervals, for all j : g(n) ≤ j < g(n + 1) we
have Rt  İj = Ǐn

t,j . By elementarity we can assume that Rt is a condition which
is an element of N which is also of height ≥ in , and that 〈In

t,j〉g(n)≤j<g(n+1) ∈ N .
Let Rn+1 =

⋃
t∈Splitn(Rn) Rt and let Jn =

⋃
t∈Splitn(Rn)

⋃
g(n)≤j<g(n+1) In

t,j . Note that
Jn ∈ N and µ(Jn) < 2−n . Let R∗ be the fusion of the sequence 〈Rn〉n∈ω . Then R∗ is
a condition in C(Y) of height i, such that

R∗ 
⋂

n

⋃
m≥n

İm ⊆
⋂

n

⋃
m≥n

Jm.

Since J :=
⋂

n
⋃

m≥n Jm is a measure zero set, there is x ∈ A\J . However

R∗  x ∈
⋂

n

⋃
m≥n

İm

and so R∗  x ∈ J , which is a contradiction.

Lemma 3.6 The coding with perfect trees forcing notion C(Y) preserves vrandom.

Proof The proof proceeds similarly to the proof that Laver forcing preserves vrandom

(see [3, Theorem 7.3.39]). Let N be a countable elementary submodel of LΘ[Y] for
some sufficiently large Θ, let ḟ0 be an element of Ċrandom∩N , and let τ = 〈Tn〉n∈ω ∈
N be an approximating sequence for ḟ0 below T for some T ∈ C(Y) ∩ N . Let f ∗0 be
the approximation of ḟ0 determined by τ . Note that f ∗0 ∈ N ∩ ωΩ. Let x be a
random real over N . We have to show that there is an extension T∗ of T which is an
(N, C(Y))-generic condition, such that T∗  “x is random over N[Ġ]” and such that
for all n ∈ ω , T∗  (f ∗0 vn x→ ḟ0 vn x).

Let D be a dense open subset of C(Y). Denote by cl(D) = {T : ∃n∀t ∈ Split≥n(T)
(if there is Rt ≤0 T(t) such that Rt ∈ D then T(t) ∈ D)}. Note that for every n ∈ ω ,
cl(D) is n-dense (ie dense with respect to ≤n ) and open. Thus if {Dn}n∈ω is a
sequence of dense open sets, then

⋂
n∈ω cl(Dn) is n-dense for all n. Also, we have that

if S ≤ T ∈ cl(D), then there is s ∈ S such that T(s) ∈ D.

Let D denote the collection of all dense subsets of C(Y) which are in N . Since x is
random over N and f ∗0 ∈ N there is n0 such that for all k ≥ n0 , x /∈ f ∗0 (k). For every
n ≥ n0 let Yn

n be the set of all reals z ∈ 2ω such that there is Z ≤ Tn such that φn(z,Z)
holds, where φn(z,Z) is the conjunction of the following three formulas:
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(1) φ1(Z) ≡ for all D ∈ D ∩ N∃R ∈ cl(D) ∩ N(Z ≤ R), and

(2) φ2(z,T) ≡ for all ḟ ∈ Ċrandom ∩ N∀∞n(Z  z /∈ ḟ (n)),

(3) φn
3(z,T) ≡ for all k ≥ n, Z  z /∈ ḟ0(k).

Note that Z 6 z /∈ ḟ (n) iff there is Z′ ≤ Z such that Z′  z ∈ ḟ (n) iff there is Z′ ≤ Z
such that z ∈ ḟ (n)[Z′] which is equivalent to there is s ∈ Z such that z ∈ ḟ (n)[Zs] iff
there is R ∈ cl(Dḟ

n) ∩ N and there is s ∈ Z such that Z ≥ R and z ∈ ḟ (n)[Rs]. Since
the quantifiers of φ1, φ2, φ3 are relativized to subsets of N , all three of these formulas
are Borel.

For a partial order P and p ∈ P let P(p) = {q ∈ P : q ≤ p}. Recall that a forcing
notion P is weakly homogenous if for every p, q ∈ P there are p′ ≤ p and q′ ≤ q such
that P(p′) ∼= P(q′). To see that C(Y) is weakly homogeneous consider arbitrary T0 and
T1 in P. Without loss of generality |T0| ≤ |T1|. The properties of C(Y) imply that T0

has an extension T ′0 such that |T ′0| = |T1|. Then the order preserving bijection between
T ′0 and T1 extends to a partial order isomorphism between C(Y)(T ′0) and C(Y)(T1), and
so C(Y) is weakly homogenous. Now using this fact and the fact that C(Y) preserves
positive outer measure (see Lemma 3.5), one can easily modify the proof of [3, Lemma
7.3.41] to obtain that for every n ≥ n0 , the inner measure µ∗(Yn

n ) ≥ 1 − 2−n . This
implies that Y∗ :=

⋃
n≥n0

Yn
n is a set of measure 1.

Claim (see [3, Lemma 7.3.42]) There is a sequence 〈Bk : k ≥ n0〉 ∈ N of Borel sets
such that for all n, Bn ∈ N and Bn4Yn

n ⊆
⋃

(N ∩ N).

Proof Fix z ∈ 2ω and let G be an N[z]-generic filter for Coll(22ℵ0 ,ℵ0) (the algebra
for collapsing 22ℵ0 onto ℵ0 ). Now we have z ∈ Yn

n iff LΘ[Y] � ∃Z ≤ Tφn(z,Z) iff
N[z][G] � ∃Z ≤ Tφn(z,Z) iff N[z]  “ Coll(22ℵ0 ,ℵ0)

∃Z ≤ Tφn(z,Z)”. The second

equivalence follows from absoluteness of Σ1
1 formulas and the third from homogeneity

of Coll(22ℵ0 ,ℵ0).

Let φ∗n(z) denote the formula “ Coll(22ℵ0 ,ℵ0)
∃Z ≤ Tφn(z,Z)”. That is z ∈ Yn

n iff
N[z] � φ∗n(z). Let Bn be a Borel set in N representing the Boolean value [[φ∗n(ṙ)]]B
where ṙ is the canonical name for a random real. For a random real z over N we have,

z ∈ Yn
n ⇐⇒ N[z] � φ∗n(z) ⇐⇒ z ∈ Bn.

Therefore Bn4Yn
n ⊆

⋃
(N ∩ N).

Note that in particular µ(Bn) ≥ 1− 2−n .2 Using the fact that x is random over N we
obtain that there is n∗ ≥ n0 such that x ∈ Bn∗ . Again since Bn∗4Yn∗

n∗ ⊆
⋃

(N ∩ N),
2This follows from the facts that µ∗(Yn

n ) ≥ 1− 2−1 and Bn4Yn
n is null.
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x ∈ Yn∗
n∗ . Let T∗ be a witness to x ∈ Yn∗

n∗ . Then T∗ ≤ Tn∗ , T∗ is (N, C(Y))-generic,
T∗  “x is random over N” and for all k ≥ n∗ , T∗  x /∈ ḟ0(k). Then

T∗  f ∗0 �n
∗ = ḟ0�n∗ ∧ ∀k ≥ n(x /∈ ḟ0(k))

which implies that for all n ∈ ω , T∗  (f ∗0 vn x→ ḟ0 vn x).

Recall that a forcing notion P:

• has the Laver property if and only if for every function f ∈ V ∩ ωω and a
P-name ġ such that P ∀n(ġ(n) ≤ f (n)) there is a slalom S ∈ V such that
P ∀nġ(n) ∈ S(n).

• has property Lf where f ∈ ωω , if for every p ∈ P, n ∈ ω and A ∈ [ω]<ω the
following holds: if p  ȧ ∈ A, then there is q ≤n p and B ⊆ A, |B| ≤ f (n) such
that q  ȧ ∈ B.

Lemma 3.7 Sacks coding C(Y) has the property Lf where f (n) = 2n for all n, and so
has the Laver property. It is ωω -bounding and so has the Sacks property. Furthermore it
is (F, g)-preserving for some F and g (see [3, Definition 7.2.23]) and is (f , h)-bounding
for all f and h.

Proof Suppose T ∈ C(Y), n ∈ ω and A ∈ [ω]<ω such that T  ȧ ∈ Ǎ. Let Sn(T)
be the n-th splitting level of T . Then |Sn(T)| = 2n and for every tj ∈ Sn(T) there
is T ′j ≤ T(tj) such that T ′j  ȧ = ǩj for some kj ∈ A. Let B = {kj}j∈2n ⊆ A,
T ′ =

⋃
j∈2n T ′j . Then T ′ ≤n T and T ′  ȧ ∈ B̌. By [3, Lemma 7.2.2], if P has the Lf

property for some f then P has the Laver property. Since C is ωω -bounding, by [3,
Lemma 6.3.38] it has the Sacks property. The Laver property implies also that C(Y) is
(F, g)-preserving for some F and g (see [3, Lemma 7.2.25] and is (f , h)-bounding for
all f and h (see [3, Lemma 7.2.16]).

4 Measure, category and projective wellorders

The underlying forcing construction is the construction from [5] forcing a ∆1
3 -w.o.

of the reals. For completeness of the argument we will give a brief outline of this
construction. Recall that a transitive ZF− model M is suitable if ωM

2 exists and
ωM

2 = ωLM

2 . Assume V is the constructible universe L . Let F : ω2 → Lω2 be a
bookkeeping function which is Σ1 -definable over Lω2 and let S̄ = (Sβ : β < ω2)
be a sequence of almost disjoint stationary subsets of ω1 which is Σ1 -definable over
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Lω2 with parameter ω1 , such that F−1(a) is unbounded in ω2 for every a ∈ Lω2

and whenever M,N are suitable models such that ωM
1 = ωN

1 then FM, S̄M agree with
FN , S̄N on ωM

2 ∩ ωN
2 . In addition, if M is suitable and ωM

1 = ω1 , then FM, S̄M equal
the restrictions of F ,S̄ to the ω2 of M . Let S be a stationary subset of ω1 which is
∆1 -definable over Lω1 and almost disjoint from every element of S̄ .

Recursively define a countable support iteration 〈〈Pα : α ≤ ω2〉, 〈Q̇α : α < ω2〉〉 such
that P = Pω2 will be a poset adding a ∆1

3 -definable wellorder of the reals. We can
assume that all names for reals are nice in the sense of [5] and that for α < β < ω2 all
Pα -names for reals precede in the canonical wellorder <L of L all Pβ -names for reals
which are not Pα -names. For each α < ω2 define <α as in [5]: that is, if x, y are reals
in L[Gα] and σαx , σ

α
y are the <L -least Pγ -names for x, y respectively, where γ ≤ α ,

define x <α y if and only if σαx <L σ
α
y . Note that <α is an initial segment of <β . If

G is a P-generic filter, then <G=
⋃
{<G

α: α < ω2} will be the desired wellorder of
the reals.

In the recursive definition of Pω2 , P0 is defined to be the trivial poset and Q̇α is of
the form Q̇0

α ∗ Q̇1
α , where Q̇0

α is an arbitrary Pα -name for a proper forcing notion
of cardinality at most ℵ1 and Q̇1

α is defined as in [5] and so carries out the task of
forcing the ∆1

3 -w.o. of the reals. Note that Q1
α is the iteration of countably many

posets shooting clubs through certain stationary, co-stationary sets from S̄ (and so
each of those is S-proper and ω -distributive), followed by a “localization” forcing
which is proper and does not add new reals, followed by coding with perfect trees. In
the following we will use the fact that Q̇0

α is arbitrary, to force the various ℵ1 -ℵ2 -
admissible assignments to the cardinal characteristics of the Cichón diagram in the
presence of a ∆1

3 wellorder of the reals.

Theorem 4.1 The constellation determined by cov(M) = cov(N ) = ℵ2 and b = ℵ1

is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof Perform the countable support iteration described above, which forces a ∆1
3 -

w.o. of the reals and in addition specify Q̇0
α as follows. If α is even let α Q̇0

α = B be
the random real forcing, and if α is odd let α Q̇α = C be the Cohen forcing. Then in
VPω2 cov(M) = cov(N ) = ℵ2 . At the same time, since the countable support iteration
of S-proper, almost ωω -bounding posets is weakly bounding, the ground model reals
remain an unbounded family and so a witness to b = ℵ1 .

Theorem 4.2 The constellation determined by d = ℵ2 , non(M) = non(N ) = ℵ1 is
consistent with the existence of a ∆1

3 wellorder of the reals.
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Proof In the forcing construction described above, which forces a ∆1
3 -w.o. of the

reals, define Q̇0
α to be the rational perfect tree forcing PT defined in [3, Definition

7.3.43]. To claim that d = ℵ2 in the final generic extension, note that PT adds an
unbounded real. It remains to show that non(M) = non(N ) = ℵ1 . By [3, Theorem
7.3.46] the rational perfect tree forcing preserves vCohen , and by Lemma 3.4 the
coding with perfect tress C(Y) also preserves vCohen . Therefore by Theorem 2.11 in
VPω2 the set 2ω ∩ V is non meager and so VPω2  non(M) = ℵ1 . By [3, Theorem
7.3.47], the rational perfect tree forcing preserves vrandom and by Lemma 3.6 the
prefect tree coding C(Y) preserves vrandom. Therefore by Theorem 2.10 in the final
extension 2ω ∩ V is a non null set and so VPω2 � non(N ) = ℵ1 .

Theorem 4.3 The constellation determined by cov(N ) = d = non(N ) = ℵ2 , b =

cov(M) = ℵ1 is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For even α let Q̇0
α be the random real forcing B, and for α odd let Q̇0

α be
the Blass-Shelah forcing notion Q defined in [3, 7.4.D]. Since all iterands are almost
ωω -bounding, by Lemma 2.7 the ground model reals remain an unbounded family
and so a witness to b = ℵ1 . On the other hand Q adds an unbounded real and
Q “2ω ∩ V ∈ N ”, which implies that VPω2 � d = non(N ) = ℵ2 . Since cofinally
often we add random reals, we have that cov(N ) = ℵ2 in the final extension. To
show that no Cohen reals are added by the iteration, use the fact that all iterands are
(F, g)-preserving, as well as [3, Theorems 7.2.29 and 7.2.24].

Theorem 4.4 The constellation determined by non(M) = d = ℵ2 and cov(N ) =

b = non(N ) = ℵ1 is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For α even let Q̇0
α = PTf ,g , and for α odd let Q̇0

α = PT, where PTf ,g and
PT are defined in [3, Definition 7.3.43 and Definition 7.3.3] respectively. Since PTf ,g

2ω∩V ∈M and PT adds an unbounded real, VPω2 � non(M) = d = ℵ2 . All iterands
are almost ωω -bounding and so b remains small. All iterands S preserve vrandom ,
and so by Theorem 2.10 Pω2 preserves outer measure and so VPω2 � non(N ) = ℵ1 .
To see that the iteration does not add random reals, note that PT and C(Y) have the
Laver property and so are (f , g)-bounding for all f , g. On the other hand PTf ,g is
(f , h)-bounding for some appropriate h, which implies that all iterands are S-(f , h)-
bounding. Then by Theorem 2.17, Pω2 is S-(f , h)-bounding, which implies that is
does not add random reals.

Theorem 4.5 The constellation determined by cov(N ) = d = ℵ2 and b = non(N ) =

ℵ1 is consistent with the existence of a ∆1
3 wellorder of the reals.
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Proof For α even let Q̇0
α be the rational perfect tree forcing PT, and for α odd let

Q̇0
α be the random real forcing B. Then VPω2 � cov(N ) = d = 2ℵ0 . By [3, Theorem

6.3.12] B preserves vrandom, by [3, Theorem 7.3.47] PT preserves vrandom and by
Lemma 3.6 Sacks coding preserves vrandom. Then Theorem 2.10, VPω2 � 2ω ∩ V /∈
N . All iterands are almost ωω -bounding, and so by Theorem 2.7 the ground model
reals remain an unbounded family in VPω2 .

Theorem 4.6 The constellation determined by non(M) = cov(M) = ℵ2 and b =

cov(N ) = ℵ1 is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For α even let Q̇0
α be Cohen forcing, and for α odd let Q̇0

α be PTf ,g (see [3,
Definition 7.3.3]). Since PTf ,g

2ω ∩V ∈M, VPω2 � non(M) = ℵ2 . Since cofinally
often we add Cohen reals, clearly cov(M) = ℵ2 in the final generic extension. All
involved partial orders are almost ωω -bounding and so VPω2 � b = ω1 . To see that
the iteration does not add random reals, proceed by induction using Theorem 2.15 at
limit steps.

Alternative Proof: The result can be obtained using finite support iteration of ccc
posets. We will slightly modify the coding stage of the construction of [7]. Let
〈Pα, Q̇β : α ≤ ω2, β < ω2〉 be a finite support iteration such that P0 is the poset
defined in [7, Lemma 1]. Suppose Pα has been defined. If α is a limit, α = ω1 ·α′+ ξ

where ξ < ω1 and α′ > 0, define Qα as in Case 1 of the original construction. If
α is not of the above form, ie α is a successor or α < ω1 , let Q̇α be a name for the
following poset adding an eventually different real:

Qα = {〈s0, s1〉 : s0 ∈ ω<ω, s1 ∈ [o.t.(<̇G
α)]<ω}3,

where 〈t0, t1〉 ≤ 〈s0, s1〉 if and only if s0 is an initial segment of t0 , s1 ⊆ t1 , and for
all ξ ∈ s1 and all j ∈ [|s0|, |t0|) we have t0(j) 6= xξ(j), where xξ is the ξ -th real in
L[Gα]∩ωω according to the wellorder <̇Gα

α . The sets Ȧα are defined as in [7]. With this
the definition of Pω2 is complete. Following the proof of the original construction one
can show that Pω2 does add a ∆1

3 -definable wellorder of the reals (note that in our case
VPω2 � c = ℵ2 .) Since the eventually different forcing adds a Cohen real and makes
the ground model reals meager, we obtain that VPω2  cov(M) = non(M) = ℵ2 .
Since all iterands of our construction are σ -centered, by [3, Theorems 6.5.30 and
6.5.29] Pω2 does not add random reals and so VPω2 � cov(N ) = ℵ1 . The ground
model reals remain an unbounded family and so a witness to b = ℵ1 in VPω2 . We
should point out that the coding techniques of [7] allow one to obtain the consistency

3The relation <̇G
α was defined in the second paragraph of section 4.
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of the existence of a ∆1
3 wellorder of the reals with non(M) = cov(M) = ℵ3 and

b = cov(N ) = ℵ1 .

Theorem 4.7 The constellation determined by d = non(N ) = ℵ2 and cov(M) =

non(M) = ℵ1 is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For α even let Q̇0
α be the rational perfect tree forcing PT, and for α odd

let Q̇0
α be the poset Sg,g∗ (see [3, 7.3.C]). Note that Sg,g∗ 2ω ∩ V ∈ N and so

VPω2 � non(N ) = ℵ2 . On the other hand PT adds an unbounded real, which implies
that (d = ℵ2)V

Pω2 . Also Sg,g∗ , PT and C(Y) preserve vCohen , which by Theorem 2.11
implies that VPω2 � non(M) = ℵ1 . To see that there are no Cohen reals added by
the iteration we use the S-(f , g)-bounding property. More precisely, PT and C(Y)
have the Laver property and so are (f , g)-bounding for all f , g. The poset Sg,g∗ is
(g, g∗)-bounding, which implies that all iterands are S-(g, g∗)-bounding. Thus by
Theorem 2.17 Pω2 is S-(g, g∗)-bounding, and so the entire iteration does not add
Cohen reals.

Theorem 4.8 The constellation determined by cov(M) = ℵ2 , non(M) = ℵ1 is
consistent with the existence of a ∆1

3 wellorder of the reals.

Proof For every α < ω2 let Q̇0
α be Cohen forcing. By [3, Theorem 6.3.18] C

preserves vCohen and by Theorem 3.4 Sacks coding preserves vCohen . Then by
Theorem 2.11 the entire iteration Pω2 preserves non-meager sets and so in particular
VPω2 � 2ω ∩ V /∈M.

Theorem 4.9 The constellation determined by non(N ) = d = non(M) = ℵ2 and
cov(N ) = b = cov(M) = ℵ1 is consistent with the existence of a ∆1

3 wellorder of the
reals.

Proof For α an even successor let Q̇0
α be the rational perfect tree forcing PT, for α

an odd successor let Q̇0
α be PTf ,g (see [3, Definition 7.3.3]), and for α a limit let Q̇0

α =

Sg,g∗ . Clearly non(N ) = d = non(M) = ℵ2 . To show that cov(N ) = cov(M) = ℵ1

use the fact that all forcing notions used in the iteration are S-(f , h)-bounding and so
by Theorem 2.17 Pω2 is S-(f , h)-bounding. Thus no real in VPω2 is Cohen or random
over V . To show that b = ℵ1 in the final extension, use the facts that all iterands are
almost ωω -bounding.

Theorem 4.10 The constellation determined by add(N ) = ℵ2 is consistent with the
existence of a ∆1

3 wellorder of the reals.
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Proof Note that if A is amoeba forcing then VA �
⋃

(N ∩ V) ∈ N . Thus, in order
to obtain the desired result it is sufficient to require that for every every α < ω2 , Q̇0

α

is the amoeba forcing.

Theorem 4.11 The constellation determined by cof(N ) = ℵ1 is consistent with the
existence of a ∆1

3 wellorder of the reals.

Proof Sacks coding has the Sacks property and so by [3, Lemma 6.3.39] C(Y) pre-
serves v∆ (and so it S-preserves-v∆ ). For every α let Q̇α

0 be the trivial poset.
Then by theorem 2.12 Pω2 preserves the base of the ideal of measure zero sets, that is
VPω2 � cof(N ) = cof(N )V = ℵ1 .

Theorem 4.12 The constellation determined by add(M) = cov(N ) = ℵ2 and
add(N ) = ℵ1 is consistent with the existence of a ∆1

3 wellorder of the reals.

Proof For α an even successor let Q̇0
α be the random real forcing B, for α an odd

successor let Q̇0
α be Cohen forcing C, and for α a limit let Q̇0

α be Laver forcing LT.
Then clearly in VPω2 we have that add(M) = cov(N ) = ℵ2 . To show that there are no
amoeba reals in the final generic extension, and so add(N ) = ℵ1 , proceed by induction
using Theorem 2.16 at limit stages.

Theorem 4.13 The constellation determined by cof(N ) = ℵ2 and non(N ) = cof(M) =

ℵ1 is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For each α let Q0
α be the poset U defined in [3, Page 339]. This poset is ωω -

bounding, preserves vrandom , preserves vCohen and does not have the Sacks property.
By Theorem 2.6, the ground model reals dominate the reals in VPω2 and so d = ℵ1 . On
the other hand since all iterands S-preserves-vrandom and S-preserve-vCohen , in VPω2

we have non(M) = non(M) = ℵ1 . Thus in particular VPω2 � cof(M) = non(N ) =

ℵ1 . To see that cof(N ) = ℵ2 in VPω2 use the fact that U does not have the Sacks
property (see [3]).

Theorem 4.14 The constellation determined by cov(N ) = b = non(N ) = ℵ2 and
cov(M) = ℵ1 is consistent with the existence of a ∆1

3 wellorder of the reals.

Proof For α even let Q̇0
α be random real forcing, for α an odd successor let Q̇α be

the poset Sg,g∗ defined in [3, Section 7.3.C], and for α a limit let Q̇0
α be Laver forcing.

To see that cov(M) = ℵ1 in the final generic extension, note that all iterands are
(F, g)-preserving and so by [3, Theorems 7.2.29 and 7.2.24] Pω2 does not add Cohen
reals.
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Theorem 4.15 The constellation determined by non(M) = ℵ2 and non(N ) =

cov(N ) = d = ℵ1 is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For each α < ω2 let Q̇0
α be a Pα -name for PTf ,g . Note that by [3, Theorem

7.3.6] we have that VPTf ,g � V∩ωω ∈M. Therefore in VPω2 we have that non(M) =

ℵ2 . The poset PTf ,g is (f , h)-bounding for some h, and so all iterands are S-(f , h)-
bounding. Then by Theorem 2.17 Pω2 is S-(f , h)-bounding, which implies that Pω2

does not add random reals. Thus cov(N ) = ℵ1 in the final generic extension. Since
all iterands are ωω -bounding, by Theorem 2.6 the ground model reals are a witness to
d = ω1 in VPω2 . By [3, Theorem 7.3.15] the poset PTf ,g preserves vrandom, Sacks
coding preserves vrandom, and so by Theorem 2.10 Pω2 preserves outer measure.
Thus VPω2 � non(N ) = ℵ1 .

Theorem 4.16 The constellation determined by cov(N ) = b = ℵ2 and non(N ) = ℵ1

is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For α even let Q̇0
α be the random real forcing B and for α odd let Q̇0

α be Laver
forcing LT. Then we immediately get that cov(N ) = b = ℵ2 in VPω2 . By [3, Theorem
7.3.39] LT preserves vrandom, by [3, Theorem 6.3.12] B preserves vrandom and
Sacks coding preserves vrandom. Then by Theorem 2.10 VPω2 � 2ω ∩ N /∈ N and
so VPω2 � non(N ) = ℵ1 .

Theorem 4.17 The constellation determined by cov(N ) = ℵ2 and non(N ) = d = ℵ1

is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For each α , let Q̇0
α be the random real forcing B. Since B and the Sacks

coding preserve vrandom, Theorem 2.10 implies that VPω2 � non(N ) = ℵ1 . By
Lemma 2.6 Pω2 is ωω -bounding and so d = ℵ1 in the final generic extension.

Theorem 4.18 The constellation determined by add(M) = ℵ2 and cov(N ) = ℵ1 is
consistent with the existence of a ∆1

3 wellorder of the reals.

Proof For α even let Q̇0
α be the Cohen forcing C, and for α odd let Q̇0

α be the Laver
forcing. Clearly add(M) = min{b, cov(M)} = ℵ2 in VPω2 . To show that Pω2 does
not add random reals proceed by induction using Theorem 2.15 at limit steps.

Alternative proof: The result can be obtained using finite support iteration of ccc posets,
by slightly modifying the coding stage of the poset forcing a ∆1

3 definable wellorder
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of the reals from [7]. Let 〈Pα, Q̇β;α ≤ ω2, β < ω2〉 be a finite support iteration where
P0 is the poset defined in [7, Lemma 1]. Suppose Pα has been defined. If α is a limit
and α = ω1 · α′ + ξ where ξ < ω1 and α′ > 0, define Qα as in Case 1 of the original
construction. Otherwise, if α is a successor or α < ω1 let Qα be the poset from Case
2 of the same paper. Note that in this case Qα adds a dominating real. In either case
Aα is defined as in [7]. With this the definition of Pω2 is complete. Following the
proof of the original iteration, one can show that Pω2 adds a ∆1

3 -definable wellorder
of the reals. Note that in VPω2 we have add(M) = ℵ2 , since cofinally often we add
dominating and Cohen reals. To show that cov(N ) remains small, ie that random reals
are not added, use the fact that all iterands are σ -centered and [3, Theorems 6.5.30,
6.5.29]. We should point out that the coding techniques of [7] allow one to obtain the
consistency of the existence of a ∆1

3 wellorder of the reals with add(M) = ℵ3 and
cov(N ) = ℵ1 .

Theorem 4.19 The constellation determined by cof(M) = ℵ1 and non(N ) = ℵ2 is
consistent with the existence of a ∆1

3 wellorder of the reals.

Proof For each α let Q̇0
α be the poset Sg,g∗ defined in [3, Section 7.3.C]. Note

that VSg,g∗ � V ∩ 2ω ∈ N . Thus clearly VPω2 � non(N ) = ℵ2 . Now cof(N ) =

max{d, non(M)}. Thus it is sufficient to show that both d and non(M) remain small
in the final generic extension. However Sg,g∗ is ωω -bounding and preserves vCohen .
Then theorems 2.6 and 2.11 imply that d = non(M) = ℵ1 in VPω2 .

Theorem 4.20 The constellation determined by non(N ) = b = ℵ2 and cov(N ) =

cov(M) = ℵ1 is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For α even let Q̇0
α be Sg,g∗ , and for α odd let Q̇0

α be the Laver forcing LT .
Since all iterands are S-(g, g∗)-bounding, by Theorem 2.17 Pω2 is S-(g, g∗)-bounding,
which implies (see [3, Lemma 7.2.15]) that no real in VPω2 is Cohen or random over
V . Therefore cov(N ) = cov(M) = ℵ1 in VPω2 . Recall also that Sg,g∗ 2ω ∩V ∈ N
and LT adds a dominating real.

Theorem 4.21 The constellation determined by non(M) = non(N ) = ℵ2 and
cov(N ) = d = ℵ1 is consistent with the existence of a ∆1

3 wellorder of the reals.

Proof For α even let Q̇0
α be PTf ,g and for α odd, let Q̇0

α be Sg,g∗ . Since PTf ,g

2ω ∩ V ∈ M and Sg,g∗ 2ω ∩ V ∈ N , we have VPω2 � non(M) = non(N ) = ℵ2 . All
iterands are S-(f , h)-bounding and ωω -bounding, which implies that in VPω2 there are
no random reals over V and the ground model reals form a dominating family.
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Theorem 4.22 The constellation determined by b = ℵ2 and non(N ) = cov(N ) = ℵ1

is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For every α let Q̇0
α be the Laver forcing LT. Since LT adds a dominating func-

tion, clearly b = ℵ2 . Since LT and Sacks coding S-preserve-vrandom , by Theorem 2.10
the ground model reals V ∩ 2ω are not null in VPω2 . Since LT and Sacks coding have
the Laver property they are (f , g)-bounding, which implies that the iteration does not
add random reals.

Theorem 4.23 The constellation determined by cov(N ) = non(N ) = ℵ2 and d = ℵ1

is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For α even let Q̇0
α be the forcing notion Sg,g∗ defined in [3, Section 7.3.C], and

for α odd let Q̇0
α be the random real forcing B. Since Sg,g∗ makes the ground model

reals a null set, VPω2 � non(N ) = ℵ2 . Clearly cov(N ) is large in the final extension,
and since all iterands are ωω -bounding the ground model reals remain a witness to
d = ℵ1 in VPω2 .

5 Questions

We would like to conclude with some open questions. It is of interest whether all
of the constellations can in fact be obtained without the existence of a ∆1

3 wellorder
of the reals. Note that this would follow if one could simultaneously have that all
∆1

3 sets enjoy some regularity property that conflicts a ∆1
3 wellorder. Can we even

guarantee that there are no projective wellorders at all? Another direction is the
question whether an assignment of larger values to the cardinal invariants in the Cichón
diagram is consistent with the existence of a ∆1

3 wellorder. What about constellations
in which the invariants have more than two distinct values? Are those consistent with
the existence of a ∆1

3 wellorder of the reals?
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