Homework 3, due Friday 29 February, before 15.00
Note: In general, try to do syntactic proofs informally, not by doing natural deductions.

1. Show that KC can be axiomatized by its axioms for atomic formulas only (i.e., we get the same logic if we only add the sentences $\neg p \vee \neg \neg p$ for all propositional letters p).[5 pts]
2. Falsify $[[r \rightarrow(((p \rightarrow q) \rightarrow p) \rightarrow p)] \rightarrow r] \rightarrow r$ on the linear frame of 3 elements. [4 pts]
3.* Show that the three following axiomatization of $\mathbf{L C}$ are equivalent:
(a) IPC $+(\phi \rightarrow \psi) \vee(\psi \rightarrow \phi)$
(b) IPC $+(\phi \rightarrow \psi \vee \chi) \rightarrow(\phi \rightarrow \psi) \vee(\phi \rightarrow \chi)$
(c) $\mathbf{I P C}+[((\phi \rightarrow \psi) \rightarrow \psi) \wedge((\psi \rightarrow \phi) \rightarrow \phi)] \rightarrow \phi \vee \psi .^{1}[5 \mathrm{pts}]$
3. For students who have taken Introduction to Modal Logic or an equivalent course.
Prove that the logic $\mathbf{L C}$ is complete w.r.t. linear frames. [4 pts]
4. For students who have not taken Introduction to Modal Logic or an equivalent course.
Let A be $\neg p \vee \neg \neg p$. Construct the finite canonical model for A, i.e., give all the consistent theories with the disjunction property of subformulas of A. In which node is A falsified? Do the same thing for $(p \rightarrow q) \vee(q \rightarrow p)$. [4 pts]
[^0]
[^0]: ${ }^{1}$ Note that in the syllabus there is an error in the third axiomatization.

