Homework 6, due Tuesday 1 April, 12:00

1. Prove in **HA**:

- (a) $\forall y(0 \cdot y = 0) [2 \text{ pts}]$
- (b) $\forall x(x = 0 \lor \exists y(x = y + 1)) [2 \text{ pts}]$
- (c) $\forall x \forall y (x = y \lor \neg x = y)$. [2 pts]
- 2. (a) Show that **HA** has the existence property: if $\mathbf{HA}\vdash \exists x\varphi(x)$, then $\mathbf{HA}\vdash \varphi(\overline{n})$ for some n. [2 pts]
 - (b) Add a predicate A(x) to the language of **HA** with the axiom $A(0) \land \forall x(A(x) \to A(x+1))$, but do **not** add induction for formulas containing A. Show the disjunction property for this system. [2 pts]
 - (c) Add a predicate B(x) to the language of **HA** with the axiom $\exists x B(x)$. Does this system have the disjunction property? [2 pts]
- 3. (a) Let φ be a propositional formula not containing \vee .

Let \mathfrak{M} be a model and w a node in \mathfrak{M} such that w has proper successors (i.e., there is at least one v in \mathfrak{M} with wRv and $w \neq v$). Suppose

- φ holds in all proper successors of w (i.e., for all v with $wRv, w \neq v$, we have $\mathfrak{M}, v \models \varphi$)
- for all propositional variables p, we have that p is true in w iff p is true in all proper successors of w (i.e., $w \in V(p)$ iff $\forall v \ (wRv, w \neq v \Rightarrow v \in V(p))$.

(In other words, the valuation in w is maximal for propositional variables considering persistency).

Show that φ is true in w. [4 pts]

(b) Show on the basis of the above that, if φ is a propositional formula not containing \lor and $\vdash_{\mathbf{IPC}} \varphi \to \psi \lor \chi$, then $\vdash_{\mathbf{IPC}} \varphi \to \psi$ or $\vdash_{\mathbf{IPC}} \varphi \to \chi$. [2 pts]