Homework 9, due Tuesday 6 May, 12:00

- 1. Exercise 46 on p. 31 of the syllabus. [4 pts]
- 2. Complete the proof of Theorem 50, i.e., show that the definition of \rightarrow from Definition 48 satisfies conditions 1–4:

1. $a \rightarrow a = \top$

2.
$$a \wedge (a \rightarrow b) = a \wedge b$$

3.
$$b \wedge (a \rightarrow b) = b$$

- 4. $a \to (b \land c) = (a \to b) \land (a \to c)$ [4pts]
- 3. (a) Exercise 55 (4): Show that if a frame \mathfrak{F} is rooted, then the corresponding Heyting algebra has a second-greatest element. [2 pts]
 - (b) Exercise 59 (4): Show that if a Heyting algebra A has a secondgreates element, then the corresponding Kripke frame is rooted. [2 pts]
- 4. Show that in the free algebra on ω generators $F(\omega)$, $[\varphi] \leq [\psi]$ iff $\vdash_{\mathbf{IPC}} \varphi \rightarrow \psi$. [2 pts]
- 5. Exercise 75 on p. 39: Show that the canonical frame \mathfrak{F} of **IPC** is isomorphic to $\Phi(F(\omega))$. Φ is the functor mapping Heyting algebras to their corresponding Kripke frames, as described in the procedure on p. 35 (taking prime filters etc.)

Cf. definition of Φ in the paragraph above Exercise 60. [4 pts]