Homework 5, due Tuesday 18 March, before 12.00

- (a) Show that, if \$\vec{v}\$ is finite and the disjoint union of \$\vec{v}_1\$ and \$\vec{v}_2\$, then \$\vec{v}_1\$ is a p-morphic image of \$\vec{v}\$ (sketched in class). [2 pts]
 - (b) Show that, if \mathfrak{F} is a finite tree, then, for each w in the domain of \mathfrak{F} , \mathfrak{F}_w is a p-morphic image of \mathfrak{F} . [2 pts]
 - (c)* Give counterexamples to (a) and (b) if $\mathfrak F$ is allowed to be infinite. [2 pts]
- 2. (a) Show that the following is valid: If $\vdash_{\mathbf{IPC}} (\varphi \to \psi) \to (\chi \lor \theta)$, then $\vdash_{\mathbf{IPC}} (\varphi \to \psi) \to \chi \text{ or } \vdash_{\mathbf{IPC}} (\varphi \to \psi) \to \theta \text{ or } \vdash_{\mathbf{IPC}} (\varphi \to \psi) \to \varphi$. [4 pts]
 - (b)* Give an example such that the first two alernatives of (a) do not apply, but the last one does. [2 pts]
- (a) Let φ contain only ∧, ∨ and → but no ¬ and no ⊥. Let M be any Kripke-model (for the language of φ). Extend the model M to M⁺ by adding one more node x at the top above all the nodes of M, and making all the propositional variables of φ true in x.

Show that, for all the nodes w in \mathfrak{M} we have:

$$\mathfrak{M}, w \models \varphi$$
 iff $\mathfrak{M}^+, w \models \varphi$

(satisfaction in the old and new model is the same for φ). [4 pts]

(b) Let φ contain only \wedge, \vee and \rightarrow but no \neg and no \bot . Show that $\vdash_{\mathbf{IPC}} \varphi$ iff $\vdash_{\mathbf{KC}} \varphi$. (You may use what is claimed about completeness of **KC** in class.) [2 pts]