Homework 10, due Monday 9 May

- 1. For which of Exercise 2 (a), (b) of Homework 9 does the converse hold? Give a counterexample if you claim that it does not. [4 pts]
- 2. (a) Show that for any set X in a Heyting algebra \mathfrak{A} the set $\{c \in A \mid b_1 \wedge \cdots \wedge b_k \leq c \text{ for some } b_1, \ldots, b_k \in X\}$ is the smallest filter in \mathfrak{A} containing X. [2 pts]
 - (b) Show that, if F is a filter in \mathfrak{A} not containing $a \in \mathfrak{A}$, then there exists a prime filter G in \mathfrak{A} such that $F \subseteq G$ and $a \notin G$. (For ease of writing you can assume that \mathfrak{A} is countable. Note the similarity filter theory, keeping in mind (a)) [2 pts]
 - (c) Show that, if X and Y are subsets of \mathfrak{A} such that

i. for no $c \in Y$ there exist $b_1, \ldots, b_k \in X$ such that $b_1 \wedge \cdots \wedge b_k \leq c$, ii. if $c_1, c_2 \in Y$ then $c_1 \vee c_2 \in Y$,

then there exists a prime filter F such that $X \subseteq F$ and $F \cap Y = \emptyset$. [2 pts]

- (d) Show that, if \mathfrak{A} is a subalgebra of \mathfrak{B} and F is a prime filter in \mathfrak{A} , then F can be extended to a prime filter G in \mathfrak{B} in such a way that the intersection of G and $A \setminus F$ is empty. [2 pts]
- 3. * Show that, if θ has *n* propositional variables, then

 θ has the disjunction property for formulas in n variables (i.e. if $\theta \vdash \chi_1 \lor \chi_2$, then $\theta \vdash \chi_1$ or $\theta \vdash \chi_2$)

iff

for all $u, v \in \mathcal{U}(n)$ such that $u \models \theta$ and $v \models \theta$ there exists w with wRu and wRv and $w \models \theta$. [6 pts]