Homework 6, due Monday 14 May

1. Prove in HA:
(a) $x \cdot(y+z)=x \cdot y+x \cdot z[2 \mathrm{pts}]$
(b) $\forall x \forall y(x=y \vee x \neq y)[2 \mathrm{pts}]$

You may use that Robinson's axiom $x=0 \vee \exists y(x=y+1)$ is provable in HA, shown in class.
2. (a) Show that HA has the existence property: if HA $\vdash \exists x \varphi(x)$, then $\mathbf{H A} \vdash \varphi(\bar{n})$ for some n. [2 pts]
(b) Add a predicate $A(x)$ to the language of HA with the axiom $A(0) \wedge$ $\forall x(A(x) \rightarrow A(x+1)$), but do not add induction for formulas containing A. Show the disjunction property for this system. [2 pts]
(c) Add a predicate $B(x)$ to the language of HA with the axiom $\exists x B(x)$. Does this system have the disjunction property? [2 pts]
3. Prove that the induction rule

$$
\frac{\varphi(0), \forall x(\varphi(x) \rightarrow \varphi(x+1))}{\forall x \varphi(x)}
$$

is equivalent to the induction schema of HA. [4 pts]
4. Show that IQC has the disjunction property (be careful: this exercise is not completely trivial!) [4 pts]

