Homework 7, due Monday 4 April

- 1. Prove the last line of theorem 50 (page 32 of the lecture notes): it is easy to check that "→" of Definition 48 satisfies conditions 1–4. [6 pts]
- 2. (a) Show that, if $\vdash_{\mathbf{HA}} \neg \varphi \rightarrow \exists x \psi(x)$, then $\vdash_{\mathbf{HA}} \neg \varphi \rightarrow \psi(\bar{n})$ for some n (here φ has no free variables.) [3 pts]
 - (b) Use (a) to prove that not for all $\alpha(x)$ that express primitive recursive formulas, $\vdash_{\mathbf{HA}} \neg \neg \exists x \alpha(x) \rightarrow \exists x \alpha(x)$ (Markov's principle).

You can use the fact that for each n, $\vdash_{\mathbf{HA}} \alpha(\bar{n})$ or $\vdash_{\mathbf{HA}} \neg \alpha(\bar{n})$ holds. You can also assume that \mathbf{HA} proves only true formulas, and you can use that it is not decidable whether a primitive recursive predicate is empty or not. [3 pts]

3. Show that a theory Γ has the disjunction property iff for all \mathfrak{M} and \mathfrak{M}' with $\mathfrak{M} \models \Gamma$ and $\mathfrak{M}' \models \Gamma$, there exists a rooted $\mathfrak{N} \models \Gamma$ such that \mathfrak{M} and \mathfrak{M}' are generated submodels of \mathfrak{N} .

Hint: One direction is easy. For the other direction^{*}: one cannot just put a new root under \mathfrak{M} and \mathfrak{M}' ; we need a third model above the new root, think for that of the canonical model. [6 pts]