Homework 2, due Monday 14 February

1. Give Kripke counter-models to:

(a)
$$\neg (p \land q) \rightarrow \neg p \lor \neg q$$
 [2pts]

- (b) $\neg(p \rightarrow q) \rightarrow p \land \neg q$ [2pts]
- (c) $[((p \to q) \to q) \land ((q \to p) \to p)] \to (p \lor q)$ [2pts]
- 2. Exercise 4 of the syllabus, on p 16:

Prove that persistency transfers to formulas (i.e., if $w \models \phi$ and wRv then $v \models \phi$, for all propositional formulas ϕ). [4pts]

- 3. Show that $\Box p \to \Box \Box p$ characterizes the transitive frames. That is to say: give only the difficult direction of the proof, but give a non-constructive and a constructive proof, and discuss. [4 pts]
- 4.* Show that $\forall x A(x) \rightarrow \forall x B(x)$ and $\exists x \neg B(x) \rightarrow \exists x \neg A(x)$ are independent in intuitionistic predicate logic, by giving two models (it may be useful to note that the second formula is equivalent to $\forall x(\neg B(x) \rightarrow \exists y \neg A(y))$). [4 pts]