Part A: object language and meta-language

- 1. For each of the following statements, determine whether they are made in the formal language of set theory \mathcal{L}_{\in} , or in a meta-language (in which we talk *about* set theory).¹
 - (a) Every convergent sequence in \mathbb{R} is bounded from above.
 - (b) $\mathsf{ZFC} \vdash$ "Every convergent sequence in \mathbb{R} is bounded from above".
 - (c) ZFC contains infinitely many axioms.
 - (d) If ZFC is consistent, then ZFC + CH is also consistent
 - (e) The addition operation on the ordinals is not commutative.
 - (f) Every normal function on the ordinals has a fixed point.
 - (g) Ord (the class of all ordinals) is not a set.
 - (h) There are classes which are not sets.
- 2. Consider the following informally stated assertion:

"For every proper class A and every set X, there exists an injective function $f: X \to A$."

- (a) Write down the above statement formally. You may use the abbreviations "f is a function", "dom(f)" and "ran(f)" without writing them out in detail.
- (b) Is this a statement in the formal language or the meta-language?
- 3. Find the mistake in the argument below.

Theorem. ZFC *is inconsistent.*

Proof. Let $\{\theta_n : n < \omega\}$ be an enumeration of all formulas of \mathcal{L}_{\in} with exactly one free variable. Let $\psi(x)$ be the formula " $x \in \omega \land \neg \theta_x(x)$ ". Since ψ is a formula of \mathcal{L}_{\in} with exactly one free variable, it appears in the enumeration, so there exists an $e \in \omega$ such that $\psi = \theta_e$. But then $\mathsf{ZFC} \vdash \theta_e(e) \leftrightarrow \psi(e) \leftrightarrow \neg \theta_e(e)$.

 $^{^{1}}$ Note that any statement in the meta-language can *in principle* be formalized and considered a statement in the object language as well. In this exercise, you are asked to consider the standard or most natural meaning.

Part B: relativization, set-models and class-models of set theory

1. (a) Let $F: V \to V$ be a bijective class function. Define $E \subseteq V \times V$ by:

$$xEy :\Leftrightarrow x \in F(y)$$

We claim that (V, E) is a model of ZFC – Foundation. Choose any two axioms of ZFC – Foundation, and prove that they hold in (V, E).

(b) Use the previous claim to show that

 $\operatorname{Con}(\mathsf{ZFC}) \rightarrow \operatorname{Con}(\mathsf{ZFC} - \mathsf{Foundation} + ``\exists x (x = \{x\})")$

Hint: use F(0) := 1 and

2. (a) Let M and N be sets, and suppose that (M, \in) is an elementary submodel of (N, \in) (in the usual model-theoretic sense for set-models, in the language with a binary relation symbol \in). We say that an element $c \in N$ is uniquely definable in N if there exists a formula $\phi(x)$ such that

$$N \models \forall x \ (\phi(x) \leftrightarrow x = c).$$

Prove that if $c \in N$ is uniquely definable in N, then $c \in M$.

- (b) Conclude from this that if (M, \in) is elementary in (H_{ω_2}, \in) , then $\omega_1 \in M$.
- (c) Prove that if (M, \in) is elementary in (V_{ω}, \in) , then $M = V_{\omega}$.

Hint: Prove, by \in -induction, that every $x \in V_{\omega}$ is uniquely definable in V_{ω} .