Daniël Otten & Lide Grotenhuis

Introduction

Proper class models fail

The forcing pose Fn(I, J)

The Delta System Lemm

The Countable Chain Condition

Preservation Cardinals

Forcing $\neg CH$

Forcing $\neg CH$

Daniël Otten & Lide Grotenhuis

29 January 2021

Daniël Otten & Lide Grotenhuis

Introduction

Proper class models fail

The forcing pose Fn(I, J)

The Delta System Lemma

The Countable Chain Condition

Preservation c Cardinals

Forcing $\neg CH$

We want to construct a model for ZFC + \neg CH.

Proper class models cannot do the trick (as we will show).

Idea: Extend a set model so that CH is false.

Recap:

- $\textcircled{\label{eq:contable}}$ Take a countable transitive model M for ZFC.
- **(**) Take a forcing poset $(\mathbb{P}, \leq, 1) \in M$ and a \mathbb{P} -generic filter G.
- **(f)** Extend M to a larger model M[G] for ZFC that contains G.

We need to choose an appropriate \mathbb{P} that forces $M[G] \models \neg CH$.

Once we have such a \mathbb{P} , we obtain $Con(ZFC) \rightarrow Con(ZFC + \neg CH)$.

Introduction

Daniël Otten & Lide Grotenhuis

Introduction

Proper class models fail

The forcing pose $\operatorname{Fn}(I, J)$

The Delta System Lemma

The Countable Chain Condition

Preservation o Cardinals

Forcing $\neg CH$

Caution: But how did we get a set model M?

Two solutions:

- Inaccessible cardinals. Use that $V_{\kappa} \models \mathsf{ZFC}$.
- Finite fragments. If ¬Con(ZFC + ¬CH) there exists some finite Ω ⊆ ZFC such that Ω + ¬CH ⊢ ⊥. Then in ZFC, we can prove the existence of a ctm M[G] for Ω + ¬CH, starting from a ctm M for ZFC. Yet again, this proof only uses that M satisfies some finite fragment ZFC*, and the Reflection Theorem provides a ctm for ZFC*.

Introduction

Forcing $\neg CH$

Daniël Otten & Lide Grotenhuis

Introduction

Proper class models fail

The forcing pose $\operatorname{Fn}(I, J)$

The Delta System Lemma

The Countable Chain Condition

Preservation Cardinals

Forcing $\neg CH$

1 Introduction

2 Proper class models fail

3 The forcing poset $\operatorname{Fn}(I,J)$

4 The Delta System Lemma

5 The Countable Chain Condition

6 Preservation of Cardinals

Daniël Otten & Lide Grotenhuis

Introduction

Proper class models fail

The forcing pose Fn(I, J)

The Delta System Lemm

The Countable Chain Condition

Preservation (Cardinals

Forcing $\neg CH$

Proper class models fail

Lemma. Suppose that in ZF, we can construct a transitive proper class model for ZFC $+ \neg$ CH. Then ZF is inconsistent.

Proof. Suppose we have constructed such a transitive proper class M in ZF. Then in particular, M can be constructed in ZFC + (V = L). The axiom V = L then implies $M \subseteq L$.

However, since M is a proper class and the rank function is absolute for transitive models, we must have $ON \subseteq M$. Recalling that the L_{α} -hierarchy is absolute for transitive models, we obtain $L \subseteq M$.

Thus M = L, but then $M \models CH$. However, we assumed $M \models \neg CH$, so ZFC + (V = L) is inconsistent, which in turn shows that ZF is inconsistent.

Daniël Otten & Lide Grotenhuis

Introduction

Proper class models fail

The forcing pose Fn(I, J)

The Delta System Lemma

The Countable Chain Condition

Preservation of Cardinals

Forcing $\neg CH$

The forcing poset $\operatorname{Fn}(I,J)$

For sets I, J we define $\operatorname{Fn}(I, J)$ as the set of all finite partial functions from I to J. For $f, g \in \operatorname{Fn}(I, J)$ we write $f \leq g$ iff $f \supseteq g$. We always have $\emptyset \in \operatorname{Fn}(I, J)$ and we take $\mathbb{1} = \emptyset$.

 $(\operatorname{Fn}(I,J),\leq,\mathbb{1})$ is a forcing poset.

Note that f extends g in the forcing poset precisely when f extends g as a function.

If M is a ctm for ZFC and $I,J\in M$ then $(\mathrm{Fn}(I,J),\leq,\mathbb{1})\in M$ by absoluteness.

Daniël Otten & Lide Grotenhuis

Introduction

Proper class models fail

The forcing pose ${
m Fn}(I,\,J)$

The Delta System Lemma

The Countable Chain Conditior

Preservation « Cardinals

Forcing $\neg CH$

The Delta System Lemma

Lemma. Let κ be an uncountable regular cardinal, and let \mathcal{A} be a family of finite sets with $|\mathcal{A}| = \kappa$. Then there exists a *delta system* $\mathcal{B} \subseteq \mathcal{A}$ of size κ with a finite *root* R, that is we have

$$X \cap Y = R$$
 for all distinct $X, Y \in \mathcal{B}$.

Proof. κ is regular and $\mathcal{A} = \bigcup_{n \in \omega} \{X \in \mathcal{A} \colon |X| = n\}$ has size κ . Therefore there must be an $n \in \omega$ such that $\{X \in \mathcal{A} \colon |X| = n\}$ has size κ . Without loss of generality we may assume that each $X \in \mathcal{A}$ has size n.

We use induction on n > 0. Note n = 0 does not occur.

For n = 1, the statement is trivial.

Daniël Otten & Lide Grotenhuis

Introduction

Proper class models fail

The forcing pose Fn(I, J)

The Delta System Lemma

The Countable Chain Conditior

Preservation Cardinals

Forcing $\neg CH$

The Delta System Lemma

Suppose n > 1. Define $\mathcal{A}_t = \{X \in \mathcal{A} : t \in X\}$ for all t.

Two cases:

1 Suppose $|\mathcal{A}_t| < \kappa$ for all t. Then for any S with $|S| < \kappa$, the set $\{X \in \mathcal{A} \colon X \cap S \neq \emptyset\} = \bigcup_{t \in S} \mathcal{A}_t$ is smaller than κ , therefore $X \cap S = \emptyset$ for some $X \in \mathcal{A}$.

Thus we can recursively define $\langle X_{\alpha} \in \mathcal{A} \colon \alpha \in \kappa \rangle$ such that for every $\alpha \in \kappa$ we have $X_{\alpha} \cap \bigcup_{\beta < \alpha} X_{\beta} = \emptyset$.

Take $\mathcal{B} = \{X_{\alpha} \colon \alpha \in \kappa\}$ and $R = \emptyset$.

Suppose $|\mathcal{A}_t| = \kappa$ for some t. Using the induction hypothesis on $\mathcal{C} = \{X \setminus \{t\} \colon X \in \mathcal{A}_t\}$ we obtain a delta system $\mathcal{D} \subseteq \mathcal{C}$ with root T.

Take
$$\mathcal{B} = \{Z \cup \{t\} \colon Z \in \mathcal{C}\}$$
 and $R = T \cup \{t\}$.

Daniël Otten & Lide Grotenhuis

Introduction

Proper class models fail

The forcing pose Fn(I, J)

The Delta System Lemma

The Countable Chain Condition

Preservation Cardinals

Forcing $\neg CH$

The forcing poset Fn(I, J)

Lemma. $\operatorname{Fn}(I, J)$ has the ccc iff $I = \emptyset$ or J is countable.

Proof. If I or J is empty then $\operatorname{Fn}(I,J)=\{\emptyset\}$ which is ccc. Otherwise:

⇒ If J is uncountable then fix an $x \in I$. Now the singleton functions $\{(x, y)\}$ for $y \in J$ form an uncountable antichain.

 $\leftarrow \text{ If } J \text{ is countable suppose we have } \langle p_{\alpha} \colon \alpha \in \omega_1 \rangle \text{ in } \mathbb{P}.$

By the Delta System Lemma there exists an uncountable $B \subseteq \omega_1$ and a finite root $R \subseteq I$ such that for any $\alpha, \beta \in B$ with $\alpha \neq \beta$ we have $\operatorname{dom}(p_\alpha) \cap \operatorname{dom}(p_\beta) = R$.

Since J^R is countable, there exist $\alpha, \beta \in B$ with $\alpha \neq \beta$ and $p_{\alpha} \upharpoonright R = p_{\beta} \upharpoonright R$. But then $p_{\alpha} \not\perp p_{\beta}$ so the sequence is not an antichain.

Daniël Otten & Lide Grotenhuis

Introduction

Proper class models fail

The forcing pose Fn(I, J)

The Delta System Lemma

The Countable Chain Conditior

Preservation of Cardinals

Forcing $\neg CH$

Preservation of Cardinals

Let M be a ctm for ZFC.

Definition. A forcing poset \mathbb{P} preserves cardinals iff for all generic Gand $\alpha \in o(M)$ we have: $(\alpha \text{ is a cardinal})^M$ iff $(\alpha \text{ is a cardinal})^{M[G]}$.

Theorem. If $(\mathbb{P} \text{ is } \operatorname{ccc})^M$ then \mathbb{P} preserves cardinals.

Lemma. A forcing poset \mathbb{P} preserves cardinals iff for all generic Gand $\alpha \in o(M)$ we have $(\aleph_{\alpha})^M = (\aleph_{\alpha})^{M[G]}$.

Note: $(\aleph_{\alpha})^M = (\aleph_{\alpha})^{M[G]}$ does not imply $(2^{\aleph_{\alpha}})^M = (2^{\aleph_{\alpha}})^{M[G]}$.

Daniël Otten & Lide Grotenhuis

Introduction

Proper class models fail

The forcing pose Fn(I, J)

The Delta System Lemm

The Countable Chain Conditior

Preservation of Cardinals

Forcing $\neg CH$

Preservation of Cardinals

Lemma. A forcing poset \mathbb{P} preserves cardinals iff for all generic G and $\alpha \in o(M)$ we have $(\aleph_{\alpha})^{M} = (\aleph_{\alpha})^{M[G]}$.

Proof.

- \leftarrow Because every infinite cardinal can be written as \aleph_{α} .
- \Rightarrow By induction on $\alpha \in o(M)$.

Assume $(\aleph_{\alpha})^{M} = (\aleph_{\alpha})^{M[G]}$. We see $(\aleph_{\alpha+1})^{M} \leq (\aleph_{\alpha+1})^{M[G]}$ because $M \subseteq M[G]$. However $(\aleph_{\alpha+1})^{M}$ is also a cardinal in M[G]. Therefore $(\aleph_{\alpha+1})^{M} = (\aleph_{\alpha+1})^{M[G]}$.

Assume α is a limit and for all $\beta < \alpha$ that $(\aleph_{\beta})^M = (\aleph_{\beta})^{M[G]}$. Now $(\aleph_{\alpha})^M = \bigcup_{\beta < \alpha} (\aleph_{\alpha})^M = \bigcup_{\beta < \alpha} (\aleph_{\beta})^{M[G]} = (\aleph_{\beta})^{M[G]}$.

Daniël Otten & Lide Grotenhuis

Introduction

Proper class models fail

- The forcing pose $\operatorname{Fn}(I, J)$
- The Delta System Lemm
- The Countable Chain Condition
- Preservation Cardinals
- Forcing $\neg CH$

We are now ready to give a model for ZFC $+ \neg CH.$

• Let M be a ctm for ZFC and let $\gamma \in o(M)$. Write $\kappa = (\aleph_{\gamma})^M$.

Forcing $\neg CH$

- Let \mathbb{P} denote the forcing poset $\operatorname{Fn}(\kappa \times \omega, 2)$ and let G be a \mathbb{P} -generic filter over M. Since $\kappa \times \omega, 2 \in M$ we have $(\mathbb{P}, \supseteq, \emptyset) \in M$.
- **(b)** We obtain a ctm M[G] for ZFC with $M \subseteq M[G]$, $G \in M[G]$.

We show $M[G] \models \neg \mathsf{CH}$ by constructing an injection from \aleph_{γ} to 2^{ω} within M[G], which gives $M[G] \models 2^{\aleph_0} \ge \aleph_{\gamma}$.

That is, we construct an injection from $(\aleph_\gamma)^{M[G]}$ to $(2^\omega)^{M[G]}$ that lives in M[G].

Daniël Otten & Lide Grotenhuis

Introduction

Proper class models fail

The forcing pose Fn(I, J)

The Delta System Lemma

The Countable Chain Condition

Preservation Cardinals

Forcing $\neg CH$

As G is a filter we have that $f_G := \bigcup G$ defines a partial function.

Forcing $\neg CH$

For each $i \in \kappa \times \omega$, absoluteness gives

$$D_i := \{ q \in \mathbb{P} \colon i \in \operatorname{dom}(q) \} \in M.$$

Each D_i is *dense*: any partial function can be extended to one with i in its domain. So G intersects every D_i and thus $f_G \colon \kappa \times \omega \to 2$.

Then f_G defines a sequence $\langle h_\alpha \colon \alpha \in \kappa \rangle$ of functions

$$h_{\alpha} \colon \omega \to 2,$$

 $n \mapsto f_G(\alpha, n)$

٠

Note f_G is in the extended model M[G] since $G \in M[G]$, so the sequence $\langle h_\alpha : \alpha \in \kappa \rangle$ is in M[G] as well.

Daniël Otten & Lide Grotenhuis

Introduction

Proper class models fail

The forcing pose $\operatorname{Fn}(I, J)$

The Delta System Lemma

The Countable Chain Conditior

Preservation (Cardinals

Forcing $\neg CH$

For $\alpha, \beta \in \kappa$ with $\alpha \neq \beta$, define $E_{\alpha,\beta}$ as the set $\{q \in \mathbb{P} \colon \exists n \in \omega[(\alpha, n), (\beta, n) \in \operatorname{dom}(q) \land q(\alpha, n) \neq q(\beta, n)]\}.$ By absoluteness, each $E_{\alpha,\beta}$ is in M.

We will show that the h_{α} are distinct.

Note that each $E_{\alpha,\beta}$ is dense: for any $p \in \mathbb{P}$ there exists an $n \in \omega$ with $(\alpha, n), (\beta, n) \notin \operatorname{dom}(p)$, so we can extend p to a $q \in E_{\alpha,\beta}$ with

 $q: \operatorname{dom}(p) \cup \{(\alpha, n), (\beta, n)\} \to 2.$

So there exists a $q \in E_{\alpha,\beta} \cap G$ which implies there is an $n \in \omega$ with $h_{\alpha}(n) = f_G(\alpha, n) = q(\alpha, n) \neq q(\beta, n) = f_G(\beta, n) = h_{\beta}(n).$

Forcing $\neg CH$

Daniël Otten & Lide Grotenhuis

Introduction

Proper class models fail

The forcing pose Fn(I, J)

The Delta System Lemma

The Countable Chain Condition

Preservation Cardinals

Forcing $\neg CH$

Thus we obtain an injection $h\in M[G]$ given by $h\colon\kappa\to(2^\omega)^{M[G]},$ $\alpha\mapsto h_\alpha.$

Recall $\kappa = (\aleph_{\gamma})^M$.

Because $(2 \text{ is countable})^M$ we have $(\mathbb{P} \text{ is a } \operatorname{ccc})^M$. Therefore \mathbb{P} preserves cardinals, and thus $\kappa = (\aleph_{\gamma})^M = (\aleph_{\gamma})^{M[G]}$.

So we have our injection from $(\aleph_{\gamma})^{M[G]}$ to $(2^{\omega})^{M[G]}$, showing $M[G] \models 2^{\aleph_0} > \aleph_{\gamma}.$

In particular we can take $\gamma = 2$ in which case

 $M[G] \models \mathsf{ZFC} + \neg \mathsf{CH}.$

Forcing $\neg CH$