

# Details on Reflection Theorems

#### Tibo Rushbrooke & Wouter Smit

University of Amsterdam



INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

January 29, 2021

| Introduction | Lemma<br>000000 | Reflection 1<br>000000000 |  | Relevance to Forcing<br>00000000 |
|--------------|-----------------|---------------------------|--|----------------------------------|
|              |                 |                           |  |                                  |

# Overview

Reflection: the Löwenheim-Skolem of Set Theory.

| Introduction<br>• | Lemma<br>000000 | Reflection 1<br>00000000 |  | Relevance to Forcing<br>00000000 |
|-------------------|-----------------|--------------------------|--|----------------------------------|
|                   |                 |                          |  |                                  |

# Overview

Reflection: the Löwenheim-Skolem of Set Theory.

- **1** Lemma: a Condition for Absoluteness
- **2** Theorem 1: a countable non-transitive model
- **③ Theorem 2**: an (uncountable) transitive model
- **4** Theorem 3: a countable transitive model
- G Relevance to Forcing

 Introduction
 Lemma
 Reflection 1
 Reflection 2
 Reflection 3
 Releva

 0
 000000
 0000000
 000000
 00000
 00000

# The Lemma - a Condition for Absoluteness

#### Lemma (II.5.2 in Kunen 2011 and II.7.2 in Kunen 1980)

For any finite subformula-closed list of formulae  $\varphi_1, \ldots, \varphi_n$ , and any two classes  $\emptyset \subseteq M \subseteq N$ , the following are equivalent:

- $\bigwedge_{i \leq n} M \preccurlyeq_{\varphi_i} N$ Equivalently:  $\varphi_1, \dots, \varphi_n$  are absolute for M, N
- **2** For each existential formula  $\varphi_i$  of the form  $\exists x \varphi_j(x, \vec{y})$ , the following holds:

$$\forall \overrightarrow{m} \in M \Big( \exists x \in N : \varphi_i^N(x, \overrightarrow{m}) \to \exists x \in M : \varphi_j^N(x, \overrightarrow{m}) \Big)$$

 Introduction
 Lemma
 Reflection 1
 Reflection 2
 Reflection 3
 Releving

 0
 ●00000
 00000000
 000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

# The Lemma - a Condition for Absoluteness

#### Lemma (II.5.2 in Kunen 2011 and II.7.2 in Kunen 1980)

For any finite subformula-closed list of formulae  $\varphi_1, \ldots, \varphi_n$ , and any two classes  $\emptyset \subseteq M \subseteq N$ , the following are equivalent:

- $\bigwedge_{i \leq n} M \preccurlyeq_{\varphi_i} N$ Equivalently:  $\varphi_1, \dots, \varphi_n$  are absolute for M, N
- **2** For each existential formula  $\varphi_i$  of the form  $\exists x \varphi_j(x, \vec{y})$ , the following holds:

$$\forall \overrightarrow{m} \in M \Big( \exists x \in N : \varphi_i^N(x, \overrightarrow{m}) \to \exists x \in M : \varphi_j^N(x, \overrightarrow{m}) \Big)$$

Note: *subformula-closed* lists, *absoluteness* for two classes, and *relativisation* of a formula.

| Lemma<br>0●0000 | Reflection 1<br>000000000 |  | Relevance to Forcing<br>00000000 |
|-----------------|---------------------------|--|----------------------------------|
|                 |                           |  |                                  |

A list of formulae is subformula closed iff

- ① The list contains all subformulae of each formula
- **2** (!) No formula uses a universal quantifier  $(\forall)$

| Lemma<br>0●0000 | Reflection 1<br>00000000 |  | Relevance to Forcing |
|-----------------|--------------------------|--|----------------------|
|                 |                          |  |                      |
|                 |                          |  |                      |

A list of formulae is subformula closed iff

- ① The list contains all subformulae of each formula
- **2** (!) No formula uses a universal quantifier  $(\forall)$

| Lemma<br>0●0000 | Reflection 1<br>00000000 |  | Relevance to Forcing<br>00000000 |
|-----------------|--------------------------|--|----------------------------------|
|                 |                          |  |                                  |

A list of formulae is subformula closed iff

- ① The list contains all subformulae of each formula
- **2** (!) No formula uses a universal quantifier  $(\forall)$

- $\textbf{ Replace } \forall \text{ by } \neg \exists \neg$
- 2 Add finitely many subformulae for each formula

| Lemma<br>0●0000 | Reflection 1<br>000000000 |  | Relevance to Forcing<br>00000000 |
|-----------------|---------------------------|--|----------------------------------|
|                 |                           |  |                                  |

A list of formulae is subformula closed iff

- ① The list contains all subformulae of each formula
- **2** (!) No formula uses a universal quantifier  $(\forall)$

- $\textbf{ Replace } \forall \text{ by } \neg \exists \neg$
- Add finitely many subformulae for each formula

| Lemma<br>0●0000 | Reflection 1<br>000000000 |  | Relevance to Forcing<br>00000000 |
|-----------------|---------------------------|--|----------------------------------|
|                 |                           |  |                                  |

A list of formulae is subformula closed iff

- ① The list contains all subformulae of each formula
- **2** (!) No formula uses a universal quantifier  $(\forall)$

- $\textbf{ Replace } \forall \text{ by } \neg \exists \neg$
- Add finitely many subformulae for each formula

| Lemma<br>0●0000 | Reflection 1<br>000000000 |  | Relevance to Forcing<br>00000000 |
|-----------------|---------------------------|--|----------------------------------|
|                 |                           |  |                                  |

A list of formulae is subformula closed iff

- ① The list contains all subformulae of each formula
- **2** (!) No formula uses a universal quantifier  $(\forall)$

*Note:* any countable list can be closed under subformulae:

- $\textbf{O} \text{ Replace } \forall \text{ by } \neg \exists \neg$
- Add finitely many subformulae for each formula

(!) Any finite list closed under subformulae will still be finite.

| Lemma<br>00●000 | Reflection 1<br>00000000 |  | Relevance to Forcing<br>00000000 |
|-----------------|--------------------------|--|----------------------------------|
|                 |                          |  |                                  |

## Definition (Relative formula $\varphi^M$ )

- $\varphi^{M}$  is the relativisation of some formula  $\varphi$  to a model M.
  - () 'Restrict' all quantifiers:  $\exists x' \rightarrow \exists x \in M'$

| Lemma<br>00●000 | Reflection 1<br>00000000 |  | Relevance to Forcing<br>00000000 |
|-----------------|--------------------------|--|----------------------------------|
|                 |                          |  |                                  |

### Definition (Relative formula $\varphi^M$ )

$$\varphi^M$$
 is the relativisation of some formula  $\varphi$  to a model  $M.$ 

() 'Restrict' all quantifiers:  $\exists x' \rightarrow \exists x \in M'$ 

#### Definition (Absoluteness for M, N)

Let  $M \subseteq N$  be classes. A formula  $\varphi$  with  $x_1, \ldots, x_n$  free variables is absolute for M, N iff

$$\forall x_1,\ldots,x_n \in M\Big(\varphi^M(x_1,\ldots,x_n)\leftrightarrow \varphi^N(x_1,\ldots,x_n)\Big)$$

|            | Lemma<br>000●00                    | Reflection 1<br>000000000 |  | Relevance to Forcing |
|------------|------------------------------------|---------------------------|--|----------------------|
|            |                                    |                           |  |                      |
|            |                                    |                           |  |                      |
| Lemma      |                                    |                           |  |                      |
| <b>Ο</b> φ | $\varphi_1,\ldots,\varphi_n$ are a | absolute for M, N         |  |                      |

2 For all 
$$\exists x \varphi_j(x, \vec{y}) : \forall \vec{m} \in M \left( \exists x \in N : \varphi_j^N(x, \vec{m}) \to \exists x \in M : \varphi_j^N(x, \vec{m}) \right)$$

- Let M and N be classes such that  $M \subseteq N$
- Let  $\varphi_1, \ldots, \varphi_n$  be a subformula-closed list

|            | Lemma<br>000●00                    | Reflection 1<br>000000000 |  | Relevance to Forcing |
|------------|------------------------------------|---------------------------|--|----------------------|
|            |                                    |                           |  |                      |
|            |                                    |                           |  |                      |
| Lemma      |                                    |                           |  |                      |
| <b>1</b> φ | $\varphi_1,\ldots,\varphi_n$ are a | absolute for M, N         |  |                      |

2 For all 
$$\exists x \varphi_j(x, \vec{y})$$
:  $\forall \vec{m} \in M \left( \exists x \in N : \varphi_j^N(x, \vec{m}) \to \exists x \in M : \varphi_j^N(x, \vec{m}) \right)$ 

- Let M and N be classes such that  $M \subseteq N$
- Let  $\varphi_1, \ldots, \varphi_n$  be a subformula-closed list

|       | Lemma<br>000●00                    | Reflection 1<br>000000000 |  | Relevance to Forcing |
|-------|------------------------------------|---------------------------|--|----------------------|
|       |                                    |                           |  |                      |
|       |                                    |                           |  |                      |
| Lemma |                                    |                           |  |                      |
| Ο φ   | $\varphi_1,\ldots,\varphi_n$ are a | absolute for M, N         |  |                      |

For all 
$$\exists x \varphi_j(x, \overrightarrow{y}) \colon \forall \overrightarrow{m} \in M \Big( \exists x \in N : \varphi_j^N(x, \overrightarrow{m}) \to \exists x \in M : \varphi_j^N(x, \overrightarrow{m}) \Big)$$

- Let M and N be classes such that  $M \subseteq N$
- Let  $\varphi_1, \ldots, \varphi_n$  be a subformula-closed list
- (1)  $\rightarrow$  (2)
  - No existential formula: then (2) holds vacuously.
  - Sup.  $\varphi_i = \exists x \varphi_j(y_1, \dots, y_n)$ . Assume  $\exists x \in N \varphi_j^N(x, y_1, \dots, y_n)$ .
  - Use absoluteness of  $\varphi_i$  and its subformula  $\varphi_j$ :
    - absoluteness of  $\varphi_i$  gives  $\exists x \in M \varphi_i^M(x, y_1, \dots, y_n)$
    - absoluteness of  $\varphi_j$  gives  $\exists x \in M \varphi_j^N(x, y_1, \dots, y_n)$

|            | Lemma<br>000●00           | Reflection 1<br>000000000 |  | Relevance to Forcing |
|------------|---------------------------|---------------------------|--|----------------------|
|            |                           |                           |  |                      |
|            |                           |                           |  |                      |
| Lemma      |                           |                           |  |                      |
| <b>Ο</b> φ | $1,\ldots, arphi_n$ are a | absolute for M, N         |  |                      |

For all 
$$\exists x \varphi_j(x, \overrightarrow{y}) \colon \forall \overrightarrow{m} \in M \Big( \exists x \in N : \varphi_j^N(x, \overrightarrow{m}) \to \exists x \in M : \varphi_j^N(x, \overrightarrow{m}) \Big)$$

- Let M and N be classes such that  $M \subseteq N$
- Let  $\varphi_1, \ldots, \varphi_n$  be a subformula-closed list

- No existential formula: then (2) holds vacuously.
- Sup.  $\varphi_i = \exists x \varphi_j(y_1, \dots, y_n)$ . Assume  $\exists x \in N \varphi_j^N(x, y_1, \dots, y_n)$ .
- Use absoluteness of  $\varphi_i$  and its subformula  $\varphi_i$ :
  - absoluteness of  $\varphi_i$  gives  $\exists x \in M \varphi_i^M(x, y_1, \dots, y_n)$
  - absoluteness of  $\varphi_j$  gives  $\exists x \in M \varphi_i^N(x, y_1, \dots, y_n)$

|            | Lemma<br>000●00           | Reflection 1<br>000000000 |  | Relevance to Forcing |
|------------|---------------------------|---------------------------|--|----------------------|
|            |                           |                           |  |                      |
|            |                           |                           |  |                      |
| Lemma      |                           |                           |  |                      |
| <b>Ο</b> φ | $1,\ldots, arphi_n$ are a | absolute for M, N         |  |                      |

For all 
$$\exists x \varphi_j(x, \overrightarrow{y}) \colon \forall \overrightarrow{m} \in M \Big( \exists x \in N : \varphi_j^N(x, \overrightarrow{m}) \to \exists x \in M : \varphi_j^N(x, \overrightarrow{m}) \Big)$$

- Let M and N be classes such that  $M \subseteq N$
- Let  $\varphi_1, \ldots, \varphi_n$  be a subformula-closed list

- No existential formula: then (2) holds vacuously.
- Sup.  $\varphi_i = \exists x \varphi_j(y_1, \dots, y_n)$ . Assume  $\exists x \in N \varphi_j^N(x, y_1, \dots, y_n)$ .
- Use absoluteness of  $\varphi_i$  and its subformula  $\varphi_j$ :
  - absoluteness of  $\varphi_i$  gives  $\exists x \in M \varphi_i^M(x, y_1, \dots, y_n)$
  - absoluteness of  $\varphi_j$  gives  $\exists x \in M \varphi_j^N(x, y_1, \dots, y_n)$

|            | Lemma<br>000●00                    | Reflection 1<br>000000000 |  | Relevance to Forcing |
|------------|------------------------------------|---------------------------|--|----------------------|
|            |                                    |                           |  |                      |
|            |                                    |                           |  |                      |
| Lemma      |                                    |                           |  |                      |
| <b>Ο</b> φ | $\varphi_1,\ldots,\varphi_n$ are a | absolute for M, N         |  |                      |

For all 
$$\exists x \varphi_j(x, \overrightarrow{y}) \colon \forall \overrightarrow{m} \in M \Big( \exists x \in N : \varphi_j^N(x, \overrightarrow{m}) \to \exists x \in M : \varphi_j^N(x, \overrightarrow{m}) \Big)$$

- Let M and N be classes such that  $M \subseteq N$
- Let  $\varphi_1, \ldots, \varphi_n$  be a subformula-closed list

- No existential formula: then (2) holds vacuously.
- Sup.  $\varphi_i = \exists x \varphi_j(y_1, \dots, y_n)$ . Assume  $\exists x \in N \varphi_j^N(x, y_1, \dots, y_n)$ .
- Use absoluteness of  $\varphi_i$  and its subformula  $\varphi_j$ :
  - absoluteness of  $\varphi_i$  gives  $\exists x \in M \varphi_i^M(x, y_1, \dots, y_n)$
  - absoluteness of  $\varphi_j$  gives  $\exists x \in M \varphi_j^N(x, y_1, \dots, y_n)$

|                     | Lemma<br>000●00             | Reflection 1<br>000000000 |  | Relevance to Forcing |
|---------------------|-----------------------------|---------------------------|--|----------------------|
|                     |                             |                           |  |                      |
|                     |                             |                           |  |                      |
| Lemma               |                             |                           |  |                      |
| <b>()</b> $\varphi$ | $1,\ldots, \varphi_n$ are a | absolute for M, N         |  |                      |

For all 
$$\exists x \varphi_j(x, \overrightarrow{y}) \colon \forall \overrightarrow{m} \in M \Big( \exists x \in N : \varphi_j^N(x, \overrightarrow{m}) \to \exists x \in M : \varphi_j^N(x, \overrightarrow{m}) \Big)$$

- Let M and N be classes such that  $M \subseteq N$
- Let  $\varphi_1, \ldots, \varphi_n$  be a subformula-closed list

- No existential formula: then (2) holds vacuously.
- Sup.  $\varphi_i = \exists x \varphi_j(y_1, \dots, y_n)$ . Assume  $\exists x \in N \varphi_j^N(x, y_1, \dots, y_n)$ .
- Use absoluteness of  $\varphi_i$  and its subformula  $\varphi_j$ :
  - absoluteness of  $\varphi_i$  gives  $\exists x \in M \varphi_i^M(x, y_1, \dots, y_n)$
  - absoluteness of  $\varphi_j$  gives  $\exists x \in M \varphi_j^N(x, y_1, \dots, y_n)$

|            | Lemma<br>0000●0                    | Reflection 1<br>000000000 |  | Relevance to Forcing |
|------------|------------------------------------|---------------------------|--|----------------------|
|            |                                    |                           |  |                      |
|            |                                    |                           |  |                      |
| Lemma      |                                    |                           |  |                      |
| <b>Ο</b> φ | $\varphi_1,\ldots,\varphi_n$ are a | absolute for M, N         |  |                      |

**2** For all 
$$\exists x \varphi_j(x, \vec{y})$$
:  $\forall \vec{m} \in M \left( \exists x \in N : \varphi_j^N(x, \vec{m}) \to \exists x \in M : \varphi_j^N(x, \vec{m}) \right)$ 

(2)  $\rightarrow$  (1): Induction on the structure of  $\varphi_i$ 

|            | Lemma<br>0000●0                     | Reflection 1<br>000000000                                             |                                                    |                                             | Relevance to Forc         |  |
|------------|-------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------|---------------------------|--|
|            |                                     |                                                                       |                                                    |                                             |                           |  |
|            |                                     |                                                                       |                                                    |                                             |                           |  |
| Lemma      |                                     |                                                                       |                                                    |                                             |                           |  |
| <b>Ο</b> φ | $1,\ldots, \varphi_n$ are a         | absolute for M, N                                                     |                                                    |                                             |                           |  |
| <b>2</b> F | for all $\exists x \varphi_j(x, f)$ | $\overrightarrow{y}$ ): $\forall \overrightarrow{m} \in M(\exists x)$ | $\kappa \in N: \varphi_j^N(x, \overrightarrow{m})$ | $) 	o \exists x \in M : \varphi_j^{\wedge}$ | $(x, \overrightarrow{m})$ |  |

## (2) ightarrow (1): Induction on the structure of $arphi_i$

- (atom) Relativisation only modifies quantifiers
  - Atom contains no quantifiers

• 
$$\varphi_i^M = \varphi_i = \varphi_i^N$$

(  $\wedge$  ) Induction hypothesis on left and right conjunct (  $\neg$  ) Like conjunction

|            | Lemma<br>0000●0                     | Reflection 1<br>000000000                                             |                                                    |                                             | Relevance to Forc         |  |
|------------|-------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------|---------------------------|--|
|            |                                     |                                                                       |                                                    |                                             |                           |  |
|            |                                     |                                                                       |                                                    |                                             |                           |  |
| Lemma      |                                     |                                                                       |                                                    |                                             |                           |  |
| <b>Ο</b> φ | $1,\ldots, \varphi_n$ are a         | absolute for M, N                                                     |                                                    |                                             |                           |  |
| <b>2</b> F | for all $\exists x \varphi_j(x, f)$ | $\overrightarrow{y}$ ): $\forall \overrightarrow{m} \in M(\exists x)$ | $\kappa \in N: \varphi_j^N(x, \overrightarrow{m})$ | $) 	o \exists x \in M : \varphi_j^{\wedge}$ | $(x, \overrightarrow{m})$ |  |

## (2) ightarrow (1): Induction on the structure of $arphi_i$

- Relativisation only modifies quantifiers
  - Atom contains no quantifiers

• 
$$\varphi_i^M = \varphi_i = \varphi_i^N$$

(∧) Induction hypothesis on left and right conjunct
 (¬) Like conjunction

(atom)

|            | Lemma<br>0000●0                     | Reflection 1<br>000000000                                             |                                                    |                                               | Relevance to Forcin<br>000000000 |  |
|------------|-------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|----------------------------------|--|
|            |                                     |                                                                       |                                                    |                                               |                                  |  |
|            |                                     |                                                                       |                                                    |                                               |                                  |  |
| Lemma      |                                     |                                                                       |                                                    |                                               |                                  |  |
| Ο φ        | $_1,\ldots, arphi_n$ are a          | absolute for M, N                                                     |                                                    |                                               |                                  |  |
| <b>2</b> F | for all $\exists x \varphi_j(x, f)$ | $\overrightarrow{y}$ ): $\forall \overrightarrow{m} \in M(\exists x)$ | $\kappa \in N: \varphi_j^N(x, \overrightarrow{m})$ | $) \to \exists x \in M : \varphi_j^{\Lambda}$ | $(x, \overrightarrow{m})$        |  |

## (2) ightarrow (1): Induction on the structure of $arphi_i$

- (atom) Relativisation only modifies quantifiers
  - Atom contains no quantifiers

• 
$$\varphi_i^M = \varphi_i = \varphi_i^N$$

(∧) Induction hypothesis on left and right conjunct
 (¬) Like conjunction

|       | Lemma<br>00000●        | Reflection 1<br>000000000 |   | Relevance to Forcing |
|-------|------------------------|---------------------------|---|----------------------|
|       |                        |                           |   |                      |
|       |                        |                           |   |                      |
| Lemma |                        |                           |   |                      |
| n u   | 21φ <sub>n</sub> are a | absolute for M. N         | , |                      |

$$\textbf{2 For all } \exists x \varphi_j(x, \overrightarrow{y}) \colon \forall \overrightarrow{m} \in M \Big( \exists x \in N : \varphi_j^N(x, \overrightarrow{m}) \to \exists x \in M : \varphi_j^N(x, \overrightarrow{m}) \Big)$$

(2) ightarrow (1): Induction step for  $\exists$ 

|            | Lemma<br>00000●                    | Reflection 1<br>000000000 |  | Relevance to Forcing |
|------------|------------------------------------|---------------------------|--|----------------------|
|            |                                    |                           |  |                      |
|            |                                    |                           |  |                      |
| Lemma      |                                    |                           |  |                      |
| <b>1</b> φ | $\varphi_1,\ldots,\varphi_n$ are a | absolute for M, N         |  |                      |

2 For all 
$$\exists x \varphi_j(x, \vec{y})$$
:  $\forall \vec{m} \in M \left( \exists x \in N : \varphi_j^N(x, \vec{m}) \to \exists x \in M : \varphi_j^N(x, \vec{m}) \right)$ 

(2)  $\rightarrow$  (1): Induction step for  $\exists$ Let  $\varphi_i = \exists x \varphi_j(x, y_1, \dots, y_n)$ . Then

| Introduction<br>O | Lemma<br>00000●             | Reflection 1<br>000000000                                          | Reflection 2<br>000000                        | Reflection 3<br>00000                       | Relevance to Forcing         |
|-------------------|-----------------------------|--------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------|------------------------------|
|                   |                             |                                                                    |                                               |                                             |                              |
| Lemma             |                             |                                                                    |                                               |                                             |                              |
|                   | -                           | $\overrightarrow{y}): \forall \overrightarrow{m} \in M(\exists x)$ | $x \in N: \varphi_j^N(x, \overrightarrow{m})$ | $\rightarrow \exists x \in M : \varphi_j^N$ | $(x, \overrightarrow{m})$    |
| · · /             | • •                         | ction step for $y_1, \ldots, y_n$ .                                |                                               |                                             |                              |
| $\varphi_i^M(y)$  | $(1,\ldots,y_n) \leftarrow$ | $ i \exists x \in M \varphi_j^M $                                  | $(x, y_1, \ldots, y_n)$                       | (Relativ                                    | visation of $arphi_i)$       |
|                   | $\leftarrow$                | $ i \exists x \in M \varphi_j^{N}($                                | $(x, y_1, \ldots, y_n)$                       | (IH: absolu                                 | uteness of $\varphi_j$ )     |
|                   | $\leftarrow$                | $ i \exists x \in \mathbf{N} \varphi_j^N(x) $                      | $x, y_1, \ldots, y_n$                         | $(\leftarrow Appli$                         | cation of (2))               |
|                   |                             |                                                                    |                                               |                                             | $(\rightarrow M\subseteq N)$ |
|                   | $\leftarrow$                | $\rightarrow \varphi_i^N(y_1,\ldots,y_n)$                          | yn)                                           | (Relativ                                    | visation of $\varphi_i$ )    |

| Introduction<br>O                                                                                                       | Lemma<br>00000●             | Reflection 1<br>000000000                                                                   | Reflection 2<br>000000                        | Reflection 3<br>00000                      | Relevance to Forcing          |  |  |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|-------------------------------|--|--|
|                                                                                                                         |                             |                                                                                             |                                               |                                            |                               |  |  |
| Lemma                                                                                                                   |                             |                                                                                             |                                               |                                            |                               |  |  |
| - ,                                                                                                                     |                             | bsolute for $M, N$<br>$\overrightarrow{y}$ ): $\forall \overrightarrow{m} \in M(\exists x)$ | $x \in N: \varphi_j^N(x, \overrightarrow{m})$ | $ ightarrow \exists x \in M : \varphi_j^N$ | $(x, \overrightarrow{m})$     |  |  |
| (2) $\rightarrow$ (1): Induction step for $\exists$<br>Let $\varphi_i = \exists x \varphi_j(x, y_1, \dots, y_n)$ . Then |                             |                                                                                             |                                               |                                            |                               |  |  |
| $\varphi_i^M(y_1)$                                                                                                      | $(1,\ldots,y_n) \leftarrow$ | $ i \exists x \in M \varphi_j^M $                                                           | $(x, y_1, \ldots, y_n)$                       | (Relativ                                   | isation of $arphi_i)$         |  |  |
|                                                                                                                         | $\leftarrow$                | $ i \exists x \in M \varphi_j^{N}$                                                          | $(x, y_1, \ldots, y_n)$                       | (IH: absolı                                | iteness of $\varphi_j)$       |  |  |
|                                                                                                                         | $\leftarrow$                | $ i \exists x \in \mathbf{N} \varphi_j^N(x) $                                               | $x, y_1, \ldots, y_n$                         | (← Appli                                   | cation of (2))                |  |  |
|                                                                                                                         |                             |                                                                                             |                                               |                                            | $(\rightarrow M \subseteq N)$ |  |  |
|                                                                                                                         | $\leftarrow$                | $\rightarrow \varphi_i^N(y_1,\ldots,y_n)$                                                   | <i>y</i> <sub>n</sub> )                       | (Relativ                                   | isation of $\varphi_i$ )      |  |  |

| Introduction<br>O | Lemma<br>00000●             | Reflection 1<br>000000000                                                                   | Reflection 2<br>000000                                 | Reflection 3<br>00000                       | Relevance to Forcing<br>000000000 |
|-------------------|-----------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------|-----------------------------------|
|                   |                             |                                                                                             |                                                        |                                             |                                   |
| Lemma             |                             |                                                                                             |                                                        |                                             |                                   |
|                   |                             | bsolute for $M, N$<br>$\overrightarrow{y}$ ): $\forall \overrightarrow{m} \in M(\exists x)$ | $\kappa \in N: arphi_j^{N}(x, \overrightarrow{m}) = 0$ | $ ightarrow \exists x \in M : \varphi_j^N($ | $(x, \vec{m})$                    |
| . ,               | . ,                         | ction step for $y_1, \ldots, y_n$ .                                                         |                                                        |                                             |                                   |
| $\varphi_i^{M}(y$ | $(1,\ldots,y_n) \leftarrow$ | $ i \exists x \in M \varphi_j^M $                                                           | $(x, y_1, \ldots, y_n)$                                | (Relativ                                    | isation of $arphi_i)$             |
|                   | $\leftarrow$                | $ i \exists x \in M \varphi_j^{N}$                                                          | $(x, y_1, \ldots, y_n)$                                | (IH: absolu                                 | teness of $\varphi_j)$            |
|                   | $\leftarrow$                | $ i \exists x \in \mathbf{N} \varphi_j^{N}(x) $                                             | $(x, y_1, \ldots, y_n)$                                | $(\leftarrow Applic)$                       | cation of (2))                    |
|                   |                             |                                                                                             |                                                        |                                             | $( ightarrow M\subseteq N)$       |
|                   | $\leftarrow$                | $\rightarrow \varphi_i^N(y_1,\ldots,y_n)$                                                   | yn)                                                    | (Relativ                                    | isation of $\varphi_i)$           |

| Introduction<br>0 | Lemma<br>00000●             | Reflection 1<br>000000000                                                                   | Reflection 2<br>000000                                                                                                                        | Reflection 3<br>00000                      | Relevance to Forcing          |
|-------------------|-----------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------|
|                   |                             |                                                                                             |                                                                                                                                               |                                            |                               |
| Lemma             | I                           |                                                                                             |                                                                                                                                               |                                            |                               |
|                   |                             | bsolute for $M, N$<br>$\overrightarrow{Y}$ ): $\forall \overrightarrow{m} \in M(\exists x)$ | $\mathbf{x} \in \mathbf{N}: arphi_j^{\mathbf{N}}(\mathbf{x}, \overrightarrow{m}) - \mathbf{v}_j^{\mathbf{N}}(\mathbf{x}, \overrightarrow{m})$ | $ ightarrow \exists x \in M : \varphi_j^N$ | $(x, \overrightarrow{m})$     |
| . ,               | • •                         | $\begin{array}{c} \textbf{ction step f} \\ y_1, \dots, y_n \end{pmatrix}. \end{array}$      |                                                                                                                                               |                                            |                               |
| $\varphi_i^M(y$   | $(1,\ldots,y_n) \leftarrow$ | $ i \exists x \in M \varphi_j^M $                                                           | $(x, y_1, \ldots, y_n)$                                                                                                                       | (Relativ                                   | isation of $\varphi_i$ )      |
|                   | $\leftarrow$                | $ i \exists x \in M \varphi_j^{N}$                                                          | $(x, y_1, \ldots, y_n)$                                                                                                                       | (IH: absolu                                | iteness of $\varphi_j)$       |
|                   | $\leftarrow$                | $ i \exists x \in \mathbf{N} \varphi_j^{N}(x) $                                             | $x, y_1, \ldots, y_n$ )                                                                                                                       | $(\leftarrow Appli)$                       | cation of (2))                |
|                   |                             |                                                                                             |                                                                                                                                               |                                            | $(\rightarrow M \subseteq N)$ |
|                   | $\leftarrow$                | $\rightarrow \varphi_i^N(y_1,\ldots,y_n)$                                                   | y <sub>n</sub> )                                                                                                                              | (Relativ                                   | isation of $\varphi_i$ )      |

|                           | Lemma<br>00000●                   | Reflection 1<br>000000000                                             |                                                                                           |                                             | Relevance to Forcing          |
|---------------------------|-----------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------|
|                           |                                   |                                                                       |                                                                                           |                                             |                               |
| Lemma                     |                                   |                                                                       |                                                                                           |                                             |                               |
| <b>1</b> φ <sub>1</sub> , | $\ldots, \varphi_n$ are a         | absolute for M, N                                                     |                                                                                           |                                             |                               |
| <ol> <li>For</li> </ol>   | $r all \exists x \varphi_j(x, T)$ | $\overrightarrow{y}$ ): $\forall \overrightarrow{m} \in M(\exists x)$ | $\kappa \in N: arphi_j^N(x, \overrightarrow{m}) - \mathcal{V}_j^N(x, \overrightarrow{m})$ | $ ightarrow \exists x \in M : \varphi_j^N $ | $(x, \overrightarrow{m})$     |
|                           |                                   | ,                                                                     |                                                                                           |                                             | ,                             |
| . ,                       |                                   | iction step f                                                         |                                                                                           |                                             |                               |
| Let $\varphi_i$           | $= \exists x \varphi_j(x)$        | $y_1,\ldots,y_n$ ).                                                   | Ihen                                                                                      |                                             |                               |
| $\varphi_i^M(y_1,$        | $\ldots, y_n) \leftarrow$         | $ i \exists x \in M \varphi_j^M $                                     | $(x, y_1, \ldots, y_n)$                                                                   | (Relativ                                    | visation of $\varphi_i)$      |
|                           | $\leftarrow$                      | $ i \exists x \in M \varphi_i^N$                                      | $(x, y_1, \ldots, y_n)$                                                                   | (IH: absolu                                 | iteness of $\varphi_j)$       |
|                           | $\leftarrow$                      | $ i \exists x \in \mathbf{N} \varphi_i^{\mathbf{N}}(x) $              | $x, y_1, \ldots, y_n$ )                                                                   | (← Appli                                    | cation of (2))                |
|                           |                                   | 5                                                                     |                                                                                           |                                             | $(\rightarrow M \subseteq N)$ |
|                           | <del>(</del> -                    | $\rightarrow \varphi_i^N(y_1,\ldots,y_n)$                             | y <sub>n</sub> )                                                                          | (Relativ                                    | visation of $\varphi_i$ )     |
| <b>C</b>                  |                                   |                                                                       |                                                                                           | ```                                         | . ,                           |
| So we f $M, N$ ).         | find $\varphi_i^{m}(y)$           | $(1,\ldots,y_n) \leftrightarrow 0$                                    | $\varphi_i^N(y_1,\ldots,y_n)$                                                             | (absolute f                                 | or                            |

Details on Reflection Theorems

Tibo Rushbrooke & Wouter Smit

| Lemma<br>000000 | Reflection 1<br>●00000000 |  | Relevance to Forcing<br>00000000 |
|-----------------|---------------------------|--|----------------------------------|
|                 |                           |  |                                  |

## Theorem 1

#### Model 1: not (always) transitive, but countable

### Theorem (1)

Let ZFC<sup>\*</sup> be a finite fragment of ZFC. For any X there is M such that  $X \subseteq M$ ,  $M \models ZFC^*$ , and  $|M| \le max(\aleph_0, |X|)$ .

| Lemma<br>000000 | Reflection 1<br>●00000000 |  | Relevance to Forcing<br>000000000 |
|-----------------|---------------------------|--|-----------------------------------|
|                 |                           |  |                                   |

## Theorem 1

#### Model 1: not (always) transitive, but countable

Theorem (1)

Let ZFC<sup>\*</sup> be a finite fragment of ZFC. For any X there is M such that  $X \subseteq M$ ,  $M \models ZFC^*$ , and  $|M| \le max(\aleph_0, |X|)$ .

*Proof idea.* Ensure that condition (2) of the Lemma is satisfied, by adding witnesses in countably many stages.



## **Proof** - Preliminaries

Let  $\Phi := \{\varphi_1, \dots, \varphi_n\}$  be the result of taking *ZFC*<sup>\*</sup>, replacing all formulae of form  $\forall v \varphi$  with  $\neg \exists v \neg \varphi$ , and closing under subformulae. Let  $X_0 := X$ . Let  $I := \{i \mid \varphi_i \in \Phi \text{ is an existential formula}\}$ , and assume that each existential  $\varphi_i(\overrightarrow{X})$  is of the form  $\exists y \varphi_i(\overrightarrow{X}, y)$ .



## **Proof** - Preliminaries

Let  $\Phi := \{\varphi_1, \ldots, \varphi_n\}$  be the result of taking *ZFC*<sup>\*</sup>, replacing all formulae of form  $\forall v \varphi$  with  $\neg \exists v \neg \varphi$ , and closing under subformulae. Let  $X_0 := X$ . Let  $I := \{i \mid \varphi_i \in \Phi \text{ is an existential formula}\}$ , and assume that each existential  $\varphi_i(\overrightarrow{X})$  is of the form  $\exists y \varphi_i(\overrightarrow{X}, y)$ . Introduction Lemma Reflection 1 Reflection 2 Reflection 3 Relevance to Forcing 0 00000 000000 00000 00000 00000 00000

# Proof - Ensuring Witnesses

For each  $i \in I$ , define a function  $f_i$  satisfying:

• For every tuple  $\overrightarrow{p}$  of sets, if  $\varphi_i$  holds of  $\overrightarrow{p}$ , then  $\varphi_j$  holds of  $(\overrightarrow{p}, f_i(\overrightarrow{p}))$ .

(Intuitively: whenever an existential formula holds of a tuple,  $f_i$  is a function which finds a witness for that formula).

We need the Axiom of Choice to guarantee that these functions exist!

| Lemma<br>000000 | Reflection 1<br>000●00000 |  | Relevance to Forcing |
|-----------------|---------------------------|--|----------------------|
|                 |                           |  |                      |

- $F_{i,k} := \operatorname{Ran}(f_i \upharpoonright \mathcal{D}(X_k))$
- $F_k := \bigcup_{i \in I} F_{i,k}$  (all the witnesses we need for  $X_k$ )
- $X_{k+1} := X_k \cup F_k$ .

| Lemma<br>000000 | Reflection 1<br>000●00000 |  | Relevance to Forcing |
|-----------------|---------------------------|--|----------------------|
|                 |                           |  |                      |

- $F_{i,k} := \operatorname{Ran}(f_i \upharpoonright \mathcal{O}(X_k))$
- $F_k := \bigcup_{i \in I} F_{i,k}$  (all the witnesses we need for  $X_k$ )

• 
$$X_{k+1} := X_k \cup F_k$$
.

| Lemma<br>000000 | Reflection 1<br>000●00000 |  | Relevance to Forcing |
|-----------------|---------------------------|--|----------------------|
|                 |                           |  |                      |

- $F_{i,k} := \operatorname{Ran}(f_i \upharpoonright \mathcal{O}(X_k))$
- $F_k := \bigcup_{i \in I} F_{i,k}$  (all the witnesses we need for  $X_k$ )

• 
$$X_{k+1} := X_k \cup F_k$$
.

| Lemma<br>000000 | Reflection 1<br>000●00000 |  | Relevance to Forcing |
|-----------------|---------------------------|--|----------------------|
|                 |                           |  |                      |

- $F_{i,k} := \operatorname{Ran}(f_i \upharpoonright \mathcal{D}(X_k))$
- $F_k := \bigcup_{i \in I} F_{i,k}$  (all the witnesses we need for  $X_k$ )

• 
$$X_{k+1} := X_k \cup F_k$$
.

| Lemma<br>000000 | Reflection 1<br>000●00000 |  | Relevance to Forcing |
|-----------------|---------------------------|--|----------------------|
|                 |                           |  |                      |

- $F_{i,k} := \operatorname{Ran}(f_i \upharpoonright \mathcal{D}(X_k))$
- $F_k := \bigcup_{i \in I} F_{i,k}$  (all the witnesses we need for  $X_k$ )

• 
$$X_{k+1} := X_k \cup F_k$$
.

| Lemma<br>000000 | Reflection 1<br>00000000 |  | Relevance to Forcing<br>00000000 |
|-----------------|--------------------------|--|----------------------------------|
|                 |                          |  |                                  |

Now, for all  $k \in \omega$ , define recursively:

- $F_{i,k} := \operatorname{Ran}(f_i \upharpoonright \mathcal{D}(X_k))$
- $F_k := \bigcup_{i \in I} F_{i,k}$  (all the witnesses we need for  $X_k$ )

• 
$$X_{k+1} := X_k \cup F_k$$
.

Then set  $M := \bigcup_{k \in \omega} X_k$ .

We'll now show that M satisfies each of the desired conditions. We have  $X(=X_0) \subseteq M$  by definition of M.

| Lemma<br>000000 | Reflection 1<br>00000000 |  | Relevance to Forcing<br>00000000 |
|-----------------|--------------------------|--|----------------------------------|
|                 |                          |  |                                  |

#### M is a model of ZFC\*

We show that each  $\varphi \in \Phi$  is absolute for M, implying that  $M \models ZFC^*$ . Fix an arbitrary existential formula  $\varphi_i(x_1, \ldots, x_n)$ . Let  $\overrightarrow{p} := \{p_1, \ldots, p_n\}$  be arbitrary members of M such that  $\varphi_i[p_1, \ldots, p_n]$  holds (in V). Every member of  $\overrightarrow{p}$  appears in some  $X_k$ , hence there is some  $X_m$  (m the maximum of these ks) containing every member of  $\overrightarrow{p}$ . Since  $\varphi_i[p_1, \ldots, p_n]$  holds, there is  $q = f_i(p_1, \ldots, p_n) \in X_{m+1}$  such that  $\varphi_i[p_1, \ldots, p_n, q]$  holds.  $X_{m+1} \subseteq M$ , hence  $q \in M$ .

| Lemma<br>000000 | Reflection 1<br>00000●000 |  | Relevance to Forcing<br>00000000 |
|-----------------|---------------------------|--|----------------------------------|
|                 |                           |  |                                  |

M is a model of ZFC\*

Since  $\varphi_i$  and  $\overrightarrow{p}$  were arbitrary, we have shown that for each existential formula  $\varphi_i$ , the following holds:  $\forall \overrightarrow{a} \in M[\varphi_i^V(\overrightarrow{a}) \to \exists b \in M\psi_i^V(\overrightarrow{a}, b)].$ By the Lemma, it follows that for every formula of our list and in particular every sentence  $\varphi_z$  of  $ZFC^*$ ,  $M \preccurlyeq_{\varphi_z} V$ . But every axiom of ZFC holds in V, and therefore holds in M as well.

| Lemma<br>000000 | Reflection 1<br>000000●00 |  | Relevance to Forcing<br>00000000 |
|-----------------|---------------------------|--|----------------------------------|
|                 |                           |  |                                  |

 $|M| \leq max(|X|, \aleph_0).$ 

To see that  $|M| \le max(|X|, \aleph_0)$ , distinguish two cases: X is finite, or X is infinite.

Case 1: X finite. If  $X_k$  is finite for any fixed k then it is clear that  $F_{i,k}, F_k$  will also be finite. Hence,  $X_{k+1} = X_k \cup F_k$  will be finite. It follows by induction that  $X_m$  is finite for every natural number m. M is therefore a countable union of finite sets, and must therefore be (at most) countable; so  $|M| \leq max(|X|, \aleph_0)$ .

| Lemma<br>000000 | Reflection 1<br>000000000 |  | Relevance to Forcing<br>00000000 |
|-----------------|---------------------------|--|----------------------------------|
|                 |                           |  |                                  |

 $|M| \leq max(|X|, \aleph_0).$ 

Case 2: X infinite. Let  $\kappa$  denote |X|, with  $\kappa$  some infinite cardinal. We will show by induction that  $|X_m| = \kappa$  for every natural number m. The base case of m = 0 is trivial.

Induction step: assume  $|X_k| = \kappa$  for some fixed k. For any natural number r, the set of r-tuples  $\subseteq X_k$  will have the same cardinality as  $X_k$  by Hessenberg's theorem. Then  $|F_{i,k}|$  is at most  $|X_k| = \kappa$ , and since  $F_k$  is a finite union of such sets,  $|F_k| \leq \kappa$ . Now  $X_{k+1} = X_k \cup F_k$  and must therefore have cardinality  $\kappa$ . This

completes the induction step, so  $|X_n| = \kappa$  for all *n*.

| Lemma<br>000000 | Reflection 1<br>00000000 |  | Relevance to Forcing<br>00000000 |
|-----------------|--------------------------|--|----------------------------------|
|                 |                          |  |                                  |

 $|M| \leq max(|X|, \aleph_0).$ 

 $M = \bigcup_{k \in \omega} X_k$  is a countable union of sets of cardinality  $\kappa$ , and since  $\kappa \geq \aleph_0$ , it follows that  $|M| = \kappa$  as well. Hence again  $|M| \leq max(|X|, \aleph_0)$ .

So we're done!



#### **Model 1**: a countable non-transitive model of $ZFC^*$ from X



**Model 1**: a countable non-transitive model of  $ZFC^*$  from X **Model 2**: an (uncountable) **transitive** model of  $ZFC^*$  from X



**Model 1**: a countable non-transitive model of  $ZFC^*$  from X **Model 2**: an (uncountable) **transitive** model of  $ZFC^*$  from X

Theorem (2)



**Model 1**: a countable non-transitive model of  $ZFC^*$  from X **Model 2**: an (uncountable) **transitive** model of  $ZFC^*$  from X

Theorem (2)

For any X there is a transitive M such that  $X \subseteq M$  and  $M \models ZFC^*$ .

*Proof idea:* modify the construction used for the first theorem.



**Model 1**: a countable non-transitive model of  $ZFC^*$  from X **Model 2**: an (uncountable) **transitive** model of  $ZFC^*$  from X

Theorem (2)

For any X there is a transitive M such that  $X \subseteq M$  and  $M \models ZFC^*$ .

Proof idea: modify the construction used for the first theorem.

- Disregard size
- Ensure transitivity at each step



### Proof - Preliminaries

#### Assumptions

Let  $\Phi := \{\varphi_1, \dots, \varphi_n\}$  be subformula-closed  $X_0 := V_\delta$  for least  $\delta$  such that  $V_\delta \supseteq X$ 



### Proof - Preliminaries

#### Assumptions

Let  $\Phi := \{\varphi_1, \dots, \varphi_n\}$  be subformula-closed  $X_0 := V_{\delta}$  for least  $\delta$  such that  $V_{\delta} \supseteq X$ 



### Proof - Preliminaries

#### Assumptions

Let  $\Phi := \{\varphi_1, \dots, \varphi_n\}$  be subformula-closed  $X_0 := V_{\delta}$  for least  $\delta$  such that  $V_{\delta} \supseteq X$ 

Note:  $V_{\delta}$  is transitive by definition



# Proof - Ensuring Witnesses

We again ensure that we have the necessary witnesses.

#### Strategy:

- find rank  $\alpha$  of the witness, rather than witness itself
- Include entire  $V_{lpha}$  to ensure transitivity

# Proof - Recursive Construction

Definition ('Rank' Witness Function)

For some existential formula  $\varphi_i = \exists y \varphi_j(\overrightarrow{x}, y)$ , let

$$f_i^r(\overrightarrow{p}) = \begin{cases} \text{ least } \alpha & \text{ such that } \exists y \text{ with } \alpha = rk(y) \text{ and } \varphi_j(\overrightarrow{p}, y) \\ 0 & \text{ if there is no such } y \end{cases}$$

# Proof - Recursive Construction

Definition ('Rank' Witness Function)

For some existential formula  $\varphi_i = \exists y \varphi_j(\overrightarrow{x}, y)$ , let

 $f_i^r(\overrightarrow{p}) = \begin{cases} \text{ least } \alpha & \text{ such that } \exists y \text{ with } \alpha = rk(y) \text{ and } \varphi_j(\overrightarrow{p}, y) \\ 0 & \text{ if there is no such } y \end{cases}$ 

# Proof - Recursive Construction

Definition ('Rank' Witness Function)

For some existential formula  $\varphi_i = \exists y \varphi_j(\overrightarrow{x}, y)$ , let

 $f_i^r(\overrightarrow{p}) = \begin{cases} \text{ least } \alpha & \text{ such that } \exists y \text{ with } \alpha = rk(y) \text{ and } \varphi_j(\overrightarrow{p}, y) \\ 0 & \text{ if there is no such } y \end{cases}$ 

Let 
$$F_{i,k} := \operatorname{Ran}(f_i^r \upharpoonright \mathcal{D}(X_k))$$
  
Let  $\alpha_{k+1} := \bigcup_{i \in I} F_{i,k}$   $(\alpha_0 := \delta)$   
Let  $X_{k+1} := V(\alpha_{k+1})$ 

# Proof - Recursive Construction

Definition ('Rank' Witness Function)

For some existential formula  $\varphi_i = \exists y \varphi_j(\overrightarrow{x}, y)$ , let

 $f_i^r(\overrightarrow{p}) = \begin{cases} \text{ least } \alpha & \text{ such that } \exists y \text{ with } \alpha = rk(y) \text{ and } \varphi_j(\overrightarrow{p}, y) \\ 0 & \text{ if there is no such } y \end{cases}$ 

Let 
$$F_{i,k} := \operatorname{Ran}(f_i^r \upharpoonright \mathcal{D}(X_k))$$
  
Let  $\alpha_{k+1} := \bigcup_{i \in I} F_{i,k}$   $(\alpha_0 := \delta)$   
Let  $X_{k+1} := V(\alpha_{k+1})$ 

# Proof - Recursive Construction

Definition ('Rank' Witness Function)

For some existential formula  $\varphi_i = \exists y \varphi_j(\overrightarrow{x}, y)$ , let

 $f_i^r(\overrightarrow{p}) = \begin{cases} \text{ least } \alpha & \text{ such that } \exists y \text{ with } \alpha = rk(y) \text{ and } \varphi_j(\overrightarrow{p}, y) \\ 0 & \text{ if there is no such } y \end{cases}$ 

Let 
$$F_{i,k} := \operatorname{Ran}(f_i^r \upharpoonright \mathscr{D}(X_k))$$
  
Let  $\alpha_{k+1} := \bigcup_{i \in I} F_{i,k}$   $(\alpha_0 := \delta)$   
Let  $X_{k+1} := V(\alpha_{k+1})$ 

# Proof - Recursive Construction

Definition ('Rank' Witness Function)

For some existential formula  $\varphi_i = \exists y \varphi_j(\overrightarrow{x}, y)$ , let

 $f_i^r(\overrightarrow{p}) = \begin{cases} \text{ least } \alpha & \text{ such that } \exists y \text{ with } \alpha = rk(y) \text{ and } \varphi_j(\overrightarrow{p}, y) \\ 0 & \text{ if there is no such } y \end{cases}$ 

Let 
$$F_{i,k} := \operatorname{Ran}(f_i^r \upharpoonright \mathscr{D}(X_k))$$
  
Let  $\alpha_{k+1} := \bigcup_{i \in I} F_{i,k}$   $(\alpha_0 := \delta)$   
Let  $X_{k+1} := V(\alpha_{k+1})$ 

# Proof - Recursive Construction

Definition ('Rank' Witness Function)

For some existential formula  $\varphi_i = \exists y \varphi_j(\overrightarrow{x}, y)$ , let

 $f_i^r(\overrightarrow{p}) = \begin{cases} \text{ least } \alpha & \text{such that } \exists y \text{ with } \alpha = rk(y) \text{ and } \varphi_j(\overrightarrow{p}, y) \\ 0 & \text{ if there is no such } y \end{cases}$ 

**Recursive step.** For all  $k \in \omega$ :

Let 
$$F_{i,k} := \operatorname{Ran}(f_i^r \upharpoonright \mathscr{D}(X_k))$$
  
Let  $\alpha_{k+1} := \bigcup_{i \in I} F_{i,k}$   $(\alpha_0 := \delta)$   
Let  $X_{k+1} := V(\alpha_{k+1})$ 

The model: Let  $M := \bigcup_{k \in \omega} X_k$ .

| Lemma<br>000000 | Reflection 1<br>000000000 | Reflection 2<br>0000●0 | Relevance to Forcing<br>00000000 |
|-----------------|---------------------------|------------------------|----------------------------------|
|                 |                           |                        |                                  |

#### Theorem (2)

- $X \subseteq M$  is trivial.
- $M \models ZFC^*$ . As in Theorem 1:
  - Every tuple of free variables in M appears at some X<sub>k</sub>
  - By construction X<sub>k+1</sub> will contain a witness.
  - So we satisfy (2) of the Lemma.
  - Using the Lemma, we find  $M \preccurlyeq_{\varphi} V$  for every sentence  $\varphi$
- Transitivity of *M*: there is some  $\gamma$  such that  $M = V_{\gamma}$ 
  - $\gamma := sup(\{\alpha_k \mid k \in \omega\})$
  - $x \in V_{\gamma} \iff x \in V(\alpha_k)$  for some  $k \in \omega \iff x \in X$ .

| Lemma<br>000000 | Reflection 1<br>000000000 | Reflection 2<br>000000 | Relevance to Forcing<br>00000000 |
|-----------------|---------------------------|------------------------|----------------------------------|
|                 |                           |                        |                                  |

#### Theorem (2)

- $X \subseteq M$  is trivial.
- $M \models ZFC^*$ . As in Theorem 1:
  - Every tuple of free variables in *M* appears at some *X<sub>k</sub>*
  - By construction  $X_{k+1}$  will contain a witness.
  - So we satisfy (2) of the Lemma.
  - Using the Lemma, we find  $M \preccurlyeq_{\varphi} V$  for every sentence  $\varphi$
- Transitivity of *M*: there is some  $\gamma$  such that  $M = V_{\gamma}$ 
  - $\gamma := sup(\{\alpha_k \mid k \in \omega\})$
  - $x \in V_{\gamma} \iff x \in V(\alpha_k)$  for some  $k \in \omega \iff$

| Lemma<br>000000 | Reflection 1<br>000000000 | Reflection 2<br>0000●0 | Relevance to Forcing |
|-----------------|---------------------------|------------------------|----------------------|
|                 |                           |                        |                      |

#### Theorem (2)

- $X \subseteq M$  is trivial.
- $M \models ZFC^*$ . As in Theorem 1:
  - Every tuple of free variables in *M* appears at some *X<sub>k</sub>*
  - By construction  $X_{k+1}$  will contain a witness.
  - So we satisfy (2) of the Lemma.
  - Using the Lemma, we find  $M \preccurlyeq_{\varphi} V$  for every sentence  $\varphi$
- Transitivity of *M*: there is some  $\gamma$  such that  $M = V_{\gamma}$ 
  - $\gamma := sup(\{\alpha_k \mid k \in \omega\})$
  - $x \in V_{\gamma} \iff x \in V(\alpha_k)$  for some  $k \in \omega \iff x \in Y$ .

| Lemma<br>000000 | Reflection 1<br>000000000 | Reflection 2<br>0000●0 | Relevance to Forcing |
|-----------------|---------------------------|------------------------|----------------------|
|                 |                           |                        |                      |

#### Theorem (2)

- $X \subseteq M$  is trivial.
- $M \models ZFC^*$ . As in Theorem 1:
  - Every tuple of free variables in *M* appears at some *X<sub>k</sub>*
  - By construction  $X_{k+1}$  will contain a witness.
  - So we satisfy (2) of the Lemma.
  - Using the Lemma, we find  $M \preccurlyeq_{\varphi} V$  for every sentence  $\varphi$
- Transitivity of *M*: there is some  $\gamma$  such that  $M = V_{\gamma}$ 
  - $\gamma := sup(\{\alpha_k \mid k \in \omega\})$
  - $x \in V_{\gamma} \iff x \in V(\alpha_k)$  for some  $k \in \omega \iff x \in X$ .

| <b>Lemma</b><br>000000 | Reflection 1<br>000000000 | Reflection 2<br>0000●0 | Relevance to Forcing<br>00000000 |
|------------------------|---------------------------|------------------------|----------------------------------|
|                        |                           |                        |                                  |

#### Theorem (2)

- $X \subseteq M$  is trivial.
- $M \models ZFC^*$ . As in Theorem 1:
  - Every tuple of free variables in *M* appears at some *X<sub>k</sub>*
  - By construction  $X_{k+1}$  will contain a witness.
  - So we satisfy (2) of the Lemma.
  - Using the Lemma, we find  $M \preccurlyeq_{\varphi} V$  for every sentence  $\varphi$
- Transitivity of *M*: there is some  $\gamma$  such that  $M = V_{\gamma}$ 
  - $\gamma := sup(\{\alpha_k \mid k \in \omega\})$
  - $x \in V_{\gamma} \iff x \in V(\alpha_k)$  for some  $k \in \omega \iff$ 
    - $x \in X_k \iff x \in M$

| <b>Lemma</b><br>000000 | Reflection 1<br>000000000 | Reflection 2<br>0000●0 | Relevance to Forcing<br>00000000 |
|------------------------|---------------------------|------------------------|----------------------------------|
|                        |                           |                        |                                  |

#### Theorem (2)

- $X \subseteq M$  is trivial.
- $M \models ZFC^*$ . As in Theorem 1:
  - Every tuple of free variables in *M* appears at some *X<sub>k</sub>*
  - By construction  $X_{k+1}$  will contain a witness.
  - So we satisfy (2) of the Lemma.
  - Using the Lemma, we find  $M \preccurlyeq_{\varphi} V$  for every sentence  $\varphi$
- Transitivity of *M*: there is some  $\gamma$  such that  $M = V_{\gamma}$ 
  - $\gamma := sup(\{\alpha_k \mid k \in \omega\})$
  - $x \in V_{\gamma} \iff x \in V(\alpha_k)$  for some  $k \in \omega \iff$ 
    - $x \in X_k \iff x \in M$

| <b>Lemma</b><br>000000 | Reflection 1<br>000000000 | Reflection 2<br>0000●0 | Relevance to Forcing<br>00000000 |
|------------------------|---------------------------|------------------------|----------------------------------|
|                        |                           |                        |                                  |

#### Theorem (2)

- $X \subseteq M$  is trivial.
- $M \models ZFC^*$ . As in Theorem 1:
  - Every tuple of free variables in *M* appears at some *X<sub>k</sub>*
  - By construction  $X_{k+1}$  will contain a witness.
  - So we satisfy (2) of the Lemma.
  - Using the Lemma, we find  $M \preccurlyeq_{\varphi} V$  for every sentence  $\varphi$
- Transitivity of *M*: there is some  $\gamma$  such that  $M = V_{\gamma}$ 
  - $\gamma := sup(\{\alpha_k \mid k \in \omega\})$
  - $x \in V_{\gamma} \iff x \in V(\alpha_k)$  for some  $k \in \omega \iff x \in X_k \iff x \in M$

| <b>Lemma</b><br>000000 | Reflection 1<br>000000000 | Reflection 2<br>0000●0 | Relevance to Forcing<br>00000000 |
|------------------------|---------------------------|------------------------|----------------------------------|
|                        |                           |                        |                                  |

#### Theorem (2)

For any X there is a transitive M such that  $X \subseteq M$  and  $M \models ZFC^*$ .

- $X \subseteq M$  is trivial.
- $M \models ZFC^*$ . As in Theorem 1:
  - Every tuple of free variables in *M* appears at some *X<sub>k</sub>*
  - By construction  $X_{k+1}$  will contain a witness.
  - So we satisfy (2) of the Lemma.
  - Using the Lemma, we find  $M \preccurlyeq_{\varphi} V$  for every sentence  $\varphi$
- Transitivity of *M*: there is some  $\gamma$  such that  $M = V_{\gamma}$

• 
$$\gamma := sup(\{\alpha_k \mid k \in \omega\})$$

•  $x \in V_{\gamma} \iff x \in V(\alpha_k)$  for some  $k \in \omega \iff x \in X_k \iff x \in M$ 

| Lemma<br>000000 | Reflection 1<br>000000000 | Reflection 2<br>0000●0 | Relevance to Forcing |
|-----------------|---------------------------|------------------------|----------------------|
|                 |                           |                        |                      |

#### Theorem (2)

- $X \subseteq M$  is trivial.
- $M \models ZFC^*$ . As in Theorem 1:
  - Every tuple of free variables in *M* appears at some *X<sub>k</sub>*
  - By construction  $X_{k+1}$  will contain a witness.
  - So we satisfy (2) of the Lemma.
  - Using the Lemma, we find  $M \preccurlyeq_{\varphi} V$  for every sentence  $\varphi$
- Transitivity of *M*: there is some  $\gamma$  such that  $M = V_{\gamma}$

• 
$$\gamma := sup(\{\alpha_k \mid k \in \omega\})$$

• 
$$x \in V_{\gamma} \iff x \in V(\alpha_k)$$
 for some  $k \in \omega \iff x \in X_k \iff x \in M$ 



# About the size of M

$$M = V_{\gamma}$$
 for some  $\gamma := sup(\{\alpha_k \mid k \in \omega\})$ 

At each recursive step,  $\alpha_{k+1} > \alpha_k$ . So *M* can grow arbitrarily big. However *M* will be a set in *V* as it is bounded under  $V_{\gamma}$ .

| Lemma<br>000000 | Reflection 1<br>000000000 | Reflection 3<br>●0000 | Relevance to Forcing |
|-----------------|---------------------------|-----------------------|----------------------|
|                 |                           |                       |                      |

# Theorem (3)

If X is transitive, then there is a transitive M such that  $X \subseteq M$ ,  $M \models ZFC^*$ , and  $|M| = max(\aleph_0, |X|)$ .

| Lemma<br>000000 | Reflection 1<br>00000000 | Reflection 3<br>●0000 | Relevance to Forcing |
|-----------------|--------------------------|-----------------------|----------------------|
|                 |                          |                       |                      |

## Theorem (3)

If X is transitive, then there is a transitive M such that  $X \subseteq M$ ,  $M \models ZFC^*$ , and  $|M| = max(\aleph_0, |X|)$ .

Proof idea: use Mostowski collapsing function.

 Introduction
 Lemma
 Reflection 1
 Reflection 2
 Reflection 3
 Relevance to Forcing

 0
 000000
 000000
 000000
 00000
 000000
 00000000

# Mostowski Collapse - Recap

Let *C* be a class. Then there is a function  $\pi$  (subscripts omitted) mapping *C* onto a transitive class *T* such that  $(C, \in) \cong_{\pi} (T, \in)$ .  $\pi$  is called the Mostowski Collapsing function, and is defined by  $\pi(x) = \{\pi(z) \mid z \in x \cap C\}$  for all  $x \in C$ .

|  |   |  | Reflection 3<br>00000 | Relevance to Forcing |
|--|---|--|-----------------------|----------------------|
|  |   |  |                       |                      |
|  | _ |  |                       |                      |

#### Theorem (3)

If X is transitive, then there is a transitive M such that  $X \subseteq M$ ,  $M \models ZFC^*$ , and  $|M| = max(\aleph_0, |X|)$ .

| Lemma<br>000000 | Reflection 1<br>000000000 | Reflection 3<br>00●00 | Relevance to Forcing<br>00000000 |
|-----------------|---------------------------|-----------------------|----------------------------------|
|                 |                           |                       |                                  |
|                 |                           |                       |                                  |
|                 |                           |                       |                                  |

#### Theorem (3)

If X is transitive, then there is a transitive M such that  $X \subseteq M$ ,  $M \models ZFC^*$ , and  $|M| = max(\aleph_0, |X|)$ .

|  | Lemma<br>000000 | Reflection 1<br>000000000 | Reflection 3<br>00●00 | Relevance to Forcing |
|--|-----------------|---------------------------|-----------------------|----------------------|
|  |                 |                           |                       |                      |
|  |                 |                           |                       |                      |

#### Theorem (3)

If X is transitive, then there is a transitive M such that  $X \subseteq M$ ,  $M \models ZFC^*$ , and  $|M| = max(\aleph_0, |X|)$ .

| Lemma<br>000000 | Reflection 1<br>000000000 | Reflection 3<br>00●00 | Relevance to Forcing<br>00000000 |
|-----------------|---------------------------|-----------------------|----------------------------------|
|                 |                           |                       |                                  |
|                 |                           |                       |                                  |
|                 |                           |                       |                                  |

#### Theorem (3)

If X is transitive, then there is a transitive M such that  $X \subseteq M$ ,  $M \models ZFC^*$ , and  $|M| = max(\aleph_0, |X|)$ .

|       | Lemma  | Reflection 1 | Reflection 2 | Reflection 3 | Relevance to Forcing |
|-------|--------|--------------|--------------|--------------|----------------------|
|       | 000000 | 000000000    | 000000       | 000●0        | 000000000            |
| Proof |        |              |              |              |                      |

### $X\subseteq \pi(M)$

## By assumption, X is transitive.

Suppose for contradiction that there is  $x \in X$  such that  $\pi(x) \neq x$ . Then there must be an  $\in$ -least such x. For this least x, there must be  $y \in x$  with  $y \notin \pi(x)$ . But  $y \in x \in X \implies y \in X \implies y \in M$ , and therefore  $\pi(y) \in \pi(x)$ .  $\implies y \neq \pi(y)$ , contradicting the minimality of x.

|       | Lemma  | Reflection 1 | Reflection 2 | Reflection 3 | Relevance to Forcing |
|-------|--------|--------------|--------------|--------------|----------------------|
|       | 000000 | 000000000    | 000000       | 000●0        | 000000000            |
| Proof |        |              |              |              |                      |

# $X \subseteq \pi(M)$

By assumption, X is transitive.

Suppose for contradiction that there is  $x \in X$  such that  $\pi(x) \neq x$ . Then there must be an  $\in$ -least such x.

For this least x, there must be  $y \in x$  with  $y \notin \pi(x)$ . But

 $y \in x \in X \implies y \in X \implies y \in M$ , and therefore  $\pi(y) \in \pi(x)$ .

 $\implies y \neq \pi(y)$ , contradicting the minimality of x.

|       | Lemma  | Reflection 1 | Reflection 2 | Reflection 3 | Relevance to Forcing |
|-------|--------|--------------|--------------|--------------|----------------------|
|       | 000000 | 000000000    | 000000       | 000●0        | 000000000            |
| Proof |        |              |              |              |                      |

 $X \subseteq \pi(M)$ 

By assumption, X is transitive.

Suppose for contradiction that there is  $x \in X$  such that  $\pi(x) \neq x$ . Then there must be an  $\in$ -least such x.

For this least x, there must be  $y \in x$  with  $y \notin \pi(x)$ . But

 $y \in x \in X \implies y \in X \implies y \in M$ , and therefore  $\pi(y) \in \pi(x)$ .

 $\implies y \neq \pi(y)$ , contradicting the minimality of x.

|       | Lemma  | Reflection 1 | Reflection 2 | Reflection 3 | Relevance to Forcing |
|-------|--------|--------------|--------------|--------------|----------------------|
|       | 000000 | 000000000    | 000000       | 000●0        | 000000000            |
| Proof |        |              |              |              |                      |

### $X \subseteq \pi(M)$

By assumption, X is transitive.

Suppose for contradiction that there is  $x \in X$  such that  $\pi(x) \neq x$ . Then there must be an  $\in$ -least such x.

For this least x, there must be  $y \in x$  with  $y \notin \pi(x)$ . But

 $y \in x \in X \implies y \in X \implies y \in M$ , and therefore  $\pi(y) \in \pi(x)$ .

 $\implies y \neq \pi(y)$ , contradicting the minimality of x.

|      | Lemma<br>000000 | Reflection 1<br>000000000 | Reflection 3<br>0000● | Relevance to Forcing |
|------|-----------------|---------------------------|-----------------------|----------------------|
|      |                 |                           |                       |                      |
| Dura |                 |                           |                       |                      |

#### $X \subseteq \pi(M)$

We have  $\pi(x) = x$  for each  $x \in X$ . If  $x \in X$  then  $x \in M$  and therefore  $x = \pi(x) \in \pi(M)$ , so every member of X is also a member of  $\pi(M)$ ; i.e.  $X \subseteq \pi(M)$ . This completes the proof.

In particular, we can start with  $X = \emptyset$ . Then X is transitive, so we can obtain a transitive model of  $ZFC^*$  with cardinality  $\aleph_0$ .



# Reflection and Independence of $\neg CH$

We show how the Reflection Theorem can be combined with the forcing argument to give a proof that  $\neg$ CH is relatively consistent with *ZFC*.

| Lemma<br>000000 | Reflection 1<br>00000000 |  | Relevance to Forcing<br>0●0000000 |
|-----------------|--------------------------|--|-----------------------------------|
|                 |                          |  |                                   |

Forcing allows us to turn a countable transitive model of ZFC into a model of ZFC +  $\neg$ CH. But does this assure us that  $\neg$ CH is relatively consistent?

The Reflection Theorem did not give us a countable transitive model for all of ZFC, only for a finite subset of the axioms.

How do we solve this problem?

| Lemma<br>000000 | Reflection 1<br>000000000 |  | Relevance to Forcing<br>00000000 |
|-----------------|---------------------------|--|----------------------------------|
|                 |                           |  |                                  |
|                 |                           |  |                                  |

# A trick

Extend the language of set theory  $\mathcal{L}$  to a new language,  $\mathcal{L}^+$ , containing two new constant symbols, C and F.

Define  $\Sigma$  to be a set of sentences in  $\mathcal{L}^+$ , containing each ZFC axiom, together with the statements that C is a transitive set and F is a bijection from C into  $\omega$ , and the relativisation of each ZFC axiom to C.

| Lemma<br>000000 | Reflection 1<br>000000000 |  | Relevance to Forcing |
|-----------------|---------------------------|--|----------------------|
|                 |                           |  |                      |

# We claim that $\Sigma$ is a conservative extension of ZFC, meaning if $\varphi$ is a sentence of $\mathcal{L}$ and $\Sigma \vdash \varphi$ , then ZFC $\vdash \varphi$ .

To see this, assume  $\Sigma \vdash \varphi$  with  $\varphi \in \mathcal{L}$ . Since proofs are finite, there must be a formula  $\rho(x, y)$  such that  $ZFC \cup \{\rho(C, F)\} \vdash \varphi$ . ( $\rho(C, F)$  will say that *C* is transitive, *F* bijects  $\omega$  to *C*, and asserts some finite conjunction of *ZFC* axioms relativised to *C*).

| Lemma<br>000000 | Reflection 1<br>000000000 |  | Relevance to Forcing |
|-----------------|---------------------------|--|----------------------|
|                 |                           |  |                      |

We claim that  $\Sigma$  is a conservative extension of ZFC, meaning if  $\varphi$  is a sentence of  $\mathcal{L}$  and  $\Sigma \vdash \varphi$ , then ZFC  $\vdash \varphi$ .

To see this, assume  $\Sigma \vdash \varphi$  with  $\varphi \in \mathcal{L}$ . Since proofs are finite, there must be a formula  $\rho(x, y)$  such that  $ZFC \cup \{\rho(C, F)\} \vdash \varphi$ . ( $\rho(C, F)$  will say that C is transitive, F bijects  $\omega$  to C, and asserts some finite conjunction of ZFC axioms relativised to C).

| Lemma<br>000000 | Reflection 1<br>00000000 |  | Relevance to Forcing<br>0000●0000 |
|-----------------|--------------------------|--|-----------------------------------|
|                 |                          |  |                                   |

For every  $\varphi \in \mathcal{L}$ , if  $\Sigma \vdash \varphi$  then  $ZFC \vdash \varphi$ .

| Lemma<br>000000 | Reflection 1<br>000000000 |  | Relevance to Forcing<br>0000●0000 |
|-----------------|---------------------------|--|-----------------------------------|
|                 |                           |  |                                   |

For every  $\varphi \in \mathcal{L}$ , if  $\Sigma \vdash \varphi$  then  $ZFC \vdash \varphi$ .

| Lemma<br>000000 | Reflection 1<br>000000000 |  | Relevance to Forcing<br>0000●0000 |
|-----------------|---------------------------|--|-----------------------------------|
|                 |                           |  |                                   |

For every  $\varphi \in \mathcal{L}$ , if  $\Sigma \vdash \varphi$  then  $ZFC \vdash \varphi$ .

| Lemma<br>000000 | Reflection 1<br>000000000 |  | Relevance to Forcing<br>0000●0000 |
|-----------------|---------------------------|--|-----------------------------------|
|                 |                           |  |                                   |

For every  $\varphi \in \mathcal{L}$ , if  $\Sigma \vdash \varphi$  then  $ZFC \vdash \varphi$ .



# Completing the argument

This is very good news, because  $\Sigma$  has all we need to carry out the forcing argument - it asserts that we have a countable transitive model for *ZFC*.

Suppose we want to prove that some specific value -  $\aleph_7$ , say - is consistent for  $2^{\aleph_0}$ . The first step is to turn our *C* into a ctm that definitely has  $\aleph_1$ 

many reals.



# Completing the argument

Define M := L(o(C)) and  $\mathbb{P} := Fn((\omega_7)^M \times \omega, 2)$ . Then define a *G* which is  $\mathbb{P}$ -generic over *M*.

One can then prove  $(\varphi)^{M[G]}$  for each  $\varphi$  of ZFC, and also  $(2^{\aleph_0} = \aleph_7)^{M[G]}$ .



# Completing the argument

Finally, if  $ZFC + (2^{\aleph_0} = \aleph_7) \vdash 0 = 1$ , then we will have  $(0 = 1)^{M[g]}$ , and hence by absoluteness, 0 = 1; that is,  $\Sigma$  would prove 0 = 1. But since  $\Sigma$  is a conservative extension of ZFC, it would follow that ZFC proves 0 = 1. So we have shown that if  $ZFC + (2^{\aleph_0} = \aleph_7) \vdash 0 = 1$ , then  $ZFC \vdash 0 = 1$ .

| Lemma<br>000000 | Reflection 1<br>000000000 |  | Relevance to Forcing<br>0000000● |
|-----------------|---------------------------|--|----------------------------------|
|                 |                           |  |                                  |

# Conclusion

- **1** Lemma: a Condition for Absoluteness
- **2** Theorem 1: a countable non-transitive model
- **3** Theorem 2: an (uncountable) transitive model
- **4** Theorem 3: a countable transitive model
- **G** Relevance to Forcing

| Lemma<br>000000 | Reflection 1<br>00000000 |  | Relevance to Forcing<br>0000000● |
|-----------------|--------------------------|--|----------------------------------|
|                 |                          |  |                                  |

# Conclusion

- **1** Lemma: a Condition for Absoluteness
- **2** Theorem 1: a countable non-transitive model
- **3** Theorem 2: an (uncountable) transitive model
- **4** Theorem 3: a countable transitive model
- B Relevance to Forcing

Thank you!