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The Lemma - a Condition for Absoluteness

Lemma (II.5.2 in Kunen 2011 and II.7.2 in Kunen 1980)

For any finite subformula-closed list of formulae ϕ1, . . . , ϕn, and
any two classes ∅ ⊆ M ⊆ N, the following are equivalent:

1
∧

i≤n M 4ϕi N
Equivalently: ϕ1, . . . , ϕn are absolute for M,N

2 For each existential formula ϕi of the form ∃xϕj(x ,
−→y ), the

following holds:

∀−→m ∈ M
(
∃x ∈ N : ϕN

i (x ,−→m)→ ∃x ∈ M : ϕN
j (x ,−→m)

)

Note: subformula-closed lists, absoluteness for two classes, and
relativisation of a formula.
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Definition (Subformula-closed list)

A list of formulae is subformula closed iff

1 The list contains all subformulae of each formula

2 (!) No formula uses a universal quantifier (∀)

Note: any countable list can be closed under subformulae:

1 Replace ∀ by ¬∃¬
2 Add finitely many subformulae for each formula

(!) Any finite list closed under subformulae will still be finite.
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Definition (Relative formula ϕM)

ϕM is the relativisation of some formula ϕ to a model M.

1 ‘Restrict’ all quantifiers: ‘∃x ’→ ‘∃x ∈ M’

Definition (Absoluteness for M ,N)

Let M ⊆ N be classes. A formula ϕ with x1, . . . , xn free variables
is absolute for M,N iff

∀x1, . . . , xn ∈ M
(
ϕM(x1, . . . , xn)↔ ϕN(x1, . . . , xn)

)
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Lemma

1 ϕ1, . . . , ϕn are absolute for M,N

2 For all ∃xϕj (x ,
−→y ): ∀−→m ∈ M

(
∃x ∈ N : ϕN

j (x ,−→m)→ ∃x ∈ M : ϕN
j (x ,−→m)

)

Proof

• Let M and N be classes such that M ⊆ N

• Let ϕ1, . . . , ϕn be a subformula-closed list

(1) → (2)

• No existential formula: then (2) holds vacuously.

• Sup. ϕi = ∃xϕj(y1, . . . , yn). Assume
∃x ∈ NϕN

j (x , y1, . . . , yn).

• Use absoluteness of ϕi and its subformula ϕj :
• absoluteness of ϕi gives ∃x ∈ MϕM

j (x , y1, . . . , yn)
• absoluteness of ϕj gives ∃x ∈ MϕN

j (x , y1, . . . , yn)
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(
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(2) → (1): Induction on the structure of ϕi

(atom) • Relativisation only modifies quantifiers
• Atom contains no quantifiers
• ϕM

i = ϕi = ϕN
i

(∧) Induction hypothesis on left and right conjunct

(¬) Like conjunction
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Lemma
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2 For all ∃xϕj (x ,
−→y ): ∀−→m ∈ M

(
∃x ∈ N : ϕN

j (x ,−→m)→ ∃x ∈ M : ϕN
j (x ,−→m)

)

(2) → (1): Induction step for ∃

Let ϕi = ∃xϕj(x , y1, . . . , yn). Then

ϕM
i (y1, . . . , yn)↔ ∃x ∈ MϕM

j (x , y1, . . . , yn) (Relativisation of ϕi )

↔ ∃x ∈ MϕN
j (x , y1, . . . , yn) (IH: absoluteness of ϕj)

↔ ∃x ∈ NϕN
j (x , y1, . . . , yn) (← Application of (2))

(→ M ⊆ N)

↔ ϕN
i (y1, . . . , yn) (Relativisation of ϕi )

So we find ϕM
i (y1, . . . , yn)↔ ϕN

i (y1, . . . , yn) (absolute for
M,N).
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Theorem 1

Model 1: not (always) transitive, but countable

Theorem (1)

Let ZFC ∗ be a finite fragment of ZFC . For any X there is M such
that X ⊆ M, M |= ZFC ∗, and |M| ≤ max(ℵ0, |X |).

Proof idea. Ensure that condition (2) of the Lemma is satisfied, by
adding witnesses in countably many stages.
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Proof - Preliminaries

Let Φ := {ϕ1, . . . , ϕn} be the result of taking ZFC ∗, replacing all
formulae of form ∀vϕ with ¬∃v¬ϕ, and closing under subformulae.
Let X0 := X . Let I := {i | ϕi ∈ Φ is an existential formula}, and
assume that each existential ϕi (

−→x ) is of the form ∃yϕj(
−→x , y).
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Proof - Ensuring Witnesses

For each i ∈ I , define a function fi satisfying:

• For every tuple −→p of sets, if ϕi holds of −→p , then ϕj holds of
(−→p , fi (−→p )).

(Intuitively: whenever an existential formula holds of a tuple, fi is a
function which finds a witness for that formula).
We need the Axiom of Choice to guarantee that these functions
exist!
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Proof

Now, for all k ∈ ω, define recursively:

• Fi ,k := Ran(fi � ℘(Xk))

• Fk :=
⋃

i∈I Fi ,k (all the witnesses we need for Xk)

• Xk+1 := Xk ∪ Fk .

Then set M :=
⋃

k∈ω Xk .

We’ll now show that M satisfies each of the desired conditions.
We have X (= X0) ⊆ M by definition of M.

Details on Reflection Theorems Tibo Rushbrooke & Wouter Smit
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M is a model of ZFC∗

We show that each ϕ ∈ Φ is absolute for M, implying that
M |= ZFC ∗.
Fix an arbitrary existential formula ϕi (x1, . . . , xn). Let
−→p := {p1, . . . , pn} be arbitrary members of M such that
ϕi [p1, . . . , pn] holds (in V ).
Every member of −→p appears in some Xk , hence there is some Xm

(m the maximum of these ks) containing every member of −→p .
Since ϕi [p1, . . . , pn] holds, there is q = fi (p1, . . . , pn) ∈ Xm+1 such
that ϕj [p1, . . . , pn, q] holds. Xm+1 ⊆ M, hence q ∈ M.
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M is a model of ZFC∗

Since ϕi and −→p were arbitrary, we have shown that for each
existential formula ϕi , the following holds:
∀−→a ∈ M[ϕV

i (−→a )→ ∃b ∈ MψV
i (−→a , b)].

By the Lemma, it follows that for every formula of our list and in
particular every sentence ϕz of ZFC ∗, M 4ϕz V . But every axiom
of ZFC holds in V , and therefore holds in M as well.
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|M| ≤ max(|X |,ℵ0).

To see that |M| ≤ max(|X |,ℵ0), distinguish two cases: X is finite,
or X is infinite.
Case 1: X finite. If Xk is finite for any fixed k then it is clear that
Fi ,k ,Fk will also be finite. Hence, Xk+1 = Xk ∪ Fk will be finite. It
follows by induction that Xm is finite for every natural number m.
M is therefore a countable union of finite sets, and must therefore
be (at most) countable; so |M| ≤ max(|X |,ℵ0).
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|M| ≤ max(|X |,ℵ0).

Case 2: X infinite. Let κ denote |X |, with κ some infinite cardinal.
We will show by induction that |Xm| = κ for every natural number
m. The base case of m = 0 is trivial.
Induction step: assume |Xk | = κ for some fixed k . For any natural
number r , the set of r -tuples ⊆ Xk will have the same cardinality
as Xk by Hessenberg’s theorem. Then |Fi ,k | is at most |Xk | = κ,
and since Fk is a finite union of such sets, |Fk | ≤ κ.
Now Xk+1 = Xk ∪ Fk and must therefore have cardinality κ. This
completes the induction step, so |Xn| = κ for all n.
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Introduction Lemma Reflection 1 Reflection 2 Reflection 3 Relevance to Forcing

|M| ≤ max(|X |,ℵ0).

M =
⋃

k∈ω Xk is a countable union of sets of cardinality κ, and
since κ ≥ ℵ0, it follows that |M| = κ as well. Hence again
|M| ≤ max(|X |,ℵ0).

So we’re done!
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An (uncountable) transitive model

Model 1: a countable non-transitive model of ZFC ∗ from X

Model 2: an (uncountable) transitive model of ZFC ∗ from X

Theorem (2)

For any X there is a transitive M such that
X ⊆ M and M |= ZFC ∗.

Proof idea: modify the construction used for the first theorem.

• Disregard size

• Ensure transitivity at each step

Details on Reflection Theorems Tibo Rushbrooke & Wouter Smit
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Proof - Preliminaries

Assumptions

Let Φ := {ϕ1, . . . , ϕn} be subformula-closed
X0 := Vδ for least δ such that Vδ ⊇ X

Note: Vδ is transitive by definition
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Proof - Ensuring Witnesses

We again ensure that we have the necessary witnesses.

Strategy:

• find rank α of the witness, rather than witness itself

• Include entire Vα to ensure transitivity
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Proof - Recursive Construction

Definition (‘Rank’ Witness Function)

For some existential formula ϕi = ∃yϕj(
−→x , y), let

f ri (−→p ) =

{
least α such that ∃y with α = rk(y) and ϕj(

−→p , y)
0 if there is no such y

Recursive step. For all k ∈ ω:

Let Fi ,k := Ran(f ri � ℘(Xk))

Let αk+1 :=
⋃

i∈I
Fi ,k (α0 := δ)

Let Xk+1 := V (αk+1)

The model: Let M :=
⋃

k∈ω Xk .

Details on Reflection Theorems Tibo Rushbrooke & Wouter Smit
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Proof - Validation

Theorem (2)

For any X there is a transitive M such that X ⊆ M and M |= ZFC∗.

• X ⊆ M is trivial.
• M |= ZFC ∗. As in Theorem 1:

• Every tuple of free variables in M appears at some Xk

• By construction Xk+1 will contain a witness.
• So we satisfy (2) of the Lemma.
• Using the Lemma, we find M 4ϕ V for every sentence ϕ

• Transitivity of M: there is some γ such that M = Vγ
• γ := sup({αk | k ∈ ω})
• x ∈ Vγ ⇐⇒ x ∈ V (αk) for some k ∈ ω ⇐⇒

x ∈ Xk ⇐⇒ x ∈ M

Details on Reflection Theorems Tibo Rushbrooke & Wouter Smit
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About the size of M

M = Vγ for some γ := sup({αk | k ∈ ω})

At each recursive step, αk+1 > αk . So M can grow arbitrarily big.
However M will be a set in V as it is bounded under Vγ .
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Theorem (3)

If X is transitive, then there is a transitive M such that
X ⊆ M, M |= ZFC ∗, and |M| = max(ℵ0, |X |).

Proof idea: use Mostowski collapsing function.
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Mostowski Collapse - Recap

Let C be a class. Then there is a function π (subscripts omitted)
mapping C onto a transitive class T such that (C ,∈) ∼=π (T ,∈).
π is called the Mostowski Collapsing function, and is defined by
π(x) = {π(z) | z ∈ x ∩ C} for all x ∈ C .
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Proof

Theorem (3)

If X is transitive, then there is a transitive M such that
X ⊆ M, M |= ZFC∗, and |M| = max(ℵ0, |X |).

Start with X , then use method from theorem 1 to obtain an M
with X ⊆ M, M |= ZFC ∗, and |M| = max(ℵ0, |X |).
Let π(M) be the image of M under its Mostowski collapsing
function. π(M) is transitive by the definition of π.
Since π(M) is isomorphic to M, it will satisfy precisely the same
formulas as M and is therefore a model of ZFC ∗.
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Proof

X ⊆ π(M)

By assumption, X is transitive.
Suppose for contradiction that there is x ∈ X such that π(x) 6= x .
Then there must be an ∈-least such x .
For this least x , there must be y ∈ x with y /∈ π(x). But
y ∈ x ∈ X =⇒ y ∈ X =⇒ y ∈ M, and therefore π(y) ∈ π(x).
=⇒ y 6= π(y), contradicting the minimality of x .
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Proof

X ⊆ π(M)

We have π(x) = x for each x ∈ X .
If x ∈ X then x ∈ M and therefore x = π(x) ∈ π(M), so every
member of X is also a member of π(M); i.e. X ⊆ π(M). This
completes the proof.

In particular, we can start with X = ∅. Then X is transitive, so we
can obtain a transitive model of ZFC ∗ with cardinality ℵ0.
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Reflection and Independence of ¬CH

We show how the Reflection Theorem can be combined with the
forcing argument to give a proof that ¬CH is relatively consistent
with ZFC .
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Forcing allows us to turn a countable transitive model of ZFC into
a model of ZFC + ¬CH. But does this assure us that ¬CH is
relatively consistent?
The Reflection Theorem did not give us a countable transitive
model for all of ZFC , only for a finite subset of the axioms.

How do we solve this problem?
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A trick

Extend the language of set theory L to a new language, L+,
containing two new constant symbols, C and F .

Define Σ to be a set of sentences in L+, containing each ZFC
axiom, together with the statements that C is a transitive set and
F is a bijection from C into ω, and the relativisation of each ZFC
axiom to C .
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We claim that Σ is a conservative extension of ZFC , meaning if ϕ
is a sentence of L and Σ ` ϕ, then ZFC ` ϕ.

To see this, assume Σ ` ϕ with ϕ ∈ L. Since proofs are finite,
there must be a formula ρ(x , y) such that ZFC ∪ {ρ(C ,F )} ` ϕ.
(ρ(C ,F ) will say that C is transitive, F bijects ω to C , and asserts
some finite conjunction of ZFC axioms relativised to C ).
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Lemma

For every ϕ ∈ L, if Σ ` ϕ then ZFC ` ϕ.

Using the Deduction theorem: ZFC ` ρ(C ,F )→ ϕ. Then by the
arbitrariness of C ,F , can infer ZFC ` ∃x , y ρ(x , y)→ ϕ.
But Reflection 3 tells us that ZFC actually does prove
∃x , y ρ(x , y)!
Thus, we also have ZFC ` ϕ.
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Completing the argument

This is very good news, because Σ has all we need to carry out the
forcing argument - it asserts that we have a countable transitive
model for ZFC .

Suppose we want to prove that some specific value - ℵ7, say - is
consistent for 2ℵ0 .
The first step is to turn our C into a ctm that definitely has ℵ1

many reals.
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Completing the argument

Define M := L(o(C )) and P := Fn((ω7)M × ω, 2). Then define a
G which is P-generic over M.

One can then prove (ϕ)M[G ] for each ϕ of ZFC , and also
(2ℵ0 = ℵ7)M[G ].
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Completing the argument

Finally, if ZFC + (2ℵ0 = ℵ7) ` 0 = 1, then we will have
(0 = 1)M[g ], and hence by absoluteness, 0 = 1; that is, Σ would
prove 0 = 1.
But since Σ is a conservative extension of ZFC , it would follow
that ZFC proves 0 = 1.
So we have shown that if ZFC + (2ℵ0 = ℵ7) ` 0 = 1, then
ZFC ` 0 = 1.
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Conclusion

1 Lemma: a Condition for Absoluteness

2 Theorem 1: a countable non-transitive model

3 Theorem 2: an (uncountable) transitive model

4 Theorem 3: a countable transitive model

5 Relevance to Forcing

Thank you!
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