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Introduction
°

Overview

Reflection: the Lowenheim-Skolem of Set Theory.
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Introduction
°

Overview

Reflection: the Lowenheim-Skolem of Set Theory.

® Lemma: a Condition for Absoluteness

® Theorem 1: a countable non-transitive model
©® Theorem 2: an (uncountable) transitive model
O Theorem 3: a countable transitive model

©® Relevance to Forcing
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Introduction Lemma

®00000

The Lemma - a Condition for Absoluteness

Lemma (11.5.2 in Kunen 2011 and 11.7.2 in Kunen 1980)

For any finite subformula-closed list of formulae v1, ..., v, and
any two classes ) C M C N, the following are equivalent:

o /\ign M -\<90i N
Equivalently: o1, ..., p, are absolute for M, N

@® For each existential formula p; of the form Ixp;(x, 7) the
following holds:

v e M(Elxe N:oNx, M) —3x e M:cpjl-v(x,ﬁ))
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Introduction Lemma

®00000

The Lemma - a Condition for Absoluteness

Lemma (11.5.2 in Kunen 2011 and 11.7.2 in Kunen 1980)

For any finite subformula-closed list of formulae v1, ..., v, and
any two classes ) C M C N, the following are equivalent:

o /\ign M -\<90i N
Equivalently: o1, ..., p, are absolute for M, N

@® For each existential formula p; of the form Ixp;(x, 7) the
following holds:

v e M(Elxe N:oNx, M) —3x e M:cpjl-v(x,ﬁ))

Note: subformula-closed lists, absoluteness for two classes, and
relativisation of a formula.
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Lemma
[o] lelele]e]

Definition (Subformula-closed list)

A list of formulae is subformula closed iff
® The list contains all subformulae of each formula

® (!) No formula uses a universal quantifier (V)
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Lemma
[o] lelele]e]

Definition (Subformula-closed list)

A list of formulae is subformula closed iff
® The list contains all subformulae of each formula

® (!) No formula uses a universal quantifier (V)

Note: any countable list can be closed under subformulae:
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Lemma
[o] lelele]e]

Definition (Subformula-closed list)

A list of formulae is subformula closed iff
® The list contains all subformulae of each formula

® (!) No formula uses a universal quantifier (V)

Note: any countable list can be closed under subformulae:
@® Replace V by —3—
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Lemma
[o] lelele]e]

Definition (Subformula-closed list)

A list of formulae is subformula closed iff
® The list contains all subformulae of each formula

® (!) No formula uses a universal quantifier (V)

Note: any countable list can be closed under subformulae:
@® Replace V by —3—
® Add finitely many subformulae for each formula
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Lemma
[o] lelele]e]

Definition (Subformula-closed list)

A list of formulae is subformula closed iff
® The list contains all subformulae of each formula

® (!) No formula uses a universal quantifier (V)

Note: any countable list can be closed under subformulae:
@® Replace V by —3—
® Add finitely many subformulae for each formula
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Lemma
[o] lelele]e]

Definition (Subformula-closed list)

A list of formulae is subformula closed iff
® The list contains all subformulae of each formula

® (!) No formula uses a universal quantifier (V)

Note: any countable list can be closed under subformulae:
@® Replace V by —3—
® Add finitely many subformulae for each formula

(') Any finite list closed under subformulae will still be finite.
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Lemma
[e]e] lele]e]

Definition (Relative formula M)

©M is the relativisation of some formula ¢ to a model M.

@ 'Restrict’ all quantifiers: ‘Ax" — ‘Ax € M’
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Lemma
Definition (Relative formula ¢

©M is the relativisation of some formula ¢ to a model M.
@ 'Restrict’ all quantifiers: ‘Ax" — ‘Ax € M’

Definition (Absoluteness for M, )

Let M C N be classes. A formula ¢ with xq, ..., x, free variables
is absolute for M, N iff

VXx1,...,Xn € I\/I(cpM(xl,...,x,,) <—>g0N(X1,...,x,,)>
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Lemma
[e]e]e] le]e]

Lemma

@ o1....,pn are absolute for M, N
@ For all Ixypj(x, Y): Ve M(EIX eN: gojN(x, mW) = 3IxeM: Lp}V(X, ﬁ))

Proof
® et M and N be classes such that M C N
® Let ¢1,...,p, be a subformula-closed list
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Lemma
[e]e]e] le]e]

Lemma

@ o1....,pn are absolute for M, N
@ For all Ixypj(x, Y): Ve M(EIX eN: gojN(x, mW) = 3IxeM: Lp}V(X, ﬁ))

Proof
® et M and N be classes such that M C N
® Let ¢1,...,p, be a subformula-closed list

(1) — (2
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Lemma
[e]e]e] le]e]

Lemma

@ o1....,pn are absolute for M, N
@ For all Ixypj(x, Y): Ve M(EIX eN: gojN(x, mW) = 3IxeM: Lp}V(X, ﬁ))

Proof
® et M and N be classes such that M C N
® Let ¢1,...,p, be a subformula-closed list

(1) — (2

¢ No existential formula: then (2) holds vacuously.
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Lemma
[e]e]e] le]e]

Lemma

@ o1....,pn are absolute for M, N
@ For all Ixypj(x, Y): Ve M(EIX eN: gojN(x, mW) = 3IxeM: Lp}V(X, ﬁ))

Proof
® et M and N be classes such that M C N
® Let ¢1,...,p, be a subformula-closed list

(1) — (2
¢ No existential formula: then (2) holds vacuously.

® Sup. ¢; = 3Ixpj(y1,-.-,¥n). Assume
dx € NSDJN(Xaylv"' 7.yn)'
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Lemma
[e]e]e] le]e]

Lemma

@ o1....,pn are absolute for M, N
@ For all Ixypj(x, Y): Ve M(EIX eN: gojN(x, mW) = 3IxeM: Lp}V(X, ﬁ))

Proof
® et M and N be classes such that M C N
® Let ¢1,...,p, be a subformula-closed list
(1) - (2)

¢ No existential formula: then (2) holds vacuously.

® Sup. ¢; = 3Ixpj(y1,-.-,¥n). Assume
dx € NSDJN(Xaylv s 7.yn)'
® Use absoluteness of ¢; and its subformula ¢;:
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Lemma
[e]e]e] le]e]

Lemma

@ o1....,pn are absolute for M, N
@ For all Ixypj(x, Y): Ve M(EIX eN: gojN(x, mW) = 3IxeM: Lp}V(X, ﬁ))

Proof
® et M and N be classes such that M C N
® Let ¢1,...,p, be a subformula-closed list
(1) - (2)

¢ No existential formula: then (2) holds vacuously.
® Sup. ;i = 3xP;(y1,...,¥n). Assume
dx € Ngojl-v(x,yl, ey Yn)-
® Use absoluteness of ¢; and its subformula ¢;:
® absoluteness of ; gives Ix € Mo (x,y1, ..., ¥n)
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Lemma
[e]e]e] le]e]

Lemma

@ o1....,pn are absolute for M, N
@ For all Ixypj(x, Y): Ve M(EIX eN: gojN(x, mW) = 3IxeM: Lp}V(X, ﬁ))

Proof
® et M and N be classes such that M C N
® let p1,...,p, be a subformula-closed list
(1) - (2)

¢ No existential formula: then (2) holds vacuously.

® Sup. ;i = 3xP;(y1,...,¥n). Assume
dx € Ngojl-v(x,yl, ey Yn)-
® Use absoluteness of ¢; and its subformula ¢;:
® absoluteness of ; gives Ix € Mo (x,y1, ..., ¥n)
® absoluteness of ; gives Ix € Mcpj’-v(x,yl, cesYn) O]
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Lemma
000080

@ ¢1,...,pn are absolute for M, N
@ Forall ngoj(x,V): = M(HX eN: go;\’(x, W) —»3IxeM: Lp;\’(x, ﬁ))

(2) — (1): Induction on the structure of ¢;
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Lemma
000080

@ ¢1,...,pn are absolute for M, N
@ Forall ngoj(x,V): = M(HX eN: go;\’(x, W) —»3IxeM: Lp;\’(x, ﬁ))

(2) — (1): Induction on the structure of ¢;

(atom) @ Relativisation only modifies quantifiers
® Atom contains no quantifiers

o oM ==V
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Lemma
000080

@ ¢1,...,pn are absolute for M, N
@ Forall ngoj(x,V): = M(HX eN: go;\’(x, W) —»3IxeM: Lp;\’(x, ﬁ))

(2) — (1): Induction on the structure of ¢;

(atom) @ Relativisation only modifies quantifiers
® Atom contains no quantifiers

* ol =pi=ol
(A) Induction hypothesis on left and right conjunct
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Lemma
000080

@ ¢1,...,pn are absolute for M, N
@ Forall ngoj(x,V): = M(HX eN: go;\’(x, W) —»3IxeM: Lp;\’(x, ﬁ))

(2) — (1): Induction on the structure of ¢;

(atom) @ Relativisation only modifies quantifiers
® Atom contains no quantifiers

* ol =pi=ol
(A) Induction hypothesis on left and right conjunct

(=) Like conjunction
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Lemma
O0000e

O o1,..., ¢, are absolute for M, N
@ For all Ixypj(x, Y): Vi e M(Elx eN: ap}v(x, m) = 3IxeM: <,c>j’-\’(><7 ﬁ))

(2) — (1): Induction step for 3
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Lemma
O0000e

O o1,..., ¢, are absolute for M, N
@ For all Ixpi(x, ¥): v e M(Elx eN: ap}v(x, m) = 3IxeM: <,c>j’-\’(><7 ﬁ))

(2) — (1): Induction step for 3
Let ¢; = Ixpj(x, ¥1,...,¥n). Then
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Lemma
O0000e

O o1,..., ¢, are absolute for M, N
@ For all Ixpi(x, ¥): v e M(Elx eN: ap}v(x, m) = 3IxeM: <,c>j’-\’(><7 ﬁ))

(2) — (1): Induction step for 3
Let ¢; = Ixpj(x, ¥1,...,¥n). Then

oM(y1, ... yn) & 3x € Mcpj’-\/’(x,yl, ceesYn) (Relativisation of ;)
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Lemma
O0000e

O o1,..., ¢, are absolute for M, N
@ For all Ixpi(x, ¥): v e M(Elx eN: ap}v(x, m) = 3IxeM: <,c>j’-\’(><7 ﬁ))

(2) — (1): Induction step for 3
Let ¢; = Ixpj(x, ¥1,...,¥n). Then

oM(y1, ... yn) & 3x € M(pj’-\/’(x,yl, .oy Yn) (Relativisation of ;)
~ dx € Mcpj’-v(x,yl, ...,¥n) (IH: absoluteness of ¢;)
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Lemma
O0000e

O o1,..., ¢, are absolute for M, N
@ For all Ixpi(x, ¥): v e M(Elx eN: ap}v(x, m) = 3IxeM: <,c>j’-\’(><7 ﬁ))

(2) — (1): Induction step for 3
Let ¢; = Ixpj(x, ¥1,...,¥n). Then
oM(y1, ... yn) & 3x € M(pj’-\/’(x,yl, .oy Yn) (Relativisation of ;)
~ dx € Mcpj’-v(x,yl, ...,¥n) (IH: absoluteness of ¢;)
+dx € Ngojl-v(x,yl, ...»¥n)  (+ Application of (2))
(= MCN)
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Lemma
O0000e

O o1,..., ¢, are absolute for M, N
@ For all Ixpi(x, ¥): v e M(Elx eN: ap}v(x, m) = 3IxeM: <,c>j’-\’(><7 ﬁ))

(2) — (1): Induction step for 3
Let ¢; = Ixpj(x, ¥1,...,¥n). Then

oM(y1, ... yn) & 3x € M(pj’-\/’(x,yl, .oy Yn) (Relativisation of ¢;
~ dx € Mcpj’-v(x,yl, ...,¥n) (IH: absoluteness of ¢;

(-MCN

)
)
+dx € Ngojl-v(x,yl, ...»¥n)  (+ Application of (2))
)
R /T (Relativisation of ;)
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Lemma
O0000e

O o1,..., ¢, are absolute for M, N
@ For all Ixpi(x, ¥): v e M(Elx eN: ap}v(x, m) = 3IxeM: <,c>j’-\’(><7 ﬁ))

(2) — (1): Induction step for 3

Let ¢; = Ixpj(x, ¥1,...,¥n). Then

oM(y1, ... yn) & 3x € M(pj’-\/’(x,yl, .oy Yn) (Relativisation of ¢;
~ dx € Mcpj’-v(x,yl, ...,¥n) (IH: absoluteness of ¢;

(-MCN

)
)
+dx € Ngojl-v(x,yl, ...»¥n)  (+ Application of (2))
)
R /T (Relativisation of ;)

: M N
So we find ¢ (y1,...,¥n) <> ©} (y1,...,¥n) (absolute for
M, N). 0



Reflection 1
000000000

Theorem 1

Model 1: not (always) transitive, but countable
Theorem (1)

Let ZFC* be a finite fragment of ZFC. For any X there is M such
that X C M, M = ZFC*, and |M| < max(Ro, | X]).
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Reflection 1
000000000

Theorem 1

Model 1: not (always) transitive, but countable

Theorem (1)

Let ZFC* be a finite fragment of ZFC. For any X there is M such
that X C M, M = ZFC*, and |M| < max(Ro, | X]).

Proof idea. Ensure that condition (2) of the Lemma is satisfied, by
adding witnesses in countably many stages.
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Reflection 1
0O®0000000

Proof - Preliminaries

Let ® := {®1,...,¢n} be the result of taking ZFC*, replacing all
formulae of form Vv with =3v—p, and closing under subformulae.
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Reflection 1
0O®0000000

Proof - Preliminaries

Let ® := {®1,...,¢n} be the result of taking ZFC*, replacing all
formulae of form Vv with =3v—p, and closing under subformulae.
Let Xo := X. Let | := {i | ¢; € ® is an existential formula}, and
assume that each existential ¢;(X) is of the form Elygoj(7,y).
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Reflection 1
00e000000

Proof - Ensuring Witnesses

For each i € I, define a function f; satisfying:
® For every tuple 7 of sets, if ©; holds of 7, then @ holds of

(P, (7))

(Intuitively: whenever an existential formula holds of a tuple, f; is a
function which finds a witness for that formula).
We need the Axiom of Choice to guarantee that these functions

exist!
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Reflection 1
[e]e]e] lelelelele)

Proof

Now, for all k € w, define recursively:
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Reflection 1
[e]e]e] lelelelele)

Proof

Now, for all k € w, define recursively:
® Fik:=Ran(fi | £(Xk))

Details on Reflection Theorems Tibo Rushbrooke & Wouter Smit



Reflection 1
[e]e]e] lelelelele)

Proof

Now, for all k € w, define recursively:
® Fik:=Ran(fi | £(Xk))
® Fi = Ui¢, Fik (all the witnesses we need for Xj)

Details on Reflection Theorems Tibo Rushbrooke & Wouter Smit



Reflection 1
[e]e]e] lelelelele)

Proof

Now, for all k € w, define recursively:
® Fix:=Ran(fi | ©(Xx))
® Fi = Ui¢, Fik (all the witnesses we need for Xj)
® Xii1:= XU Fy.
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Reflection 1
[e]e]e] lelelelele)

Proof

Now, for all k € w, define recursively:
® Fix:=Ran(fi | ©(Xx))
® Fi = Ui¢, Fik (all the witnesses we need for Xj)
® Xii1:= XU Fy.
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Reflection 1
[e]e]e] lelelelele)

Proof

Now, for all k € w, define recursively:
® Fix:=Ran(fi | ©(Xx))
® Fi = Ui¢, Fik (all the witnesses we need for Xj)
® Xii1:= XU Fy.

Then set M := [, ., X«-

We'll now show that M satisfies each of the desired conditions.
We have X(= Xo) € M by definition of M.
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Reflection 1
[e]e]e]e] Telelele)

]
M is a model of ZFC*

We show that each ¢ € ® is absolute for M, implying that

M = ZFC*.

Fix an arbitrary existential formula ¢;(x,...,x,). Let

7 :={p1....,pn} be arbitrary members of M such that

©ilp1s- -, pn] holds (in V).

Every member of ? appears in some Xy, hence there is some X,
(m the maximum of these ks) containing every member of ?
Since j[p1, ..., pn] holds, there is g = fi(p1,...,Pn) € Xm+1 such
that oj[p1,...,pPn, q] holds. X1 € M, hence g € M.
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Reflection 1
[e]e]e]e]e] lelele)

]
M is a model of ZFC*

Since @; and J were arbitrary, we have shown that for each
existential formula ;, the following holds:

VZ € MlpY (F) — 3be MY (F,b).

By the Lemma, it follows that for every formula of our list and in
particular every sentence ¢, of ZFC*, M <, V. But every axiom
of ZFC holds in V/, and therefore holds in M as well.
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Reflection 1
000000800

|
[M| < max(|X], o).

To see that |[M| < max(|X|,Ro), distinguish two cases: X is finite,
or X is infinite.

Case 1: X finite. If X is finite for any fixed k then it is clear that
Fi k, Fi will also be finite. Hence, Xj1 = Xi U Fi will be finite. It
follows by induction that X, is finite for every natural number m.

M is therefore a countable union of finite sets, and must therefore
be (at most) countable; so |[M| < max(|X], Ro).
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Reflection 1
000000080

. _________________________________________________________________|
IM] < max(]X], Ro).

Case 2: X infinite. Let x denote |X|, with x some infinite cardinal.
We will show by induction that |X,,| = k for every natural number
m. The base case of m = 0 is trivial.

Induction step: assume |Xy| = k for some fixed k. For any natural
number r, the set of r-tuples C Xy will have the same cardinality
as Xj by Hessenberg's theorem. Then |F; x| is at most | Xi| = &,
and since Fy is a finite union of such sets, |Fy| < k.

Now Xi11 = Xx U Fx and must therefore have cardinality x. This
completes the induction step, so |X,| = & for all n.
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Reflection 1
00000000e

|
[M| < max(|X], o).

M = Uyew X« is a countable union of sets of cardinality «, and
since k > g, it follows that |M| = k as well. Hence again
M| < max(|X], o).

So we're donel ]
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Reflection 2
@00000

An (uncountable) transitive model

Model 1: a countable non-transitive model of ZFC* from X
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Reflection 2
@00000

An (uncountable) transitive model

Model 1: a countable non-transitive model of ZFC* from X
Model 2: an (uncountable) transitive model of ZFC* from X
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Reflection 2
@00000

An (uncountable) transitive model

Model 1: a countable non-transitive model of ZFC* from X
Model 2: an (uncountable) transitive model of ZFC* from X

Theorem (2)

For any X there is a transitive M such that
X C M and M |= ZFC*.
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Reflection 2
@00000

An (uncountable) transitive model

Model 1: a countable non-transitive model of ZFC* from X
Model 2: an (uncountable) transitive model of ZFC* from X

Theorem (2)

For any X there is a transitive M such that
X C M and M |= ZFC*.

Proof idea: modify the construction used for the first theorem.
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Reflection 2
@00000

An (uncountable) transitive model

Model 1: a countable non-transitive model of ZFC* from X
Model 2: an (uncountable) transitive model of ZFC* from X

Theorem (2)

For any X there is a transitive M such that
X C M and M |= ZFC*.

Proof idea: modify the construction used for the first theorem.
® Disregard size

® Ensure transitivity at each step
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[o] lelele]e]

Proof - Preliminaries

Assumptions
Let ® := {p1,...,pn} be subformula-closed
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Reflection 2
[o] lelele]e]

Proof - Preliminaries

Assumptions

Let ® := {p1,...,pn} be subformula-closed
Xo := Vj for least § such that V5 O X
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Reflection 2
[o] lelele]e]

Proof - Preliminaries

Assumptions

Let ® := {p1,...,pn} be subformula-closed
Xo := Vj for least § such that V5 O X

Note: Vj is transitive by definition
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Reflection 2
[e]e] lele]e]

Proof - Ensuring Witnesses

We again ensure that we have the necessary witnesses.

Strategy:

® find rank « of the witness, rather than witness itself

® |nclude entire V,, to ensure transitivity
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Reflection 2
[e]e]e] le]e]

Proof - Recursive Construction

Definition (‘Rank’ Witness Function)

For some existential formula ¢; = Elygoj(77y), let

£(F) = least &« such that Jy with a = rk(y) and goj(ﬁ,y)
0 if there is no such y
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Reflection 2
[e]e]e] le]e]

Proof - Recursive Construction

Definition (‘Rank’ Witness Function)

For some existential formula ¢; = Elygoj(77y), let

£(F) = least &« such that Jy with a = rk(y) and goj(ﬁ,y)
0 if there is no such y

Recursive step. For all k € w:
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Reflection 2
[e]e]e] le]e]

Proof - Recursive Construction

Definition (‘Rank’ Witness Function)

For some existential formula ¢; = Elygoj(77y), let

£(F) = least &« such that Jy with a = rk(y) and goj(ﬁ,y)
0 if there is no such y

Recursive step. For all k € w:

Let F,"k = Ran(f,-r r p(Xk))
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Reflection 2
[e]e]e] le]e]

Proof - Recursive Construction

Definition (‘Rank’ Witness Function)

For some existential formula ¢; = Elygoj(77y), let

£(F) = least &« such that Jy with a = rk(y) and goj(ﬁ,y)
0 if there is no such y

Recursive step. For all k € w:
Let F,"k = Ran(f,-r i @(Xk))

Let ayxy1 = UI.E, Fik (ag :=9)
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Reflection 2
[e]e]e] le]e]

Proof - Recursive Construction

Definition (‘Rank’ Witness Function)

For some existential formula ¢; = Elygoj(77y), let

£(F) = least &« such that Jy with a = rk(y) and goj(ﬁ,y)
0 if there is no such y

Recursive step. For all k € w:
Let F,"k = Ran(f,-r i @(Xk))
Let apy1 = UI.E, Fik (ap :=9)

Let Xk+]_ = V(ak+1)
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Reflection 2
[e]e]e] le]e]

Proof - Recursive Construction

Definition (‘Rank’ Witness Function)

For some existential formula ¢; = Elygoj(77y), let

£(F) = least &« such that Jy with a = rk(y) and goj(ﬁ,y)
0 if there is no such y

Recursive step. For all k € w:
Let F,"k = Ran(f,-r i @(Xk))
Let apy1 = UI.E, Fik (ap :=9)

Let Xk+]_ = V(ak+1)
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Proof - Recursive Construction

Definition (‘Rank’ Witness Function)

For some existential formula ¢; = Elygoj(77y), let

(7)) = least o such that Jy with o = rk(y) and ¢;( B, y)
i Yo if there is no such y

Recursive step. For all k € w:
Let Fix := Ran(f | £(Xk))
Let agy1 = el Fi k (ap :=9)
Let Xx11 := V(aks1)

The model: Let M :=J, ., Xk.
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Proof - Validation

Theorem (2)

For any X there is a transitive M such that X C M and M = ZFC*.

o X C M is trivial.
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Proof - Validation

Theorem (2)

For any X there is a transitive M such that X C M and M = ZFC*.

o X C M is trivial.
® M= ZFC*. As in Theorem 1:
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Proof - Validation

Theorem (2)

For any X there is a transitive M such that X C M and M = ZFC*.

o X C M is trivial.
® M= ZFC*. As in Theorem 1:
® Every tuple of free variables in M appears at some X
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Proof - Validation

Theorem (2)

For any X there is a transitive M such that X C M and M = ZFC*.

o X C M is trivial.
® M= ZFC*. As in Theorem 1:

® Every tuple of free variables in M appears at some X
® By construction Xj11 will contain a witness.
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Proof - Validation

Theorem (2)

For any X there is a transitive M such that X C M and M = ZFC*.

o X C M is trivial.
® M= ZFC*. As in Theorem 1:

® Every tuple of free variables in M appears at some X
® By construction Xj11 will contain a witness.
® So we satisfy (2) of the Lemma.
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Proof - Validation

Theorem (2)

For any X there is a transitive M such that X C M and M = ZFC*.

o X C M is trivial.

® M= ZFC*. As in Theorem 1:

Every tuple of free variables in M appears at some Xj
By construction Xi1 will contain a witness.

So we satisfy (2) of the Lemma.

Using the Lemma, we find M <, V for every sentence ¢
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Proof - Validation

Theorem (2)

For any X there is a transitive M such that X C M and M = ZFC*.

o X C M is trivial.

® M= ZFC*. As in Theorem 1:

Every tuple of free variables in M appears at some Xj
By construction Xi1 will contain a witness.

So we satisfy (2) of the Lemma.

Using the Lemma, we find M <, V for every sentence ¢

® Transitivity of M: there is some 7 such that M = V,,
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Proof - Validation

Theorem (2)

For any X there is a transitive M such that X C M and M = ZFC*.

o X C M is trivial.
® M= ZFC*. As in Theorem 1:

® Every tuple of free variables in M appears at some X

® By construction Xj11 will contain a witness.

® So we satisfy (2) of the Lemma.

® Using the Lemma, we find M <, V for every sentence ¢

® Transitivity of M: there is some 7 such that M = V,,
® vy :=sup({oax | k € w})
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Proof - Validation

Theorem (2)

For any X there is a transitive M such that X C M and M = ZFC*.

o X C M is trivial.
® M= ZFC*. As in Theorem 1:

® Every tuple of free variables in M appears at some X

® By construction Xj11 will contain a witness.

® So we satisfy (2) of the Lemma.

® Using the Lemma, we find M <, V for every sentence ¢

® Transitivity of M: there is some 7 such that M = V,,

® vy :=sup({oax | k € w})
* xeV, < x & V(ax) for some k € w <=
XEXy &= xeM O
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About the size of M

M = V., for some 7 := sup({oy | k € w})

At each recursive step, aki+1 > ak. So M can grow arbitrarily big.
However M will be a set in V as it is bounded under V.

Details on Reflection Theorems Tibo Rushbrooke & Wouter Smit



Reflection 3
©0000

Theorem (3)

If X is transitive, then there is a transitive M such that
X C M, M= ZFC*, and |M| = max(Ro, | X]).

Details on Reflection Theorems Tibo Rushbrooke & Wouter Smit



Reflection 3
©0000

Theorem (3)

If X is transitive, then there is a transitive M such that
X C M, M= ZFC*, and |M| = max(Ro, | X]).

Proof idea: use Mostowski collapsing function.
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Mostowski Collapse - Recap

Let C be a class. Then there is a function 7 (subscripts omitted)
mapping C onto a transitive class T such that (C,€) =, (T, €).
7 is called the Mostowski Collapsing function, and is defined by
w(x) ={m(z) | ze xnN C} for all x € C.
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Proof

Theorem (3)

If X is transitive, then there is a transitive M such that
X C M, M= ZFC*, and |M| = max(Ro, | X|).
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Proof

Theorem (3)

If X is transitive, then there is a transitive M such that
X C M, M= ZFC*, and |M| = max(Ro, | X|).

Start with X, then use method from theorem 1 to obtain an M
with X C M, M = ZFC*, and |M| = max(Ro, | X]).
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Proof

Theorem (3)

If X is transitive, then there is a transitive M such that
X C M, M= ZFC*, and |M| = max(Ro, | X|).

Start with X, then use method from theorem 1 to obtain an M
with X € M, M |= ZFC*, and |[M| = max(Xo, |X|).

Let 7(M) be the image of M under its Mostowski collapsing
function. (M) is transitive by the definition of .
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Proof

Theorem (3)

If X is transitive, then there is a transitive M such that
X C M, M= ZFC*, and |M| = max(Ro, | X|).

Start with X, then use method from theorem 1 to obtain an M
with X C M, M = ZFC*, and |M| = max(Ro, | X]).

Let 7(M) be the image of M under its Mostowski collapsing
function. (M) is transitive by the definition of .

Since (M) is isomorphic to M, it will satisfy precisely the same
formulas as M and is therefore a model of ZFC*.
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Proof

I —
X C (M)

By assumption, X is transitive.
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Proof

I —
X C (M)

By assumption, X is transitive.
Suppose for contradiction that there is x € X such that m(x) # x.
Then there must be an €-least such x.
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Proof

I —
X C (M)

By assumption, X is transitive.

Suppose for contradiction that there is x € X such that m(x) # x.
Then there must be an €-least such x.

For this least x, there must be y € x with y ¢ m(x). But
yexeX = yeX = y € M, and therefore 7(y) € m(x).
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Proof

I —
X C (M)

By assumption, X is transitive.

Suppose for contradiction that there is x € X such that m(x) # x.
Then there must be an €-least such x.

For this least x, there must be y € x with y ¢ m(x). But
yexeX = yeX = y € M, and therefore 7(y) € m(x).
= y # 7(y), contradicting the minimality of x.

Details on Reflection Theorems Tibo Rushbrooke & Wouter Smit



Reflection 3
0000®

Proof

X C (M)

We have 7(x) = x for each x € X.

If x € X then x € M and therefore x = m(x) € (M), so every
member of X is also a member of 7(M); i.e. X C w(M). This
completes the proof. O

In particular, we can start with X = (). Then X is transitive, so we
can obtain a transitive model of ZFC* with cardinality No.
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Reflection and Independence of =CH

We show how the Reflection Theorem can be combined with the
forcing argument to give a proof that =CH is relatively consistent
with ZFC.
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Relevance to Forcing
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Forcing allows us to turn a countable transitive model of ZFC into
a model of ZFC + —CH. But does this assure us that ~CH is
relatively consistent?

The Reflection Theorem did not give us a countable transitive
model for all of ZFC, only for a finite subset of the axioms.

How do we solve this problem?
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A trick

Extend the language of set theory £ to a new language, £,
containing two new constant symbols, C and F.

Define ¥ to be a set of sentences in LT, containing each ZFC
axiom, together with the statements that C is a transitive set and
F is a bijection from C into w, and the relativisation of each ZFC
axiom to C.
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We claim that X is a conservative extension of ZFC, meaning if ¢
is a sentence of £ and X I ¢, then ZFC |- ¢.
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We claim that X is a conservative extension of ZFC, meaning if ¢
is a sentence of £ and X I ¢, then ZFC |- ¢.

To see this, assume ¥ - ¢ with ¢ € L. Since proofs are finite,
there must be a formula p(x, y) such that ZFC U {p(C, F)} F ¢.
(p(C, F) will say that C is transitive, F bijects w to C, and asserts
some finite conjunction of ZFC axioms relativised to C).
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For every p € L, if X - ¢ then ZFC |- .
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For every p € L, if X - ¢ then ZFC |- .

Using the Deduction theorem: ZFC F p(C, F) — . Then by the
arbitrariness of C, F, can infer ZFC F 3x,y p(x,y) — .
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For every p € L, if X - ¢ then ZFC |- .

Using the Deduction theorem: ZFC F p(C, F) — . Then by the
arbitrariness of C, F, can infer ZFC F 3x,y p(x,y) — .
But Reflection 3 tells us that ZFC actually does prove

3x,y p(x, y)!
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For every p € L, if X - ¢ then ZFC |- .

Using the Deduction theorem: ZFC F p(C, F) — . Then by the
arbitrariness of C, F, can infer ZFC F 3x,y p(x,y) — .
But Reflection 3 tells us that ZFC actually does prove

Ix,y p(x, y)!
Thus, we also have ZFC | .
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Completing the argument

This is very good news, because ¥ has all we need to carry out the
forcing argument - it asserts that we have a countable transitive
model for ZFC.

Suppose we want to prove that some specific value - N7, say - is
consistent for 2%,

The first step is to turn our C into a ctm that definitely has ¥;
many reals.

Details on Reflection Theorems Tibo Rushbrooke & Wouter Smit



Relevance to Forcing
000000800

Completing the argument

Define M := L(o(C)) and P := Fn((w7)™ x w,2). Then define a
G which is P-generic over M.

One can then prove (¢)MI¢] for each ¢ of ZFC, and also
(2No — N7)M[G].
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Completing the argument

Finally, if ZFC 4 (2% = R7) - 0 = 1, then we will have

(0= 1)M[g], and hence by absoluteness, 0 = 1; that is, X would
prove 0 = 1.

But since ¥ is a conservative extension of ZFC, it would follow
that ZFC proves 0 = 1.

So we have shown that if ZFC + (2% = X7) 0 = 1, then
ZFCH0=1.
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Conclusion

® Lemma: a Condition for Absoluteness

® Theorem 1: a countable non-transitive model
© Theorem 2: an (uncountable) transitive model
©® Theorem 3: a countable transitive model

@ Relevance to Forcing
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Conclusion

® Lemma: a Condition for Absoluteness

® Theorem 1: a countable non-transitive model
© Theorem 2: an (uncountable) transitive model
©® Theorem 3: a countable transitive model

@ Relevance to Forcing

Thank you!
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