Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Martin's Axiom - Basics and Two Applications

Anton Chernev and Rodrigo Nicolau Almeida

21-01-2020

Contents

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

1 Forcing Posets

2 Dense Sets and Martin's Axiom

3 Application I - Suslin's Hypothesis

4 Application II - Cardinal Exponentiation

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Definition

A forcing poset is a triple $(\mathbb{P}, \leq, 1)$ such that \leq is a pre-order on \mathbb{P} and 1 is a largest element. Its elements are called forcing conditions. We say that $p, q \in \mathbb{P}$ are **compatible** (denoted by $p \not\perp q$) iff they have a common extension. Otherwise we say they are incompatible (and write $p \perp q$). A set of elements which are pairwise incompatible is called an **antichain**.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Definition

A forcing poset is a triple $(\mathbb{P}, \leq, 1)$ such that \leq is a pre-order on \mathbb{P} and 1 is a largest element. Its elements are called forcing conditions. We say that $p, q \in \mathbb{P}$ are **compatible** (denoted by $p \not\perp q$) iff they have a common extension. Otherwise we say they are incompatible (and write $p \perp q$). A set of elements which are pairwise incompatible is called an **antichain**.

 Confusingly enough, the notion of compatibility does not necessarily match up with the notion of comparability; two elements may be compatible but not comparable.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Definition

A forcing poset is a triple $(\mathbb{P}, \leq, 1)$ such that \leq is a pre-order on \mathbb{P} and 1 is a largest element. Its elements are called forcing conditions. We say that $p, q \in \mathbb{P}$ are **compatible** (denoted by $p \not\perp q$) iff they have a common extension. Otherwise we say they are incompatible (and write $p \perp q$). A set of elements which are pairwise incompatible is called an **antichain**.

 Confusingly enough, the notion of compatibility does not necessarily match up with the notion of comparability; two elements may be compatible but not comparable.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation For clarity we will specify to which of these concepts we refer to with a prefix (i.e (forcing)-ccc, as opposed to (poset)-ccc). This will become relevant later.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation For clarity we will specify to which of these concepts we refer to with a prefix (i.e (forcing)-ccc, as opposed to (poset)-ccc). This will become relevant later.

Definition

We say a forcing poset $\mathbb P$ has the (forcing)-ccc if every antichain in $\mathbb P$ is countable.

The key example of a forcing poset with the ccc, for our purposes, is the set of finite partial functions:

Definition

For any *I*, *J*, define Fn(I, J) as the set of all finite partial functions ordered by $p \leq q$ iff $p \supseteq q$, and with $\mathbf{1} = \emptyset$.

The poset Fn(I,J)

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation ■ The proof that the poset *Fn*(*I*, *J*) has the ccc under specific circumstances uses the following lemma:

Lemma

(Δ -System Lemma) Let ($F_{\alpha} : \alpha < \omega_1$) be a family of finite subsets of ω_1 . Then there is a (stationary) uncountable set S and a finite set R, such that for all $\alpha, \beta \in S \ A_{\alpha} \cap A_{\beta} = R$

The poset Fn(I,J)

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation ■ The proof that the poset *Fn*(*I*, *J*) has the ccc under specific circumstances uses the following lemma:

Lemma

(Δ -System Lemma) Let ($F_{\alpha} : \alpha < \omega_1$) be a family of finite subsets of ω_1 . Then there is a (stationary) uncountable set S and a finite set R, such that for all $\alpha, \beta \in S$ $A_{\alpha} \cap A_{\beta} = R$

Figure 1: Delta-System Lemma

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application 1 Suslin's Hypothesis

Application II -Cardinal Exponentiation • We now briefly prove that this poset has the ccc. We remark that compatibility in this poset means that the two functions agree on their common domain.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application 1 Suslin's Hypothesis

Application II -Cardinal Exponentiation • We now briefly prove that this poset has the ccc. We remark that compatibility in this poset means that the two functions agree on their common domain.

Theorem

Fn(I,J) has the ccc iff $I = \emptyset$ or J is countable.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application 1 Suslin's Hypothesis

Application II -Cardinal Exponentiation • We now briefly prove that this poset has the ccc. We remark that compatibility in this poset means that the two functions agree on their common domain.

Theorem

Fn(I,J) has the ccc iff $I = \emptyset$ or J is countable.

■ Proof: (⇒), suppose that J is uncountable, and fix any i ∈ l; then the finite partial functions {(i, j)} for j ∈ J form an uncountable (forcing)-antichain.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application 1 Suslin's Hypothesis

Application II -Cardinal Exponentiation • We now briefly prove that this poset has the ccc. We remark that compatibility in this poset means that the two functions agree on their common domain.

Theorem

Fn(I,J) has the ccc iff $I = \emptyset$ or J is countable.

- Proof: (⇒), suppose that J is uncountable, and fix any i ∈ l; then the finite partial functions {(i,j)} for j ∈ J form an uncountable (forcing)-antichain.
- (\Leftarrow). Suppose that J is countable, and let $(f_{\alpha} : \alpha < \omega_1)$ be a family of finite partial functions from \mathbb{P} . Let $(S_{\alpha} : \alpha < \omega_1)$ be the domain of these function.

$\mathsf{Ccc} \text{ of } \mathsf{Fn}(\mathsf{I},\mathsf{J})$

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application 1 Suslin's Hypothesis

Application II -Cardinal Exponentiation • We now briefly prove that this poset has the ccc. We remark that compatibility in this poset means that the two functions agree on their common domain.

Theorem

Fn(I,J) has the ccc iff $I = \emptyset$ or J is countable.

- Proof: (⇒), suppose that J is uncountable, and fix any i ∈ l; then the finite partial functions {(i, j)} for j ∈ J form an uncountable (forcing)-antichain.
- (\Leftarrow). Suppose that J is countable, and let $(f_{\alpha} : \alpha < \omega_1)$ be a family of finite partial functions from \mathbb{P} . Let $(S_{\alpha} : \alpha < \omega_1)$ be the domain of these function.
- By the Δ -System Lemma, let S be uncountable and R finite root such that $S_{\alpha} \cap S_{\beta} = R$ for $\alpha, \beta \in S$.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application | Suslin's Hypothesis

Application II -Cardinal Exponentiation • Since *R* is finite, J^R , the set of functions, is countable. Thus, there must be $\alpha \neq \beta \in S$, such that $f_{\alpha} \upharpoonright R = f_{\beta} \upharpoonright R$, since there are uncountably many such f_{α} . Thus, f_{α} and f_{β} agree on *R*, so they are compatible. Q.E.D

Dense Sets

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Definition

Let \mathbb{P} be a forcing poset. Then $D \subseteq \mathbb{P}$ is dense in \mathbb{P} iff $\forall p \in \mathbb{P} \ \exists q \in D(q \leq p).$

Dense Sets

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Definition

Let \mathbb{P} be a forcing poset. Then $D \subseteq \mathbb{P}$ is dense in \mathbb{P} iff $\forall p \in \mathbb{P} \ \exists q \in D(q \leq p).$

- Let *I* be infinite and *J* be non-empty.
- $\{q \in Fn(I, J) \mid i \in Dom(q)\}$ is dense for all $i \in I$.
- $\{q \in Fn(I, J) \mid j \in Ran(q)\}$ is dense for all $j \in J$.

Filters

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Definition

Let \mathbb{P} be a forcing poset. Then $G \subseteq \mathbb{P}$ is a filter on \mathbb{P} iff

■ **1** ∈ *G*

•
$$\forall p, q \in G \exists r \in G(r \leq p \land r \leq q)$$

$$\forall p,q \in \mathbb{P}(p \ge q \land q \in G \to p \in G)$$

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Definition

- $MA_{\mathbb{P}}(\kappa)$ is the statement that whenever \mathcal{D} is a family of dense subsets of \mathbb{P} with $|\mathcal{D}| \leq \kappa$, there exists a filter G on \mathbb{P} such that $G \cap D \neq \emptyset$ for all $D \in \mathcal{D}$.
- $MA(\kappa)$ is the statement that $MA_{\mathbb{P}}(\kappa)$ holds for all ccc \mathbb{P} .
- MA is the statement $\forall \kappa < 2^{\aleph_0} MA(\kappa)$.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Definition

- $MA_{\mathbb{P}}(\kappa)$ is the statement that whenever \mathcal{D} is a family of dense subsets of \mathbb{P} with $|\mathcal{D}| \leq \kappa$, there exists a filter G on \mathbb{P} such that $G \cap D \neq \emptyset$ for all $D \in \mathcal{D}$.
- $MA(\kappa)$ is the statement that $MA_{\mathbb{P}}(\kappa)$ holds for all ccc \mathbb{P} .
- MA is the statement $\forall \kappa < 2^{\aleph_0} MA(\kappa)$.
- For $\lambda < \kappa$: $MA_{\mathbb{P}}(\kappa)$ implies $MA_{\mathbb{P}}(\lambda)$ and $MA(\kappa)$ implies $MA(\lambda)$.
- $MA(\kappa)$ implies $\kappa < 2^{\aleph_0}$.
- $MA_{\mathbb{P}}(\aleph_0)$ for all \mathbb{P} .
- We cannot drop the ccc requirement $MA_{\mathbb{P}}(\aleph_1)$ is false for $\mathbb{P} = Fn(\aleph_0, \aleph_1)$.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

 $MA(\kappa)$ implies $\kappa < 2^{\aleph_0}$.

Proof Sketch:

• If G is a filter on Fn(I, J) (*I* infinite, J non-empty), then $f_G := \bigcup G$ is a function.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

 $MA(\kappa)$ implies $\kappa < 2^{\aleph_0}$.

- If G is a filter on Fn(I, J) (*I* infinite, J non-empty), then $f_G := \bigcup G$ is a function.
- $D_i = \{q \in Fn(I, J) \mid i \in Dom(q)\}$ dense for all $i \in I$.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

 $MA(\kappa)$ implies $\kappa < 2^{\aleph_0}$.

- If G is a filter on Fn(I, J) (*I* infinite, J non-empty), then $f_G := \bigcup G$ is a function.
- $D_i = \{q \in Fn(I, J) \mid i \in Dom(q)\}$ dense for all $i \in I$.
- $E_h = \{q \in Fn(I, J) \mid q \not\subseteq h\}$ dense for all $h \in J^I$.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

 $MA(\kappa)$ implies $\kappa < 2^{\aleph_0}$.

- If G is a filter on Fn(I, J) (*I* infinite, J non-empty), then $f_G := \bigcup G$ is a function.
- $D_i = \{q \in Fn(I, J) \mid i \in Dom(q)\}$ dense for all $i \in I$.
- $E_h = \{q \in Fn(I, J) \mid q \not\subseteq h\}$ dense for all $h \in J^I$.
- Assume towards contradiction $\kappa \ge 2^{\aleph_0}$ and let $I = \aleph_0$, J = 2.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

 $MA(\kappa)$ implies $\kappa < 2^{\aleph_0}$.

- If G is a filter on Fn(I, J) (*I* infinite, J non-empty), then $f_G := \bigcup G$ is a function.
- $D_i = \{q \in Fn(I, J) \mid i \in Dom(q)\}$ dense for all $i \in I$.
- $E_h = \{q \in Fn(I, J) \mid q \not \subseteq h\}$ dense for all $h \in J^I$.
- Assume towards contradiction $\kappa \ge 2^{\aleph_0}$ and let $I = \aleph_0$, J = 2.
- We have \aleph_0 many D_i and 2^{\aleph_0} many E_h .

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

 $MA(\kappa)$ implies $\kappa < 2^{\aleph_0}$.

- If G is a filter on Fn(I, J) (*I* infinite, J non-empty), then $f_G := \bigcup G$ is a function.
- $D_i = \{q \in Fn(I, J) \mid i \in Dom(q)\}$ dense for all $i \in I$.
- $E_h = \{q \in Fn(I, J) \mid q \not\subseteq h\}$ dense for all $h \in J^I$.
- Assume towards contradiction $\kappa \ge 2^{\aleph_0}$ and let $I = \aleph_0$, J = 2.
- We have \aleph_0 many D_i and 2^{\aleph_0} many E_h .
- *MA* gives us *G* that meets these dense sets.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

 $MA(\kappa)$ implies $\kappa < 2^{\aleph_0}$.

- If G is a filter on Fn(I, J) (*I* infinite, J non-empty), then $f_G := \bigcup G$ is a function.
- $D_i = \{q \in Fn(I, J) \mid i \in Dom(q)\}$ dense for all $i \in I$.
- $E_h = \{q \in Fn(I, J) \mid q \not \subseteq h\}$ dense for all $h \in J^I$.
- Assume towards contradiction $\kappa \ge 2^{\aleph_0}$ and let $I = \aleph_0$, J = 2.
- We have \aleph_0 many D_i and 2^{\aleph_0} many E_h .
- *MA* gives us *G* that meets these dense sets.
- $f_G: I \to J$ and $f_G \neq h$ for all $h \in J^I$ contradiction.

Suslin

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation

Figure 2: Mikhail Suslin (1894-1919)

 Context: Trying to axiomatise the properties of the ordered real line.

Suslin

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation

Figure 2: Mikhail Suslin (1894-1919)

- Context: Trying to axiomatise the properties of the ordered real line.
- At the time Suslin was working, it was known by a result of Cantor that the real line was, up to order-isomorphism, characterised as follows:
 - (1) R is complete, dense and unbounded linear order
 - (2) *R* is separable (having a countable dense subset)

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation

- Suslin asked: can one replace condition (2) for the weaker:
 - (2') Every family of pairwise disjoint open subsets is countable (the ccc in topology)

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation

- Suslin asked: can one replace condition (2) for the weaker:
 - (2') Every family of pairwise disjoint open subsets is countable (the ccc in topology)
- An ordered set that satisfies (1) and (2') but is not order-isomorphic to the reals is called a Suslin line

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation

- Suslin asked: can one replace condition (2) for the weaker:
 - (2') Every family of pairwise disjoint open subsets is countable (*the ccc in topology*)
- An ordered set that satisfies (1) and (2') but is not order-isomorphic to the reals is called a Suslin line

Suslins' Hypothesis

(SH) There are no Suslin lines.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation This was shown to be independent of ZFC by several authors: (Jech (1967), Tennenbaum (1968), Jensen (1970)) all proved that there are models where Suslin lines exist.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation

- This was shown to be independent of ZFC by several authors: (Jech (1967), Tennenbaum (1968), Jensen (1970)) all proved that there are models where Suslin lines exist.
- In 1971, Robert Solovay and Stanley Tennenbaum showed that SH was relatively consistent with ZFC, by using a forcing argument. Namely, what they showed was that MA + ¬CH was relatively consistent, by developing a theory of transfinite iterated forcing.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation

- This was shown to be independent of ZFC by several authors: (Jech (1967), Tennenbaum (1968), Jensen (1970)) all proved that there are models where Suslin lines exist.
- In 1971, Robert Solovay and Stanley Tennenbaum showed that SH was relatively consistent with ZFC, by using a forcing argument. Namely, what they showed was that MA + ¬CH was relatively consistent, by developing a theory of transfinite iterated forcing.
- This was also the first forcing axiom: a way of "internalising" forcing to ZFC, and obtaining consequences from it. Other stronger forcing axioms are mentioned by Kunen.
Suslin Lines and Suslin Trees

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation

Definition

An poset S is called a **Suslin line** if:

- S is complete, dense and unbounded
- S has the ccc
- S is not separable

Suslin Lines and Suslin Trees

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation

Definition

An poset S is called a **Suslin line** if:

- S is complete, dense and unbounded
- S has the ccc
- S is not separable

Definition

A tree (T, <) is called a (normal) Suslin tree if:

- T has height ω₁
- All levels of T are countable
- All (poset)-antichains and all branches of T are countable
- T has a unique root
- Every element $x \in T$ has uncountably many successors
- We will now brief sketch one implication of a result of Kurepa (1934) that shows that these notions are equivalent:

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation

Theorem

If there is a Suslin line, then there is a Suslin tree.

■ Proof Sketch: Let (S, <) be a Suslin line. We construct the Suslin tree out of the closed intervals for this line, and for I, J ∈ C, we let I ≤ J if I ⊇ J.</p>

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation

Theorem

If there is a Suslin line, then there is a Suslin tree.

- Proof Sketch: Let (S, <) be a Suslin line. We construct the Suslin tree out of the closed intervals for this line, and for I, J ∈ C, we let I ≤ J if I ⊇ J.</p>
- This is defined by recursion, letting $I_0 = [a_0, b_0]$ for arbitrary $a_0, b_0 \in S$; and for each α , letting C be the set of endpoints of intervals considered so far; since S is not separable, C is not dense, so we let I_{α} be an interval disjoint from all the endpoints of I_{β} for $\beta < \alpha$.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation

Theorem

If there is a Suslin line, then there is a Suslin tree.

- Proof Sketch: Let (S, <) be a Suslin line. We construct the Suslin tree out of the closed intervals for this line, and for I, J ∈ C, we let I ≤ J if I ⊇ J.</p>
- This is defined by recursion, letting $I_0 = [a_0, b_0]$ for arbitrary $a_0, b_0 \in S$; and for each α , letting C be the set of endpoints of intervals considered so far; since S is not separable, C is not dense, so we let I_{α} be an interval disjoint from all the endpoints of I_{β} for $\beta < \alpha$.
- We let $T = \{I_{\alpha} : \alpha < \omega_1\}$. Then this will be a tree, as one can prove the predecessors form a well-order.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation

Theorem

If there is a Suslin line, then there is a Suslin tree.

- Proof Sketch: Let (S, <) be a Suslin line. We construct the Suslin tree out of the closed intervals for this line, and for I, J ∈ C, we let I ≤ J if I ⊇ J.</p>
- This is defined by recursion, letting $I_0 = [a_0, b_0]$ for arbitrary $a_0, b_0 \in S$; and for each α , letting C be the set of endpoints of intervals considered so far; since S is not separable, C is not dense, so we let I_{α} be an interval disjoint from all the endpoints of I_{β} for $\beta < \alpha$.
- We let $T = \{I_{\alpha} : \alpha < \omega_1\}$. Then this will be a tree, as one can prove the predecessors form a well-order.
- It has the (poset)-ccc, because S has the ccc; the ccc also yields the non-existence of a branch of size ω₁.

$MA+\neg CH$ implies SH

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation ■ Assume MA(ℵ₁); let (T, <) be a Suslin tree. We let (T*, <*) be the conversely ordered tree (i.e, x <* y iff x > y)

$\mathsf{MA}{+}\neg\mathsf{CH} \text{ implies SH}$

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation

- Assume MA(ℵ₁); let (T, <) be a Suslin tree. We let (T*, <*) be the conversely ordered tree (i.e, x <* y iff x > y)
- Since there is a unique root, this makes *T** into a forcing poset. Note that *x*, *y*, we have that if *x* ∠ *y*, then there must be some *z* <* *x*.*y*; since *T* is a tree, this can only happen if *x* and *y* are comparable. Thus comparability equals compatibility, so *T** satisfies the (forcing)-ccc.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation Let T = {x_α : α < ω₁} be an enumeration of the tree. Note that for each α, consider the set:

$$T_{x_{\alpha}} \coloneqq \{ x_{\beta} \in T^* : \alpha \leqslant \beta < \omega_1 \}$$

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation Let T = {x_α : α < ω₁} be an enumeration of the tree. Note that for each α, consider the set:

$$T_{x_{\alpha}} := \{ x_{\beta} \in T^* : \alpha \leqslant \beta < \omega_1 \}$$

Each such set is dense. If not, there would be a $p \in T$ such that for no γ , $x_{\gamma} \in T_{x_{\alpha}}$ and $x_{\gamma} \leq p$. Thus if $y_{\gamma} \leq p$, $\gamma < \alpha$. But this is absurd, since then p would only have countably many successors in T.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation • So consider $(T_{x_{\alpha}} : x_{\alpha} \in T^*)$ a family of dense sets. By MA, there is a generic filter, D, which intersects each set.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation

- So consider $(T_{x_{\alpha}} : x_{\alpha} \in T^*)$ a family of dense sets. By MA, there is a generic filter, D, which intersects each set.
- Since all elements of a filter have to be compatible, by our earlier remarks, *D* has to be totally ordered. So *D* is a branch in *T*, and since it intersects all the *T_{x_α}*, it has to have length ω₁, in contradiction to *T* being Suslin. Q.E.D

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

- Cardinal arithmetic is somewhat complicated.
- CH helps us with that.
- MA helps too!

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

• Cardinal arithmetic is somewhat complicated.

- CH helps us with that.
- *MA* helps too!

Theorem

 $MA(\kappa)$ implies $2^{\kappa} = 2^{\aleph_0}$.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Theorem

 $MA(\kappa)$ implies $2^{\kappa} = 2^{\aleph_0}$.

Proof:

• $2^{\aleph_0} \leq 2^{\kappa}$ because $\aleph_0 \leq \kappa$.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Theorem

 $MA(\kappa)$ implies $2^{\kappa} = 2^{\aleph_0}$.

- $2^{\aleph_0} \leq 2^{\kappa}$ because $\aleph_0 \leq \kappa$.
- For 2^κ ≤ 2^{ℵ0} we need an injection F that maps subsets of κ to subsets of ℵ₀.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Theorem

 $MA(\kappa)$ implies $2^{\kappa} = 2^{\aleph_0}$.

- $2^{\aleph_0} \leq 2^{\kappa}$ because $\aleph_0 \leq \kappa$.
- For 2^κ ≤ 2^{ℵ0} we need an injection F that maps subsets of κ to subsets of ℵ₀.
- What can *MA* give us?

(A, B)-sets

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Definition

Let **A** and **B** be collections of subsets of ω . We call *C* an (**A**, **B**)-set if:

- $C \cap A$ is finite for every $A \in \mathbf{A}$.
- $C \cap B$ is infinite for every $B \in \mathbf{B}$.
- $\overline{C} \cap B$ is infinite for every $B \in \mathbf{B}$.

(**A**, **B**)-sets

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Definition

Let **A** and **B** be collections of subsets of ω . We call C an (**A**, **B**)-set if:

- $C \cap A$ is finite for every $A \in \mathbf{A}$.
- $C \cap B$ is infinite for every $B \in \mathbf{B}$.
- $\overline{C} \cap B$ is infinite for every $B \in \mathbf{B}$.
- C covers "very little" of A, for all A.
- C covers "a lot" of B, for all B.
- C does not cover "too much" of B, for all B.

(**A**, **B**)-sets

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Definition

Let **A** and **B** be collections of subsets of ω . We call *C* an (**A**, **B**)-set if:

- $C \cap A$ is finite for every $A \in \mathbf{A}$.
- $C \cap B$ is infinite for every $B \in \mathbf{B}$.
- $\overline{C} \cap B$ is infinite for every $B \in \mathbf{B}$.
- C covers "very little" of A, for all A.
- C covers "a lot" of B, for all B.
- C does not cover "too much" of B, for all B.
- A does not cover "too much" of B, for all A, B.
- Cannot cover "too much" of *B* with finitely many *A*s.

A-small sets

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Definition

Let **A** and **B** be collections of subsets of ω . We call *C* an (**A**, **B**)-set if:

- $C \cap A$ is finite for every $A \in \mathbf{A}$.
- $C \cap B$ is infinite for every $B \in \mathbf{B}$.
- $\overline{C} \cap B$ is infinite for every $B \in \mathbf{B}$.

Definition

A set *D* is **A**-small if there are sets $A_1, \ldots, A_n \in \mathbf{A}$ such that $D \setminus (A_1 \cup \ldots \cup A_n)$ is finite.

A-small sets

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Definition

Let **A** and **B** be collections of subsets of ω . We call *C* an (**A**, **B**)-set if:

- $C \cap A$ is finite for every $A \in \mathbf{A}$.
- $C \cap B$ is infinite for every $B \in \mathbf{B}$.
- $\overline{C} \cap B$ is infinite for every $B \in \mathbf{B}$.

Definition

A set *D* is **A**-small if there are sets $A_1, \ldots, A_n \in \mathbf{A}$ such that $D \setminus (A_1 \cup \ldots \cup A_n)$ is finite.

- Can cover "too much/almost everything" of *D* with finitely many *A*s.
- If there is an (**A**, **B**)-set, then *B* is not **A**-small for any *B*.

The Existence Lemma

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

Let $MA(\kappa)$ hold. Let **A** and **B** be collections of subsets of ω of cardinality $\leq \kappa$. If no set $B \in \mathbf{B}$ is **A**-small, then there is an (\mathbf{A}, \mathbf{B}) -set.

The Sequence Lemma

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

Let $MA(\kappa)$ hold. Then there is a κ -long sequence **S** of subsets of ω such that:

• If $D \in \mathbf{S}$, then D is not $\mathbf{S} \setminus \{D\}$ -small.

The Sequence Lemma

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

Let $MA(\kappa)$ hold. Then there is a κ -long sequence **S** of subsets of ω such that:

• If $D \in \mathbf{S}$, then D is not $\mathbf{S} \setminus \{D\}$ -small.

Corollary: If we split **S** into **A** and **B**, then there is an (**A**, **B**)-set.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Theorem

 $MA(\kappa)$ implies $2^{\kappa} = 2^{\aleph_0}$.

Proof:

For 2^κ ≤ 2^{ℵ₀} we need an injection F that maps subsets of κ to subsets of ℵ₀.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application 1 Suslin's Hypothesis

Application II -Cardinal Exponentiation

Theorem

 $MA(\kappa)$ implies $2^{\kappa} = 2^{\aleph_0}$.

- For 2^κ ≤ 2^{ℵ₀} we need an injection F that maps subsets of κ to subsets of ℵ₀.
- The Sequence Lemma gives us a sequence **S**.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application 1 Suslin's Hypothesis

Application II -Cardinal Exponentiation

Theorem

 $MA(\kappa)$ implies $2^{\kappa} = 2^{\aleph_0}$.

- For 2^κ ≤ 2^{ℵ₀} we need an injection F that maps subsets of κ to subsets of ℵ₀.
- The Sequence Lemma gives us a sequence **S**.
- Every subset $X \subseteq \kappa$ determines a partition $\mathbf{A}_X \cup \mathbf{B}_X = \mathbf{S}$.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application 1 Suslin's Hypothesis

Application II -Cardinal Exponentiation

Theorem

 $MA(\kappa)$ implies $2^{\kappa} = 2^{\aleph_0}$.

- For 2^κ ≤ 2^{ℵ₀} we need an injection F that maps subsets of κ to subsets of ℵ₀.
- The Sequence Lemma gives us a sequence **S**.
- Every subset $X \subseteq \kappa$ determines a partition $\mathbf{A}_X \cup \mathbf{B}_X = \mathbf{S}$.
- The Existence Lemma gives us an $(\mathbf{A}_X, \mathbf{B}_X)$ -set C_X .

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application 1 Suslin's Hypothesis

Application II -Cardinal Exponentiation

Theorem

 $MA(\kappa)$ implies $2^{\kappa} = 2^{\aleph_0}$.

- For 2^κ ≤ 2^{ℵ₀} we need an injection F that maps subsets of κ to subsets of ℵ₀.
- The Sequence Lemma gives us a sequence **S**.
- Every subset $X \subseteq \kappa$ determines a partition $\mathbf{A}_X \cup \mathbf{B}_X = \mathbf{S}$.
- The Existence Lemma gives us an $(\mathbf{A}_X, \mathbf{B}_X)$ -set C_X .
- $F(X) = C_X$ is injective. Why?

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application 1 Suslin's Hypothesis

Application II -Cardinal Exponentiation

Theorem

 $MA(\kappa)$ implies $2^{\kappa} = 2^{\aleph_0}$.

- For 2^κ ≤ 2^{ℵ0} we need an injection F that maps subsets of κ to subsets of ℵ₀.
- The Sequence Lemma gives us a sequence **S**.
- Every subset $X \subseteq \kappa$ determines a partition $\mathbf{A}_X \cup \mathbf{B}_X = \mathbf{S}$.
- The Existence Lemma gives us an $(\mathbf{A}_X, \mathbf{B}_X)$ -set C_X .
- $F(X) = C_X$ is injective. Why?
- Let $X \neq Y$. Then $D \in \mathbf{A}_X$ and $D \in \mathbf{B}_Y$ for some D. Now $D \cap C_X$ is finite, $D \cap C_Y$ is infinite. So $C_X \neq C_Y$.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

Let $MA(\kappa)$ hold. Let **A** and **B** be collections of subsets of ω of cardinality $\leq \kappa$. If no set $B \in \mathbf{B}$ is **A**-small, then there is an (\mathbf{A}, \mathbf{B}) -set.

Proof:

• We need a subset $C \subseteq \omega$ or equivalently $f : \omega \rightarrow 2$.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

Let $MA(\kappa)$ hold. Let **A** and **B** be collections of subsets of ω of cardinality $\leq \kappa$. If no set $B \in \mathbf{B}$ is **A**-small, then there is an (\mathbf{A}, \mathbf{B}) -set.

- We need a subset $C \subseteq \omega$ or equivalently $f : \omega \rightarrow 2$.
- MA can help! Let's try with $\mathbb{P} = Fn(\omega, 2)$, G filter, $f = \bigcup G$.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

Let $MA(\kappa)$ hold. Let **A** and **B** be collections of subsets of ω of cardinality $\leq \kappa$. If no set $B \in \mathbf{B}$ is **A**-small, then there is an (\mathbf{A}, \mathbf{B}) -set.

- We need a subset $C \subseteq \omega$ or equivalently $f : \omega \rightarrow 2$.
- MA can help! Let's try with $\mathbb{P} = Fn(\omega, 2)$, G filter, $f = \bigcup G$.
- For all $A \in \mathbf{A}$: $G \ni g$ such that $A \subseteq Dom(g)$ and $A \cap g^{-1}(1)$ is finite.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

Let $MA(\kappa)$ hold. Let **A** and **B** be collections of subsets of ω of cardinality $\leq \kappa$. If no set $B \in \mathbf{B}$ is **A**-small, then there is an (\mathbf{A}, \mathbf{B}) -set.

- We need a subset $C \subseteq \omega$ or equivalently $f : \omega \rightarrow 2$.
- MA can help! Let's try with $\mathbb{P} = Fn(\omega, 2)$, G filter, $f = \bigcup G$.
- For all $A \in \mathbf{A}$: $G \ni g$ such that $A \subseteq Dom(g)$ and $A \cap g^{-1}(1)$ is finite.
- For all $B \in \mathbf{B}$: $G \ni g$ such that $B \cap g^{-1}(1)$ is infinite.
- For all $B \in \mathbf{B}$: $G \ni g$ such that $B \cap g^{-1}(0)$ is infinite.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I -Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

Let $MA(\kappa)$ hold. Let **A** and **B** be collections of subsets of ω of cardinality $\leq \kappa$. If no set $B \in \mathbf{B}$ is **A**-small, then there is an (\mathbf{A}, \mathbf{B}) -set.

- We need a subset $C \subseteq \omega$ or equivalently $f : \omega \rightarrow 2$.
- MA can help! Let's try with $\mathbb{P} = Fn(\omega, 2)$, G filter, $f = \bigcup G$.
- For all $A \in \mathbf{A}$: $G \ni g$ such that $A \subseteq Dom(g)$ and $A \cap g^{-1}(1)$ is finite.
- For all $B \in \mathbf{B}$, $n \in \omega$: $G \ni g$ such that $|B \cap g^{-1}(1)| \ge n$.
- For all $B \in \mathbf{B}$, $n \in \omega$: $G \ni g$ such that $|B \cap g^{-1}(0)| \ge n$.
Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application 1 Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

Let $MA(\kappa)$ hold. Let **A** and **B** be collections of subsets of ω of cardinality $\leq \kappa$. If no set $B \in \mathbf{B}$ is **A**-small, then there is an (\mathbf{A}, \mathbf{B}) -set.

Proof:

Finite functions won't work.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application 1 Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

Let $MA(\kappa)$ hold. Let **A** and **B** be collections of subsets of ω of cardinality $\leq \kappa$. If no set $B \in \mathbf{B}$ is **A**-small, then there is an (\mathbf{A}, \mathbf{B}) -set.

- Finite functions won't work.
- Functions with an A-small domain? Not quite.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

Let $MA(\kappa)$ hold. Let **A** and **B** be collections of subsets of ω of cardinality $\leq \kappa$. If no set $B \in \mathbf{B}$ is **A**-small, then there is an (\mathbf{A}, \mathbf{B}) -set.

- Finite functions won't work.
- Functions with an A-small domain? Not quite.
- $\mathbb{P} = \{g \mid Dom(g) \text{ is } \mathbf{A}\text{-small} \land g^{-1}(1) \text{ is finite}\}$

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application 1 Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

Let $MA(\kappa)$ hold. Let **A** and **B** be collections of subsets of ω of cardinality $\leq \kappa$. If no set $B \in \mathbf{B}$ is **A**-small, then there is an (\mathbf{A}, \mathbf{B}) -set.

- Finite functions won't work.
- Functions with an A-small domain? Not quite.
- $\mathbb{P} = \{g \mid Dom(g) \text{ is } \mathbf{A}\text{-small} \land g^{-1}(1) \text{ is finite}\}$
- For all $A \in \mathbf{A}$: $G \ni g$ such that $A \subseteq Dom(g)$.
- For all $B \in \mathbf{B}$, $n \in \omega$: $G \ni g$ such that $|B \cap g^{-1}(1)| \ge n$.
- For all $B \in \mathbf{B}$, $n \in \omega$: $G \ni g$ such that $|B \cap g^{-1}(0)| \ge n$.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

Let $MA(\kappa)$ hold. Let **A** and **B** be collections of subsets of ω of cardinality $\leq \kappa$. If no set $B \in \mathbf{B}$ is **A**-small, then there is an (\mathbf{A}, \mathbf{B}) -set.

- $\mathbb{P} = \{g \mid Dom(g) \text{ is } \mathbf{A}\text{-small } \land g^{-1}(1) \text{ is finite}\}.$
- \mathbb{P} satisfies ccc. If g_1, g_2 are incompatible, then $g_1^{-1}(1) \neq g_2^{-1}(1)$. There are countably many finite subsets.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application 1 Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

Let $MA(\kappa)$ hold. Let **A** and **B** be collections of subsets of ω of cardinality $\leq \kappa$. If no set $B \in \mathbf{B}$ is **A**-small, then there is an (\mathbf{A}, \mathbf{B}) -set.

- $\mathbb{P} = \{g \mid Dom(g) \text{ is } \mathbf{A}\text{-small} \land g^{-1}(1) \text{ is finite}\}.$
- \mathbb{P} satisfies ccc. If g_1, g_2 are incompatible, then $g_1^{-1}(1) \neq g_2^{-1}(1)$. There are countably many finite subsets.
- For all $A \in \mathbf{A}$: $D_A = \{g \mid A \subseteq Dom(g)\}$ is dense.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

Let $MA(\kappa)$ hold. Let **A** and **B** be collections of subsets of ω of cardinality $\leq \kappa$. If no set $B \in \mathbf{B}$ is **A**-small, then there is an (\mathbf{A}, \mathbf{B}) -set.

- $\mathbb{P} = \{g \mid Dom(g) \text{ is } \mathbf{A}\text{-small} \land g^{-1}(1) \text{ is finite}\}.$
- \mathbb{P} satisfies ccc. If g_1, g_2 are incompatible, then $g_1^{-1}(1) \neq g_2^{-1}(1)$. There are countably many finite subsets.
- For all $A \in \mathbf{A}$: $D_A = \{g \mid A \subseteq Dom(g)\}$ is dense.
- For all $B \in \mathbf{B}$, $n \in \omega$: $D_{B,n} = \{g \mid |B \cap g^{-1}(1)| \ge n\}$ is dense.
- If $g \in \mathbb{P}$, then Dom(g) is **A**-small and *B* is not **A**-small so $B \setminus Dom(g)$ is infinite.

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

Let $MA(\kappa)$ hold. Let **A** and **B** be collections of subsets of ω of cardinality $\leq \kappa$. If no set $B \in \mathbf{B}$ is **A**-small, then there is an (\mathbf{A}, \mathbf{B}) -set.

- $\mathbb{P} = \{g \mid Dom(g) \text{ is } \mathbf{A}\text{-small} \land g^{-1}(1) \text{ is finite}\}.$
- \mathbb{P} satisfies ccc. If g_1, g_2 are incompatible, then $g_1^{-1}(1) \neq g_2^{-1}(1)$. There are countably many finite subsets.
- For all $A \in \mathbf{A}$: $D_A = \{g \mid A \subseteq Dom(g)\}$ is dense.
- For all $B \in \mathbf{B}$, $n \in \omega$: $D_{B,n} = \{g \mid |B \cap g^{-1}(1)| \ge n\}$ is dense.
- If $g \in \mathbb{P}$, then Dom(g) is **A**-small and *B* is not **A**-small so $B \setminus Dom(g)$ is infinite.
- For all $B \in \mathbf{B}$, $n \in \omega$: $D'_{B,n} = \{g \mid |B \cap g^{-1}(0)| \ge n\}$ is dense.

The Sequence Lemma

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

Let $MA(\kappa)$ hold. Then there is a κ -long sequence **S** of subsets of ω such that:

```
• If D \in \mathbf{S}, then D is not \mathbf{S} \setminus \{D\}-small.
```

Proof Idea:

• Let **S** of cardinality $\leq \kappa$ satisfy the above condition.

The Sequence Lemma

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

Let $MA(\kappa)$ hold. Then there is a κ -long sequence **S** of subsets of ω such that:

```
If D \in \mathbf{S}, then D is not \mathbf{S} \setminus \{D\}-small.
```

Proof Idea:

- Let **S** of cardinality $\leq \kappa$ satisfy the above condition.
- One more condition: cannot cover "too much" of ω with finitely many elements of S.

The Sequence Lemma

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Lemma

Let $MA(\kappa)$ hold. Then there is a κ -long sequence **S** of subsets of ω such that:

```
If D \in \mathbf{S}, then D is not \mathbf{S} \setminus \{D\}-small.
```

Proof Idea:

- Let **S** of cardinality $\leq \kappa$ satisfy the above condition.
- One more condition: cannot cover "too much" of ω with finitely many elements of S.
- If $\mathbf{A} \cup \mathbf{B} = \mathbf{S}$ is a partition, then there is an (\mathbf{A}, \mathbf{B}) -set *C* such that $S \cup \{C\}$ preserves all conditions.

References

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

- Jech, T. (1967). Non-provability of Souslins hypothesis. Commentationes Mathematicae Universitatis Carolinae, 8(2), 291305.
- Kunen, K. (2013). Set Theory (1st ed.). College Publications.
- Shoenfield, J. R. (1975). Martins Axiom. The American Mathematical Monthly, 82(6), 610. https://doi.org/10.2307/2319691
- Solovay, R., Tennenbaum, S. (1971). Iterated Cohen extensions and Souslins problem. Annals of Mathematics, 94(2), 201245. https://doi.org/10.2307/2272650
- Tennenbaum, S. (1968). Souslin's Problem. Proceedings of the National Academy of Sciences, 59(1), 6063. https://doi.org/10.1073/pnas.59.1.60

Forcing Project

Anton Chernev and Rodrigo Nicolau Almeida

Forcing Posets

Dense Sets and Martin's Axiom

Application I Suslin's Hypothesis

Application II -Cardinal Exponentiation

Thank you!