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Forcing Posets

Definition
A forcing poset is a triple pP,ď, 1q such that ď is a pre-order on P
and 1 is a largest element. Its elements are called forcing conditions.
We say that p, q P P are compatible (denoted by p M q) iff they
have a common extension. Otherwise we say they are incompatible
(and write pKq). A set of elements which are pairwise incompatible
is called an antichain.

Confusingly enough, the notion of compatibility does not
necessarily match up with the notion of comparability; two
elements may be compatible but not comparable.
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Forcing Posets

For clarity we will specify to which of these concepts we refer to
with a prefix (i.e (forcing)-ccc, as opposed to (poset)-ccc). This
will become relevant later.

Definition
We say a forcing poset P has the (forcing)-ccc if every antichain in P
is countable.

The key example of a forcing poset with the ccc, for our
purposes, is the set of finite partial functions:

Definition
For any I, J , define FnpI, Jq as the set of all finite partial functions
ordered by p ď q iff p Ě q, and with 1 “ H.
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The poset Fn(I,J)

The proof that the poset FnpI, Jq has the ccc under specific
circumstances uses the following lemma:

Lemma
(∆-System Lemma) Let pFα : α ă ω1q be a family of finite subsets of
ω1. Then there is a (stationary) uncountable set S and a finite set R,
such that for all α, β P S Aα X Aβ “ R

Figure 1: Delta-System Lemma
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Ccc of Fn(I,J)

We now briefly prove that this poset has the ccc. We remark
that compatibility in this poset means that the two functions
agree on their common domain.

Theorem
Fn(I,J) has the ccc iff I “ H or J is countable.

Proof: ( ùñ ), suppose that J is uncountable, and fix any i P I;
then the finite partial functions tpi , jqu for j P J form an
uncountable (forcing)-antichain.
( ðù ). Suppose that J is countable, and let pfα : α ă ω1q be a
family of finite partial functions from P. Let pSα : α ă ω1q be
the domain of these function.
By the ∆-System Lemma, let S be uncountable and R finite
root such that Sα X Sβ “ R for α, β P S.
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Ccc of Fn(I,J)

Since R is finite, JR , the set of functions, is countable. Thus,
there must be α ‰ β P S, such that fαæR “ fβæR, since there
are uncountably many such fα. Thus, fα and fβ agree on R, so
they are compatible. Q.E.D
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Dense Sets

Definition
Let P be a forcing poset. Then D Ď P is dense in P iff
@p P P Dq P Dpq ď pq.

Let I be infinite and J be non-empty.
tq P FnpI, Jq | i P Dompqqu is dense for all i P I.
tq P FnpI, Jq | j P Ranpqqu is dense for all j P J .
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Filters

Definition
Let P be a forcing poset. Then G Ď P is a filter on P iff

1 P G
@p, q P G Dr P Gpr ď p ^ r ď qq
@p, q P Ppp ě q ^ q P G Ñ p P Gq
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Martin’s Axiom

Definition

MAPpκq is the statement that whenever D is a family of dense
subsets of P with |D| ď κ, there exists a filter G on P such that
G X D ‰ H for all D P D.
MApκq is the statement that MAPpκq holds for all ccc P.
MA is the statement @κ ă 2ℵ0MApκq.

For λ ă κ: MAPpκq implies MAPpλq and MApκq implies MApλq.
MApκq implies κ ă 2ℵ0 .
MAPpℵ0q for all P.
We cannot drop the ccc requirement – MAPpℵ1q is false for
P “ Fnpℵ0,ℵ1q.
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Martin’s Axiom

Lemma
MApκq implies κ ă 2ℵ0 .

Proof Sketch:
If G is a filter on FnpI, Jq (I infinite, J non-empty), then
fG :“

Ť

G is a function.

Di “ tq P FnpI, Jq | i P Dompqqu dense for all i P I.
Eh “ tq P FnpI, Jq | q Ę hu dense for all h P J I .
Assume towards contradiction κ ě 2ℵ0 and let I “ ℵ0, J “ 2.
We have ℵ0 many Di and 2ℵ0 many Eh.
MA gives us G that meets these dense sets.
fG : I Ñ J and fG ‰ h for all h P J I – contradiction.
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Suslin

Figure 2: Mikhail Suslin (1894-1919)

Context: Trying to axiomatise the properties of the ordered real
line.

At the time Suslin was working, it was known by a result of
Cantor that the real line was, up to order-isomorphism,
characterised as follows:

(1) R is complete, dense and unbounded linear order
(2) R is separable (having a countable dense subset)
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Suslins Hypothesis

Suslin asked: can one replace condition (2) for the weaker:
(2’) Every family of pairwise disjoint open subsets is countable
(the ccc in topology)

An ordered set that satisfies (1) and (2’) but is not
order-isomorphic to the reals is called a Suslin line

Suslins’ Hypothesis
(SH) There are no Suslin lines.
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Suslins Hypothesis

This was shown to be independent of ZFC by several authors:
(Jech (1967), Tennenbaum (1968), Jensen (1970)) all proved
that there are models where Suslin lines exist.

In 1971, Robert Solovay and Stanley Tennenbaum showed that
SH was relatively consistent with ZFC, by using a forcing
argument. Namely, what they showed was that MA`␣CH was
relatively consistent, by developing a theory of transfinite
iterated forcing.
This was also the first forcing axiom: a way of "internalising"
forcing to ZFC, and obtaining consequences from it. Other
stronger forcing axioms are mentioned by Kunen.



Forcing Project

Anton Chernev
and Rodrigo

Nicolau Almeida

Forcing Posets

Dense Sets and
Martin’s Axiom

Application I -
Suslin’s
Hypothesis

Application II -
Cardinal
Exponentiation

Suslins Hypothesis

This was shown to be independent of ZFC by several authors:
(Jech (1967), Tennenbaum (1968), Jensen (1970)) all proved
that there are models where Suslin lines exist.
In 1971, Robert Solovay and Stanley Tennenbaum showed that
SH was relatively consistent with ZFC, by using a forcing
argument. Namely, what they showed was that MA`␣CH was
relatively consistent, by developing a theory of transfinite
iterated forcing.

This was also the first forcing axiom: a way of "internalising"
forcing to ZFC, and obtaining consequences from it. Other
stronger forcing axioms are mentioned by Kunen.



Forcing Project

Anton Chernev
and Rodrigo

Nicolau Almeida

Forcing Posets

Dense Sets and
Martin’s Axiom

Application I -
Suslin’s
Hypothesis

Application II -
Cardinal
Exponentiation

Suslins Hypothesis

This was shown to be independent of ZFC by several authors:
(Jech (1967), Tennenbaum (1968), Jensen (1970)) all proved
that there are models where Suslin lines exist.
In 1971, Robert Solovay and Stanley Tennenbaum showed that
SH was relatively consistent with ZFC, by using a forcing
argument. Namely, what they showed was that MA`␣CH was
relatively consistent, by developing a theory of transfinite
iterated forcing.
This was also the first forcing axiom: a way of "internalising"
forcing to ZFC, and obtaining consequences from it. Other
stronger forcing axioms are mentioned by Kunen.



Forcing Project

Anton Chernev
and Rodrigo

Nicolau Almeida

Forcing Posets

Dense Sets and
Martin’s Axiom

Application I -
Suslin’s
Hypothesis

Application II -
Cardinal
Exponentiation

Suslin Lines and Suslin Trees

Definition
An poset S is called a Suslin line if:

S is complete, dense and unbounded
S has the ccc
S is not separable

Definition
A tree pT ,ăq is called a (normal) Suslin tree if:

T has height ω1

All levels of T are countable
All (poset)-antichains and all branches of T are countable
T has a unique root
Every element x P T has uncountably many successors

We will now brief sketch one implication of a result of Kurepa
(1934) that shows that these notions are equivalent:
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Suslin Lines and Suslin Trees

Definition
An poset S is called a Suslin line if:

S is complete, dense and unbounded
S has the ccc
S is not separable

Definition
A tree pT ,ăq is called a (normal) Suslin tree if:

T has height ω1

All levels of T are countable
All (poset)-antichains and all branches of T are countable
T has a unique root
Every element x P T has uncountably many successors

We will now brief sketch one implication of a result of Kurepa
(1934) that shows that these notions are equivalent:
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Suslin line implies Suslin tree

Theorem
If there is a Suslin line, then there is a Suslin tree.

Proof Sketch: Let pS,ăq be a Suslin line. We construct the
Suslin tree out of the closed intervals for this line, and for
I, J P C, we let I ĺ J if I Ě J .

This is defined by recursion, letting I0 “ ra0, b0s for arbitrary
a0, b0 P S; and for each α, letting C be the set of endpoints of
intervals considered so far; since S is not separable, C is not
dense, so we let Iα be an interval disjoint from all the endpoints
of Iβ for β ă α.
We let T “ tIα : α ă ω1u. Then this will be a tree, as one can
prove the predecessors form a well-order.
It has the (poset)-ccc, because S has the ccc; the ccc also yields
the non-existence of a branch of size ω1.
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MA+␣CH implies SH

Assume MApℵ1q; let pT ,ăq be a Suslin tree. We let pT ˚,ă˚q

be the conversely ordered tree (i.e, x ă˚ y iff x ą y)

Since there is a unique root, this makes T ˚ into a forcing poset.
Note that x , y , we have that if x M y , then there must be some
z ă˚ x .y ; since T is a tree, this can only happen if x and y are
comparable. Thus comparability equals compatibility, so T ˚

satisfies the (forcing)-ccc.
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MA+␣CH implies SH (continued)

Let T “ txα : α ă ω1u be an enumeration of the tree. Note
that for each α, consider the set:

Txα :“ txβ P T ˚ : α ď β ă ω1u

Each such set is dense. If not, there would be a p P T such that
for no γ, xγ P Txα and xγ ď˚ p. Thus if yγ ď˚ p, γ ă α. But
this is absurd, since then p would only have countably many
successors in T .
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MA+␣CH implies SH (continued)

Let T “ txα : α ă ω1u be an enumeration of the tree. Note
that for each α, consider the set:
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Each such set is dense. If not, there would be a p P T such that
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this is absurd, since then p would only have countably many
successors in T .
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MA+␣CH implies SH (continued)

So consider pTxα : xα P T ˚q a family of dense sets. By MA,
there is a generic filter, D, which intersects each set.

Since all elements of a filter have to be compatible, by our
earlier remarks, D has to be totally ordered. So D is a branch in
T , and since it intersects all the Txα , it has to have length ω1,
in contradiction to T being Suslin. Q.E.D
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MA+␣CH implies SH (continued)

So consider pTxα : xα P T ˚q a family of dense sets. By MA,
there is a generic filter, D, which intersects each set.
Since all elements of a filter have to be compatible, by our
earlier remarks, D has to be totally ordered. So D is a branch in
T , and since it intersects all the Txα , it has to have length ω1,
in contradiction to T being Suslin. Q.E.D
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Cardinal Exponentiation

Cardinal arithmetic is somewhat complicated.
CH helps us with that.
MA helps too!

Theorem
MApκq implies 2κ “ 2ℵ0 .
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Cardinal Exponentiation

Theorem
MApκq implies 2κ “ 2ℵ0 .

Proof:
2ℵ0 ď 2κ because ℵ0 ď κ.

For 2κ ď 2ℵ0 we need an injection F that maps subsets of κ to
subsets of ℵ0.
What can MA give us?
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(A, B)-sets

Definition
Let A and B be collections of subsets of ω. We call C an pA,Bq-set
if:

C X A is finite for every A P A.
C X B is infinite for every B P B.
C X B is infinite for every B P B.

C covers "very little" of A, for all A.
C covers "a lot" of B, for all B.
C does not cover "too much" of B, for all B.
A does not cover "too much" of B, for all A, B.
Cannot cover "too much" of B with finitely many As.
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A-small sets

Definition
Let A and B be collections of subsets of ω. We call C an pA,Bq-set
if:

C X A is finite for every A P A.
C X B is infinite for every B P B.
C X B is infinite for every B P B.

Definition
A set D is A-small if there are sets A1, . . . ,An P A such that
DzpA1 Y . . .Y Anq is finite.

Can cover "too much/almost everything" of D with finitely
many As.
If there is an pA,Bq-set, then B is not A-small for any B.
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A-small sets

Definition
Let A and B be collections of subsets of ω. We call C an pA,Bq-set
if:

C X A is finite for every A P A.
C X B is infinite for every B P B.
C X B is infinite for every B P B.

Definition
A set D is A-small if there are sets A1, . . . ,An P A such that
DzpA1 Y . . .Y Anq is finite.

Can cover "too much/almost everything" of D with finitely
many As.
If there is an pA,Bq-set, then B is not A-small for any B.
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The Existence Lemma

Lemma
Let MApκq hold. Let A and B be collections of subsets of ω of
cardinality ď κ. If no set B P B is A-small, then there is an
pA,Bq-set.



Forcing Project

Anton Chernev
and Rodrigo

Nicolau Almeida

Forcing Posets

Dense Sets and
Martin’s Axiom

Application I -
Suslin’s
Hypothesis

Application II -
Cardinal
Exponentiation

The Sequence Lemma

Lemma
Let MApκq hold. Then there is a κ-long sequence S of subsets of ω
such that:

If D P S, then D is not SztDu-small.

Corollary: If we split S into A and B, then there is an
pA,Bq-set.
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Putting everything together

Theorem
MApκq implies 2κ “ 2ℵ0 .

Proof:
For 2κ ď 2ℵ0 we need an injection F that maps subsets of κ to
subsets of ℵ0.

The Sequence Lemma gives us a sequence S.
Every subset X Ď κ determines a partition AX Y BX “ S.
The Existence Lemma gives us an pAX ,BX q-set CX .
F pX q “ CX is injective. Why?
Let X ‰ Y . Then D P AX and D P BY for some D. Now
D X CX is finite, D X CY is infinite. So CX ‰ CY .
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Proof of the Existence Lemma

Lemma
Let MApκq hold. Let A and B be collections of subsets of ω of
cardinality ď κ. If no set B P B is A-small, then there is an
pA,Bq-set.

Proof:
We need a subset C Ď ω or equivalently f : ω Ñ 2.

MA can help! Let’s try with P “ Fnpω, 2q, G filter, f “
Ť

G .
For all A P A: G Q g such that A Ď Dompgq and AX g´1p1q is
finite.
For all B P B: G Q g such that B X g´1p1q is infinite.
For all B P B: G Q g such that B X g´1p0q is infinite.
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cardinality ď κ. If no set B P B is A-small, then there is an
pA,Bq-set.

Proof:
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Let MApκq hold. Let A and B be collections of subsets of ω of
cardinality ď κ. If no set B P B is A-small, then there is an
pA,Bq-set.

Proof:
We need a subset C Ď ω or equivalently f : ω Ñ 2.
MA can help! Let’s try with P “ Fnpω, 2q, G filter, f “

Ť

G .
For all A P A: G Q g such that A Ď Dompgq and AX g´1p1q is
finite.
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Lemma
Let MApκq hold. Let A and B be collections of subsets of ω of
cardinality ď κ. If no set B P B is A-small, then there is an
pA,Bq-set.

Proof:
We need a subset C Ď ω or equivalently f : ω Ñ 2.
MA can help! Let’s try with P “ Fnpω, 2q, G filter, f “
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Proof of the Existence Lemma

Lemma
Let MApκq hold. Let A and B be collections of subsets of ω of
cardinality ď κ. If no set B P B is A-small, then there is an
pA,Bq-set.

Proof:
We need a subset C Ď ω or equivalently f : ω Ñ 2.
MA can help! Let’s try with P “ Fnpω, 2q, G filter, f “

Ť

G .
For all A P A: G Q g such that A Ď Dompgq and AX g´1p1q is
finite.
For all B P B, n P ω: G Q g such that |B X g´1p1q| ě n.
For all B P B, n P ω: G Q g such that |B X g´1p0q| ě n.
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Proof of the Existence Lemma

Lemma
Let MApκq hold. Let A and B be collections of subsets of ω of
cardinality ď κ. If no set B P B is A-small, then there is an
pA,Bq-set.

Proof:
Finite functions won’t work.

Functions with an A-small domain? Not quite.
P “ tg | Dompgq is A-small^ g´1p1q is finiteu
For all A P A: G Q g such that A Ď Dompgq.
For all B P B, n P ω: G Q g such that |B X g´1p1q| ě n.
For all B P B, n P ω: G Q g such that |B X g´1p0q| ě n.
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For all A P A: G Q g such that A Ď Dompgq.
For all B P B, n P ω: G Q g such that |B X g´1p1q| ě n.
For all B P B, n P ω: G Q g such that |B X g´1p0q| ě n.
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Proof:
P “ tg | Dompgq is A-small^ g´1p1q is finiteu.
P satisfies ccc. If g1, g2 are incompatible, then g´1

1 p1q ‰ g´1
2 p1q.

There are countably many finite subsets.

For all A P A: DA “ tg | A Ď Dompgqu is dense.
For all B P B, n P ω: DB,n “ tg | |B X g´1p1q| ě nu is dense.
If g P P, then Dompgq is A-small and B is not A-small so
BzDompgq is infinite.
For all B P B, n P ω: D1

B,n “ tg | |B X g´1p0q| ě nu is dense.
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The Sequence Lemma

Lemma
Let MApκq hold. Then there is a κ-long sequence S of subsets of ω
such that:

If D P S, then D is not SztDu-small.

Proof Idea:
Let S of cardinality ď κ satisfy the above condition.

One more condition: cannot cover "too much" of ω with finitely
many elements of S.
If AY B “ S is a partition, then there is an pA,Bq-set C such
that S Y tCu preserves all conditions.
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