Alternative Set Theories	
Yurii Khomskii	
Introduction	Alternative Set Theories
NGB	
MK	
KP	Yurii Khomskii
NF	
AFA	
IZF / CZF	
Other	Universität Hamburg Der Forschung Der Lehre Der Bildung
	 < 日 > 〈 日 > 〈 日 > 〈 目 > 〈 三 > 〈 □ > (□ > ∪))))))))))))))))))))))))))))))))
	Yurii Khomskii Alternative Set Theories

Naive Set Theory

Alternative Set Theories	
Yurii Khomskii	
Introduction	
NGB	
MK	Naive Set Theory
KP	For every φ , the set $\{x \mid \varphi(x)\}$ exists.
NF	Tor every φ , the set $\{x \mid \varphi(x)\}$ exists.
AFA	
IZF / CZF	
Other	
	< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < 回

Russell's Paradox

Yurii Khomskii

Russell's Paradox

Introduction

NGB

MK

KP

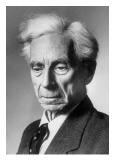
NF

AFA

IZF / CZF

Other

Let $K := \{x \mid x \notin x\}$ Then $K \in K \leftrightarrow K \notin K$



ZFC

Alternative Set Theories

Yurii Khomskii

Introduction

NGB

MK

KP

NF

AFA

IZF / CZF

Other

The commonly accepted axiomatization of set theory is ZFC. All results in mainstream mathematics can be formalized in it.

《口》 《圖》 《臣》 《臣》

= 990

Philosophy of ZFC

Alternative Set Theories	
Yurii Khomskii	
Introduction	Philosophy of ZFC
NGB	 Everything is a set.
MK	Sets are constructed out of other sets, bottom up.
KP NF AFA	 Comprehension can only select a subset out of an existing set (avoid paradoxes).
IZF / CZF	• Certain definable collections $\{x \mid \varphi(x)\}$ are "too large" to
Other	be sets.

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

= 990

Logic of ZFC

Alternative Set Theories Yurii Khomskii	
Introduction	Logic of ZFC
NGB	Classical predicate logic.
КР	• One-sorted.
NF	• One binary non-logical relation symbol \in .
AFA IZF / CZF Other	 In this language, ZFC is an infinite (but recursive) collection of axioms.

Other set theories Alternative Set Theories Yurii All these factors are liable to change! Several alternative set Khomskii theories have been proposed, for a variety of reasons: Introduction • Philosophical (more intuitive conception) MK • The need to have proper classes as formal objects (e.g., KP "class forcing") NF Capturing a fragment of mathematics (e.g., predicative AFA fragment, intuitionistic fragment etc.) IZF / CZF Application to other fields (e.g., computer science) Simply out of curiosity...

San

Alternative systems

Alternative Set Theories Yurii Khomskii	The alternative systems we intend to study are the following:
Introduction	INGB (von Neumann-Gödel-Bernays)
NGB	2 MK (Morse-Kelley)
КР	③ NF (New Foundations)
NF	④ KP (Kripke-Platek)
AFA IZF / CZF	IZF/CZF (Intuitionistic and constructive set theory)
Other	SECTION STATES (Antifoundation)
	Ø Modal or other set theory?

▲□ > ▲□ > ▲□ > ▲□ > ▲□ >

∃ ∽ ९ (~

Alternative Set Theories	
Yurii Khomskii	
Introduction	
NGB	
MK	
KP	von Neumann-Gödel-Bernays (NBG)
NF	
AFA	
IZF / CZF	
Other	
	<ロ> <舂> <差> < 差>
	Yurii Khomskii Alternative Set Theories

NGB

Alternative Set Theories

Yurii Khomskii

Introduction

NGB

MK

KP

 NF

AFA

IZF / CZF

Other

NGB (von Neumann-Gödel-Bernays)

- We have **sets** and **classes**; some classes are sets, others are not.
- It can be formalized either in a two-sorted language or using a predicate M(X) stating "X is a set".
- You still need **set existence** axioms, along with **class existence** axioms.
- NGB can be finitely axiomatized.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ① ○ ○

Axiomatization of NGB

Alternative Set Theories	Axiomatization of NGB
Yurii Khomskii	• Set axioms:
Introduction NGB MK KP NF AFA IZF / CZF	 Pairing Infinity Union Power set Replacement Class axioms: Extensionality Foundation
Other	 Foundation Class comprehension schema for φ which quantify only over sets:
	${\mathcal C}:=\{x\mid arphi(x)\}$ is a class
	• Global Choice.
	《ロ》《母》《臣》《臣》 臣 のへ()

Class comprehension vs. finite axiomatization

Alternative Set Theories	
Yurii Khomskii	
Introduction	
NGB	As stated above, class comprehension is a schema. However, it
MK	can be replaced by finitely many instances thereof (roughly
KP	speaking: one axiom for each application of a logical
NF	connective/quantifier).
AFA	
IZF / CZF	
Other	
	(日) (型) (当) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日

Alternative Set Theories
Yurii Khomskii
Introduction
NGB
МК
KP
NF
AFA
IZF / CZF
Other

Morse-Kelley MK

Alternative Set Theories

Yurii Khomskii

Introduction

NGB

MK

KP

 NF

AFA

IZF / CZF

Other

Morse-Kelley (MK)

Morse-Kelley set theory is a variant of NGB with the class comprehension schema allowing **arbitrary** formulas (also those that quantify over classes).

MK is **not** finitely axiomatizable.

《日》 《圖》 《臣》 《臣》

3

Sar

Consistency strength

Alternative Set Theories Yurii Khomskii NGB is a conservative extension of ZFC: for any Introduction theorem φ involving **only sets**, if NGB $\vdash \varphi$ then ZFC $\vdash \varphi$. In particular, if ZFC is consistent then NGB is consistent. MK • $MK \vdash Con(ZFC)$, and therefore the consistency of MK KP does not follow from the consistency of ZFC. • If κ is inaccessible, then $(V_{\kappa}, \text{Def}(V_{\kappa})) \models \text{NGB}$ while AFA $(V_{\kappa}, \mathcal{P}(V_{\kappa})) \models \mathsf{MK}.$ IZF / CZF The consistency strength of MK is strictly between ZFC and ZFC + Inaccessible.

() < </p>

San

Alternative Set Theories
Yurii Khomskii
Introduction
NGB
MK
КР
NF
AFA
IZF / CZF
Other

Alt	ernative
Set	Theories

Yurii Khomskii

Introduction

NGB

MK

KΡ

NF

AFA

IZF / CZF

Other

Kripke-Platek set theory (KP)

Captures a small part of mathematics — stronger than 2nd order arithmetic but noticeably weaker than ZF.

Idea: get rid of "impredicative" axioms of ZFC: in particular Power Set, (full) Separation and (full) Replacement.

Instead, have Separation and Replacement for $\Delta_0\mbox{-}formulas$ only.

na Cr

Applications of KP

Alternative Set Theories	
Yurii Khomskii	
Introduction	KP has applications in many standard areas of set theory as
NGB	well as recursion theory and constructibility.
MK	
КР	One example: KP is sufficient to develop the theory of Gödel's
NF	Constructible Universe L.
AFA	
IZF / CZF	L is not only the minimal model of ZFC, but also the minimal
Other	model of KP (this is because " $V = L$ " is absolute for KP).

Alternative Set Theories
Yurii Khomskii
ntroduction
NGB
MK
KP
NF
AFA
IZF / CZF
Other

NF

Alternative Set Theories	
Yurii Khomskii	
Introduction	Quine's New Foundations.
NGB	
MK	The idea is: avoid Russell's paradox by a syntactical limitation on φ in the comprehension scheme $\{x \mid \varphi(x)\}$. NF has its roots in type theory , as it was first developed in <i>Principia Mathematica</i> .
KP	
NF	
AFA	
IZF / CZF	
Other	

<□> < □> < □> < 三> < 三> < 三> < 三</p>

Stratified sentences

Alternative Set Theories

Yurii Khomskii

- Introduction
- NGB

MK

KP

NF

AFA

IZF / CZF

Other

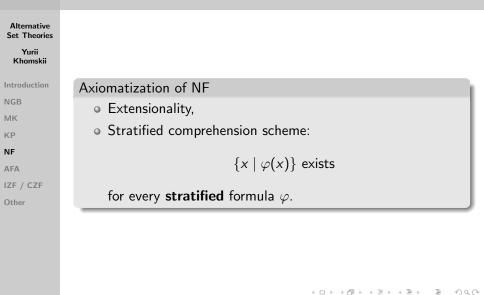
A sentence ϕ in the language of set theory (only = and \in symbols) is **stratified** if it is possible to assign a non-negative integer to each variable x occurring in ϕ , called the **type of** x, in such a way that:

- 1 Each variable has the same type whenever it appears,
- In each occurrence of "x = y" in \u03c6, the types of x and y are the same, and
- In each occurrence of "x ∈ y" in φ, the type of y is one higher than the type of x.

Example: x = x is stratified. $x \in y$ is stratified. $x \notin x$ is not stratified.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ① ○ ○

Axiomatization of NF



Finite axiomatization of NF

Alternative Set Theories

> Yurii Khomskii

Introduction

NGB

MK

KP

NF

AFA

IZF / CZF

Other

Alternatively, we may replace the stratified comprehension scheme by **finitely many instances** thereof, each having intuitive motivation:

• The empty set exists: $\{x \mid \bot\}$

• The singleton set exists: $\{x \mid x = y\}$

• The union of a set *a* exists: $\{x \mid \exists y \in a \ (x \in y)\}$

• . . .

as well as other "non-ZFC-ish" axioms, e.g.:

• The universe exists: $\{x \mid \top\}$

• The compelement of A exists: $\{x \mid x \notin A\}$

• . . .

The full stratified comprehension scheme is a **consequence** of these instances.

Properties of NF

Alternative Set Theories

Yurii Khomskii

NF is weird!

Introduction

NGB

MK

KP

NF

AFA

IZF / CZF

Other

• $V := \{x \mid \top\}$, the universe of all sets, exists, and $V \in V$. Therefore:

$$\cdots \in V \in V \in V.$$

• NF
$$\vdash \neg AC$$
.

• Therefore: NF \vdash Infinity.

• The consistency of NF was an **open problem** since 1937 till (about) 2010.

na Cr

NFU

Alt	ernative
Set	Theories

Yurii Khomskii

Introduction

NGB

MK

KP

NF

AFA

IZF / CZF

Other

Ronald Jensen considered a weakening of NF called NFU (New Foundations with Urelements), weakening Extensionality to

$$\forall x \forall y \ (x \neq \emptyset \land y \neq \emptyset \land \forall z \ (z \in x \leftrightarrow z \in y) \rightarrow x = y)$$

NFU was known to be consistent for a long time, NFU $\not\vdash \neg AC$ and NFU $\not\vdash$ Infinity. So NFU+ Infinity +AC is consistent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ① ○ ○

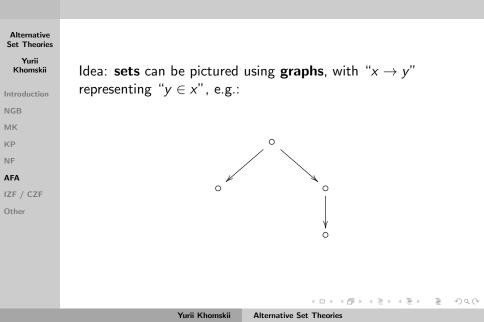
Alternative Set Theories
Yurii Khomskii
ntroduction
NGB
МК
KP
NF
AFA
IZF / CZF
Other

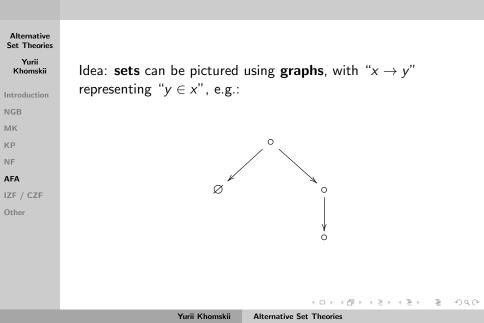
Non-well-founded set theory

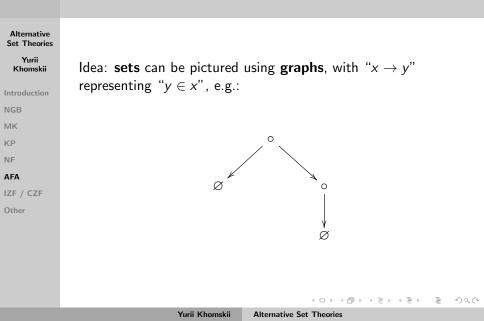
Alternative Set Theories Yurii Khomskii Aczel's non-well-founded set theory Introduction We already saw that $V \in V$ holds in NF. MK KP Peter Aczel considered the question: "how non-well-founded NF can set theory be"? In other words, is it consistent that **any** AFA **kind of** non-well-founded set that you can think of, exists? IZF / CZF Other This leads to the Anti-Foundation Axiom AFA.

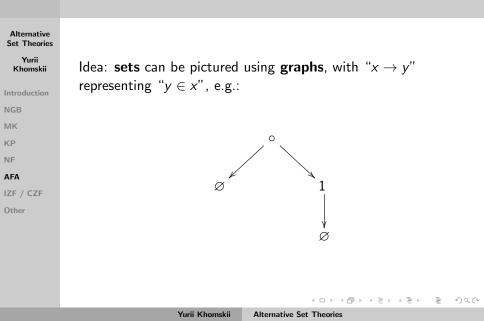
<ロト <回ト < 三ト < 三ト = 三

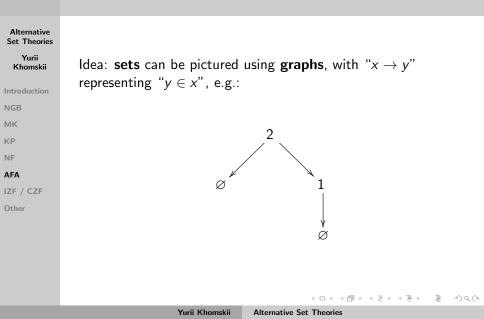
Sar









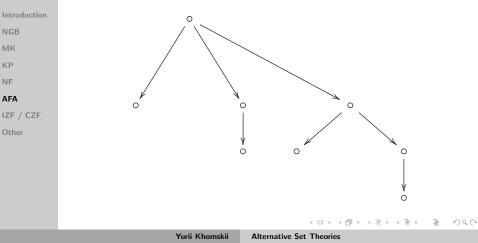


Alternative Set Theories Yurii Khomskii

NGB MK KP NF AFA

IZF / CZF Other

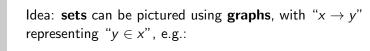
Idea: sets can be pictured using graphs, with " $x \rightarrow y$ " representing " $y \in x$ ", e.g.:

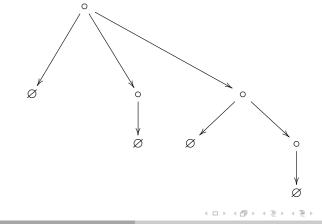


Introduction

IZF / CZF Other

NGB MK KP NF AFA





E

5900

Yurii Khomskii Alternative Set Theories

NGB

MK

KP

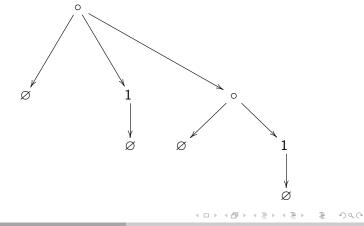
NF

AFA

IZF / CZF

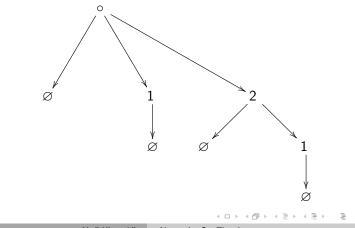
Other

Idea: sets can be pictured using graphs, with " $x \rightarrow y$ " representing " $y \in x$ ", e.g.:



Introduction NGB MK KP NF AFA

IZF / CZF Other Idea: sets can be pictured using graphs, with " $x \rightarrow y$ " representing " $y \in x$ ", e.g.:

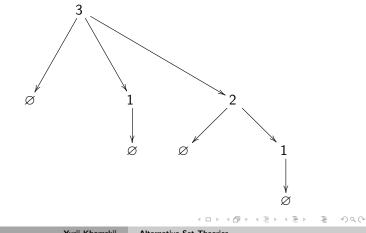


5900

IZF / CZF

Other

Idea: sets can be pictured using graphs, with " $x \rightarrow y$ " representing " $y \in x$ ", e.g.:



Alternative Set Theories Yurii Khomskii		
	Every graph without infinite paths or cycles corresponds to a unique set (Mostowski Collapse).	
Introduction		
NGB		
MK	Aczel: now look at non-well-founded graphs!	
КР	rezen neu reer de neu reanded grapher	
NF	\frown	
AFA		
IZF / CZF		
Other		
	<ロ> <車> <車> <車> <車> <車> <車> <車> <車> <	
	Yurii Khomskii Alternative Set Theories	

Alternative Set Theories Yurii Khomskii Introduction NGB	Every graph without infinite paths or cycles corresponds to a unique set (Mostowski Collapse).
MK KP NF AFA IZF / CZF Other	Aczel: now look at non-well-founded graphs! \bigodot_{\circ} You can write this as: $\Omega=\{\Omega\}.$
	< ロ > < 唇 > < 差 > 、 差 うくで

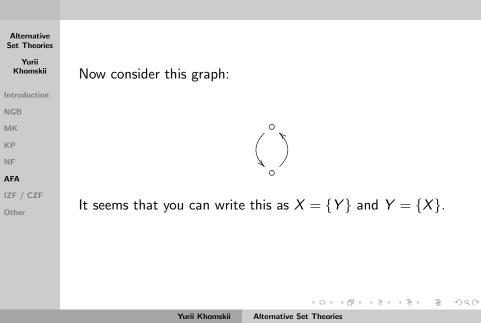
Alternative Set Theories		
Yurii Khomskii Introduction	Every graph without infinite paths or cycles corresponds to a unique set (Mostowski Collapse).	
NGB		
MK KP	Aczel: now look at non-well-founded graphs!	
NF	\bigcirc	
AFA		
IZF / CZF Other	You can write this as: $\Omega = \{\Omega\}$. But also as $\Omega = \{\{\Omega\}\}$.	
	(ロ) (間) (言) (言) (言) ()	
	V all Manualli Alternative Cat Theories	

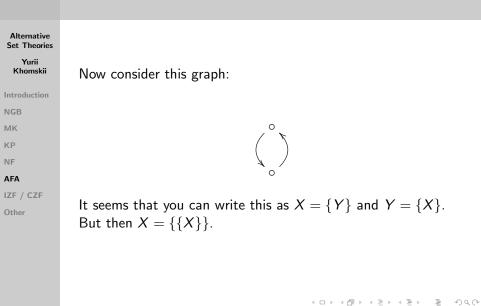
Alternative Set Theories		
Yurii Khomskii		
Introduction NGB	Every graph without infinite paths or cycles corresponds to a unique set (Mostowski Collapse).	
MK	Aczel: now look at non-well-founded graphs!	
KP		
AFA	\bigcirc	
IZF / CZF	0	
Other	You can write this as: $\Omega = \{\Omega\}$. But also as $\Omega = \{\{\Omega\}\}$. And also as $\Omega = \{\Omega, \{\Omega\}\}$.	

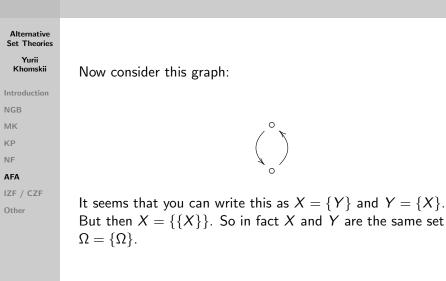
<□> < □> < □> < 三> < 三> < 三> < 三</p>

Alternative Set Theories		
Yurii Khomskii	Now consider this graph:	
Introduction		
NGB		
MK		\sim
KP		
NF		
AFA		0
IZF / CZF		
Other		
		《曰》《卽》《言》《言》 [] 클
	Yurii Khomskii	Alternative Set Theories

999



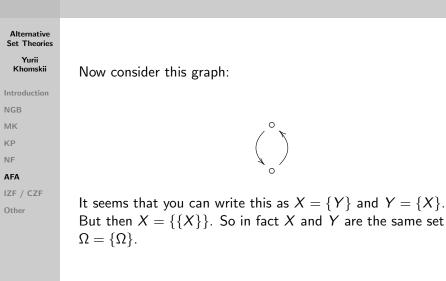




◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

1

DQR

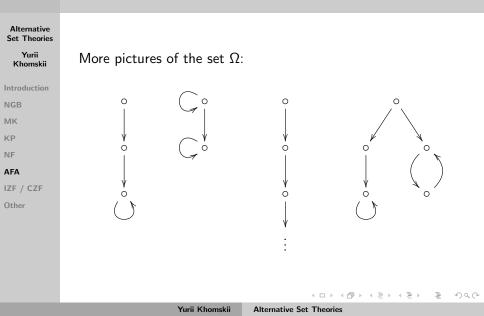


◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

1

DQR

More pictures of $\boldsymbol{\Omega}$



AFA

Alternative Set Theories Yurii	
Khomskii	
Introduction	The entities detice a issue AFA is (nearbh), enceling).
NGB	The anti-foundation axiom AFA is (roughly speaking):
MK	Every connected pointed graph represents a unique
KP	set.
NF	
AFA	
IZF / CZF	AFA is consistent with ZF — Foundation.
Other	
	《□▷《圕▷《晝▷《불▷ 불 이익(♡ Yurii Khomskii Alternative Set Theories

Alternative Set Theories		
Yurii Khomskii		
Introduction		
NGB		
MK		
KP	Intuitionistic/Constri	Intuitionistic/Constructive Set Theory
NF		
AFA		
IZF / CZF		
Other		
		《曰》《圖》《臣》《臣》 []
	Yurii Khomskii Alternati	ive Set Theories

Intuitionistic and Constructive Set Theory

Alternative Set Theories Yurii

Khomskii

Introduction

NGB

MK

KP

NF

AFA

IZF / CZF

Other

IZF (the simplest variant)

Suppose we take all the ZFC axioms exactly as they are, but change the logic from **classical logic** to **intuitionistic logic**? I.e., ϕ is a theorem of the system iff ZFC $\vdash \phi$ in intuitionistic predicate logic.

- 4 回 ト - 4 回 ト

3

Sar

Axiom of Choice

Alternative Set Theories

Yurii Khomskii

Let ϕ be some formula. Consider:

Axiom of Choice

Introduction

NGB

MK

KP

 NF

AFA

IZF / CZF

Other

 $B := \{n \in \{0,1\} \mid n = 1 \lor (n = 0 \land \phi)\}$ Since *A* and *B* are non-empty, by AC, there is a choice function $f : \{A, B\} \rightarrow \{0, 1\}.$ Since equality of natural numbers is intuitionistically decidable, f(A) = f(B) or $f(A) \neq f(B)$.

 $A := \{ n \in \{0, 1\} \mid n = 0 \lor (n = 1 \land \phi) \}$

If f(A) = f(B) = 0 then $0 \in B$, hence ϕ . Similarly if f(A) = f(B) = 1.

Suppose $f(A) \neq f(B)$. Towards contradiction, suppose ϕ . Then, by extentionality, A = B, hence f(A) = f(B): contradiction! Hence $\neg \phi$.

(Recall that $(\phi \rightarrow \bot) \rightarrow \neg \phi$ is valid, only $(\neg \phi \rightarrow \bot) \rightarrow \phi$ is invalid).

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Axiom of Choice

Alternative Set Theories	
Yurii Khomskii	
Introduction	
NGB	
MK	Thus AC (formulated as above) implies $\phi ee \neg \phi$ for any formula
KP	ϕ . We have obtained the Law of Excluded Middle , thus the
NF	ZFC axioms with intuitionistic logic is just normal ZFC.
AFA	
IZF / CZF	
Other	
	< ロ > < 団 > < 座 > < 座 > < 座 > < 座 > < 座 > < 回 > < 0 < 0

Foundation

Alternative Set Theories Yurii Khomskii		
Introduction NGB	But consider Foundation : $\forall X \ (\exists y \in X \rightarrow \exists y \in X \ \forall z \in X \ (z \notin y)).$	
MK		
KP		
NF		
AFA		
IZF / CZF		
Other		
	・ロト (間) (声) (中) (の)	
	Yurii Khomskii Alternative Set Theories	

Foundation

Alternative Set Theories Yurii Khomskii

Introduction

NGB

MK

KP

 NF

AFA

IZF / CZF

Other

You may think AC is inherently non-constructive, and thus shouldn't even be taken into account, etc.

But consider **Foundation**: $\forall X \ (\exists y \in X \rightarrow \exists y \in X \ \forall z \in X \ (z \notin y)).$

Let $A := \{n \in \{0,1\} \mid n = 1 \lor (n = 0 \land \phi)\}.$

Foundation

Alternative Set Theories Yurii Khomskii

Introduction

NGB

MK

KP

NF

AFA

IZF / CZF

Other

You may think AC is inherently non-constructive, and thus shouldn't even be taken into account, etc.

But consider **Foundation**: $\forall X \ (\exists y \in X \rightarrow \exists y \in X \ \forall z \in X \ (z \notin y)).$

Let $A := \{n \in \{0,1\} \mid n = 1 \lor (n = 0 \land \phi)\}.$

A is non-empty so there is a $y \in A$ which is \in -minimal. By definition of A, either y = 1 or $y = 0 \land \phi$. But the former case implies that $0 \notin A$, hence $\neg \phi$.

Hence, in either case, $\phi \lor \neg \phi$.

Again we have proved the Law of Excluded Middle (from a seemingly harmless statement).

Set Induction

Alternative Set Theories Yurii Khomskii **Set Induction** is the following axiom schema for all ϕ : Introduction NGB $\forall x \left[(\forall y \in x \ \phi(y)) \rightarrow \phi(x) \right] \quad \rightarrow \quad \forall x \ \phi(x)$ MK KP This principle does **not** imply Excluded Middle. NF AFA Likewise, there are variants of AC which do not imply Excluded IZF / CZF Middle and are compatible with an intuitionistic system. Other

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ① ○ ○

Alternative Set Theories Yurii Khomskii	
Introduction NGB MK KP NF AFA IZF / CZF Other	 IZF is the theory consisting of the ZF axioms without Choice, but with Foundation replaced by Set Induction, and Replacement by a stronger principle called Collection. Other theories, most notably CZF, implements other changes as well (mostly based on conceptual/philosophical justifications).
	4 日 > 4 国 > 4 芝 > 4 芝 > ラヘの

ernative Theories
Yurii Khomskii
ntroduction
NGB
МК
KP
NF
AFA
IZF / CZF
Other

Other logics

Alternative Set Theories

Yurii Khomskii

Introduction

NGB

MK

KP

NF

AFA

IZF / CZF

Other

Set Theories based on other logics?

Modal Set Theory would be some form of ZF or ZFC done in some form of **modal predicate logic**. There is no universal consensus on what should count as modal predicate logic — let alone for modal ZF or ZFC. Therefore this is a highly experimental subject.

Robert Passmann is currently writing his Master Thesis on modal set theory, so I hope he can tell us something about it!

<ロ> < 団> < 豆> < 豆> < 豆> < 豆> < 豆</p>

Other logics

Alternative Set Theories

Yurii Khomskii

Introduction

NGB

MK

KP

NF

AFA

IZF / CZF

Other

Set Theories based on other logics?

Modal Set Theory would be some form of ZF or ZFC done in some form of **modal predicate logic**. There is no universal consensus on what should count as modal predicate logic — let alone for modal ZF or ZFC. Therefore this is a highly experimental subject.

Robert Passmann is currently writing his Master Thesis on modal set theory, so I hope he can tell us something about it!

Paraconsistent set theory?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ① ○ ○

Alternative Set Theories

