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Introduction

In January 2018, I took part in the Alternative Set Theories project, led by Yurii Khomskii at the ILLC.
For this, I investigated models of Intuitionistic Zermelo–Fraenkel set theory (IZF), and looked at their
applications to proving separation results for so-called ‘omniscience principles’.

IZF is a constructive set theory. It uses intuitionistic logic instead of classical logic; its axioms are mostly
those of classical ZF set theory, with a few alterations to avoid validating excluded middle. Its axioms and
basic properties are elaborated in [Aczel and Rathjen, 2010, p. 24]. The models of IZF which I investigated
are so-called ‘full Kripke models’. The description of these models and the proofs of the separation results
which make use of them can be found in [Hendtlass and Lubarsky, 2016]. Throughout the following, the
metatheory will be classical ZFC.

Full Kripke Models

The goal is to produce a class of models validating all the axioms of IZF which is sufficiently flexible to
allow for the creation of models that separate various pairs of omniscience principles (i.e. models in which
one of the pair is true while the other false). The usual way of giving a semantics for intuitionistic logical
systems is via ‘Kripke semantics’. Briefly, a Kripke model for a system in the language L consists of a
partial order P and for each σ ∈ P an assignment to a classical structure (Dσ, Pσ | P ∈ Predicates(L)),
which gives a domain and for each predicate symbol in the language an interpretation of it in that domain,
which assignment is moreover monotone: if σ 6 τ then Dσ ⊆ Dτ and Pσ ⊆ Pτ for every predicate P (see
[Aczel and Rathjen, 2010, p. 20]). This is what happens in full Kripke models, however the construction is
somewhat intricate, since one must consider sets whose extensions are expanding, and whose elements are
themselves sets whose extensions are expanding, and so on. In order to construct such a model, we begin
with a collection of models of classical ZFC, together with a system of elementary embeddings between them.

So, let P be a partial order. For any σ ∈ P, we let P>σ be the partial order {τ ∈ P | σ 6 τ}. For each
σ ∈ P, let Mσ be a model of ZFC (which can be a class in general). Let(

fστ : Mσ →Mτ | σ, τ ∈ P, σ 6 τ
)

be a system of elementary embeddings which coheres in the following sense. For any σ ∈ P, we require that
fσσ = idMσ , and for any σ 6 τ 6 ρ that fτρ ◦ fστ = fσρ. Assume that for every σ ∈ P we have that P>σ,
each Mτ for τ > σ, the assignment τ 7→ Mτ for τ > σ and fτρ for τ, ρ > σ are all definable in Mσ; P>σ

should moreover be a set in Mσ.
With these preliminaries in place, we can now proceed to define the full Kripke model, K, over this

system. It will consist of a class of objects Kσ ⊆ Mσ for each σ ∈ P. The objects of Kσ will be particular
functions g whose domain is P>σ, and such that for τ ∈ P>σ we have g(τ) ⊆ Kτ . The idea is that g
represents a set whose elements can be different at each node of the partial order; for any τ > σ, the
collection g(τ) is the elements of g at the node τ . For such a function and τ > σ, let g>τ := g|P>τ ; the idea
is that g>τ is what the set g looks like at the node τ . We will require that the collection of elements of any
g only grows as we move up the partial order; this means that if h ∈ g(τ) and τ 6 ρ then h>ρ ∈ g(ρ).
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Now, the collection Kσ is constructed inside Mσ in stages Kσ
α for every α which is an ordinal in Mσ. So

work now inside Mσ. Let us assume that we have constructed Kσ
β for every β < α. For every τ > σ, since

fστ : Mσ → Mτ is an elementary embedding (which is in Mσ), this means that Kτ
γ ⊆ Mτ exists for every

γ < fστ (α). Then we let Kσ
α be the set of functions g such that for every τ > σ:

• g has domain P>σ,

• g>τ ∈Mτ ,

• g(τ) ⊆
⋃
γ<fστ (α)

Kτ
γ ,

• if h ∈ g(τ) and ρ > τ then h>ρ ∈ g(ρ).

Finally, we let Kσ :=
(⋃

α∈OrdK
σ
α

)Mσ
.

With the objects of the model thus specified, we may now define truth in the model. This is defined
locally for each σ ∈ P, and is given by the following recursion on the complexity of first-order formulae.

σ � ⊥ ⇔ False
σ � g ∈ h ⇔ g>σ ∈ h(σ)
σ � g = h ⇔ g>σ = h>σ

σ � φ ∧ ψ ⇔ σ � φ and σ � ψ
σ � φ ∨ ψ ⇔ σ � φ or σ � ψ
σ � φ→ ψ ⇔ for all τ > σ we have (τ � φ implies τ � ψ)
σ � ∀xφ ⇔ for all τ > σ and for all g ∈ Kτ we have τ � φ(g/x)
σ � ∃xφ ⇔ there exists g ∈ Kσ such that σ � φ(g/x)

Then we let K � φ if σ � φ for all σ ∈ P.
Note the following. (1) The condition g>σ ∈ h(σ) should be understood as follows. h is a set in some

ε 6 σ. For every δ > ε, we have that h(δ) gives the collection of elements of h at δ; in particular, h(σ) is
the collections of elements of h at σ. Further, g is a set in some λ 6 σ, and g>σ is what g looks like at
σ (so g>σ is a function with domain P>σ). Then g>σ ∈ h(σ) expresses that what g looks like at σ is an
element of h at σ. (2) Since the interpretation of ∈ only increases as we move up the model, it is easy to
see that the full Kripke model is monotone: if σ � φ and τ > σ then τ � φ. (3) The symbols ∧,∨,∃ are
interpreted as they would be in classical logic. The symbols → and ∀, on the other hand, have a different
semantics, requiring the consideration of all nodes above the current. This is where the (Kripke) structure
of the partial order becomes relevant, and from where the non-classical properties come. (4) This means in
particular that classical logic holds at all terminal nodes (i.e. nodes with no successors). (5) Notice that an
interpretation for ¬ is not given. Since we are using intuitionistic logic, ¬ is not taken as primitive; instead,
we define ¬φ as φ→ ⊥. Using the definition above, we can see that σ � ¬φ if and only if for every τ > σ we
have τ 2 φ. (6) The recursive definition does not give us classical equivalences like (φ ∨ φ) ↔ ¬(¬φ ∧ ¬ψ)
and ∃xφ↔ ¬∀x¬φ, so we cannot define ∨ in terms of ∧ or ∃ in terms of ∀.

Theorem 1. The full Kripke model K over any system is a model of IZF; i.e. K satisfies the axioms and
rules of inference of intuitionistic logic and for every axiom Φ of IZF, we have K � Φ.

Sketch Proof. The set existence/construction axioms are all proved in a similar way. We give a set g which
at each τ is the object, from the point of view of Mτ , that is to be shown to exist. For example, to show
that σ � Emptyset, we consider the set g with domain P>σ such that for τ > σ we have g(τ) = ∅. As
another example, to show that σ � Infinity, we let each Mτ construct by induction for each n ∈ NMτ

the set nτ which is such that nτ (ρ) = {mρ | m < n}; then the natural numbers set Nσ will be such that
Nσ(τ) = {nτ | n ∈ NMτ }.

Extensionality follows since σ � ∀x(x ∈ g ↔ x ∈ h) means, by the interpretation of ∀, that from σ
upwards g and h are equal as functions, meaning that g>σ = h>σ.

Set−Induction is a little tricky. A natural attempt at a proof using the fact that each Mσ is a model
of ZFC and therefore of Foundation does not work, since we don’t assume that every Mσ are well-founded
(from the outside). Instead, we must consider a counterexample to Set−Induction of minimal rank, and
make use of the fact that the system of elementary embeddings above σ is definable in Mσ. If α is the

2



minimal rank of a counterexample in Mσ, then fστ (α) > α is the minimal rank of a counterexample in Mτ ;
but any counterexample to Set−Induction at σ must at some τ > σ itself contain a counterexample to
Set−Induction, which will be of lower rank.

Finally to prove Collection, we prove that the model satisfies Reflection, which implies Collection.
To do this, we use that each Mσ, being a model of ZFC, satisfies the ZFC Reflection Principle. This together
with the correspondence between Kσ

α and Vα in K and in Mσ gives that K satisfies Reflection.

For a full proof see [Hendtlass and Lubarsky, 2016].

Omniscience Principles

With the models in place, we can turn our attention to separation results. Historically, many ways of
strengthening intuitionistic logic have been investigated, what are know as omniscience principles. The
most obvious and ‘crude’ of these is the famous Law of Excluded Middle.

A ∨ ¬A (LEM)

However there are many other strictly weaker principles, whose addition to intuitionistic logic can be thought
of as making it ‘less constructive’. Various implications have been shown between this principles. Here we
give a few proofs that show the a non-implication relationship.

These ‘separation’ results are interesting in of themselves, given that they concern fundamental logical
principles, but they also have practical applications. When it comes to the project of classifying which
theorems of mathematics are non-constructive, one usually seeks to show that the result implies some (known)
non-constructive statement. With these separation results, we make available a new proof method for this
task: if A and B are omniscience principles such that A ; B, and if we can show that a result P together
with A implies B, then P must be non-constructive.

The first weakening of the Law of Excluded Middle comes in the form of the Weak Law of Excluded
Middle.

¬¬A ∨ ¬A (WLEM)

We form a hierarchy of principles from this by noting that adding it to intuitionistic logic is equivalent to
adding De Morgan’s Law:

¬(A ∧B)→ (¬A ∨ ¬B) (DML)

We generalise this to produce a series of principles in descending strength:

¬
∨
i,j<n
i 6=j

Ai ∧Aj →
∨
i<n

¬Ai (WLEMn)

Finally, we may continue this process to the ωth level, to obtain:

¬∃n,m ∈ N : (n 6= m ∧A(n) ∧A(m))→ ∃n ∈ ω : ¬A(n) (WLEMω)

The other two principles which we will be considering involve the determination of truth values on infinite
binary sequences. Let B be the collection of binary sequences on N. The first principle is called the Limited
Principle of Omniscience and is due to Brouwer:

∀α ∈ B : (∀n ∈ N : α(n) = 0) ∨ (∃n ∈ N : α(n) = 1) (LPO)

The second principle is a standard weakening of what is known as Markov’s Principle: if it is impossible for
all terms of α ∈ B to be 0, then there exists an n such that α(n) = 1. What we will consider here is called
Weak Markov’s Principle:

∀α ∈ B : (∀β ∈ B : (¬¬∃n ∈ N : β(n) = 1∨¬¬∃n ∈ N : (α(n) = 1∧β(n) = 0))→ ∃n ∈ N : α(n) = 1) (WMP)
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Separation Results

We are now in a position to prove a couple of separation results.

Theorem 2. Over IZF, LPO does not imply WLEMω.

We will give two proofs of this result.

First Proof. Let P1 be the partial order consisting of strings in the alphabet N of length at most one, ordered
by extension (in other words P1 consists of a bottom node with countably infinitely many successors). Let ε
be the empty string. Put the universe V at each node and let all the elementary embeddings V → V be the
identity. Let K1 be the full Kripke model over this system. We will show that K1 � LPO but K1 2 WLEMω.

Assume that ε � α ∈ B. Then the object α ∈ Kε
1 can be transformed to a binary sequence α̂ (in the

metatheory). Since the metatheory is classical, it in particular satisfies LPO, so either ∀n ∈ N : α̂(n) = 0
or ∃n ∈ N : α̂(n) = 1. In the former case we have that ∀n ∈ N : α(n) = 0 holds at every node (since α is
a function (in Mε) and N is the same in every model, so nothing new can be added to α), so in particular
ε � ∀n ∈ N : α(n) = 0. In the latter case ε � ∃n ∈ N : α̂(n) = 1 by definition of truth at ε. Hence LPO holds
at ε. But LPO also holds at all other nodes since they are terminal nodes so obey classical logic. Therefore
K � LPO.

To show that K1 2 WLEMω, we construct infinitely many (distinct) subsets of 1. For n ∈ N, let 0n ∈ Kε
1

be such that:

0n(s) =

 ∅ s = ε,
{∅} s = n,
∅ otherwise

Note that ε � 0n ⊆ 1.[a] But now the statements “0 ∈ 0n” are pairwise incompatible, as in the antecedent of
WLEMω, but there is no n ∈ N such that ε � ¬0 ∈ 0n (since for each such n we have n � 0 ∈ 0n).

Note that the above proof only gives a ‘weak separation’: while WLEMω doesn’t hold in K1, neither
does its negation (since WLEMω holds at all the terminal nodes since they obey classical logic). The second
proof refines the first, and gives a ‘strong separation’: a model in which the negation of WLEMω holds.

Second Proof. Let P2 be the partial order of all finite length strings in the alphabet N. Put V at each node
and let the embeddings be the identity, as before. Let K2 be the full Kripke model over this system. We
have that LPO holds as before, while at each node we can carry out the argument showing that it does
not satisfy WLEMω. From the latter, we get for each node s that s � ¬WLEMω, which gives the strong
separation we desire.

Theorem 3. Over IZF, WLEM does not imply WMP.

Proof. For this we give only a weak separation. Let P3 be the partial order:

⊥

>

Let f : V → M be an elementary embedding of the universe into a model of set theory containing non-
standard natural numbers (this can be obtained by taking the ultraproduct of V using a non-principle
ultrafilter over ω). Put V at ⊥ and M at >, and let f be the embedding. Let K3 be the full Kripke model
over this system.

Now, that K3 � WLEM is a special case of the fact that any standard Kripke model which is a linear
order satisfies WLEM. We will show the general result here. Let K be an standard Kripke model on the
linear order P, and take σ ∈ P. Assume that σ 2 ¬A.[b] Then by definition there is τ > σ such that τ � A.
To show that σ � ¬¬A, we need to show that for any ρ > σ we have ρ 2 ¬A. For any such ρ, by linearity

[a]Note that since 0n ⊆ 1 ≡ ∀x(x ∈ 0n → x ∈ 1), this means that 0n is a subset of 1 at all nodes in P>ε
1 .

[b]We’ll be making use of a classical argument in the metatheory.
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there are two cases. (A) If ρ < τ then we cannot have ρ � ¬A since otherwise by monotonicity τ � ¬A.
(B) If ρ > τ by monotonicity ρ � A so ρ 2 ¬A.

To show that K3 2 WMP, we can take a binary sequence which is 0 on every standard natural number
(i.e. every n ∈ NV ), but is 1 on some non-standard natural number (note that f [NV ] 6= NM ). The key to
seeing why this violates WMP is to notice that its antecedents have double negations, while its consequent
does not. In a standard Kripke model σ � ¬¬φ means that for every τ > σ there is ρ > τ such that
ρ � φ. So, given any binary sequence β, either > � ∃n ∈ N : β(n) = 1 or it doesn’t (using excluded
middle in the metatheory), in which case β must be the 0 sequence (since f [NV ] ⊂ NM ), which means that
> � ∃n ∈ N : (α(n) = 1 ∧ β(n) = 0). Therefore the antecedent of WMP for α is satisfied at ⊥. But the
consequent is clearly not satisfied at ⊥.

Notice that this proof gives only a weak separation: WMP holds at >, so it is not that case that
K3 � ¬WMP. The paper [Hendtlass and Lubarsky, 2016] refines this proof and model, giving a strong
separation, but the proof makes use of a more elaborate model called the ‘Immediate Settling Model’.

Conclusion

The full Kripke model scheme give a versatile tool which allows us to produce quite fine-tined models that
satisfy various properties. We have seen here a few examples of the separation results in whose proofs they
can be utilised, and have noted the difference between ‘strong separation’ and ‘weak separation’ (a uniquely
intuitionistic phenomenon). In fact, we have indicated that in both instances in which we found a weak
separation, it was possible to refine the model to give a strong separation. It is an interesting research
question whether such a process is always possible, and one which I would like to explore further.
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