Maddy’s Theory of Classes
Alternative Set Theory Seminar

David Santamaria

February 19, 2018

In her search for a realistic theory of sets and classes, Maddy begins with two
desiderata: (1) classes should be real, well-defined entities; (2) classes should be
significantly different from sets. The central problem is that it is hard to satisfy
both of these. Von Neumann, Morse and Kelley concentrate on (1) and succeed
in producing theories with classes as real, well-defined entities, but they run
afoul of (2) because their classes look just like additional layers of sets. On the
other hand, concentrating on (2) leads to Cantor’s nonactual, or ineffable proper
classes, or the official Ackermann’s ill-defined entities. The choice seems to be
between a neo-Aristotelianism of ill-defined, potential entities which satisfies (2)
but not (1), and some form of a distinction without a difference which satisfies
(1) but not (2).

Maddy wants a theory of sets and classes based on Konig’s version of the
distinction between them. To avoid having this lapse into a distinction without
a difference, let us begin by recalling the concrete contrasts this distinction sug-
gests. First, we have remarked that, pretheoretically, some extensions seem to
be members of others (e.g. T (x is infinite)€ Z(z has more than three elements)),
and some extensions even appear to be self-membered (e.g., Z(x is infinite) € &
(z is infinite)). So far, this is an intuitively appealing conception, but unfortu-
nately, it is a version of the one that got Frege into trouble in the first place.
As Russell asked, what about Z(x ¢ x)? The property ‘z ¢ z’ seems to divide
the world of sets and classes into two categories as the logical notion requires,
but the assumption that a class (its extension) corresponds to this property
leads to paradox. We seem to have a property without an extension, a property
that does not determine a class. Historically, there were two reactions. Zermelo
scrapped the logical notion and turned to the mathematical one. Russell tried
to retain the logical notion and ended up assuming that a class cannot be of
the same type as its elements. But there is a third option. To see what it is,
consider a similar situation, that is, the problems surrounding such statements
as “Bverything I've ever said is false”. If it turns out that everything I've ever
said apart from this statement is false, then the assumption that this statement
has a truth value leads to paradox. Here we seem to have a statement without
a truth value, where above we had a property without an extension Kripke has
shown how the truth paradoxes can be solved by allowing truth value gaps as
specified by a certain construction. What Maddy proposes is that we adapt



this solution to the case of logical classes by allowing gaps in the membership
relation. To any property, assign an extension and an antiextension, but allow
some things to fall in between. Maddy proposes to adopt indeterminate mem-
bership as a third difference between classes and sets, and to use an imitation of
Kripke’s construction to show when these indeterminate membership relations
occur.

We consider a FOL £ with = and € as nonlogical symbols and we add a
term-forming operator ~ to form terms such as Z(z = z) and Z(x € ()). To gain
expressive power we will also include a constant V' to stand for the class of all
sets, and a constant a.

Definition 1 (Terms and formulas of £).

1. All constants and variables are terms.
2. If t and ¢’ are terms, then ¢t = t' and ¢ € ' are formulas.

3. If ¢ and 9 are formulas, and x is a variable, then —¢, ¢ A ¢ and Vz¢ are
formulas.

4. If ¢ is a formula, and = is among the free variables of ¢, then Z¢ is a term.

T is the collection of all terms, it is the union of S, the collection of all set
constants, C, the collection of all terms of the form Z¢, and {V}. C* is the
collection of closed terms in C, similarly, 7% is the collection of closed terms in
T.

The standard model for this language contains all sets, @ standing for a,
here V' will be a class with extension all sets and antiextension all classes. The
variable part of the interpretations of £ is the extension and antiextension of
the elements of C*.

Definition 2 (£ — structure). € = {(t,t{,ty) : t € C*} is an £-structure iff
Vte C*, t& CT* and ty CT* and t& Nty = 0.

Note that it needn’t be the case that té“ Uty = 1™, and so we can have
membership gaps. The idea is that té‘ and ty = () represent the extension and
antiextension respectively of the class term ¢.

Given a sentence 7 we have three possibilities € F 7 (€ thinks 7 is true),
¢ i 7 (€ thinks 7 is false) and € E7 7 (€ does not have an opinion about 7).

Definition 3 (Semantics for atomic sentences).

e 7 is of the form ¢t € ¢/ for ¢,¢' € T*, then:

— CETiff
1. tisa,t isb, and a € b, or
2. teSandt'isV, or



3.t ec¢ andte (t)f

- CHFTiff
1. tisa, t' isb, and a ¢ b, or
2. tisVandt' € SU{V}, or
3.tec andt' € SU{V, or
4. e andt € (t')y

e If 7 is of the form t = ¢’ for t,t' € T*, then € E 7 iff ¢t and ¢’ are the same
term, and € & 7 iff ¢ and ¢’ are different terms.

For complex sentences truth and falsity is defined via the strong Kleene rules.

Definition 4 (Semantics for complex sentences). For sentences o and T,

1. CEwiff €H o, CHF o iff CF 0.
2. CFoANTiff CEcand €FT; CHoATIf CF o or € T.
3. CEVagiffforallt € T*, € F ¢(t/z); € Vo iff for some t € T*, C F ¢(t/x).

One can then define V,—, = and 3 from these in the usual way.
Definition 5. If ¢ and ¢’ are two £—structures, then ¢ C ¢ iff for all
teCrtE Ctl and tg Cig,

The following result can be shown by induction on the complexity of formula:

Proposition 1 (Monotonicity). If € C &', then for any sentence o, if € E o,
then €' E o, and if € ¥ o, then € H 0.

This tells us that once a sentence is decided, adding more elements to the
extensions and antiextensions of classes does not disturb this fact.

With this machinery in place we construct the following sequence of £—structures:
¢ = {(Tp, T, Tdy ) : Tp € C*} where Tof =Ty =0

e Fot = {t €T £ 0 F o(t/2))
¢a+l - {($¢7 x¢a+17$¢a+1) : .'L'd) eC } where {EC\¢;+1 _ {t T Q:a }?/ d)(t/x)}

For A a limit ordinal,

St St
¢\ = {(@qﬁ,&:}bi,ﬁw;) :Z¢ € C*} where {;i; _ Bzzi ;;ZZ:

Define an £—structure U (for universe):

26" = Uncora 767

U={(@¢, 206,20 ) : ¢ € C*} where {% U ibn



We are interested in U. By monotonicity, whatever becomes true or false at
one of the €,, remains true or false in U. For example, €y E § € {0}, so
0 cz(ze{d})], thus ¢ F ) €z(xec{0}) andso U F 0 € z(x € {0}).

Definition 6 (Ordered tuple). For ¢,t' € T*,‘(t,t') is Z(z =tV z =1').

Note that since Z(z =tV z = t') is not the same symbol as Z(z =t' V z = ¢)
it is easily established that:

Proposition 2 (Equality of ordered tuples). Fort,t' € T*, U E ((¢,t") = (u,u’))
WUE({E=unt =u).

Notice also that these ordered classes are total, and so U ¥ ((¢,t') = (u,u’))
iff U E (t = unt’ = u’). We can define ordered n-tuples as usual: (¢,¢',t"”) = ((¢,t'),t").
Now, if zg, ..., z, are among the free variables of ¢ then Ty, ..., T, ¢ abbreviates
Z(3xg, ..., xn(z = (20, ..., 2n) A P)), with 2, the first variable not appearing
in ¢.
Continuing with the last example, recall that & F 0 € {0} and so
€y F Iz3y((0 € {0}) = (z,y)Az € y), which means (0, {0}) € 2(E2Ty(z = (z,y)A\z € )T
and so €; F ((0,{0}) € Zy(x € y)) and by monotonicity, U agrees.
Now we can prove what Maddy considers one of the great advantages of her
system:

Theorem 1. U F Z(z is infinite) € Z(z is infinite)

Proof. We say that a collection, z, is relational iff Vy(y € x — FuIv(y = (u,v))).
A non-empty relational collection will be a class, not a set, because it has classes
as members. We also define a domain and a range of a relational class as
usual, same for functional and one-to-one. For any set function f, let f* be
2(3y3z((y,2) € f Ax = (y,2))), where (y,2) € f is the usual statement that

the Kuratowski ordered pair of y and z is in f, but with y, z and all quantifiers
relativised to V. Then one can prove that for sets a and b:

1. If (y,2) € f, then & F (@,b) € f*.

2. If (y,2) ¢ f, then €; ¥ (@,b) € f*.
3. C1EVz(x e f*vaé f*) (e f*istotal).

So we see that f* will behave as a class surrogate of f in €;.

Definition 7 (Infinity). ‘z is infinite’ abbreviates 3f( ‘f is functional’ A ‘f is
one-to-one’A ‘W is a domain of f’ A ‘@ contains a range of f’).

For any n € w let n* = {n+ 1,n + 2,...}. This set is clearly infinite; using
f*, where f is a set function that maps w one-to-one into n*, we can also show
that for all n € w,& E n* € Z(z is infinite). Now let ¢(y, z) be the formula
yewAz € PwAVulu €€V = (u€z=u€wAy € u)). Then, for all




n € w,€ E (m,n*) € yz¢. € also thinks that §Zz¢ is functional and one-to-one,
and that w is a domain, by the preceding result, €, thinks that Z(x is infinite)
contains a range. The result follows. Q.E.D.

Finally, the gaps in the membership relation allow for the Russell paradox
to be sidestepped:

Theorem 2. U F’ Z(x ¢ x) € T(z ¢ )

Proof. If Z(x ¢ x) were in [Z(x ¢ x)]T, then it would have to enter at some
Z(x ¢ x)L. Because o cannot be a limit, it must be of the form 3+ 1. But
then, €3 F Z(x ¢ z) ¢ T(v ¢ x), and so €, F Z(x ¢ z) € T(z ¢ x) (because
T(x ¢ x) € Z(x ¢ x)}) and €, F T(z ¢ z) ¢ T(z ¢ x) (because €5 C &,).
Contradiction. Similarly, Z(z ¢ z) ¢ [Z(z ¢ x)] ™. Q.E.D.
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[2000] A theory of classes, in G. Sher and R. Tieszen, eds., Between Logic
and Intuition: Essays in Honor of Charles Parsons, (Cambridge: Cambridge
University Press), pp. 299 — 316.



Appendix: Talk Handout

*Text 1:

... just as an infinite number is not a number, so an irrational number is not a true
number, but lies hidden in a kind of cloud of infinity.

+Stifel, Quoted in M. Kline, Mathematical thought from ancient to modern times, Oxford, 1972, p. 251

*Text 2:

The Analyst, or a Discourse addressed to an Infidel Mathematician. Wherein it is
examined whether the Object, Principles and Inferences of the Modern Analysis are

more distinctly conceived, or more evidently deduced, than Religious Mysteries and
Points of Faith. “‘First cast out the beam out of thy own eye; and then shalt thou see
clearly to cast out the mote out of thy brother’s eye.”

*Text 3:

Hitherto I have supposed that ‘o’ is something ... From that supposition it is that I
get [my conclusions]. I now beg leave to make a new supposition contrary to the first,
i.e., I suppose ... that ‘e’ is nothing; which second supposition destroys my first, and is
inconsistent with it; and therefore with everything that supposeth it. All of which seems
a most inconsistent way of arguing, and such as would not be allowed in Divinity.
+The analyst, paragraph 14, The works of George Berkeley, Bishop of Cloyne (A. Luce and T. Jessop, eds.),

Edinburgh, 1948-1957.

*Text 4:

(a)

... the totality of the elements of a multiplicity can be thought of without contradic-
tion as ‘being together’, so that they can be gathered together into ‘ore thing’ ... .

(b)

... the assumption that al/ its elements ‘are together’ leads to a contradiction, so that it
is impossible to conceive the multiplicity as a unity, as ‘one finished thing’ . . .
+Cantor, Letter to Dedekind, in Mathematical logic from Frege to Gédel (). van Heijenoort, ed.), Harvard
University Press, Cambridge, Mass., 1967, p. 114

*Text 5:

I have never proceeded from any ‘“Genus Supremum” of the actual infinite. Quite the
contrary, I have rigorously proven that there is absolutely no “Genus supremum’’ of
the actual infinite. What surpasses all that is finite and transfinite is no “Genus”; it is
the single, completely individual unity in which everything is included, which includes
the “Absolute”, incomprehensible to the human understanding. This is the “Actus
Purissimus” which by many is called “God”.

+ From a letter dated 20 June, 1908 to Grace Chisholm Young, an English mathematician. Cited in J.
Dauben, George Cantor, Isis, vol. 69 (1978), p. 547.




*Text 6:

When the notion of the continuum is formed, it is the ‘arbitrary’ sequence (a., a,, . . .,
a, . ..) that is primary, or fundamental. Through the stipulation that a,, a,, ... are to
be replaced by definite positive integers, it becomes a ‘definite’ sequence, an element of
the continuum . .. The further stipulation that we consider the zotality of these ‘well-
distinguished’ objects then leads to the continuum.

The situation is quite different in the case of [w,]. Its ‘elements’ are determined by the
‘property” of being order types of well-ordered sets of cardinality §,... this property
is only an abstraction, at best a means of distinguishing between objects belonging and
objects not belonging to the class; however, it is certainly not a rule according to which
every element of [w,] can be formed. What is primary, or fundamental, here is the
collective notion, which for this very reason, ... I would not call a ‘set’ but a ‘class’ ...

+ Konig, On the foundations of set theory and the continuum problem in van Heijenoort, op. cit., pp. 145-149.
*Text 7:

These notions are used in a “quasi-combinatorial’’ sense . . . one views a set of integers
as the result of infinitely many independent acts deciding for each number whether it
should be included or excluded.

+ Bernays, On Platonism in mathematics in P. Benacerraf and H. Putnam, Philosophy of mathematics,
Prentice-Hall, Princeton, N.J., 1964 pp. 275-276.

*Text 8:

... much of the traditional concern about the axiom of choice is probably based on a
confusion between sets and definable properties. In many cases it appears unlikely that
one can define a choice function for a particular collection of sets. But this is entirely un-
related to the question of whether a choice function exists. Once this kind of confusion is

avoided, the axiom of choice appears as one of the least problematic of the set theoretic
axioms,

+ D. Martin, Sets versus classes, circulated xerox.

*Text 9:

... this concept of set ... according to which a set is something obtainable from the
integers (or some other well-defined objects) by iterated application of the operation
‘set of’, not something obtained by dividing the totality of existing things into two
categories, has never led to any antinomy whatsoever.

+ Godel, What is Cantor's continuum problem?, pp. 262-263.

*Text 10:

It might turn out that it is possible to assume every concept to be significant everywhere
except for certain ‘singular points’ or ‘limiting points’, so that the paradoxes appear as
something analogous to dividing by zero. Such a system would be most satisfactory in
the following respect: our logical intuitions would then remain correct up to certain
minor corrections, i.e., they could then be considered to give an essentially correct,
only somewhat ‘blurred’ picture of the real state of affairs.

+ Godel, Russell's mathematical logic, p. 229.



