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In her search for a realistic theory of sets and classes, Maddy begins with two
desiderata: (1) classes should be real, well-defined entities; (2) classes should be
significantly different from sets. The central problem is that it is hard to satisfy
both of these. Von Neumann, Morse and Kelley concentrate on (1) and succeed
in producing theories with classes as real, well-defined entities, but they run
afoul of (2) because their classes look just like additional layers of sets. On the
other hand, concentrating on (2) leads to Cantor’s nonactual, or ineffable proper
classes, or the official Ackermann’s ill-defined entities. The choice seems to be
between a neo-Aristotelianism of ill-defined, potential entities which satisfies (2)
but not (1), and some form of a distinction without a difference which satisfies
(1) but not (2).

Maddy wants a theory of sets and classes based on König’s version of the
distinction between them. To avoid having this lapse into a distinction without
a difference, let us begin by recalling the concrete contrasts this distinction sug-
gests. First, we have remarked that, pretheoretically, some extensions seem to
be members of others (e.g. x̂ (x is infinite)∈ x̂(x has more than three elements)),
and some extensions even appear to be self-membered (e.g., x̂(x is infinite) ∈ x̂
(x is infinite)). So far, this is an intuitively appealing conception, but unfortu-
nately, it is a version of the one that got Frege into trouble in the first place.
As Russell asked, what about x̂(x /∈ x)? The property ‘x /∈ x’ seems to divide
the world of sets and classes into two categories as the logical notion requires,
but the assumption that a class (its extension) corresponds to this property
leads to paradox. We seem to have a property without an extension, a property
that does not determine a class. Historically, there were two reactions. Zermelo
scrapped the logical notion and turned to the mathematical one. Russell tried
to retain the logical notion and ended up assuming that a class cannot be of
the same type as its elements. But there is a third option. To see what it is,
consider a similar situation, that is, the problems surrounding such statements
as “Everything I’ve ever said is false”. If it turns out that everything I’ve ever
said apart from this statement is false, then the assumption that this statement
has a truth value leads to paradox. Here we seem to have a statement without
a truth value, where above we had a property without an extension Kripke has
shown how the truth paradoxes can be solved by allowing truth value gaps as
specified by a certain construction. What Maddy proposes is that we adapt
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this solution to the case of logical classes by allowing gaps in the membership
relation. To any property, assign an extension and an antiextension, but allow
some things to fall in between. Maddy proposes to adopt indeterminate mem-
bership as a third difference between classes and sets, and to use an imitation of
Kripke’s construction to show when these indeterminate membership relations
occur.

We consider a FOL L with = and ∈ as nonlogical symbols and we add a
term-forming operator ̂ to form terms such as x̂(x = x) and x̂(x ∈ ∅). To gain
expressive power we will also include a constant V to stand for the class of all
sets, and a constant a.

Definition 1 (Terms and formulas of L).

1. All constants and variables are terms.

2. If t and t′ are terms, then t = t′ and t ∈ t′ are formulas.

3. If φ and ψ are formulas, and x is a variable, then ¬φ, φ ∧ ψ and ∀xφ are
formulas.

4. If φ is a formula, and x is among the free variables of φ, then x̂φ is a term.

T is the collection of all terms, it is the union of S, the collection of all set
constants, C, the collection of all terms of the form x̂φ, and {V }. C∗ is the
collection of closed terms in C, similarly, T ∗ is the collection of closed terms in
T .

The standard model for this language contains all sets, a standing for a,
here V will be a class with extension all sets and antiextension all classes. The
variable part of the interpretations of L is the extension and antiextension of
the elements of C∗.

Definition 2 (L − structure). C = {(t, t+C , t
−
C ) : t ∈ C∗} is an L-structure iff

∀t ∈ C∗, t+C ⊆ T ∗ and t−C ⊆ T ∗ and t+C ∩ t
−
C = ∅.

Note that it needn’t be the case that t+C ∪ t
−
C = T ∗, and so we can have

membership gaps. The idea is that t+C and t−C = ∅ represent the extension and
antiextension respectively of the class term t.

Given a sentence τ we have three possibilities C � τ (C thinks τ is true),
C 6� τ (C thinks τ is false) and C �? τ (C does not have an opinion about τ).

Definition 3 (Semantics for atomic sentences).

• τ is of the form t ∈ t′ for t, t′ ∈ T ∗, then:

– C � τ iff

1. t is a, t′ is b, and a ∈ b, or

2. t ∈ S and t′ is V , or
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3. t′ ∈ C∗ and t ∈ (t′)+C
– C 6� τ iff

1. t is a, t′ is b, and a /∈ b, or

2. t is V and t′ ∈ S ∪ {V }, or

3. t ∈ C∗ and t′ ∈ S ∪ {V , or

4. t′ ∈ C∗ and t ∈ (t′)−C

• If τ is of the form t = t′ for t, t′ ∈ T ∗, then C � τ iff t and t′ are the same
term, and C 6� τ iff t and t′ are different terms.

For complex sentences truth and falsity is defined via the strong Kleene rules.

Definition 4 (Semantics for complex sentences). For sentences σ and τ ,

1. C � ¬σ iff C 6� σ; C 6� ¬σ iff C � σ.

2. C � σ ∧ τ iff C � σ and C � τ ; C 6� σ ∧ τ iff C 6� σ or C 6� τ .

3. C � ∀xφ iff for all t ∈ T ∗,C � φ(t/x); C 6� ∀xφ iff for some t ∈ T ∗,C 6� φ(t/x).

One can then define ∨,→,≡ and ∃ from these in the usual way.

Definition 5. If C and C′ are two L−structures, then C v C′ iff for all
t ∈ C∗, t+C ⊆ t

+
C′ and t−C ⊆ t

−
C′

The following result can be shown by induction on the complexity of formula:

Proposition 1 (Monotonicity). If C v C′, then for any sentence σ, if C � σ,
then C′ � σ, and if C 6� σ, then C′ 6� σ.

This tells us that once a sentence is decided, adding more elements to the
extensions and antiextensions of classes does not disturb this fact.

With this machinery in place we construct the following sequence of L−structures:

C0 = {(x̂φ, x̂φ+0 , x̂φ
−
0 ) : x̂φ ∈ C∗} where x̂φ+0 = x̂φ−0 = ∅

Cα+1 = {(x̂φ, x̂φ+α+1, x̂φ
−
α+1) : x̂φ ∈ C∗} where

{
x̂φ+α+1 = {t ∈ T ∗ : Cα � φ(t/x)}
x̂φ−α+1 = {t ∈ T ∗ : Cα 6� φ(t/x)}

For λ a limit ordinal,

Cλ = {(x̂φ, x̂φ+λ , x̂φ
−
λ ) : x̂φ ∈ C∗} where

{
x̂φ+λ =

⋃
α<λ x̂φ

+
α

x̂φ−λ =
⋃
α<λ x̂φ

−
α

Define an L−structure U (for universe):

U = {(x̂φ, x̂φ+, x̂φ−) : x̂φ ∈ C∗} where

{
x̂φ+ =

⋃
α∈Ord x̂φ

+
α

x̂φ− =
⋃
α∈Ord x̂φ

−
α

3



We are interested in U . By monotonicity, whatever becomes true or false at
one of the Cα, remains true or false in U . For example, C0 � ∅ ∈ {∅}, so
∅ ∈ x̂(x ∈ {∅})+1 , thus C1 � ∅ ∈ x̂(x ∈ {∅}) and so U � ∅ ∈ x̂(x ∈ {∅}).

Definition 6 (Ordered tuple). For t, t′ ∈ T ∗, ‘(t, t′)’ is ẑ(z = t ∨ z = t′).

Note that since ẑ(z = t ∨ z = t′) is not the same symbol as ẑ(z = t′ ∨ z = t)
it is easily established that:

Proposition 2 (Equality of ordered tuples). For t, t′ ∈ T ∗, U � ((t, t′) = (u, u′))
iff U � (t = u ∧ t′ = u′).

Notice also that these ordered classes are total, and so U 6� ((t, t′) = (u, u′))
iff U 6� (t = u∧t′ = u′). We can define ordered n-tuples as usual: (t, t′, t′′) = ((t, t′), t′′).
Now, if x0, . . . , xn are among the free variables of φ then x̂0, . . . , x̂nφ abbreviates
ẑ(∃x0, . . . ,∃xn(z = (x0, . . . , xn) ∧ φ)), with z, the first variable not appearing
in φ.

Continuing with the last example, recall that C0 � ∅ ∈ {∅} and so
C0 � ∃x∃y((∅ ∈ {∅}) = (x, y)∧x ∈ y), which means (∅, {∅}) ∈ ẑ(∃x∃y(z = (x, y)∧x ∈ y))+1
and so C1 � ((∅, {∅}) ∈ x̂ŷ(x ∈ y)) and by monotonicity, U agrees.

Now we can prove what Maddy considers one of the great advantages of her
system:

Theorem 1. U � x̂(x is infinite) ∈ x̂(x is infinite)

Proof. We say that a collection, x, is relational iff ∀y(y ∈ x→ ∃u∃v(y = (u, v))).
A non-empty relational collection will be a class, not a set, because it has classes
as members. We also define a domain and a range of a relational class as
usual, same for functional and one-to-one. For any set function f , let f∗ be
x̂(∃y∃z(〈y, z〉 ∈ f ∧ x = (y, z))), where 〈y, z〉 ∈ f is the usual statement that
the Kuratowski ordered pair of y and z is in f , but with y, z and all quantifiers
relativised to V . Then one can prove that for sets a and b:

1. If 〈y, z〉 ∈ f , then C1 � (a, b) ∈ f∗.

2. If 〈y, z〉 /∈ f , then C1 6� (a, b) ∈ f∗.

3. C1 � ∀x(x ∈ f∗ ∨ x /∈ f∗) (i.e. f∗ is total).

So we see that f∗ will behave as a class surrogate of f in C1.

Definition 7 (Infinity). ‘x is infinite’ abbreviates ∃f( ‘f is functional’ ∧ ‘f is
one-to-one’∧ ‘ω is a domain of f ’ ∧ ‘x contains a range of f ’).

For any n ∈ ω let n∗ = {n+ 1, n+ 2, . . .}. This set is clearly infinite; using
f∗, where f is a set function that maps ω one-to-one into n∗, we can also show
that for all n ∈ ω,C2 � n∗ ∈ x̂(x is infinite). Now let φ(y, z) be the formula
y ∈ ω ∧ z ∈ P(ω) ∧ ∀u(u ∈ V → (u ∈ z ≡ u ∈ ω ∧ y ∈ u)). Then, for all
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n ∈ ω,C1 � (n, n∗) ∈ ŷẑφ. C1 also thinks that ŷẑφ is functional and one-to-one,
and that ω is a domain, by the preceding result, C2 thinks that x̂(x is infinite)
contains a range. The result follows. q.e.d.

Finally, the gaps in the membership relation allow for the Russell paradox
to be sidestepped:

Theorem 2. U �? x̂(x /∈ x) ∈ x̂(x /∈ x)

Proof. If x̂(x /∈ x) were in [x̂(x /∈ x)]+, then it would have to enter at some
x̂(x /∈ x)+α . Because α cannot be a limit, it must be of the form β + 1. But
then, Cβ � x̂(x /∈ x) /∈ x̂(x /∈ x), and so Cα � x̂(x /∈ x) ∈ x̂(x /∈ x) (because
x̂(x /∈ x) ∈ x̂(x /∈ x)+α ) and Cα � x̂(x /∈ x) /∈ x̂(x /∈ x) (because Cβ v Cα).
Contradiction. Similarly, x̂(x /∈ x) /∈ [x̂(x /∈ x)]−. q.e.d.

Further Reading:

Maddy, Penelope:

[1983] Proper classes, Journal of Symbolic Logic 48, pp. 113-139.

[2000] A theory of classes, in G. Sher and R. Tieszen, eds., Between Logic
and Intuition: Essays in Honor of Charles Parsons, (Cambridge: Cambridge
University Press), pp. 299− 316.
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Appendix: Talk Handout 

*Text 1:  

+Stifel, Quoted in M. Kline, Mathematical thought from ancient to modern times, Oxford, 1972, p. 251 

*Text 2:

*Text 3: 

+The analyst, paragraph 14, The works of George Berkeley, Bishop of Cloyne (A. Luce and T. Jessop, eds.), 

Edinburgh, 1948-1957. 

*Text 4:  

(a) 

 

(b) 

+Cantor, Letter to Dedekind, in Mathematical logic from Frege to Gödel (J. van Heijenoort, ed.), Harvard 

University Press, Cambridge, Mass., 1967, p. 114 

*Text 5: 

 

+ From a letter dated 20 June, 1908 to Grace Chisholm Young, an English mathematician. Cited in J. 

Dauben, George Cantor, Isis, vol. 69 (1978), p. 547. 



 
 

*Text 6: 

+ König, On the foundations of set theory and the continuum problem in van Heijenoort, op. cit., pp. 145-149. 

*Text 7: 

+ Bernays, 0n Platonism in mathematics in P. Benacerraf and H. Putnam, Philosophy of mathematics, 

Prentice-Hall, Princeton, N.J., 1964 pp. 275-276. 

*Text 8: 

 
+ D. Martin, Sets versus classes, circulated xerox. 

*Text 9: 

+ Gödel, What is Cantor's continuum problem?, pp. 262-263. 

*Text 10: 

 

+ Gödel, Russell's mathematical logic, p. 229. 


