
7 Baire property and Lebesgue measure

7.1 Lebesgue measure

Here we will focus on the actual real number line R, and assume some familiarity with
standard measure theory. The standard Lebesgue measure on R will be denoted by µ.
Also, we will assume here that � is, additionally, closed under finite unions, intersections
and complements, and contains the F� sets (the �1

n sets, projective sets etc. satisfy this
property). Notice that NN is homeomorphic to R \ Q, so any pointclass � generates a
pointclass on R \Q, and we can also extend it to R by stipulating for A ✓ R that A 2 �
i↵ A \Q 2 �.

The result of this section was first proved by Mycielski-Świerczkowski [MŚ64], but
we present a proof due to Harrington. We will define the covering game Gµ, for which
we first need to fix some setup. Note that it is su�cient to prove that every subset of
[0, 1] in � is measurable.

Definition 7.1.

1. Fix an enumeration {In | n 2 N} of all possible finite unions of open intervals in
[0, 1] with rational endpoints (e.g., In is of the form (q0, q1) [ · · · [ (qk, qk+1) for
some k, qi 2 Q, etc.) This is possible since Q is countable.

2. For x 2 2N, let a : 2N �! [0, 1] be the function given by

a(x) :=
1X

n=0

x(n)

2n+1

It is not hard to see that a, as a function from the Baire space to [0, 1], is continuous
and that its range is all of [0, 1] (but a is not injective, e.g., both h1, 0, 0, 0, . . . i and
h0, 1, 1, 1, . . . i map into 1

2 —think of x as the binary expansion of a(x)).
For every ✏ > 0, we define a game Gµ(A, ✏).

Definition 7.2. Let A be a subset of [0, 1] and ✏ > 0. The game Gµ(A, ✏) is defined as
follows:

• At each turn, Player I picks 0 or 1, and Player II picks natural numbers.

I : x0 x1 x2 . . .

II : y0 y1 y2

• At every move n, Player II must make sure that

µ(Iyn) <
✏

22(n+1)
,

(otherwise she loses).

• Player I wins i↵ a(x) 2 A \
S1

n=0 Iyn .
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So the idea here is that Player I attempts to play a real number in A ✓ [0, 1],
essentially by using the infinite binary expansion of that real, while Player II attempts
to “cover” that real with a countable union of the In’s, but of an increasingly smaller
measure.

Showing that this game can be formulated as a game within the same pointclass is
a bit more involved.

Lemma 7.3. Given A in � and ✏, there exists a set A
µ,✏ ✓ NN

which is in � and such

that Gµ(A, ✏) = G(Aµ,✏).

Proof. First of all, clearly the functions f(z)(n) := z(2n) and g(z)(n) := z(2n + 1) are
continuous. Then, if z is the result of the game in the standard sense, Player I should
win Gµ,✏(A) i↵

1. 8n(f(z)(n) 2 {0, 1}),

2. a(f(z)) 2 A, and

3. a(f(z)) /2
S1

n=1 Ig(z)(n),

or if

4. 9n such that µ(Ig(z)(n)) � ✏
22(n+1)

So define the following sets:

1. C1 := {z | 8n(z(n) 2 {0, 1})},

2. C2 := {(a, y) 2 R⇥ NN | 8n(a /2 Iy(n))},

3. C3 := {z | 9n(µ[Iz(n)] � ✏
22(n+1) )}.

And let

A
µ,✏ :=

�
f
�1[C1] \ (a � f)�1[A] \ ((a � f)⇥ g)�1[C2]

�
[ g

�1[C3]

Clearly Gµ(A, ✏) = G(Aµ,✏). Using reasoning as in Exercise 6.4 (1)–(5), it is easy to see
that C1 is closed and C3 is open. Concerning C2, let’s write the complement of C2 in
the following form

(R⇥ NN) \ C2 =
1[

n=0

{(a, y) | a 2 Iy(n)}

=
1[

n=0

{(a, y) | 9m (a 2 Im ^ y(n) = m)}

=
1[

n=0

1[

m=0

{(a, y) | a 2 Im ^ y(n) = m}

=
1[

n=0

1[

m=0

Im ⇥ {y | y(n) = m}

Since the Im are finite unions of open intervals, they are all open; also the {y | y(n) = m}
are open by Exercise 6.4 (3). So the product of these two sets is open in the product
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topology of R⇥ NN, and hence the countable union is open. Therefore the complement
of C2 is open, hence C2 is closed.

Now all the functions involved are continuous and it is easy to see that Aµ,✏ 2 � (recall
that we assumed � to be closed under finite unions and intersections).

Now let us return to the main result.

Theorem 7.4. Let A ✓ NN
and ✏ be given. Then

1. If Player I has a winning strategy in Gµ(A, ✏) then there is a measurable set Z

with µ(Z) > 0 such that Z ✓ A (i.e., the inner measure of A is > 0).

2. If Player II has a winning strategy in Gµ(A, ✏) then there is an open O such that

A ✓ O and µ(O) < ✏ (i.e., the outer measure of A is < ✏).

Proof.

1. Let � be a winning strategy for I. It is clear that the mapping y 7! � ⇤ y is
continuous. But then, also the mapping y 7! a(f(� ⇤ y)) is continuous (where f is
defined as in Lemma 7.3). Let Z := {a(f(� ⇤ y)) | y 2 NN}. This is an analytic

set (continuous image of a closed set) which is well-known to be measurable (by
a classical result of Suslin from 1917). As we assumed � to be winning, Z ✓ A.
But if µ(Z) = 0 then (again by standard measure-theory) there exists a cover of
Z by a sequence of sets {Iyn | n 2 N} satisfying 8n (µ(Iyn) <

✏
22(n+1) ). Then if

II plays the sequence y = hy0, y1, . . . i, we will get a(f(� ⇤ y)) 2 Z ✓
S1

n=0 Iyn ,
contradicting that � is winning for I.

2. Now suppose II has a winning strategy ⌧ . For each s 2 2⇤ of length n, define
Is := I(s⇤⇢)(2n�1), i.e., Is is the Iyn�1 where yn�1 is the last move of the game in
which I played s and II used ⌧ . As ⌧ is winning for II, for every a 2 A and every
x 2 2N such that a(x) = a, there must be some n such that a 2 Ix�n. In other
words, a 2

S
{Is | s C x} where x is such that a(x) = a. Therefore, in particular,

A ✓
[

s22N
Is =

1[

n=1

[

s2{0,1}n

Is.

Now notice that, since ⌧ was winning, for every s of length n � 1, µ(Is) < ✏/22n.
Therefore

µ

0

@
[

s2{0,1}n

Is

1

A <
✏

22n
· 2n =

✏

2n
.

It follows that

µ

 
[

s22N
Is

!
<

1X

n=1

✏

2n
= ✏.

Therefore, indeed, A is contained in an open set of measure < ✏.

Now it only remains to use the above dichotomy to show that it implies that every
set is measurable.
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Corollary 7.5. Let X ✓ [0, 1] be any set in � and assume Det(�). Then X is measur-

able.

Proof. Let � be the outer measure of X. Then there is a G� set B such that X ✓ B

and µ(B) = �. Now consider the games Gµ(B \X, ✏), for all ✏. Notice that our closeure
properties on � guarantee thatX\B 2 �. By Theorem 7.4 each such game is determined.
But if, for at least one ✏ > 0, I would have a winning strategy, then there would exist
a measurable set Z ✓ B \ X of positive measure, implying that X is contained in a
set B \ Z of measure strictly less than �, thus contradicting that the outer measure of
X was �. Therefore, by determinacy, II must have a winning strategy in every game
Gµ(B \X, ✏) for every ✏ > 0. But that implies that, for every ✏, B \X can be covered
by an open set of measure < ✏, therefore B \X itself has measure 0. Since X is equal
to a G� set modulo a measure-zero set, X itself must be measurable.

7.2 Baire property

Next, we consider a well-known topological property, frequently seen as a counterpart
to Lebesgue-measurability. The game used in this context is the Banach-Mazur game
from Definition 5.1.

Recall the following topological definitions:

Definition 7.6. Let X ✓ NN. We say that

1. X is nowhere dense if every basic open O(t) contains a basic open O(s) ✓ O(t)
such that O(s) \X = ?,

2. X is meager if it is the union of countably many nowhere dense sets.

3. X has the Baire property if it is equal to an open set modulo meager, i.e., if there
is an open set O such that (X \O) [ (O \X) is meager.

Just as with the perfect set property, it is possible to show (using the Axiom of
Choice) that there are sets without the Baire property. We will prove that it follows
from determinacy (for boldface pointclasses �).

So, let G⇤⇤(A) be the Banach-Mazur game from Definition 5.1; recall that we already
proved that the coding involved in the game is continuous. Originally, this theorem is
due to Banach and Mazur; it can be found in [Oxt57].

Theorem 7.7. Let A ✓ NN
be a set and G

⇤⇤(A) the Banach-Mazur game.

1. If Player II has a winning strategy in G
⇤⇤(A) then A is meager.

2. If Player I has a winning strategy in G
⇤⇤(A) then O(s) \ A is meager for some

basic open O(s).

Proof.

1. This part of the proof is similar to the proof with the ⇤-game in the previous section.
Let ⌧ be a winning strategy of Player II. For a position p := hs0, t0, . . . , sn, tni write
p
⇤ := s0

_
t0

_
. . .

_
sn

_
tn. For any position p and x 2 NN we say that

• p is compatible with x if p⇤ C x.
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