Advanced Set Theory: Infinite Games and Determinacy Assignment 1

Exercise 1 (Basic game principles and notation).

- (a) Consider the standard infinite game in which Player I and Player II play integers and z is the result of an infinite run of the game. The winning condition is given informally:
 - Player I wins if and only if for every $n \in \omega$, there are infinitely many $i \in \omega$ such that z(i) = n.

Formalize this game as a standard infinite game of the form G(A). Which player has a winning strategy? Describe (informally) that winning strategy.

(b) Let T be a tree, intuitively representing the *legal moves* in an infinite game. Let $A \subseteq T$ be the pay-off set and let $G_T(A)$ be the game in which Players I and II play integers in T, that is, every finite position $t := \langle x_0, y_0, \ldots, x_{n-1}, y_{n-1} \rangle$ of the game must be an element of T. Show that this game can be formalized as a standard game of form G(A'), i.e., that there is an $A' \subseteq \omega^{\omega}$ such that $G_T(A)$ is equivalent to G(A') in the sense that Player I has a winning strategy in G(A') if and only if he has a winning strategy in $G_T(A)$, and the same for Player II. Show that if A is a Borel set then A' is also a Borel set.

Exercise 2 (Winning strategies and complements).

Consider the following notation: for a set $A \subseteq \omega^{\omega}$ and $n \in \omega$, let

$$A/_{\langle n \rangle} := \{ x \in \omega^{\omega} : \langle n \rangle \, \widehat{} \, x \in A \}.$$

- (a) Prove that for every A, Player I has a winning strategy in G(A) iff for some n, Player II has a winning strategy in $G(\omega^{\omega} \setminus A/_{\langle n \rangle})$.
- (b) Prove that for every A, Player II has a winning strategy in G(A) iff for every n, Player I has a winning strategy in G(ω^ω \ A/_{⟨n⟩}).
- (c) Prove that for every $n \in \omega$, the function f_n given by

$$f_n(x) := \langle n \rangle \,\widehat{}\, x$$

is continuous.

(d) Suppose Γ is a class of sets of reals, closed under continuous pre-images. Define the *dual* pointclass $\check{\Gamma}$ to be the collection of complements of sets in Γ , i.e.,

$$\check{\Gamma} := \{A : (\omega^{\omega} \setminus A) \in \Gamma\}.$$

Prove that Γ -determinacy holds iff $\check{\Gamma}$ -determinacy holds (in particular Σ_n^1 and Π_n^1 determinacy are equivalent).

Exercise 3. (AD_{all})

Recall that AD is the statement that for all $A \subseteq \omega^{\omega}$, G(A) is determined and that this contradicts AC (the axiom of choice).

Extend the definition of a game in such a way that the players need not play natural numbers, but can play *any* sets whatsoever (i.e., x_0, y_0, x_1, y_1 , etc. are any sets). The games still have length ω , thus a *payoff* set can be any proper class $\mathcal{A} \subseteq \mathbb{V}^{\omega}$. Let AD_{all} be the principle that all such games are determined.

Show that AD_{all} implies AC, and conclude that AD_{all} is inconsistent even with ZF.