Homogeneity in graphs and digraphs

Matthias Hamann

Southampton, 20 February 2015

- How do structures look that are everywhere the same?
- How do structures look each of whose local symmetries is extendable to a global one?

- How do structures look that are everywhere the same?
- How do structures look each of whose local symmetries is extendable to a global one?
- Are they classifiable?

Definition

A relational structure is homogeneous if every isomorphism between two finite induced substructures extends to an automorphism of the whole structure.

Definition

A relational structure is homogeneous if every isomorphism between two finite induced substructures extends to an automorphism of the whole structure.

Rado graph

There is a unique countable graph \mathcal{R} such that for any two finite disjoint $A, B \in V(\mathcal{R})$ there is a vertex x with $A \subseteq N(x)$ and $B \cap N(x) = \emptyset$. This graph is called Rado graph.

Theorem (Fraïssé 1953)

Given an age \mathcal{R} , there is a unique countable homogeneous structure whose age is \mathcal{R} iff \mathcal{R} is amalgamable.

Theorem (Fraïssé 1953)

Given an age \mathcal{R} , there is a unique countable homogeneous structure whose age is \mathcal{R} iff \mathcal{R} is amalgamable.

Definition

An age \mathcal{R} is amalgamable if for any $A, B, C \in \mathcal{R}$ with embeddings $f: C \to A$ and $g: C \to B$ there is some $D \in \mathcal{R}$ and embeddings $f': A \to D$ and $g': B \to D$ with cff' = cgg' for all $c \in C$.

Theorem (Gardiner 1976, Lachlan&Woodrow 1980)

A countable graph is homogeneous iff it or its complement belongs to the following list:

- disjoint union of cliques of the same cardinality,
- Rado graph,
- generic K_r-free graphs,
- C₅, L(K_{3,3}).

Theorem (Gardiner 1976, Lachlan&Woodrow 1980)

A countable graph is homogeneous iff it or its complement belongs to the following list:

- disjoint union of cliques of the same cardinality,
- Rado graph,
- generic K_r-free graphs,
- C₅, L(K_{3,3}).
- homogeneous graphs are transitive

Theorem (Gardiner 1976, Lachlan&Woodrow 1980)

A countable graph is homogeneous iff it or its complement belongs to the following list:

- disjoint union of cliques of the same cardinality,
- Rado graph,
- generic K_r-free graphs,
- C₅, L(K_{3,3}).
- homogeneous graphs are transitive
- are homogeneous graphs Cayley graphs?

Theorem (Gardiner 1976, Lachlan&Woodrow 1980)

A countable graph is homogeneous iff it or its complement belongs to the following list:

- disjoint union of cliques of the same cardinality,
- Rado graph,
- generic K_r-free graphs,
- C₅, L(K_{3,3}).
- homogeneous graphs are transitive
- are homogeneous graphs Cayley graphs?

Theorem (Cameron&Johnson 1987, Cameron 2000, Cherlin 2014)

Every countable homogeneous graph is a Cayley graph.

Some further classifications

Known are the classifications of the

• countable homogeneous partial orders: Schmerl 1979

- countable homogeneous partial orders: Schmerl 1979
- countable homogeneous digraphs: Lachlan 1982, 1984, Cherlin 1998

- countable homogeneous partial orders: Schmerl 1979
- countable homogeneous digraphs: Lachlan 1982, 1984, Cherlin 1998
- finite homogeneous 3-uniform hypergraphs: Lachlan&Tripp 1995

- countable homogeneous partial orders: Schmerl 1979
- countable homogeneous digraphs: Lachlan 1982, 1984, Cherlin 1998
- finite homogeneous 3-uniform hypergraphs: Lachlan&Tripp 1995

But unknown is the classification of the

• countable homogeneous k-uniform hypergraphs

 consider graphs as metric objects (current classification program of Cherlin) consider graphs as metric objects (current classification program of Cherlin)

Definition

A graph G is connected-homogeneous (or C-homogeneous) if every isomorphism between any two finite connected induced subgraphs extends to an automorphism of the whole graph.

 consider graphs as metric objects (current classification program of Cherlin)

Definition

A graph G is connected-homogeneous (or C-homogeneous) if every isomorphism between any two finite connected induced subgraphs extends to an automorphism of the whole graph.

 The notion of C-homogeneity carries over verbatim to digraphs, where a digraph is connected if its underlying undirected graph is.

If a (di-)graph is homogeneous, then it is C-homogeneous

Remark

C-homogeneous (di-)graphs need not be homogeneous.

 countable C-homogeneous graphs: Gardiner 1978, Enomoto 1981, Hedman&Pong 2010, Gray&Macpherson 2010

- countable C-homogeneous graphs: Gardiner 1978, Enomoto 1981, Hedman&Pong 2010, Gray&Macpherson 2010
- countable C-homogeneous partial orders: Gray&Macpherson 2010

- countable C-homogeneous graphs: Gardiner 1978, Enomoto 1981, Hedman&Pong 2010, Gray&Macpherson 2010
- countable C-homogeneous partial orders: Gray&Macpherson 2010
- countable C-homogeneous digraphs:
 - connected with precisely two ends: Gray&Möller 2011,
 - connected with at least two ends: H&Hundertmark 2012,
 - $\bullet\,$ finite and locally finite: H '15+, and
 - all: H '15⁺⁺

Question

How can we obtain structural facts from the property 'C-homogeneous' that will help us in the proof?

Lemma

- The out-neighbourhood of some (and hence every) vertex of a C-homogeneous digraphs induces a homogeneous digraph.
- The in-neighbourhood of some (and hence every) vertex of a C-homogeneous digraphs induces a homogeneous digraph.

First structural fact (proof)

For every countable C-homogeneous digraph D one of the following statements is true:

- D is a blow-up of a homogeneous digraph;
- 2 D has more than one end;
- every vertex of D has an independent out- and an independent in-neighbourhood.

Theorem (Dunwoody&Krön 2015)

For transitive graphs G with more than one end there is an Aut(G)-invariant nested set of vertex cuts distinguishing some ends.

Theorem (Dunwoody&Krön 2015)

For transitive graphs G with more than one end there is an Aut(G)-invariant nested set of vertex cuts distinguishing some ends.

They associate to such a set of vertex cuts a structure tree that resembles the global structure of G.

Theorem (Dunwoody&Krön 2015)

For transitive graphs G with more than one end there is an Aut(G)-invariant nested set of vertex cuts distinguishing some ends.

They associate to such a set of vertex cuts a structure tree that resembles the global structure of G.

Theorem

Connected C-homogeneous digraphs with at least two ends have connectivity 1 or 2 and are tree-like.

There are five classes of such digraphs.

An infinitely ended C-homogeneous digraph

Reachability

Definition

An edge *e* is reachable from an edge *f* if there is some walk $x_1 \dots x_n$ containing *e* and *f* such that:

$$x_{i-1} \in N^+(x_i) \Leftrightarrow x_{i+1} \in N^-(x_i).$$

Reachability

Definition

An edge *e* is reachable from an edge *f* if there is some walk $x_1 \dots x_n$ containing *e* and *f* such that:

$$x_{i-1} \in N^+(x_i) \Leftrightarrow x_{i+1} \in N^-(x_i).$$

Remark

Reachability is an equivalence relation.

Reachability

Definition

An edge *e* is reachable from an edge *f* if there is some walk $x_1 \dots x_n$ containing *e* and *f* such that:

$$x_{i-1} \in N^+(x_i) \Leftrightarrow x_{i+1} \in N^-(x_i).$$

Remark

Reachability is an equivalence relation.

Lemma (Cameron&Praeger&Wormald 1993)

In edge-transitive digraphs either the reachability relation is universal or one (and hence every) equivalence class forms a bipartite digraph.

Lemma (Gray&Möller 2011)

In C-homogeneous digraphs whose reachability relation is not universal and with independent out- and in-neighbourhood for every vertex, the equivalence classes of the reachability relation form C-homogeneous bipartite digraphs.

For every countable C-homogeneous digraph with at most end whose reachability relation is not universal and with independent out- and in-neighbourhood for every vertex one of the following statements is true:

- essentially, the digraph is a blow-up of a directed cycles or double ray.
- 2) it is a quotient digraph of D^* .

If the reachability relation is universal, then the digraph contains the following *induced* subdigraph:

If the reachability relation is universal, then the digraph contains the following *induced* subdigraph:

If the reachability relation is universal, then the digraph contains the following *induced* subdigraph:

Lemma

If D is a countable C-homogeneous digraph with universal reachability relation and with independent outand in-neighbourhood for every vertex, then with $A := N^+(y) \smallsetminus N^-(x)$ and $B := N^-(x) \smallsetminus N^+(y)$ for $xy \in E(D)$ the digraph induced by $A \cup B$ is a non-empty homogeneous 2-partite digraph.

A countable C-homogeneous digraph with universal reachability relation and with independent out- and in-neighbourhood for every vertex is either

- homogeneous or
- **2** the generic orientation of the generic bipartite graph.

A countable digraph is C-homogeneous if and only if all its components are isomorphic and belong to one of twelve classes.

A countable digraph is C-homogeneous if and only if all its components are isomorphic and belong to one of twelve classes.

• Eleven of these classes have explicit constructions

A countable digraph is C-homogeneous if and only if all its components are isomorphic and belong to one of twelve classes.

- Eleven of these classes have explicit constructions but
- one does not!

A C-homogeneous digraph: D^*

One particular class

One class of connected C-homogeneous digraph of degree 4 are quotient digraphs of D^* , where the quotient is built using some Aut(D^*)-invariant equivalence relation on $V(D^*)$.

the digraph D^*

One particular class

the digraph D^*

One class of connected C-homogeneous digraph of degree 4 are quotient digraphs of D^* , where the quotient is built using some Aut(D^*)-invariant equivalence relation on $V(D^*)$.

Theorem

There is a canonical bijection from this class of C-homogeneous digraphs to those subgroups of the modular group $C_2 * C_3$ that contain a fixed involution.

A countable digraph is C-homogeneous if and only if it is a disjoint union of countably many copies of one of the following digraphs:

- (i) a countable homogeneous digraph;
- (ii) $H[I_n]$ for some $n \in \mathbb{N}^{\infty}$ and with either H = S(3) or $H = T^{\wedge}$ for some countable homogeneous tournament $T \neq S(2)$:
- $X_{\lambda}(T)$ for some countable homogeneous tournament T and $\lambda \in \mathbb{N}^{\infty}$;
- (iv) a regular tree;
- (v) $DL(\Delta)$, where Δ is a bipartite digraph such that $G(\Delta)$ is one of
 - C_{2m} for some integer m ≥ 2,
 CP_k for some k ∈ N[∞] with k > 3.

 - $K_{k,l}$ for $k, l \in \mathbb{N}^{\infty}$, $k, l \geq 2$, or
 - the countable generic bipartite graph;
- (vi) M(k, m) for some $k \in \mathbb{N}^{\infty}$ with k > 3 and some integer m > 2;
- M'(2m) for some integer m > 2: (vii)
- (viii) Y_k for some $k \in \mathbb{N}^\infty$ with k > 3;
- (ix) $C_m[I_k]$ for some $k, m \in \mathbb{N}^\infty$ with m > 3;
- (x) \mathcal{R}_m for some $m \in \mathbb{N}^\infty$ with m > 3:
- (xi) $X_2(C_3)_{\sim}$, where \sim is a non-universal Aut($X_2(C_3)$)-invariant equivalence relation on $V(X_2(C_3))$; or
- (xii) the generic orientation of the countable generic bipartite graph.