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Motivation

1 In 1987 Gromov defined hyperbolic groups, graphs and metric
spaces

his main goal: to propose a research program of groups in
terms of quasi-isometries

2 As part of increasing interest in geometric semigroup theory
Gray and Kambites (2014) came up with a geometric notion
of hyperbolicity in the directed setting

their main interest: decision problems (such as word problem,
Green’s relations) and finite presentability

Problem (Gray and Kambites)

If one Cayley digraph (wrt a finite generating set) of a finitely
generated semigroup is hyperbolic, then is every such Cayley
digraph hyperbolic?
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Thin triangles

A geodesic in a metric space is a path whose length is equal to the
distance of its end points.

A metric space is hyperbolic if ∃δ ≥ 0 such that for all points
x , y , z every geodesic between x and y lies in the δ-neighbourhood
of the union of any geodesic between y and z and any geodesic
between x and z .

x
δ
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δ
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Hyperbolic metric spaces

The property for a metric space to be hyperbolic is equivalent to
various other properties.

Here, we are interested in the following:

1 diverging geodesics

2 geodesic stability

They imply the most important property for hyperbolic spaces:
being invariant under quasi-isometries.

Matthias Hamann Hyperbolic monoids and digraphs



Hyperbolic metric spaces

The property for a metric space to be hyperbolic is equivalent to
various other properties.
Here, we are interested in the following:

1 diverging geodesics

2 geodesic stability

They imply the most important property for hyperbolic spaces:
being invariant under quasi-isometries.

Matthias Hamann Hyperbolic monoids and digraphs



Hyperbolic metric spaces

The property for a metric space to be hyperbolic is equivalent to
various other properties.
Here, we are interested in the following:

1 diverging geodesics

2 geodesic stability

They imply the most important property for hyperbolic spaces:
being invariant under quasi-isometries.

Matthias Hamann Hyperbolic monoids and digraphs



Divergence of geodesics

A strictly increasing function f : N → N is a divergence function of
a metric space X if for all x ∈ X , for all geodesics P,Q starting at
x and for all r ,R ∈ R with r + R ≤ min{ℓ(P), ℓ(Q)} and
d(P(R),Q(R)) > f (0) every path in X ∖ BR+r (x) from P(R + r)
to Q(R + r) has length more than f (r).

P(R)

Q(R)

>f(0)x

P

Q

P(R+r)

Q(R+r)
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Quasi-geodesics

Let X ,Y be metric spaces and let γ ≥ 1 and c ≥ 0. A map
f : X → Y is a (γ, c)-quasi-isometry if the following hold:

1 for all x , x ′ ∈ X we have

1

γ
dX (x , x

′)− c ≤ dY (f (x), f (x
′)) ≤ γdX (x , x

′) + c ;

2 for every y ∈ Y there exists x ∈ X with dY (f (x), y) ≤ c .

For γ ≥ 1 and c ≥ 0, a path P in a metric space is a
(γ, c)-quasi-geodesic if it is the (γ, c)-quasi-isometric image of an
interval.
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Geodesic stability

A metric space X satisfies geodesic stability if for all γ ≥ 1 and
c ≥ 0 there exists κ ≥ 0 such that for all x , y ∈ X , all x-y
geodesics P and all (γ, c)-quasi-geodesics Q from x to y we have
P ⊆ Bκ(Q) and Q ⊆ Bκ(P).

x yP

Q
<κ
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Hyperbolic metric spaces

Theorem (Gromov, Bonk)

The following are equivalent for proper metric spaces X .

1 X is hyperbolic.

2 X has an exponential divergence function.

3 X satisfies geodesic stability.

Corollary (Gromov)

Hyperbolicity is preserved by quasi-isometries.

Proof idea.

Let f : X → Y be a quasi-isometry and assume that Y is
hyperbolic. Then Y satisfies geodesic stability. Apply the
quasi-isometry to deduce geodesic stability and hence hyperbolicity
for X .
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Digraphs

A digraph D is a pair (V (D),E (D)) of a vertex set V (D) and an
edge set E (D) with E (D) ⊆ V (D)× V (D).

We denote the edges by uv instead of (u, v).
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Digraphs

A directed path in D is a (finite) sequence v0, . . . , vn of distinct
vertices with vivi+1 ∈ E (D). We call n its length.

The distance from u to v , denoted by d(u, v), is the length of a
shortest directed path (=geodesic) from u to v .

For k ∈ N, the k-in-ball of a vertex u is the set

B−
k (u) := {v ∈ V (D) | d(v , u) ≤ k}

and the k-out-ball of u is the set

B+
k (u) := {v ∈ V (D) | d(u, v) ≤ k}.
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Thin triangles (Gray and Kambites)

A digraph is hyperbolic if ∃δ ≥ 0 such that for all vertices x , y , z
and geodesics between them every geodesic from x to y lies in the
union of the δ-out-ball of any geodesic between x and z and of the
δ-in-ball of any geodesic between y and z .

x
δ

z

y

δ
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Examples

Example

1 Oriented trees are examples for hyperbolic digraphs.
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Examples

Example

2 N× N is not a hyperbolic digraph.
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Divergence of geodesics

A strictly increasing function f : N → N is a divergence function of
a digraph D if for all x ∈ V (D), for all geodesics P,Q that start or
end at x and for all r ,R ∈ N with r + R ≤ min{ℓ(P), ℓ(Q)} and
d(P(R),Q) > f (0) every directed P-Q path that lies outside of
B+
R+r (x) ∪ B−

R+r (x) has length more than f (r).

P(R)

>f(0)x

P

Q
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Quasi-geodesics

For γ ≥ 1 and c ≥ 0, a directed u-v path P in a digraph is a
(γ, c)-quasi-geodesic if

dP(x , y) ≤ γd(x , y) + c

for all x , y on P with x ∈ V (uPy).
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Geodesic stability

A digraph D satisfies geodesic stability if for all γ ≥ 1 and c ≥ 0
there exists κ ≥ 0 such that for all x , y ∈ V (D), all geodesics P
and all (γ, c)-quasi-geodesics Q from x to y we have
P ⊆ B+

κ (Q) ∩ B−
κ (Q) and Q ⊆ B+

κ (P) ∩ B−
κ (P).

x yP

Q
<κ
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Hyperbolic digraphs

Question

Are the following equivalent for digraphs D?

1 D is hyperbolic.

2 D has an exponential divergence function.

3 D satisfies geodesic stability.

Remark

1 There is a digraph that satisfies geodesic stability but neither
is hyperbolic nor has a divergence function.

2 There is a digraph that has an exponential divergence function
but neither is hyperbolic nor satisfies geodesic stability.
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Hyperbolic digraphs

Theorem (H.)

Every hyperbolic digraph of bounded degree has an exponential
divergence function and satisfies geodesic stability.

Remark

The original result is more general but also more technical: we can
replace bounded degree by a condition of end vertices of geodesics.
Thereby, we can generalize the result for spaces that have a
suitable distance function and satisfy this condition.

Matthias Hamann Hyperbolic monoids and digraphs



Hyperbolic digraphs

Theorem (H.)

Every hyperbolic digraph of bounded degree has an exponential
divergence function and satisfies geodesic stability.

Remark

The original result is more general but also more technical: we can
replace bounded degree by a condition of end vertices of geodesics.
Thereby, we can generalize the result for spaces that have a
suitable distance function and satisfy this condition.

Matthias Hamann Hyperbolic monoids and digraphs



Hyperbolic monoids

A monoid is a set with an associative binary function and an
identity element.

The (right) Cayley digraph of a monoid M with generating set A
has M as vertex set and edges (m,ma) for all m ∈ M and a ∈ A.

A finitely generated monoid is hyperbolic if it has a Cayley digraph
with respect to a finite generating set that is hyperbolic.
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Hyperbolic monoids

Problem (Gray and Kambites)

If one Cayley digraph (wrt a finite generating set) of a finitely
generated monoid is hyperbolic, then is every such Cayley digraph
hyperbolic?

Remark (Gray and Kambites)

Hyperbolic groups considered as monoids are hyperbolic.
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Quasi-isometries

Let D1,D2 be digraphs and let γ ≥ 1 and c ≥ 0. A map
f : V (D1) → V (D2) is a (γ, c)-quasi-isometry if the following hold:

1 for all x , y ∈ V (D1) we have

1

γ
dD1(x , y)− c ≤ dD2(f (x), f (y)) ≤ γdD1(x , y) + c ;

2 for every x ∈ V (D2) there exists y ∈ V (D1) with
dD2(f (x), y) ≤ c and dD2(y , f (x)) ≤ c .
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Quasi-isometries

Theorem (H.)

Quasi-isometries between digraphs of bounded degree preserve
hyperbolicity.

Corollary (H.)

1 Quasi-isometries between finitely generated right cancellative
monoids preserve hyperbolicity.

2 For a finitely generated right cancellative hyperbolic monoid
each of its locally finite Cayley digraphs is hyperbolic.
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Hyperbolic boundary

In a digraph D, a geodesic ray is a sequence R = v0v1 . . . such that
d(vi , vj) = j − i for all i ≤ j ∈ N and a geodesic anti-ray is a
sequence Q = . . . v−1v0 such that d(vi , vj) = j − i for all
i ≤ j ≤ 0 ∈ Z.

In hyperbolic digraphs of bounded degree, we can define an
equivalence relation ≈ on the geodesic rays and anti-rays as
follows:
R1 ≈ R2 for geodesic rays or anti-rays R1,R2 if there exists m ∈ N
and infinitely many pairwise disjoint R1-R2 and R2-R1 paths of
length at most m.
The equivalence classes of ≈ are the hyperbolic boundary points of
D. We denote by ∂D the hyperbolic boundary of D, i. e. the set of
hyperbolic boundary points.

Matthias Hamann Hyperbolic monoids and digraphs



Hyperbolic boundary

In a digraph D, a geodesic ray is a sequence R = v0v1 . . . such that
d(vi , vj) = j − i for all i ≤ j ∈ N and a geodesic anti-ray is a
sequence Q = . . . v−1v0 such that d(vi , vj) = j − i for all
i ≤ j ≤ 0 ∈ Z.

In hyperbolic digraphs of bounded degree, we can define an
equivalence relation ≈ on the geodesic rays and anti-rays as
follows:
R1 ≈ R2 for geodesic rays or anti-rays R1,R2 if there exists m ∈ N
and infinitely many pairwise disjoint R1-R2 and R2-R1 paths of
length at most m.

The equivalence classes of ≈ are the hyperbolic boundary points of
D. We denote by ∂D the hyperbolic boundary of D, i. e. the set of
hyperbolic boundary points.

Matthias Hamann Hyperbolic monoids and digraphs



Hyperbolic boundary

In a digraph D, a geodesic ray is a sequence R = v0v1 . . . such that
d(vi , vj) = j − i for all i ≤ j ∈ N and a geodesic anti-ray is a
sequence Q = . . . v−1v0 such that d(vi , vj) = j − i for all
i ≤ j ≤ 0 ∈ Z.

In hyperbolic digraphs of bounded degree, we can define an
equivalence relation ≈ on the geodesic rays and anti-rays as
follows:
R1 ≈ R2 for geodesic rays or anti-rays R1,R2 if there exists m ∈ N
and infinitely many pairwise disjoint R1-R2 and R2-R1 paths of
length at most m.
The equivalence classes of ≈ are the hyperbolic boundary points of
D. We denote by ∂D the hyperbolic boundary of D, i. e. the set of
hyperbolic boundary points.

Matthias Hamann Hyperbolic monoids and digraphs



Pseudo-semimetrics

Theorem (H.)

Let D be a rooted hyperbolic digraph of bounded degree. Then
there is a visual pseudo-semimetric dh on D ∪ ∂D.

Let X be a set. A pseudo-semimetric is a function
d : X × X → [0,∞] that satisfies the following properties

d(x , x) = 0 for all x ∈ X and

d(x , y) ≤ d(x , z) + d(z , y) for all x , y , z ∈ X .

Here, being a visual pseudo-semimetric means roughly that
dh(x , y) is about e

−εd↔(o,P), where P is any x-y geodesic, o is the
root and

d↔(o,P) = min{d(o,P), d(P, o)}.
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Properties of the hyperbolic boundary

The pseudo-semimetric defines two topologies: one wrt open
out-balls, the other wrt open in-balls.

Theorem (H.)

Quasi-isometries D1 → D2 between hyperbolic digraphs of
bounded degree extend to homeomorphisms D1 ∪ ∂D1 → D2 ∪ ∂D2

(wrt to both topologies).
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Free submonoids

Theorem (H.)

Let M be an infinite finitely generated hyperbolic cancellative
monoid.

1 M contains an element of infinite order, i. e. a free submonoid
of rank 1.

2 If M has an infinite hyperbolic boundary, then it has a free
submonoid of rank 2.

Theorem (H.)

No infinite finitely generated hyperbolic cancellative monoid
contains N× N as a submonoid.

Corollary (H.)

Every infinite finitely generated hyperbolic cancellative monoid
with infinite hyperbolic boundary has exponential growth.
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Semigroups

Theorem (Gray and Kambites)

1 Left cancellative finitely generated hyperbolic semigroups are
finitely presentable.

2 Right cancellative finitely generated hyperbolic semigroups
need not be recursively presentable.
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Replacing bounded degree condition

Our results hold in a more general case than bounded degree.

There exists a function f : N → N such that for every x ∈ V (D),
for every n ∈ N and for all y , z ∈ B+

n (x) the distance d(y , z) is
either ∞ or bounded by f (n).

There exists a function f : N → N such that for every x ∈ V (D),
for every n ∈ N and for all y , z ∈ B−

n (x) the distance d(y , z) is
either ∞ or bounded by f (n).
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