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Motivation

1 In 1987 Gromov defined hyperbolic groups, graphs and metric
spaces

his main goal: to propose a research program of groups in
terms of quasi-isometries

2 As part of increasing interest in geometric semigroup theory
Gray and Kambites (2014) came up with a geometric notion
of hyperbolicity in the directed setting

their main interest: decision problems (such as word problem,
Green’s relations) and finite presentability
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Digraphs

A directed path in a digraph D is a (finite) sequence v0, . . . , vn of
distinct vertices with vivi+1 ∈ E (D). We call n its length.

The distance from u to v , denoted by d(u, v), is the length of a
shortest directed path (=geodesic) from u to v .

A geodesic triangle of D consists of three vertices and, for every
two of them, x and y , a geodesic either from x to y or from y to x .

For k ∈ N, the k-in-ball of a vertex u is the set

B−
k (u) := {v ∈ V (D) | d(v , u) ≤ k}

and the k-out-ball of u is the set

B+
k (u) := {v ∈ V (D) | d(u, v) ≤ k}.
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Thin triangles

Let δ ≥ 0. A geodesic triangle
is δ-thin if each of its
geodesics P satisfies the
following property: if Q and
R are the other two geodesics
such that Q has the first
vertex of P as either its first
or last vertex and R has the
last vertex from P as either its
first or last vertex, then P lies
in the union of the δ-out-ball
of Q and of the δ-in-ball of R.

P

Q R

≤ δ

≤ δ
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A digraph is hyperbolic if there exists δ ≥ 0 such that all geodesic
triangles are δ-thin.
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Examples

Example

1 Oriented trees are examples for hyperbolic digraphs.
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Examples

Example

2 N× N is not a hyperbolic digraph.
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Quasi-isometries

Let D1,D2 be digraphs and let γ ≥ 1 and c ≥ 0. A map
f : V (D1) → V (D2) is a (γ, c)-quasi-isometry if the following hold:

1 for all x , y ∈ V (D1) we have

1

γ
dD1(x , y)− c ≤ dD2(f (x), f (y)) ≤ γdD1(x , y) + c ;

2 for every x ∈ V (D2) there exists y ∈ V (D1) with
dD2(f (x), y) ≤ c and dD2(y , f (x)) ≤ c .

Theorem (H.)

Quasi-isometries between digraphs of bounded degree preserve
hyperbolicity.
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Hyperbolic semigroups

Problem (Gray and Kambites)

If one Cayley digraph (wrt a finite generating set) of a finitely
generated semigroup is hyperbolic, then is every such Cayley
digraph hyperbolic?

Our results on quasi-isometries leads to:

Theorem (H.)

If one Cayley digraph (wrt a finite generating set) of a finitely
generated right cancellative semigroup is hyperbolic, then every
such Cayley digraph is hyperbolic.
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Hyperbolic boundary

In a digraph D, a geodesic ray is a sequence R = v0v1 . . . such that
d(vi , vj) = j − i for all i ≤ j ∈ N and a geodesic anti-ray is a
sequence Q = . . . v−1v0 such that d(vi , vj) = j − i for all
i ≤ j ≤ 0 ∈ Z.

In hyperbolic digraphs of bounded degree, we can define an
equivalence relation ≈ on the geodesic rays and anti-rays as
follows:
R1 ≈ R2 for geodesic rays or anti-rays R1,R2 if there exists m ∈ N
and infinitely many pairwise disjoint R1-R2 and R2-R1 paths of
length at most m.
The equivalence classes of this relation ≈ are the hyperbolic
boundary points of D. We denote by ∂D the hyperbolic boundary
of D, i. e. the set of hyperbolic boundary points.
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Pseudo-semimetrics

Theorem (H.)

Let D be a rooted hyperbolic digraph of bounded degree. Then
there is a visual pseudo-semimetric dh on D ∪ ∂D.

Let X be a set. A pseudo-semimetric is a function
d : X × X → [0,∞] that satisfies the following properties

d(x , x) = 0 for all x ∈ X and

d(x , y) ≤ d(x , z) + d(z , y) for all x , y , z ∈ X .

Here, being a visual pseudo-semimetric means roughly that
dh(x , y) is about e

−εd↔(o,P), where P is any x-y geodesic, o is the
root and

d↔(o,P) = min{d(o,P), d(P, o)}.
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Properties of the hyperbolic boundary

The pseudo-semimetric defines two topologies: one wrt open
out-balls, the other wrt open in-balls.

Theorem (H.)

Quasi-isometries D1 → D2 between hyperbolic digraphs of
bounded degree extend to homeomorphisms D1 ∪ ∂D1 → D2 ∪ ∂D2

(wrt to both topologies).
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Replacing bounded degree condition

Our results hold in a more general case than bounded degree.

There exists a function f : N → N such that for every x ∈ V (D),
for every n ∈ N and for all y , z ∈ B+

n (x) the distance d(y , z) is
either ∞ or bounded by f (n).

There exists a function f : N → N such that for every x ∈ V (D),
for every n ∈ N and for all y , z ∈ B−

n (x) the distance d(y , z) is
either ∞ or bounded by f (n).
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Semimetric spaces

Semimetric spaces (also known as quasi-metric or asymmetric
spaces) are pseudo-semimetric spaces X with the property

d(x , y) = 0 if and only if x = y for all x , y ∈ X .

Remark

Most of our results hold for semimetric spaces satisfying the
condition on end points of geodesics instead of bounded degree
digraphs.

The only results that fail in this setting are those that used some
compactness arguments: in the undirected setting, we usually
apply the Arzelá-Ascoli theorem. In general, this is false in the case
of semimetric spaces.
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