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Motivation

1 In 1987 Gromov defined hyperbolic groups, graphs and metric
spaces

his main goal: to propose a research program of groups in
terms of quasi-isometries

2 As part of increasing interest in geometric semigroup theory
Gray and Kambites (2014) came up with a notion of
hyperbolicity in the directed setting

their main interest: algorithmic problems and finite
presentability

Problem (Gray and Kambites)

If one Cayley digraph (wrt a finite generating set) of a semigroup is
hyperbolic, then is every such Cayley digraph hyperbolic?
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Motivation

Question

What is a good notion of a hyperbolic digraph?

A good notion should have the following properties:

1 it is stable with respect to quasi-isometries

2 most of the theory of hyperbolic graphs should (more or less)
carry over to hyperbolic digraphs
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Hyperbolic graphs

Hyperbolic graphs have many equivalent definitions.
Most important ones:

1 thin triangles

2 diverging geodesics

3 geodesic stability
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Thin triangles

A graph is hyperbolic if ∃δ ≥ 0 such that for all vertices x , y , z
every shortest path (=geodesic) between x and y lies in the
δ-neighbourhood of the union of any geodesic between y and z
and any geodesic between x and z .

≤δ

yx

z
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Thin triangles

First idea: if ∃δ ≥ 0 such that for all vertices x , y , z every shortest
directed path (=geodesic) from x to y lies in the
δ-out-neighbourhood and in the δ-in-neighbourhood of the union of
any geodesic between y and z and any geodesic between x and z .

≤δ

yx

z

≤δ

≤δ

yx

z

≤δ
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Thin triangles (Gray and Kambite)

A digraph is hyperbolic if ∃δ ≥ 0 such that for all vertices x , y , z
every shortest directed path (=geodesic) from x to y lies in the
union of the δ-out-neighbourhood of any geodesic between y and z
and of the δ-in-neighbourhood of any geodesic between x and z .

≤δ

yx

z

≤δ
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Divergence of geodesics

A function f : N→ N is a divergence function of a graph G if for
all x ∈ V (G ), for all geodesics P,Q starting at x and for all
r ,R ∈ N with r + R ≤ min{d(x , y), d(x , z)} and
d(P(R),Q(R)) > f (0) every path in G − BR+r (x) from P(R + r)
to Q(R + r) has length more than f (r).

x
>f(0)

P
P(R)

Q(R) Q
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Divergence of geodesics

A function f : N→ N is a divergence function of a digraph D if for
all x ∈ V (D), for all geodesics P,Q that start or end at x and for
all r ,R ∈ N with r + R ≤ min{`(P), `(Q)} and d(P(R),Q) > f (0)
every directed P-Q path that lies outside of B+

R+r (x) ∪ B−R+r (x)
has length more than f (r).

x
>f(0)

P
P(R)

Q
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Quasi-geodesics

For γ ≥ 1 and c ≥ 0, a path P in a graph is a
(γ, c)-quasi-geodesic if

1

γ
d(x , y)− c ≤ dP(x , y) ≤ γd(x , y) + c

for all x , y on P.

A graph G satisfies geodesic stability if for all γ ≥ 1 and c ≥ 0
there exists κ ≥ 0 such that for all x , y ∈ V (G ), all x-y geodesics
P and all x-y (γ, c)-quasi-geodesics Q we have P ⊆ Bκ(Q) and
Q ⊆ Bκ(P).
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Quasi-geodesics

For γ ≥ 1 and c ≥ 0, a directed a-b path P in a digraph is a
(γ, c)-quasi-geodesic if

1

γ
d(x , y)− c ≤ dP(x , y) ≤ γd(x , y) + c

for all x , y on P with x ∈ V (aPy).

A digraph D satisfies geodesic stability if for all γ ≥ 1 and c ≥ 0
there exists κ ≥ 0 such that for all x , y ∈ V (D), all x-y geodesics
P and all x-y (γ, c)-quasi-geodesics Q we have
P ⊆ B+

κ (Q) ∩ B−κ (Q) and Q ⊆ B+
κ (P) ∩ B−κ (P).
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Hyperbolic graphs

Theorem (Gromov, Bonk, ?)

For a graph G the following are equivalent.

1 G is hyperbolic.

2 G has an exponential divergence function.

3 G satisfies geodesic stability.
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Hyperbolic digraphs

Remark

1 There is a digraph that satisfies geodesic stability but neither
is hyperbolic nor has a divergence function.

2 There is a digraph that has a divergence function but neither
is hyperbolic nor satisfies geodesic stability.
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Hyperbolic digraphs

Theorem

Every hyperbolic digraph of bounded degree has an exponential
divergence function

and satisfies geodesic stability.

Remark

The original result is more general but also more technical: we can
replace bounded degree by a condition of end vertices of geodesics.

Let us prove that (hyperbolicity and) exponential divergence of
geodesics implies that geodesics lie close to quasi-geodesics with
the same end vertices.
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Hyperbolic digraphs of bounded degree

Let G be a graph. Let x , y ∈ V (G ) and P be an x-y geodesic and
Q be an x-y (γ, c)-quasi-geodesic.
Let z ∈ V (P) with D := d(z ,Q) maximum.
Let a ∈ V (xPz), b ∈ V (zPy) with d(a, z) = 2D = d(z , b).
There are aQ , bQ ∈ V (Q) with d(a, aQ), d(b, bQ) ≤ D.

x yza b

D

P

QaQ bQ

Then dQ(aQ , bQ) ≤ 6γD + c and there is an a-b path of length
≤ 6γD + c + 2D outside of BD−1(z).
If assumption is false, D may be arbitrarily large. In particular, we
may choose D > f (0), where f is an exponential divergence
function of G . Since the above path outside of BD−1(z) is linear
in D, this contradicts divergence of the geodesics zPx and zPy .
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Hyperbolic digraphs of bounded degree

Let D be a digraph. Let x , y ∈ V (D) and P be an x-y geodesic
and Q be an x-y (γ, c)-quasi-geodesic.
Let z ∈ V (P) with D := min{d(z ,Q), d(Q, z)} maximum.
Let a ∈ V (xPz), b ∈ V (zPy) far away to/from z .
There are aQ , bQ ∈ V (Q) with d(a, aQ), d(b, bQ) ≤ D.

x yza b

D

P

QaQ bQ
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Let D be a digraph. Let x , y ∈ V (D) and P be an x-y geodesic
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a

a

x
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≤δ
≤δ

D
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Hyperbolic digraphs of bounded degree

Let D be a digraph. Let x , y ∈ V (D) and P be an x-y geodesic
and Q be an x-y (γ, c)-quasi-geodesic.
Let z ∈ V (P) with D := min{d(z ,Q), d(Q, z)} maximum.
Let a ∈ V (xPz), b ∈ V (zPy) far away to/from z .
There are aQ , bQ ∈ V (Q) with d(a, aQ), d(b, bQ) ≤ D.

x yza b

D

P

QaQ bQ

a’ b’

As before, we can bound dQ(aQ , bQ) linearly in D and there is an
{a, a′}-{b, b′} path outside of B±D−1(z) of length linear in D.

If assumption is false, D may be arbitrarily large. In particular, we
may choose D > f (0), where f is an exponential divergence
function of G . Since the above path outside of B±D−1(z) is linear
in D, this contradicts divergence of the geodesics xPz and zPy .
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Quasi-isometries

Let D1,D2 be digraphs and let γ ≥ 1 and c ≥ 0. A map
f : V (D1)→ V (D2) is a quasi-isometry if the following hold:

1 for all x , y ∈ V (D1) we have

1

γ
dD1(x , y)− c ≤ dD2(f (x), f (y)) ≤ γdD1(x , y) + c ;

2 for every x ∈ V (D2) there exists y ∈ f (V (D1)) with
dD2(x , y) ≤ c and dD2(y , x) ≤ c .
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Quasi-isometries

Theorem

Quasi-isometries between digraphs of bounded degree preserve
geodesic stability

and hyperbolicity.

Question

Do quasi-isometries between digraphs of bounded degree preserve
divergence of geodesics?
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Quasi-isometries

Let ϕ : D1 → D2 be a quasi-isometry and let D1 be hyperbolic.
There exists a quasi-isometry ψ : D2 → D1 such that ϕ ◦ ψ = id .

D2
D1
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Geodesic boundary

Let D be a digraph.
R = x0x1 . . . is a geodesic ray if d(xi , xj) = j − i for all i ≤ j ∈ N.

Q = . . . x−1x0 is a geodesic anti-ray if d(xi , xj) = j − i for all
i ≤ j ≤ 0 ∈ Z.

Let R be the set of geodesic rays and anti-rays in D.
We write R1 ≤ R2 for R1,R2 ∈ R if there exists m ≥ 0 such that
for all x ∈ V (D) and all r ∈ N there is a directed R1-R2 path of
length ≤ m outside of B+

r (x) ∪ B−r (x).
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Geodesic boundary

Lemma

≤ is a quasiorder for digraphs of bounded degree.

R1

P1

R2

P2
Q
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Geodesic boundary

Lemma

≤ is a quasiorder for digraphs of bounded degree.

R1

P1

R2

P2
Q

≤δ
≤δ

≤δ
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Geodesic boundary

Set R1 ≈ R2 for R1,R2 ∈ R if R1 ≤ R2 and R2 ≤ R1.
Then ≈ is an equivalence relation whose classes are the geodesic
boundary points of D.
We denote by ∂D the geodesic boundary of D.

Remark

1 ∂D is a refinement of the ends in the sense of Zuther.

2 There are geodesic boundary points that lie in no end in the
sense of Bürger and Melcher
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Topologies of D

The distance function of digraphs D induce two different
topologies:

the forward topology Of has the balls
{y ∈ V (D) | d(x , y) < r} for all r ≥ 0 and x ∈ V (D) as base

the backward topology Ob has the balls
{y ∈ V (D) | d(y , x) < r} for all r ≥ 0 and x ∈ V (D) as base
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Topologies of D ∪ ∂D

Let x ∈ V (D), r ≥ 0 and ω ∈ ∂D. Set

C+(ω, x , r) :={y ∈ V (D) | ∃R ∈ ω∀z ∈ V (R)

∃z-y geodesic outside of B+
r (x) ∪ B−r (x)}

η ∈ ∂D lives in C+(ω, x , r) if it has an element with vertices from
C+(ω, x , r).
Let C+

∂ (ω, x , r) be C+(ω, x , r) together with all elements of ∂D
living in it.

η μ
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Topologies of D ∪ ∂D

the forward topology of D ∪ ∂D has a base that consists of the
following set:

all sets {y | d(x , y) < r}
all set C+

∂ (ω, x , r)

the backward topology of D ∪ ∂D is defined analogously
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Quasi-isometries

Theorem

1 Quasi-isometries between digraphs of bounded degree preserve
the geodesic boundaries.

2 Quasi-isometries f : D1 → D2 between digraphs of bounded
degree induce maps f̂ : ∂D1 → ∂D2 that are homeomorphisms
with respect to both topologies.
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Pseudo-semimetrics

Let X be a set. A pseudo-semimetric is a function
d : X × X → [0,∞] that satisfies the following properties

d(x , x) = 0 for all x ∈ X and

d(x , y) ≤ d(x , z) + d(z , y) for all x , y , z ∈ X .

Theorem

Let D be a digraph of bounded degree with finite base S . Then
there is a visual pseudo-semimetric dh on D ∪ ∂D that induces the
same topologies that we defined earlier.

Here, visual means roughly that dh(x , y) is about e−εd
↔(S ,P),

where P is any x-y geodesic and

d↔(S ,P) = min{d(S ,P), d(P, S)}.
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The space ∂D

Question

Which pseudo-semimetric spaces can be the boundary of
hyperbolic digraphs of bounded degree?

If dh(x1, x2) = 0 = dh(x2, x3), then either x1 = x2 or x2 = x3.

D ∪ ∂D is f-complete and b-complete:

A sequence (xi )i∈N in D ∪ ∂D is f-Cauchy if for every ε > 0 there
exists some N ∈ N such that d(xn, xm) < ε for all m ≥ n ≥ N.
D ∪ ∂D is f-complete if every f-Cauchy sequence converges with
respect to the backward topology.
b-Cauchy sequence and b-complete are defined analogously.
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Outline

1 motivation

2 hyperbolic digraphs
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4 geodesic boundary ∂D
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Replacing bounded degree condition

Our results hold in a more general case than bounded degree.

There exists a function f : N→ N such that for every x ∈ V (D),
for every n ∈ N and for all y , z ∈ B+

n (x) the distance d(y , z) is
either ∞ or bounded by f (n).

There exists a function f : N→ N such that for every x ∈ V (D),
for every n ∈ N and for all y , z ∈ B−n (x) the distance d(y , z) is
either ∞ or bounded by f (n).
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Semimetric spaces

Semimetric spaces are pseudo-semimetric spaces X with the
property

d(x , y) = 0 if and only if x = y for all x , y ∈ X .

Remark

Most of our results hold for semimetric spaces satisfying the
condition on end points of geodesics instead of bounded degree
digraphs.

The only results that fail in this setting are those that used some
compactness arguments: in the undirected setting, we usually
apply the Arzelá-Ascoli theorem. In general, this is false in the case
of semimetric spaces.
E.g. we do not know whether the geodesic boundary is preserved
by quasi-isometries. Instead, we just consider the quasi-geodesic
boundary that is defined by the analogous relation on
quasi-geodesic rays and anti-rays.
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Semigroups

Gray and Kambites were interested in hyperbolic semigroups.
A finitely generated semigroup is hyperbolic if it has a hyperbolic
Cayley digraph (wrt a finite generating set).

Problem (Gray and Kambites)

Is every Cayley digraph (wrt a finite generating set) of a hyperbolic
semigroup hyperbolic?

Theorem

For every finitely generated hyperbolic right cancellative
semigroup, each of its Cayley digraphs (wrt finite generating sets)
is hyperbolic.
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Semigroups

Theorem (Gray and Kambites)

1 Left cancellative finitely generated semigroups are finitely
presentable.

2 Right cancellative finitely generated semigroups need not be
recursively presentable.
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