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A cut is the edge set between A and B for a bipartition {A,B} of
the vertex set. The cut space is the set of all finite cuts.

The cut space is a GF(2)-vector space.



Cycle space

Definition

The cycle space of a graph is the set of all finite sums (over
GF(2)) of edge sets of finite cycles.



The case: finite graphs

Remark

(1) In a finite graph the cut space is the orthogonal space of the
cycle space and vice versa.

(2) In a finite graph with n vertices and m edges, the cut space has
dimension n − 1 and the cycle space has dimension m − n + 1.

(1) has an interesting counterpart for infinite graphs for which we
have to consider infinite cycles.

Is (2) interesting for infinite graphs?
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Can we make infinite dimensions finite?

Idea: reduce number of generators by considering only one per
orbit

Definition

The action of Aut(G ) for a graph G extends canonically to the cut
space and cycle space of G . They are Aut(G )-modules.
They are finitely generated if they have a generating set consisting
of only finitely many Aut(G )-orbits.

Generally, the cut space or cycle space are not finitely generated
since the graph need not have a rich automorphism group.
⇒ we restrict ourselves to transitive graphs
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Dimensions in the infinite

Theorem

Let G be a 2-edge-connected transitive graph. If its cycle space is
a finitely generated Aut(G )-module, then so is its cut space.

If the cycle space has a generating set of n Aut(G )-orbits and
every generator has length at most `, then the cut space has a
generating set of at most 2`+1n orbits.
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Brief sketch of the proof

Theorem (Dicks & Dunwoody 1989)

Every graph G has a nested Aut(G )-invariant set E of minimal
cuts generating its cut space.

Instead of E we consider E ′ := {(A,B) | E (A,B) ∈ E}.
We order E ′:

(A,B) ≤ (A′,B ′) :⇔ A ⊆ A′,B ⊇ B ′

Every (A,B) ∈ E ′ induces bipartitions on every cycle and those
that induce the same non-trivial one form a finite chain.
Let C be a set of finitely many cycles with their Aut(G )-images
that generates the cycle space.
If E ′ has many orbits, one of them has never a minimal or maximal
element of any such chain with C ∈ C.
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Brief sketch of the proof (cont’d)

But such a bipartition cannot exist:
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Brief sketch of the proof (cont’d)

But such a bipartition cannot exist:



Reverse direction?

Can we ask for an ‘if and only if’ in our theorem?
I.e., if the cut space is finitely generated, does the same hold for
the cycle space?

I guess not.



Reverse direction?

Can we ask for an ‘if and only if’ in our theorem?
I.e., if the cut space is finitely generated, does the same hold for
the cycle space?

I guess not.



Going to infinity: ends

Definition

A ray is a one-way infinite path.

Two rays in a graph G are equivalent if for any finite vertex
set S ⊆ V (G ) both rays lie eventually in the same component
of G − S .

The equivalence classes of this relation are the ends of the
graph.

one end two ends infinitely many ends
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Going to infinity: accessibility

Definition

A graph is accessible if there is some k ∈ N such that for any two
distinct ends, there an edge set of size at most k separating them.

Theorem (Thomassen & Woess 1993)

A locally finite connected transitive graph G is accessible if and
only if its cut space is a finitely generated Aut(G )-module.
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A conjecture

Conjecture (Diestel 2010)

Every locally finite transitive graph whose cycle space is generated
by cycles of bounded length is accessible.



A conjecture is confirmed

Theorem

Every locally finite transitive graph whose cycle space is generated
by cycles of bounded length is accessible.



Applications



Applications I: groups

We obtain a combinatorial proof of

Theorem (Dunwoody 1985)

Finitely presented groups are accessible.



Stallings’s structure theorem

Theorem (Stallings 1971)

Every finitely generated group G with more than one end splits
non-trivially over a finite subgroup C , that is, G = ∗CA or
G = A ∗C B for some subgroups A 6= C 6= B.
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∗C1 G1,1 G2,1 ∗C2 G2,2

G2,1,1 ∗C2,1 G2,1,2
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Splitting recursively

G

G1 ∗C G2

∗C1 G1,1 G2,1 ∗C2 G2,2

G2,1,1 ∗C2,1 G2,1,2

Definition

A finitely generated group is accessible if this process of
successively decomposing factors with more than one end
terminates after finitely many steps.



Wall’s conjecture

Conjecture (Wall 1971)

Every finitely generated group is accessible.

Verified by Linnell 1983 if all finite subgroups have bounded
order.

Verified by Dunwoody 1985 for finitely presented groups.

Disproved by Dunwoody 1993.
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Accessibility

Theorem (Thomassen & Woess 1993)

A finitely generated group is accessible if and only one (and hence
every) of its locally finite Cayley graphs is accessible.



Cayley graphs ←→ transitive graphs

Remark

The class of transitive graphs is much larger than the class of
Cayley graphs (even in terms of quasi-isometry).

The followings theorem answers a question of Woess and verifies a
conjecture of Diestel and Leader:

Theorem (Eskin, Fisher, Whyte 2012)

There are locally finite transitive graphs not quasi-isometric to any
finitely generated group.
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a finitely generated Aut(G )-module, then so is its cut space.

Question

Let G be a transitive graph. If its cut space is a finitely generated
Aut(G )-module, then so is its cycle space?

I guess that one-ended finitely generated groups that are not
finitely presentable give rise to counterexamples.
(E.g. the lamplighter groups.)
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Application II: hyperbolic graphs

Definition

A connected graph G is called
hyperbolic if there exists some δ ≥ 0
such that for any three vertices x , y , z
of G and for any three shortest paths,
one between every two of the vertices,
each of those paths lies in the
δ-neighbourhood of the union of the
other two.

≤δ

yx

z



Application II: hyperbolic graphs

Theorem (Gromov 1987)

Finitely generated hyperbolic groups are finitely presented
(and hence accessible).

Conjecture (Dunwoody 2011)

Every locally finite transitive hyperbolic graph is accessible.

Theorem

Every locally finite transitive hyperbolic graph is accessible.
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Application II: hyperbolic graphs

Proof.

Suffices to show:
The cycles of length at most 6δ + 6 generate the cycle space.
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Applications III: planar graphs

Theorem (Droms 2006)

Finite generated planar groups are finitely presented (and hence
accessible).

Theorem (Dunwoody 2007)

Every locally finite transitive planar graph is accessible.

We obtain a combinatorial proof of Dunwoody’s theorem.



Applications III: planar graphs

Theorem (Droms 2006)

Finite generated planar groups are finitely presented (and hence
accessible).

Theorem (Dunwoody 2007)

Every locally finite transitive planar graph is accessible.

We obtain a combinatorial proof of Dunwoody’s theorem.



Applications III: planar graphs

Theorem (Droms 2006)

Finite generated planar groups are finitely presented (and hence
accessible).

Theorem (Dunwoody 2007)

Every locally finite transitive planar graph is accessible.

We obtain a combinatorial proof of Dunwoody’s theorem.



First attempt of a proof

Theorem (Dunwoody 2007)

Every locally finite transitive planar graph is accessible.

Proof: take the finite face boundaries.

Two problems:

1 Transitive graphs need not have a unique embedding in the
plane and automorphisms can map face boundaries to
non-face boundaries.
Solution: take their whole orbits

2 There are planar Cayley graphs without any finite face
boundaries.
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Sketch of the proof

Let G be a 3-connected locally finite transitive planar graph.
First show that there is a canonical nested set of cycles generating
the cycle space of G .

To see that finitely many orbits suffice, take one orbit in the nested
set and cut the graph along these cycles.
Then apply induction on a variant of the degree sequence.

Basically the same proof for closed walks with a bit more
complicated notion of generation yields a combinatorial proof of

Theorem (Droms 2006)

Finite generated planar groups are finitely presented (and hence
accessible).
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