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Abstract

A k-block in a graph G is a maximal set of at least k vertices no two of
which can be separated in G by fewer than k other vertices. The block
number �(G) of G is the largest integer k such that G has a k-block.

We investigate how � interacts with density invariants of graphs, such
as their minimum or average degree. We further present algorithms that
decide whether a graph has a k-block, or which find all its k-blocks.

The connectivity invariant �(G) has a dual width invariant, the block-
width bw(G) of G. Our algorithms imply the duality theorem � = bw:
a graph has a block-decomposition of width and adhesion < k if and only
if it contains no k-block.

1 Introduction

Given k 2 N, a set I of at least k vertices of a graph G is (< k)-inseparable if
no set S of fewer than k vertices of G separates any two vertices of I r S in G.
A maximal (< k)-inseparable set is a k-block. The degree of connectedness of
such a set of vertices is thus measured in the ambient graph G, not only in the
subgraph they induce. While the vertex set of a k-connected subgraph of G is
clearly (< k)-inseparable in G, there can also be k-blocks that induce few or no
edges.

The k-blocks of a graph were first studied by Mader [12]. They have recently
received some attention because, unlike its k-connected subgraphs, they o↵er a
meaningful notion of the ‘k-connected pieces’ into which the graph may be
decomposed [2]. This notion is related to, but not the same as, the notion of
a tangle in the sense of Robertson and Seymour [14]; see Section 6 and [7] for
more on this relationship.

Although Mader [10] had already proved that graphs of average degree at
least 4(k� 1) have k-connected subgraphs, and hence contain a k-block, he did
not in [12] consider the analogous extremal problem for the weaker notion of a
k-block directly.

Our aim in this paper is to study this problem: we ask what average or
minimum degree conditions force a given finite graph to contain a k-block.

This question can, and perhaps should, be seen in a wider extremal context.
Let �(G) denote the block number of G, the greatest integer k such that G has
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a k-block (equivalently: has a (< k)-inseparable set of vertices). This � seems
to be an interesting graph invariant1, and one may ask how it interacts with
other graph invariants, not just the average or minimum degree. Indeed, the
examples we describe in Section 3 will show that containing a k-block for large
k is compatible with having bounded minimum and average degree, even in
all subgraphs. So k-blocks can occur in very sparse graphs, and one will need
bounds on other graph invariants than � and d to force k-blocks in such graphs.

There is an invariant dual to �: the least integer k such that a graph G has
a block-decomposition of adhesion and width both at most k. Calling this k the
block-width bw(G) of G, we can express the duality neatly as � = bw.

All the graphs we consider are finite. Our paper is organized as follows.
In Section 2 we introduce whatever terminology is not covered in [3], and give
some background on tree-decompositions. In Section 3 we present examples of
k-blocks, aiming to exhibit the diversity of the concept. In Section 4 we prove
that graphs of minimum degree at least 2(k� 1) have a k-block. If the graph G
considered is (k � 1)-connected, the minimum degree needed comes down to at
most 3

2 (k� 1), and further to k if G contains no triangle. In Section 5 we show
that graphs of average degree at least 3(k�1) contain a k-block. In Section 6 we
clarify the relationship between k-blocks and tangles. In Section 7 we present
a polynomial-time algorithm that decides whether a given graph has a k-block,
and another that finds all the k-blocks in a graph. This latter algorithm gives
rise to our duality theorem � = bw.

2 Terminology and background

All graph-theoretic terms not defined within this paper are explained in [3].
Given a graph G = (V,E), an ordered pair (A,B) of vertex sets such that
A [ B = V is called a separation of G if there is no edge xy with x 2 A r B
and y 2 B r A. The sets A,B are the sides of this separation. A separation
(A,B) such that neither A ✓ B nor B ✓ A is a proper separation. The order
of a separation (A,B) is the cardinality of its separator A\B. A separation of
order k is called a k-separation. A simple calculation yields the following:

Lemma 2.1. Given any two separations (A,B) and (C,D) of G, the orders of
the separations (A\C,B[D) and (B\D,A[C) sum to |A\B|+ |C \D|.

Recall that a tree-decomposition of G is a pair (T,V) of a tree T and a family
V = (Vt)t2T of vertex sets Vt ✓ V , one for every node of T , such that:

(T1) V =
S

t2T Vt;

(T2) for every edge e 2 G there exists a t 2 T such that both ends of e lie in Vt;

(T3) Vt1 \ Vt3 ✓ Vt2 whenever t2 lies on the t1–t3 path in T .
1For example, in a network G one might think of the nodes of a �(G)-block as locations to

place some particularly important servers that should still be able to communicate with each
other when much of the network has failed.

2



The sets Vt are the parts of (T,V), its width is the number maxt2T |Vt|� 1, and
the tree-width of G is the least width of any tree-decomposition of G.

The intersections Vt \ Vt0 of ‘adjacent’ parts in a tree-decomposition (T,V)
(those for which tt0 is an edge of T ) are its adhesion sets; the maximum size of
such a set is the adhesion of (T,V). The interior of a part Vt, denoted by V̊t,
is the set of those vertices in Vt that lie in no adhesion set. By (T3), we have
V̊t = Vt r

S
t0 6=t Vt0 .

Given an edge e = t1t2 of T , the two components T1 3 t1 and T2 3 t2
of T � e define separations (A,B) and (B,A) of G with A =

S
t2T1

Vt and
B =

S
t2T2

Vt, whose separator is the adhesion set Vt1 \ Vt2 [3, Lemma 12.3.1].
We call these the separations induced by the tree-decomposition (T,V). Note
that the adhesion of a tree-decomposition is the maximum of the orders of the
separations it induces.

A tree-decomposition distinguishes two k-blocks b1, b2 if it induces a separa-
tion that separates them. It does so e�ciently if this separation can be chosen
of order no larger than the minimum order of a b1–b2 separator in G. The
tree-decomposition (T,V) is Aut(G)-invariant if the automorphisms of G act
on the set of parts in a way that induces an action on the tree T . The following
theorem was proved in [2]:

Theorem 2.2. For every k 2 N, every graph G has an Aut(G)-invariant tree-
decomposition of adhesion at most k that e�ciently distinguishes all its k-blocks.

A tree-decomposition (T,V) of a graph G is lean if for any nodes t1, t2 2 T ,
not necessarily distinct, and vertex sets Z1 ✓ Vt1 and Z2 ✓ Vt2 such that
|Z1| = |Z2| =: `, either G contains ` disjoint Z1–Z2 paths or there exists an edge
tt0 2 t1Tt2 with |Vt \ Vt0 | < `. Since there is no such edge when t1 = t2 =: t,
this implies in particular that, for every part Vt, any two subsets Z1, Z2 ✓ Vt of
some equal size ` are linked in G by ` disjoint paths. (However, the parts need
not be (< `)-inseparable for any large `; see Section 3.)

We call a tree-decomposition (T,V) k-lean if none of its parts contains an-
other, it has adhesion at most k, and for any nodes t1, t2 2 T , not necessarily dis-
tinct, and vertex sets Z1 ✓ Vt1 and Z2 ✓ Vt2 such that |Z1| = |Z2| =: `  k + 1,
either G contains ` disjoint Z1–Z2 paths or there exists an edge tt0 2 t1Tt2 with
|Vt \ Vt0 | < `.

Thomas [15] proved that every graph G has a lean tree-decomposition whose
width is no greater than the tree-width of G. By considering only separations
of order at most k one can adapt the short proof of Thomas’s theorem given
in [1] to yield the following:

Theorem 2.3. For every k 2 N, every graph has a k-lean tree-decomposition.

3 Examples of k-blocks

In this section we discuss three di↵erent types of k-block.
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Example 1. The vertex set of any k-connected subgraph is (< k)-inseparable,
and hence contained in a k-block.

While a k-block as in Example 1 derives much or all of its inseparability from
its own connectivity as a subgraph, the k-block in our next example will form
an independent set. It will derive its inseparability from the ambient graph, a
large grid to which it is attached.

Example 2. Let k � 5, and let H be a large (m⇥ n)-grid, with m,n � k2 say.
Let G be obtained from H by adding a set X = {x1, . . . , xk} of new vertices,
joining each xi to at least k vertices on the grid boundary that form a (horizontal
or vertical) path in H so that every grid vertex obtains degree 4 in G (Figure 1).
We claim that X is a k-block of G, and is its only k-block.

Any grid vertex can lie in a common k-block of G only with its neighbours,
because these separate it from all the other vertices. As any k-block has at least
k � 5 vertices but among the four G-neighbours of a grid vertex at least two
are non-adjacent grid vertices, this implies that no k-block of G contains a grid
vertex. On the other hand, every two vertices of X are linked by k independent
paths in G, and hence cannot be separated by fewer than k vertices. Hence X
is (< k)-inseparable, maximally so, and is thus the only k-block of G.

Figure 1: The six outer vertices form a 6-block

In the discussion of Example 2 we saw that none of the grid vertices lies
in a k-block. In particular, the grid itself has no k-block when k � 5. Since
every two inner vertices of the grid, those of degree 4, are joined in the grid
by 4 independent paths, they form a (< 4)-inseparable set (which is clearly
maximal):

Example 3. The inner vertices of any large grid H form a 4-block in H. How-
ever, H has no k-block for any k � 5.

The k-block defined in Example 2 gives rise to a tangle of large order (see
Section 6), the same as the tangle specified by the grid H. This is in contrast to
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our last two examples, where the inseparability of the k-block will again lie in
the ambient graph but in a way that need not give rise to a non-trivial tangle.
(See Section 6 for when it does.) Instead, the paths supplying the required
connectivity will live in many di↵erent components of the subgraph into which
the k-block splits the original graph.

Example 4. Let X be a set of n � k isolated vertices. Join every two vertices
of X by many (e.g., k) independent paths, making all these internally disjoint.
Then X will be a k-block in the resulting graph.

Example 4 di↵ers from Example 2 in that its graph has a tree-decomposition
whose only part of order � 3 is X. Unlike the grid in Example 2, the paths
providing X with its external connectivity do not between them form a subgraph
that is in any sense highly connected. We can generalize this as follows:

Example 5. Given n � k, consider a tree T in which every non-leaf node
has

� n
k�1

�
successors. Replace each node t by a set Vt of n isolated vertices.

Whenever t0 is a successor of a node t in T , join Vt0 to a (k� 1)-subset St0 of Vt

by (k � 1) independent edges, so that these St0 are distinct sets for di↵erent
successors t0 of t. For every leaf t of T , add edges on Vt to make it complete.
The k-blocks of the resulting graph G are all the sets Vt (t 2 T ), but only the
sets Vt with t a leaf of T induce any edges.

Interestingly, the k-blocks that we shall construct explicitly in our proofs
will all be connected , i.e., induce connected subgraphs. Thus, our proof tech-
niques seem to be insu�cient to detect k-blocks that are disconnected or even
independent, such as those in our examples. However, we do not know whether
or not this a↵ects the quality of our bounds or just their witnesses:

Problem 1. Does every minimum or average degree bound that forces the
existence of a k-block also force the existence of a connected (< k)-inseparable
set?

Even if the answer to this problem is positive, it will reflect only on how our
invariant � relates to the invariants � and d, and that for some graphs it may be
more interesting to relate � to other invariants. The existence of a large k-block
in Examples 2 and 4, for instance, will not follow from any theorem relating �
to � or d, since graphs of this type have a bounded average degree independent
of k, even in all subgraphs. But they are key examples, which similar results
about � and other graph invariants may be able to detect.

4 Minimum degree conditions forcing a k-block

Throughout this section, let G = (V,E) be a fixed non-empty graph. We ask
what minimum degree will force G to contain a k-block for a given integer k > 0.

Without any further assumptions on G we shall see that �(G) � 2(k � 1)
will be enough. If we assume that G is (k � 1)-connected – an interesting case,
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since for such G the parameter k is minimal such that looking for k-blocks can
be non-trivial – we find that �(G) > 3

2k � 5
2 su�ces. If G is (k � 1)-connected

but contains no triangle, even �(G) � k will be enough. Note that this is best
possible in the (weak) sense that the vertices in any k-block will have to have
degree at least k, except in some very special cases that are easy to describe.

Conversely, we construct a (k � 1)-connected graph of minimum degree
b3

2k � 5
2c that has no k-block. So our second result above is sharp.

To enhance the readability of both the results and the proofs in this section,
we give bounds on � which force the existence of a (k + 1)-block for any k � 0.

We shall often use the fact that a vertex of G together with k or more of
its neighbours forms a (< k + 1)-inseparable set as soon as these neighbours are
pairwise not separated by k or fewer vertices. Let us state this as a lemma:

Lemma 4.1. Let v 2 V and N ✓ N(v) with |N | � k. If no two vertices of N
are separated in G by at most k vertices, then N [{v} lies in a (k+1)-block.

Here, then, is our first su�cient condition for the existence of a k-block. It
is essentially due to Mader [11, Satz 70], though with a di↵erent proof:

Theorem 4.2. If �(G) � 2k, then G has a (k + 1)-block. This (k + 1)-block
can be chosen to be connected in G and of size at least �(G) + 1� k.

Proof. If k = 0, then the assertion follows directly. So we assume k > 0. By
Theorem 2.3, G has a k-lean tree-decomposition (T,V), say with V = (Vt)t2T .
Pick a leaf t of T . (If T has only one node, we count it as a leaf.) Write
At := Vt \

S
t0 6=t Vt0 for the attachment set of Vt. As Vt is not contained in

any other part of (T,V), we have V̊t = Vt r At 6= ; by (T3). By our degree
assumption and |At|  k, every vertex in V̊t has k neighbours in V̊t. Thus,
|V̊t| � k + 1 � 2.

We prove that V̊t extends to a (k + 1)-block B ✓ Vt that is connected in G.
Pick distinct vertices v, v0 2 V̊t. Let N be a set of k neighbours of v, and N 0 a
set of k neighbours of v0. Note that N [N 0 ✓ Vt. As our tree-decomposition is
k-lean, there are k + 1 disjoint paths in G between the (k + 1)-sets N [ {v} and
N 0[{v0}. Hence v and v0 cannot be separated in G by at most k other vertices.

We have thus shown that V̊t is (< k + 1)-inseparable. In particular, At does
not separate it, so V̊t is connected in G. Let B be a (k +1)-block containing V̊t.
As At separates V̊t from GrVt, we have B ✓ Vt. Every vertex of B in At sends
an edge to V̊t, since otherwise the other vertices of At would separate it from V̊t.
Hence B is connected. Since every vertex in V̊t has at least �(G)�k neighbours
in V̊t ✓ B, we have the desired bound of |B| � �(G) + 1� k.

One might expect that our lower bound for the size of the (k + 1)-block B
found in the proof of Theorem 4.2 can be increased by proving that B must
contain the adhesion set of the part Vt containing it. While we can indeed raise
the bound a little (by at least 1, but we do not know how much at most), we
show in Section 8 that B can lie entirely in the interior of Vt.
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We also do not know whether the degree bound of �(G) � 2k in Theorem 4.2
is sharp. The largest minimum degree known of a graph without a (k + 1)-
block is b3

2k � 1c. This graph (Example 6 below) is k-connected, and we shall
see that k-connected graphs of larger minimum degree do have (k + 1)-blocks
(Theorem 4.6). Whether or not graphs of minimum degree between 3

2k� 1 and
2k and connectivity < k must have (k + 1)-blocks is unknown to us:

Problem 2. Given k 2 N, determine the smallest value �k of � such that every
graph of minimum degree at least � has a k-block.

It is also conceivable that the smallest minimum degree that will force a
connected (k + 1)-block – or at least a connected (< k + 1)-inseparable set, as
found by our proof of Theorem 4.2 – is indeed 2k but possibly disconnected
(k + 1)-blocks can be forced by a smaller value of � (compare Problem 1).

The degree bound of Theorem 4.2 can be reduced by imposing additional
conditions on G. Our next aim is to derive a better bound on the assumption
that G is k-connected, for which we need a few lemmas.

We say that a k-separation (A,B) is T-shaped (Fig. 2) if it is a proper sep-
aration and there exists another proper k-separation (C,D) such that A r B ✓
C \D as well as |A \ C|  k and |A \D|  k. Obviously, (A,B) is T-shaped
witnessed by (C,D) if and only if the two separations (A \ C,B [ D) and
(A \D,B [ C) have order at most k and are improper separations.

k

k

C D

B

A

∅ ∅

= ∅
kk

Figure 2: The separation (A,B) is T-shaped

Lemma 4.3. If (A,B) is a T-shaped k-separation in G, then |A|  3
2k.

Proof. Let (C,D) witness that (A,B) is T-shaped. Then

|A|  |A \B| + |(C \D) r B|  k + 1
2 (2k � k) = 3

2k.
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When a k-separation (A,B) is T-shaped, no (k + 1)-block of G can lie in A:
with (C,D) as above, it would have to lie in either A \ C or A \D, but both
these are too small to contain a (k +1)-block. Conversely, one may ask whether
every proper k-separation (A,B) in a k-connected graph such that A contains no
(k +1)-block must be T-shaped, or at least give rise to a T-shaped k-separation
(A0, B0) with A0 ✓ A. This, however, is not true: some counterexamples are
given in Section 8.

Interestingly, though, a global version of this does hold: a T-shaped k-sep-
aration must occur somewhere in every k-connected graph that has no (k + 1)-
block. More precisely, we have the following:

Lemma 4.4. If G is k-connected, the following statements are equivalent:
(i) every proper k-separation of G separates two (k + 1)-blocks;
(ii) no k-separation of G is T-shaped.

Proof. We first assume (i) and show (ii). If (ii) fails, then G has a k-separation
(A,B) that is T-shaped, witnessed by (C,D) say. We shall derive a contradiction
to (i) by showing that A contains no (k+1)-block. If A contains a (k+1)-block,
it lies in either A \ C or A \ D, since no two of its vertices are separated by
(C,D). By the definition of T-shaped, none of these two cases can occur, a
contradiction.

Let us now assume (ii) and show (i). If (i) fails, there is a proper k-separation
(A,B) such that A contains no (k + 1)-block. Pick such an (A,B) with |A|
minimum. Since (A,B) is proper, there is a vertex v 2 A r B. Since G is
k-connected, v has at least k neighbours, all of which lie in A. As A contains
no (k + 1)-block, Lemma 4.1 implies that there is a proper k-separation (C,D)
that separates two of these neighbours. Then v must lie in C \D.

We first show that either (A\C,B [D) has order at most k and (A\C) r
(B[D) = ; or (B\D,A[C) has order at most k and (B\D)r(A[C) = ;. Let
us assume that the first of these fails; then either (A\C,B [D) has order > k
or (A \ C) r (B [D) 6= ;. In fact, if the latter holds then so does the former:
otherwise (A\C,B[D) is a proper k-separation that contradicts the minimality
of |A| in the choice of (A,B). (We have |A \ C| < |A|, since v has a neighbour
in A r C.) Thus, (A\C,B [D) has order > k. As |A\B|+ |C \D| = 2k, this
implies by Lemma 2.1 that the order of (B \D,A [ C) is strictly less than k.
As G is k-connected, this means that (B\D,A[C) is not a proper separation,
i.e., that (B \D) r (A [ C) = ; as claimed.

By symmetry, we also get the analogous statement for the two separations
(A\D,B [C) and (B \C,A[D). But this means that one of the separations
(A,B), (B,A), (C,D) and (D,C) is T-shaped, contradicting (ii).

Our next lemma says something about the size of the (k +1)-blocks we shall
find.

Lemma 4.5. If G is k-connected and |A| > 3
2k for every proper k-separation

(A,B) of G, then either V is a (k + 1)-block or G has two (k + 1)-blocks of size
at least min{ |A| : (A,B) is a proper k-separation } that are connected in G.
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Proof. By assumption and Lemma 4.3, G has no T-shaped k-separation, so by
Lemma 4.4 every side of a proper k-separation contains a (k + 1)-block.

By Theorem 2.3, G has a k-lean tree-decomposition (T,V), with V = (Vt)t2T

say. Unless V is a (k + 1)-block, in which case we are done, this decomposition
has at least two parts: since there exist two (k +1)-sets in V that are separated
by some k-separation, the trivial tree-decomposition with just one part would
not be k-lean.

So T has at least two leaves, and for every leaf t the separation (A,B) :=�
Vt,

S
t0 6=t Vt0

�
is a proper k-separation. It thus su�ces to show that A = Vt is

a (k + 1)-block; it will clearly be connected (as in the proof of Theorem 4.2).
As remarked at the start of the proof, there exists a (k + 1)-block X ✓ A.

If X 6= A, then A has two vertices that are separated by a k-separation (C,D);
we may assume that X ✓ C, so X ✓ A \ C.

If (A\C,B [D) has order  k, it is a proper separation (as X ✓ A\C has
size > k); then its separator S has size exactly k, since G is k-connected. By
the choice of (C,D) there is a vertex v in (D r C) \ A. The k + 1 vertices of
S [ {v} ✓ A are thus separated in G by the k-set C \D from k + 1 vertices in
X ✓ A \ C, which contradicts the leanness of (T,V) for Vt = A.

So the order of (A\C,B [D) is at least k + 1. By Lemma 2.1, the order of
(B \D,A [C) must then be less than k, so by the k-connectedness of G there
is no (k + 1)-block in B \D.

The (k +1)-block X 0 which D contains (see earlier) thus lies in D\A. So A
contains two (k + 1)-blocks X and X 0, and hence two vertex sets of size k + 1,
that are separated by (C,D), which contradicts the k-leanness of (T,V).

Theorem 4.6. If G is k-connected and �(G) > 3
2k � 1, then either V is a

(k + 1)-block or G has at least two (k + 1)-blocks. These can be chosen to be
connected in G and of size at least �(G) + 1.

Proof. For every proper k-separation (A,B) we have a vertex of degree > 3
2k�1

in A r B, and hence |A| � �(G) + 1 > 3
2k. The assertion now follows from

Lemma 4.5.

To show that the degree bound in Theorem 4.6 is sharp, let us construct a
k-connected graph H with �(H) = b3

2k � 1c that has no (k + 1)-block.

Example 6. Let Hn be the ladder that is a union of n � 2 squares (formally:
the cartesian product of a path of length n with a K2).

For even k, let H be the lexicographic product of Hn and a complete graph
K = Kk/2, i.e., the graph with vertex set V (Hn)⇥ V (K) and edge set

{ (h1, x)(h2, y) | either h1 = h2 and xy 2 E(K) or h1h2 2 E(Hn) },

see Figure 3. This graph H is k-connected and has minimum degree 3
2k�1. But

it contains no (k + 1)-block: among any k + 1 vertices we can find two that are
separated in H by a k-set of the form Vh1 [ Vh2 , where Vh := {(h, x) | x 2 K}.

If k is odd, let H 0 be the graph H constructed above for k� 1, and let H be
obtained from H 0 by adding a new vertex and joining it to every vertex of H 0.
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K k/2

K k/2

K k/2

K k/2

K k/2

K k/2

K k/2

K k/2

Figure 3: A k-connected graph without a (k + 1)-block

Clearly, H is again k-connected and has minimum degree b3
2k � 1c, and it has

no (k + 1)-block since H has no k-block.

Our next example shows that the connectivity bound in Theorem 4.6 is
sharp: we construct for every odd k a (k � 1)-connected graph H of minimum
degree b3

2kc whose largest (k + 1)-blocks have size k + 1 < �(H) + 1.

Example 7. Let Hn be as in Example 6. Let H be obtained from Hn by
replacing the degree-two vertices of Hn by complete graphs of order (k + 1)/2
and its degree-three vertices by complete graphs of order (k � 1)/2, joining
vertices of di↵erent complete graphs whenever the corresponding vertices of Hn

are adjacent. The minimum degree of this graph is b3
2kc, but it has only two

(k + 1)-blocks: the two Kk+1s at the extremes of the ladder.

We do not know whether the assumption of k-connectedness in Theorem 4.6
is necessary if we just want to force any (k + 1)-block, not necessarily one of
size � � + 1.

If, in addition to being k-connected, G contains no triangle, the minimum
degree needed to force a (k+1)-block comes down to k+1, and the (k+1)-blocks
we find are also larger:

Theorem 4.7. If G is k-connected, �(G) � k + 1, and G contains no triangle,
then either V is a (k + 1)-block or G has at least two (k + 1)-blocks. These can
be chosen to be connected in G and of size at least 2�(G).

Proof. Since 2�(G) > 3
2k, it su�ces by Lemma 4.5 to show that |A| � 2�(G) for

every proper k-separation (A,B) of G. Pick a vertex v 2 ArB. As d(v) � k+1,
it has a neighbour w in A r B. Since v and w have no common neighbour, we
deduce that |A| � d(v) + d(w) � 2�(G).

Any k-connected, k-regular, triangle-free graph shows that the degree bound
in Theorem 4.7 is sharp, because of the following observation:

Proposition 4.8. If G is k-connected and k-regular, then G has no (k+1)-block
unless G = Kk+1 (which contains a triangle).
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Proof. Suppose G has a (k+1)-block X. Pick a vertex x 2 X. The k neighbours
of x in G do not separate it from any other vertex of X, so all the other vertices
of X are adjacent to x. But then X consists of precisely x and its k neighbours,
since |X| � k+1. As this is true for every x 2 X, it follows that G = Kk+1.

If we strengthen our regularity assumption to transitivity (i.e., assume that
for every two vertices u, v there is an automorphism mapping u to v), then G
has no (k + 1)-blocks, regardless of its degree:

Theorem 4.9. If (G) = k � 1 and G is transitive, then G has no (k+1)-block
unless G = Kk+1.

Proof. Unless G is complete (so that G = Kk+1), it has a proper k-separation.
Hence V is not a (k + 1)-block. Let us show that G has no (k + 1)-block at all.

If G has a (k + 1)-block, it has at least two, since V is not a (k + 1)-block
but every vertex lies in a (k + 1)-block, by transitivity. Hence any tree-decom-
position that distinguishes all the (k + 1)-blocks of G has at least two parts.
By Theorem 2.2 there exists such a tree-decomposition (T,V), which moreover
has the property that every automorphism of G acts on the set of its parts. As
k � 1, adjacent parts overlap in at least one vertex, so G has a vertex u that
lies in at least two parts. But G also has a vertex v that lies in only one part (as
long as no part of the decomposition contains another, which we may clearly
assume): if t is a leaf of T and t0 is its neighbour in T , then every vertex in
Vt r Vt0 lies in no other part than Vt (see Section 2). Hence no automorphism
of G maps u to v, a contradiction to the transitivity of G.

Theorems 4.6 and 4.9 together imply a well-known theorem of Mader [9]
and Watkins [16], which says that every transitive graph of connectivity k has
minimum degree at most 3

2k � 1.

5 Average degree conditions forcing a k-block

As before, let us consider a non-empty graph G = (V,E) fixed throughout this
section. We denote its average degree by d(G). As in the previous section, we
shall assume that k � 0 and consider (k + 1)-blocks, to improve readability.

As remarked in the introduction, Mader [10] proved that if d(G) � 4k then
G has a (k + 1)-connected subgraph. The vertex set of such a subgraph is
(< k + 1)-inseparable, and hence extends to a (k + 1)-block of G. Our first aim
will be to show that if we seek to force a (k + 1)-block in G directly, an average
degree of d(G) � 3k will be enough.

In the proof of that theorem, we may assume that G is a minimal with this
property, so its proper subgraphs will all have average degrees smaller than 3k.
The following lemma enables us to utilize this fact. Given a set S ✓ V , write
E(S, V ) for the set of edges of G that are incident with a vertex in S.

Lemma 5.1. If � > 0 is such that d(G) � 2� > d(H) for every proper subgraph
H 6= ; of G, then |E(S, V )| > �|S| for every set ; 6= S ( V .
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Proof. Suppose there is a set ; 6= S ( V such that |E(S, V )|  �|S|. Then our
assumptions imply

|E(G� S)| = |E|� |E(S, V )| � �|V |� �|S| = �|V r S|,

so the proper subgraph G� S of G contradicts our assumptions.

Theorem 5.2. If d(G) � 3k, then G has a (k + 1)-block. This can be chosen
to be connected in G and of size at least �(G) + 1� k.

Proof. If k = 0, then the assertion follows directly. So we assume k > 0.
Replacing G with a subgraph if necessary, we may assume that d(G) � 3k but
d(H) < 3k for every proper subgraph H of G. By Lemma 5.1, this implies that
|E(S, V )| > 3

2k|S| whenever ; 6= S ( V ; in particular, �(G) > 3
2k.

Let (T,V) be a k-lean tree-decomposition of G, with V = (Vt)t2T say. Pick
a leaf t of T . (If T has only one node, let t be this node.) Then V̊t 6= ; by (T3),
since Vt is not contained in any other part of V.

If |V̊t|  k then, as also |Vt r V̊t|  k,

|E(V̊t, V )|  1
2 |V̊t|2 + k |V̊t|  |V̊t|

�
|V̊t|/2 + k

�
 3

2k |V̊t|,

which contradicts Lemma 5.1. So |V̊t| � k + 1 � 2. The set V̊t extends to a
(k + 1)-block B ✓ Vt with the desired properties as in the proof of Theorem 4.2.

Since our graph of Example 6 contains no (k+1)-block, its average degree is
a strict lower bound for the minimum average degree that forces a (k+1)-block.
By choosing the ladder in the construction of that graph long enough, we can
make its average degree exceed 2k� 1� ✏ for any ✏ > 0. The minimum average
degree that will force a (k+1)-block thus lies somewhere between 2k�1 and 3k.

Problem 3. Given k 2 N, determine the smallest value dk of d such that every
graph of average degree at least d has a k-block.

As we have seen, an average degree of 3k is su�cient to force a graph to
contain a (k +1)-block. If we ask only that the graph should have a minor that
contains a (k + 1)-block, then a smaller average degree su�ces:

Theorem 5.3. If d(G) � 2(k � 1) > 0, then G has a minor containing a
(k + 1)-block. This (k + 1)-block can be chosen to be connected in the minor.

Proof. Replacing G with a minor of itself if necessary, we may assume that
d(G) � 2(k � 1) but d(H) < 2(k � 1) for every proper minor H of G. In
particular, this holds for all subgraphs ; 6= H ( G, so �(G) � k by Lemma 5.1.

Let us show that any two adjacent vertices v and w have at least k � 1
common neighbours. Otherwise, contracting the edge vw we lose one vertex
and at most k � 1 edges; as |E|/|V | � k � 1 by assumption, this ratio (and
hence the average degree) will not decrease, contradicting the minimality of G.
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Let (T,V) be a k-lean tree-decomposition of G, with V = (Vt)t2T say, and
let t be a leaf of T . (If T has only one node, let t be this node.) We shall prove
that Vt is (< k + 1)-inseparable, and hence a (k + 1)-block, in G.

As (T,V) is k-lean, every vertex a 2 At := Vt \
S

t0 6=t Vt0 has a neighbour v
in V̊t, as otherwise X := At r {a} would separate At from every set X [ {v}
with v 2 V̊t, which contradicts k-leanness since |X[{v}| = |At|  k. As a and v
have k � 1 common neighbours in G, which must lie in Vt, we find that every
vertex in At, and hence every vertex of Vt, has at least k neighbours in Vt.

As V̊t 6= ; and hence |Vt| � �(G) + 1 � k + 1, it su�ces to show that two
vertices u, v 2 Vt can never be separated in G by  k other vertices. But this
follows from k-leanness: pick a set Nu of k neighbours of u in Vt and a set Nv

of k neighbours of v in Vt to obtain two (k +1)-sets Nu[{u} and Nv [{v} that
are joined in G by k + 1 disjoint paths; hence u and v cannot be separated by
 k vertices.

Recall that the graphs of Example 6 have average degrees of at least 2k�1�✏.
So these graphs show that obtaining a (k + 1)-block in G is indeed harder than
obtaining a (k + 1)-block in a minor of G, which these graphs must have by
Theorem 5.3. (And they do: they even have K3k/2-minors.)

6 Blocks and tangles

In this section we compare k-blocks with tangles, as introduced by Robertson
and Seymour [14]. Our reason for doing so is that both notions have been
advanced as possible approximations to the elusive “(k + 1)-connected pieces”
into which one might wish to decompose a k-connected graph, in analogy to its
tree-like block-cutvertex decomposition (for k = 1), or to Tutte’s tree-decom-
position of 2-connected graphs into 3-connected torsos (for k = 2) [13, 2].

Let us say that a set ✓ of separations of order at most k of a graph G = (V,E)
is a tangle of order k of G if

(✓1) for every separation (A,B) of order < k of G either (A,B) or (B,A) is in ✓;

(✓2) for all (A1, B1), (A2, B2), (A3, B3) 2 ✓ we have G[A1][G[A2][G[A3] 6= G.

It is straightforward to verify that this notion of a tangle is consistent with the
one given in [14].

Given a tangle ✓, we think of the side A of a separation (A,B) 2 ✓ as the
small side of (A,B), and of B as its large side. (Thus, axiom (✓2) says that G
is not the union of the subgraphs induced by at most three small sides.) If a set
X of vertices lies in the large side of every separation in ✓ but not in the small
side, we say that X gives rise to or defines the tangle ✓.

If X is a (< k)-inseparable set of vertices, it clearly lies in exactly one of the
two sides of any separation of order < k. Hence if we define ✓ as the set of those
separations (A,B) of order < k for which X ✓ B, then ✓ satisfies (✓1), and V is
not a union of at most two small sides of separations in ✓. But it might be the
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union of three small sides, and indeed ✓ may fail to satisfy (✓2). So X might,
or might not, define a tangle of order at most k.

An (n⇥n)-grid minor of G, with n � k, also gives rise to a tangle of order k
in G, but in a weaker sense: for every separation (A,B) of G of order less than k,
exactly one side meets a branch set of every cross of the grid, a union of one
column and one row. (Indeed, since crosses are connected and every two crosses
meet, we cannot have one cross in A r B and another in B r A.)

Since G can contain a large grid without containing a k-block (Example 3), it
can thus have a large-order tangle but fail to have a k-block for any k � 5. Con-
versely, Examples 4 and 5 show that G can have k-blocks for arbitrarily large k
without containing any tangle (other than those of order  (G), in which the
large side of every separation is all of V ). For example, if G is a subdivided Kn

with n � k+1, then its branch vertices form a k-block X, but when n  3
2 (k�1)

the separations of order < k whose large sides contain X do not form a tan-
gle, since G is the union of three small sides of such separations (each with a
separator consisting of two thirds of the branch vertices; compare [14, (4.4)]).

Any k-block of size > 3
2 (k�1), however, does give rise to a tangle of order k:

Theorem 6.1. Every (< k)-inseparable set of more than 3
2 (k � 1) vertices in

G = (V,E) defines a tangle of order k.

Proof. Let X be a (< k)-inseparable set of more than 3
2 (k � 1) vertices, and

consider the set ✓ of all separations (A,B) of order less than k with X ✓ B.
We show that ✓ is a tangle. As no two vertices of X can be separated by a
separation in ✓, it satisfies (✓1). For a proof of (✓2), it su�ces to consider three
arbitrary separations (A1, B1), (A2, B2), (A3, B3) in ✓ and show that

E(A1) [E(A2) [E(A3) 6◆ E, (⇤)

where E(Ai) denotes the set of edges that Ai spans in G.
As |X| > 3

2 (k � 1), there is a vertex v 2 X that lies in at most one of the
three sets Ai \Bi, say neither in A2 \B2 nor in A3 \B3. Let us choose v in A1

if possible. Then, as X ✓ B1, there is another vertex w 6= v in X r A1. As v
and w lie in X, the set (A1 \ B1) r {v} does not separate them. Hence there
is an edge vu with u 2 B1 r A1. Since v /2 A2 [ A3, the edge vu is neither in
E(A2) nor in E(A3). But vu is not in E(A1) either, as u 2 B1 rA1, completing
the proof of (⇤).

7 Finding k-blocks in polynomial time

We consider graphs G = (V,E), with n vertices and m edges, say, and pos-
itive integers k < n. We shall present a simple algorithm that finds all the
k-blocks of G in time polynomial in n, m and k. We start our algorithm with
the following step, which we call pre-processing.

For two vertices x, y of G let (x, y) denote the smallest size of a set of other
vertices that separates x from y in G. We construct a graph Hk from G by
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adding, for every pair of non-adjacent vertices x, y, the edge xy if (x, y) � k,
that is, if x and y cannot be separated by fewer than k other vertices. Moreover,
we label every non-edge xy of Hk by some separation of order (x, y) < k that
separates x from y in G. This completes the pre-processing.

Note that all separations of order < k of G are still separations of Hk, and
that the k-blocks of G are the vertex sets of the maximal cliques of order � k
in Hk.

Lemma 7.1. The pre-processing has running time O(min{k,
p

n} · m · n2).

Proof. We turn the problem of finding a minimal vertex separator between two
vertices into one of finding a minimal edge cut between them. This is done in
the usual way (see e.g. Even [6]) by constructing a unit-capacity network G0

from G with n0 = 2ñ vertices and m0 = 2m+ ñ directed edges, where ñ = O(m)
is the number of non-isolated vertices of G.

For every non-edge xy of G we start Dinitz’s algorithm (DA) on G0, which is
designed to find an x–y separation of order (x, y). If DA completes k iterations
of its ‘inner loop’ (finding an augmenting path), then (x, y) � k; we then stop
DA and let xy be an edge of Hk. Otherwise DA returns a separation (A,B) of
order < k; we then keep xy as a non-edge of Hk and label it by (A,B). Since
the inner loop has time complexity O(m0) = O(m) and DA has an overall time
complexity of O(

p
n0 ·m0) = O(

p
n ·m) (see e.g. [8]), this establishes the desired

bound.

Now we describe the main part of the algorithm. We shall construct a rooted
tree T , inductively by adding children to leaves of the tree constructed so far.
We maintain two lists: a list L of some of the leaves of the current tree, and a
list B of subsets of V . We shall change L by either deleting its last element or
replacing it with two new elements that will be its children in our tree. When-
ever we add an element t to L in this way, we assign it a set Xt ✓ V . Think
of the current list L as containing those t whose Xt we still plan to scan for
k-blocks of G, and of B as the set of k-blocks found so far.

We start with a singleton list L = (r) and B = ;, putting Xr = V .
At a given step, stop with output B if L is empty; otherwise consider the last

element t of L. If |Xt| < k, delete t from L and do nothing further at this step.
Assume now that |Xt| � k. If Xt induces a complete subgraph in Hk, add

Xt to B, delete t from L, and do nothing further at this step.
If not, find vertices x, y 2 Xt that are not adjacent in Hk. At pre-processing,

we labeled the non-edge xy with a separation (A,B) of order < k that separates
x from y in G (and in Hk). Replace t in L by two new elements t0 and t00,
making them children of t in the tree under construction, and let Xt0 = Xt \A
and Xt00 = Xt \ B. If |Xt| > k, do nothing further at this step. If |Xt| = k,
then both Xt0 and Xt00 have size < k; we delete t0 and t00 again from L and do
nothing further in this step.

This completes the description of the main part of the algorithm. Let T be
the tree with root r that the algorithm constructed: its nodes are those t that
were in L at some point, and its edges were defined as nodes were added to L.
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Proposition 7.2. The main part of the algorithm stops with output B the set
of k-blocks of G.

Proof. The algorithm clearly stops with B the set of vertex sets of the maximal
cliques of Hk that have order � k. These are the k-blocks of G, by definition
of Hk.

To analyse running time, we shall need a lemma that is easily proved by in-
duction. A leaf in a rooted tree is a node that has no children, and a branching
node is one that has at least two children.

Lemma 7.3. Every rooted tree has more leaves than branching nodes.

Lemma 7.4. The main part of the algorithm stops after at most 4(n�k) steps.
Its total running time is O(min{m,n} · n2).

Proof. Each step takes O(n2) time, the main task being to check whether Hk[Xt]
is complete. It thus su�ces to show that there are no more than 4(n� k) steps
as long as n  2m, which can be achieved by deleting isolated vertices.

At every step except the last (when L = ;) we considered the last element t
of L, which was subsequently deleted or replaced and thus never considered
again. Every such t is a node of the tree T 0 obtained from T by deleting the
children of nodes t with |Xt| = k. (Recall that such children t0, t00 were deleted
again immediately after they were created, so they do not give rise to a step of
the algorithm.) Our aim, therefore, is to show that |T 0|  4(n� k)� 1.

By Lemma 7.3 it su�ces to show that T 0 has at most 2(n�k) leaves. As n �
k+1, this is the case if T 0 consists only of its root r. If not, then r is a branching
node of T 0. It thus su�ces to show that below every branching node t of T 0

there are at most 2(|Xt|� k) leaves; for t = r this will yield the desired result.
By definition of T 0, branching nodes t of T 0 satisfy |Xt| � k + 1. So our

assertion holds if the two children of t are leaves. Assuming inductively that the
children t0 and t00 of t satisfy the assertion (unless they are leaves), we find that,
with Xt0 = Xt \A and Xt00 = Xt \B for some (< k)-separation (A,B) of G as
in the description of the algorithm, the number of leaves below t is at most

2(|Xt \A|� k) + 2(|Xt \B|� k)  2(|Xt| + (k � 1)� 2k)  2(|Xt|� k)

if neither t0 nor t00 is a leaf, and at most

1 + 2(|Xt \B|� k)  2(|Xt|� k)

if t0 is a leaf but t00 is not (say), since Xt r B 6= ; by the choice of (A,B).

Putting Lemmas 7.1 and 7.4 together, we obtain the following:

Theorem 7.5. There is an O(min{k,
p

n}·m·n2)-time algorithm that finds, for
any graph G with n vertices and m edges and any fixed k < n, all the k-blocks
in G.
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Our algorithm can easily be adapted to find the k-blocks of G for all values
of k at once. To do this, we run our pre-processing just once to construct the
graph Hn, all whose non-edges xy are labeled by an x–y separation of minimum
order and its value (x, y). We can then use this information at the start of
the proof of Lemma 7.4, when we check whether Hk[Xt] is complete, leaving
the running time of the main part of the algorithm at O(n3) as in Lemma 7.4.
Running it separately once for each k < n, we obtain with Lemma 7.1:

Theorem 7.6. There is an O(max{mpnn2, n4}) algorithm that finds, for any
graph G with n vertices and m edges, all the k-blocks of G (for all k).

Perhaps this running time can be improved if the trees Tk exhibiting the k-
blocks are constructed simultaneously, e.g. by using separations of order ` for
all Tk with ` < k.

The mere decision problem of whether G has a k-block does not need our
pre-processing, which makes the algorithm faster:

Theorem 7.7. For fixed k, deciding whether a graph with n vertices and m edges
has a k-block has time complexity O(mn + n2).

Proof. Given k and a graph G, we shall find either a (< k)-inseparable set
of vertices in G (which we know extends to a k-block) or a set S of at most
2(n� k)� 1 separations of order < k such that among any k vertices in G some
two are separated by a separation in S (in which case G has no k-block).

Starting with X = V (G), we pick a k-set of vertices in X and test whether
any two vertices in this set are separated by a (< k)-separation (A,B) in G.
If not, we have found a (< k)-inseparable set of vertices and stop with a yes-
answer. Otherwise we iterate with X = A and X = B.

Every separation found by the algorithm corresponds to a branching node
of T . All these are nodes of T 0, of which there are at most 4(n� k)� 1 (see the
proof of Lemma 7.4). Testing whether a given pair of vertices is separated by
some (< k)-separation of G takes at most k runs of the inner loop of Dinitz’s
algorithm (which takes O(m+n) time), and we test at most

�k
2

�
pairs of vertices

in X.

Let us say that a set S of (< k)-separations in G witnesses that G has no k-
block if among every k vertices of G some two are separated by a separation in S.
Trivially, if G has no k-block then this is witnessed by some O(n2) separations.
The proof of Theorem 7.7 shows that this bound can be made linear:

Corollary 7.8. Whenever a graph of order n has no k-block, there is a set of
at most 4(n� k)� 1 separations witnessing this.

Let us call any tree T as in our main algorithm (at any stage), with each of
its branching nodes t labelled by a separation (A,B)t of G that separates some
two vertices of Xt, a block-decomposition of G. The sets Xt with t a leaf will be
called its leaf sets.
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The adhesion of a block-decomposition is the maximum order of the sep-
arations (A,B)t. A block-decomposition is k-complete if it has adhesion < k
and every leaf set is (< k)-inseparable or has size < k. The width of a block-
decomposition is the maximum order of a leaf set Xt. The block-width bw(G)
of G is the least k such that G has a block-decomposition of adhesion and width
both at most k.

Having block-width < k can be viewed as dual to containing a k-block, much
as having tree-width < k�1 is dual to containing a haven or bramble of order k,
and having branch-width < k is dual to containing a tangle of order k. Indeed,
we have shown the following:

Theorem 7.9. Let D = (T ; (A,B)t , t 2 T ) be a block-decomposition of a
graph G, and let k 2 N.

(i) Every edge of G has both ends in some leaf set of T .
(ii) If D has adhesion < k, then any k-block of G is contained in a leaf set of T .
(iii) If D is k-complete, then every k-block of G is a leaf set, and all other leaf

sets have size < k.

Theorem 7.9 implies that G has a block-decomposition of adhesion and width
both at most k if and only if G has no (k + 1)-block. The least such k clearly
equals the greatest k such that G has a k-block, its block number �(G):

Corollary 7.10. Every finite graph G satisfies �(G) = bw(G).

By Theorem 7.7 and its proof, we obtain the following complexity bound:

Corollary 7.11. Deciding whether a graph with n vertices and m edges has
block-width < k, for k fixed, has time complexity O(mn + n2).

For k variable, the proof of Theorem 7.7 yields a complexity of O(k3(m+n)
(n�k)). Alternatively, we can use pre-processing to obtain O(min{k,

p
n}·m·n2)

by Theorem 7.5.

The above duality between the block number and the block-width of a graph
is formally reminiscent of the various known dualites for other width parameters,
such as the tree-width, branch-width, path-width, rank-width, carving-width or
clique-width of a graph. The ‘width’ to which these parameters refer, however,
is usually that of a tree-like decomposition of the graph itself, which exhibits
that it structurally resembles that tree. In our block-decompositions, on the
other hand, the tree T merely indicates a recursion by which the graph can
be decomposed into small sets: the separations used to achieve this, though of
small order, will not in general be nested, and the structure of G will not in any
intuitive sense be similar to that of T .

In [5], Diestel and Oum give a structural duality theorem for k-blocks in the
sense of those traditional width parameters. The graph structure that is shown
to witness the absence of a k-block is not a tree-structure, but one modelled
on more general (though still tree-like) graphs. Whether or not a structural
duality between k-blocks and tree-like decompositions exists remains an open
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problem. It has been formalized, and stated explicitly [5], with reference to a
fundamental structural duality theorem between tangle-like ‘dense objects’ and
tree-like decompositions, which implies all the traditional duality theorems for
width parameters [4] but does not yield a duality theorem for k-blocks.

8 Further examples

In this section we discuss several examples dealing with certain situations of
our results. In particular, we will describe one example that shows that the
(k +1)-block found in Theorem 4.2 need not contain any vertex of the adhesion
set that lies in the same part of the tree-decomposition, and we will describe
two examples dealing with the notion of T-shaped and Lemma 4.4. All these
examples are included only in this extended version of this paper.

Recall that in the proof of Theorem 4.2 we considered a k-lean tree tree-
decomposition (T,V) of a graph G with �(G) � 2k and showed for each leaf t
of T that Vt includes a (k + 1)-block b. We now give an example where the
adhesion set Vt\Vt0 lies completely outside b, where t0 is the neighbour of t in T .

K7

K5 K5K5

S

Figure 4: S lies outside the 4-block containing the K7

Example 8. Let G be the graph in Figure 4 and let (T,V) be the tree-decom-
position with adhesion sets S and those 2-separators that contain one vertex
in S and the lowest vertex. So T is a star with 4 leaves. It is not hard to show
that (T,V) is 3-lean. For every vertex x of the adhesion set S inside the upper
part Vt, its two neighbours in Vt together with the bottom vertex separate it
from any vertex in V̊t but its neighbours. Hence x does not lie in the 4-block b
that contains V̊t. As no vertex of S lies in b, we conclude V̊t = b.

Our next example shows that a local version of Lemma 4.4 as discussed
just before the lemma is false. We considered there the question of whether
every proper k-separation (A,B) in a k-connected graph such that A contains
no (k + 1)-block must be T-shaped, at least if A is minimal as above.

Example 9. Let k = 6, and let G be the complement of the disjoint union
of three induced paths P1, P2, P3 of length 2. Then each of three sets V (Pi)
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is separated by the union of the other two. Hence any 7-block misses a vertex
from each Pi and thus has at most 6 vertices. Hence, G has no 7-block.

But G is 6-connected, and its only proper 6-separations (A,B) have the form
that either A r B consists of the ends of some Pi and B r A of its inner vertex,
or vice versa. Let (A,B) be a 6-separation of the first kind. Obviously, A is
minimal such that (A,B), for some B, is a proper 6-separation.

To show that (A,B) is not T-shaped, suppose it is, and let this be wit-
nessed by another proper 6-separation (C,D). Then (C,D) is neither (A,B)
nor (B,A). So the separators A \B and C \D meet in exactly one V (Pi), say
in V (P1). Then C \D contains V (P2), say, while A\B contains V (P3). By as-
sumption, the ends of P2 lie in ArB. If the ends of P3 lie in CrD, say, we have
|A \ C| = 7. This contradicts the choice of (C,D), so (A,B) is not T-shaped.

So our envisaged local version of Lemma 4.4 is false. Since |A| = 8  3
2k in

the above example, we could not simply use Lemma 4.3 to show that (A,B) is
not T-shaped. In our next example A is larger, so that we can.

Example 10. Let G be the graph of Figure 5. It is 5-connected but has no
6-block. Let A be the vertex set that consists of the vertices of the upper
three K5s, and let B be the union of the vertex sets of the lower three complete
graphs. Then (A,B) is a proper 5-separation, with A minimal. By Lemma 4.3,
(A,B) is not T-shaped.

By Lemma 4.4, however, both these examples must have some T-shaped
k-separation. In Example 9, the separation (B,A) is T-shaped. In Example 10,
the separation (A0, B0) where A0 consists of the two leftmost complete graphs
and B0 of the other four, is T-shaped.

K 5

K 5 K 5K 5

K 4 K 4

Figure 5: A 5-connected graph without a 6-block
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