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Abstract

We consider locally �nite, connected, quasi-transitive graphs and show
that every such graph with more than one end is a tree amalgamation of
two other such graphs. This can be seen as a graph-theoretical version of
Stallings' splitting theorem for multi-ended �nitely generated groups and
indeed it implies this theorem. Our result also leads to a characterisation
of accessible graphs. We obtain applications of our results for planar
graphs (answering a variant of a question by Mohar in the a�rmative)
and graphs without thick ends.
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1 Introduction

Stallings [25] proved that every �nitely generated group with more than one
end is either a free product with amalgamation over a �nite subgroup or an
HNN-extension over a �nite subgroup. While amalgamated free products and
HNN-extensions are group theoretical concepts, they can also be interpreted as
operations on the Cayley graphs. For instance, if Γ1 and Γ2 are groups both of
which contain a �nite subgroup isomorphic to C, then Cayley graphs G1 of Γ1

and G2 of Γ2 can be glued together along copies of cosets of C in a treelike way
in order to obtain a Cayley graph of the amalgamated free product Γ1 ∗C Γ2.

Mohar [19] proposed a similar operation (called tree amalgamation) for arbi-
trary graphs. Roughly speaking, a tree amalgamation of two graphs G1 and G2

is obtained by gluing copies of G1 onto G2 and vice versa in a treelike way
along �nite subgraphs, called adhesion sets; we refer the reader to Section 5
for a precise de�nition. The main result of this paper can thus be seen as an
analogue of Stallings' theorem for connected, quasi-transitive graphs.

Theorem 1.1. Every connected, quasi-transitive, locally �nite graph with more
than one end is a non-trivial tree amalgamation of �nite adhesion of two con-
nected, quasi-transitive, locally �nite graphs.

The connection between Theorem 1.1 and Stallings' theorem goes even fur-
ther: we show that we can restrict ourselves to two speci�c kinds of tree amal-
gamations which we refer to as `Type 1' and `Type 2', respectively. It turns
out that the Cayley graph (with respect to the generators of the factors) of an
amalgamated free product can always be seen as a Type 1 tree amalgamation,
and similarly the Cayley graph of an HNN-extension can be seen as a Type 2
tree amalgamation, see Examples 5.5 and 5.6. Moreover, if Γ is a group acting
quasi-transitively on a graph G, then the tree amalgamation of G obtained by
Theorem 1.1 gives rise to an action of Γ on a semiregular tree. In the case that
G is a Cayley graph of Γ, we can apply Bass-Serre theory to recover Stallings'
theorem from Theorem 1.1, see Section 7.1.

We also consider several applications of our result. The �rst application
concerns accessibility of graphs. Recall that a group is called accessible if it
can be obtained from �nite and one-ended groups by iterated amalgamated
free products and HNN-extensions over �nite subgroups. Similarly, one can
ask what graphs can be obtained from �nite and one-ended quasi-transitive
graphs by iterated (Type 1 and 2) tree amalgamations over �nite sets of vertices.
Thomassen and Woess [27] de�ned accessibility for graphs as follows: a quasi-
transitive, locally �nite graph is accessible in the sense of Thomassen of Woess,
or TW-accessible for short, if there is some n ∈ N such that every two ends
can be separated by at most n edges.1 They showed in [27] that a �nitely
generated group is accessible if and only if each of its locally �nite Cayley graphs
is accessible. We show that an analogous result holds for tree amalgamations
of quasi-transitive graphs: the class of accessible, connected, quasi-transitive,
locally �nite graphs is precisely the class of graphs obtained by iterated tree
amalgamations of �nite adhesion starting with �nite or one-ended connected,
locally �nite, quasi-transitive graphs.

1We will de�ne accessibility di�erently and which is why we refer to their notion as TW-
accessibility.
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In Section 7.3 we obtain an answer to a question by Mohar from 1988 [19].
He asked, whether tree amalgamations are powerful enough to yield a classi-
�cation of in�nitely-ended transitive planar graphs in terms of �nite and one-
ended in�nite planar transitive graphs. More precisely, he asked whether every
3-connected, planar, transitive graph can be obtained by iterated tree amalga-
mations of �nite or one-ended, planar, transitive graphs. Georgakopoulos [9]
gives examples where this is not possible, but suggests that Mohar intended
to allow subdivisions of �nite and one-ended, planar, transitive graphs as well.
Our theorems provide an a�rmative answer for quasi-transitive graphs because
Dunwoody [8] proved that they are TW-accessible. It is worth noting that even
if we start with a transitive graphs, the parts we end up with may still be
quasi-transitive.

Additionally, as mentioned above, we obtain Stallings' theorem as a corollary
to Theorem 1.1, see Section 7.1. We also obtain a new characterisation of quasi-
transitive locally �nite graphs that are quasi-isometric to trees, see Section 7.2.
In Section 7.4 we discuss some further applications of our main result regard-
ing hyperbolic graphs, quasi-isometries of graphs and asymptotic dimensions of
graphs.

Our main tool to prove Theorem 1.1 are tree-decompositions that are in-
variant under the automorphisms of the graph. While some proofs of Stallings'
theorem rely on edge separators and their structure trees, see for instance Dun-
woody [5], it turns out that tree-decompositions and vertex separators work
better in combination with tree amalgamations. However, due to the simi-
lar natures of structure trees and tree-decompositions, it is not surprising that
some results that we prove here (in particular Propositions 4.7 and 4.8) have
also been proved for structure trees, see e. g. Thomassen and Woess [27] and
Möller [20, 21].

2 Preliminaries

We follow the general notations of [4] unless stated otherwise. In the following
we will state the most important de�nitions for convenience.

Let G be a graph with vertex set V (G) and edge set E(G). For a subset X
of V (G) we denote by G[X] the subgraph of G induced by X, that is, G[X] =
(X, {uv ∈ E(G) | u, v ∈ X}); G−X denotes the subgraph G[V (G)\X] induced
by the complement of X. A geodesic is a shortest path between two vertices. A
ray is a one-way in�nite path, the in�nite subpaths of a ray are its tails. Two
rays are equivalent if they have tails contained in the same component of G−S
for every �nite set S of vertices. The equivalence classes of rays in a graph are
its ends. The degree of an end is the maximum number of disjoint rays in that
end, if this maximum exists. If the maximum does not exist, that is, if an end
contains n disjoint rays for every n ∈ N, then we say that this end has in�nite
degree and we call it thick. An end with �nite degree is called thin. An end ω is
captured by a set X of vertices if every ray of ω has in�nite intersection with X
and it lives in X if every ray of ω has a tail in X.

Let X ⊆ V (G). We consider the graph with vertex set (V (G) rX) ∪ {vX},
where vX is a new vertex, and and the following edge set:

{uv ∈ E(G) | u, v ∈ V (G) rX} ∪ {vXu | ∃x ∈ X : xu ∈ E(G)}.
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We call this graph the contraction of X in G and we say that it is obtained from
G by contracting X. Since edges are just vertex sets of size 2, the de�nition
carries over to edges.

Let Γ be a group acting on G and let X ⊆ V (G). The (setwise) stabilizer
of X with respect to Γ is the set

ΓX := {g ∈ Γ | g(x) ∈ X for all x ∈ X}.

The Γ-orbit of a vertex x ∈ V (G) is the set {g(x) | g ∈ Γ}; if Γ is clear from the
context we omit it and speak of the orbit of x. We say that Γ acts transitively
on G if V (G) is one Γ-orbit and that Γ acts quasi-transitively on G if V (G)
consists of �nitely many Γ-orbits.

3 Tree-decompositions

In this section we introduce the main tool for our proofs: tree-decompositions.
A tree-decomposition of a graph G is a pair (T,V) where T is a tree and V =
(Vt)t∈V (T ) is a family of vertex sets of G such that the following three conditions
are satis�ed:

(T1) V (G) =
⋃
t∈V (T ) Vt.

(T2) For every edge e ∈ E(G) there is a t ∈ V (T ) such that Vt contains both
vertices that are incident with e.

(T3) Vt1 ∩ Vt2 ⊆ Vt3 whenever t3 lies on the t1-t2 path in T .

The sets Vt are called the parts of (T,V), the tree T is called the decomposition
tree, and the vertices of T are called its nodes (to distinguish them from the
vertices of G). The sets Vt1 ∩Vt2 with t1t2 ∈ E(T ) are called adhesion sets. We
say that (T,V) has adhesion at most k for k ∈ N if all adhesion sets have size
at most k and it has �nite adhesion if all adhesion sets are �nite.

Remark 3.1. Let (T,V) be a tree-decomposition and let t1t2 be an edge of T .
For i = 1, 2, let Ti be the component of T − t1t2 that contains ti. It follows from
(T3) that Vt1 ∩ Vt2 separates the vertices in

⋃
t∈T1

Vt from those in
⋃
t∈T2

Vt.

We say that (T,V) distinguishes two ends ω1 and ω2 if there is a �nite
adhesion set Vt1 ∩ Vt2 such that one end lives in

⋃
t∈T1

Vt and the other one
lives in

⋃
t∈T2

Vt, where Ti is the maximal subtree of T − t1t2 containing ti. It
distinguishes them e�ciently if no vertex set in G of smaller size than Vt1 ∩ Vt2
separates them. For k ∈ N, two ends of G are k-distinguishable if there is a set
of k vertices of G that separates them.

Let Γ be a group acting on G. If every γ ∈ Γ maps each part of (T,V)
to a part and thereby induces an automorphism of T we say that (T,V) is
Γ-invariant.

The following theorem by Carmesin et al. will be the main result we are
building on.

Theorem 3.2. [2] Let G be a locally �nite graph, let Γ be a group acting on G
and let k ∈ N. Then there is a Γ-invariant tree-decomposition of G of adhesion
at most k that e�ciently distinguishes all k-distinguishable ends.
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4 Splitting tree-decompositions

In this section, we �rst modify the tree-decomposition of Theorem 3.2, mainly
to make its parts connected. Then we will prove some properties of the newly
obtained tree-decomposition, in particular, where the tree-decomposition cap-
tures the ends of the graph. Our �rst step in modifying the tree-decomposition
of Theorem 3.2 will be to make all adhesion sets connected while keeping the
action of Γ on (T,V).

Proposition 4.1. Let Γ be a group acting on a locally �nite graph G and let
(T,V) = (T, (Vt)t∈V (T )) be a Γ-invariant tree-decomposition of G of �nite adhe-
sion. Then there is a Γ-invariant tree-decomposition (T,V ′) = (T, (V ′t )t∈V (T ))
of G such that every adhesion set of (T,V ′) is �nite and connected, and such
that Vt ⊆ V ′t for every t ∈ V (T ).

Proof. Let u and v be two vertices of an adhesion set of (T,V). Let Puv be
the set of all geodesics between u, and v and let Vuv be the set of all vertices
of G that lie on the paths of Puv. For a part Vt, let V

′
t be the union of Vt

with all sets Vuv where u and v lie in an adhesion set contained in Vt. Let
V ′ := {V ′t | t ∈ V (T )}.

We claim that (T,V ′) is a tree-decomposition. As every element of V ′ is a
superset of some element of V, we only have to verify (T3). Let x ∈ V ′t1 ∩ V

′
t2

for t1, t2 ∈ V (T ), and let t3 be on the t1-t2 path s1, . . . , sn in T with s1 = t1
and sn = t2. If x ∈ Vt1 ∩ Vt2 , then we have x ∈ Vt3 ⊆ V ′t3 as (T,V) is a tree-
decomposition. If x ∈ (V ′t1 r Vt1) ∩ Vt2 , then it lies on a geodesic P between
two vertices x1, x2 of an adhesion set of (T,V) in Vt1 . Since every adhesion set
Vsi ∩ Vsi+1 separates Vs1 from Vsn and since x ∈ Vt2 , the path P must pass
through Vsi ∩Vsi+1

. Thus, either P contains two vertices u, v of Vsi ∩Vsi+1
such

that x lies on the u-v subpath P ′ of P , or x lies in Vsi ∩ Vsi+1
. In the �rst case,

we added P ′ to the adhesion set Vsi ∩ Vsi+1
because P ′ is a geodesic with its

end vertices in Vsi ∩ Vsi+1 . Thus, in both cases x lies in Vsi ∩ Vsi+1 and thus in
V ′t3 . If x ∈ (V ′t1 rVt1)∩ (V ′t2 rVt2), let t4 ∈ V (T ) with x ∈ Vt4 . By the previous
case, x lies in V ′t for every t on the t1-t4 or t2-t4 paths in T . Since T is a tree,
these cover the path s1, . . . , sn and hence x ∈ V ′t3 . This proves that (T,V ′) is a
tree-decomposition.

It remains to show that (T,V ′) has the desired properties. By construction,
every adhesion set is connected and Vt ⊆ V ′t . Since G is locally �nite and the
adhesion sets of (T,V) are �nite, every adhesion set of (T,V ′) is �nite. Since we
made no choices when adding all possible geodesics to the adhesion sets, Γ acts
on (T,V ′) in the same way as on (T,V).

We call a tree-decomposition of a graph G connected if all parts induce
connected subgraphs of G.

The step to make the adhesion sets connected is just an intermediate step for
us: we aim for connected tree-decompositions. The connection between these
two notions is given by our next lemma.

Lemma 4.2. If all adhesion sets of a tree-decomposition (T,V) of a connected
graph G are connected, then (T,V) is connected.

Proof. Let u and w be two vertices of Vt for some t ∈ V (T ). Since G is con-
nected, there is a path P = p1, . . . , pn with p1 = u and pn = w. We choose P
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with as few vertices outside of Vt as possible. Let us suppose that P leaves Vt.
Let pi ∈ Vt such that pi+1 /∈ Vt and let pj be the �rst vertex of P after pi
that lies in Vt. As pn = w ∈ Vt we know that such a vertex always exists. Let
t′ ∈ V (T ) be such that pi+1 ∈ Vt′ . Then the adhesion set Vt ∩ Vs, where s is
the neighbour of t on the t-t′ path in T , separates Vt from pi+1. Hence, the
de�nition of a tree-decomposition implies that pj must lie in Vt ∩ Vs, too. But
then we can replace the subpath of P between pi and pj by a path in Vt ∩ Vs.
The resulting walk contains a path between u and w with fewer vertices outside
of Vt than P . This contradiction shows that all vertices of P lie in Vt and hence
G[Vt] is connected.

Most of the time we do not need the full strength of Theorem 3.2 in that it
su�ces to consider Γ-invariant tree-decompositions with few Γ-orbits that still
distinguish some ends.

Let Γ be a group acting on a connected, locally �nite graph G with at least
two ends. A Γ-invariant tree-decomposition (T,V) of G is a splitting tree-decom-
position (with respect to Γ) if it has the following properties:

(i) (T,V) distinguishes at least two ends.

(ii) Every adhesion set of (T,V) is �nite.

(iii) Γ acts on (T,V) with precisely one orbit on E(T ).

It follows from Theorem 3.2 that splitting tree-decompositions always exist.
The term `splitting' is used in analogy to group splittings, since the splitting

tree-decompositions catch up the properties of group splittings for tree-decom-
positions.

Corollary 4.3. Let Γ be a group acting on a locally �nite graph G with at least
two ends. Then there is a splitting tree-decomposition (T,V) of G.

Proof. By Theorem 3.2, we �nd a Γ-invariant tree-decomposition (T,V) of
bounded adhesion that separates some ends. Let tt′ be an edge of T such
that Vt ∩ Vt′ separates some ends. Let Ett′ be the orbit of tt

′, that is, the set
{g(tt′) | g ∈ Γ}, and let T ′ be obtained from T by contracting each component
C of T −Ett′ to a single vertex tC . We set VtC :=

⋃
s∈C Vs and set V ′ be the set

of those sets VtC . It is easy to see that (T ′,V ′) is a splitting tree-decomposition
with respect to Γ: the only non-trivial requirement is that (T ′,V ′) distinguishes
at least two ends. But this follows from the fact that Vt ∩ Vt′ separates two
ends.

Let us combine our results on connected, splitting tree-decompositions.

Corollary 4.4. Let Γ be a group acting on a connected, locally �nite graph G
with at least two ends. Then the following hold.

(i) There is a splitting tree-decomposition of G with respect to Γ whose adhe-
sion sets are connected; in particular this tree-decomposition is connected.

(ii) If (T, (Vt)t∈V (T )) is a splitting tree-decomposition of G with respect to Γ,
then there is a connected, splitting tree-decomposition (T, (V ′t )t∈V (T )) of G
with respect to Γ such that Vt ⊆ V ′t for every t ∈ V (T ).

6



Proof. By Corollary 4.3, there is a splitting tree-decomposition of G. Given
a splitting tree-decomposition (T, (Vt)t∈V (T )), Proposition 4.1 implies the exis-
tence of a splitting tree-decomposition (T, (V ′t )t∈V (T )) with Vt ⊆ V ′t for every
t ∈ V (T ) and connected adhesion sets. Lemma 4.2 implies that such a tree
decomposition is connected.

Now we investigate connections between a graph and the parts of any con-
nected, splitting tree-decomposition thereof. Some of these connections are
similar to connections between graphs are their structure trees based on edge
separators, see e. g. Thomassen and Woess [27] and Möller [20, 21]. We start by
showing that connected, splitting tree-decompositions behave well with respect
to the class of quasi-transitive graphs.

Proposition 4.5. Let Γ be a group acting quasi-transitively on a connected,
locally �nite graph G with at least two ends and let (T,V) be a connected, splitting
tree-decomposition of G. Then for each part Vt ∈ V the stabilizer ΓVt acts quasi-
transitively on G[Vt].

Proof. If u ∈ Vt does not lie in any adhesion set, then none of its images v ∈ Vt
under elements of Γ lie in an adhesion set. Hence, if γ ∈ Γ maps u to v, it must
�x Vt setwise, as it acts on (T,V), so it lies in the stabilizer of Vt. Thus, the
intersection of Vt with the Γ-orbit of u is the ΓVt-orbit of u.

Now consider the vertices contained in adhesion sets. Fix an adhesion set
Vt ∩ Vs. As (T,V) is splitting, for every adhesion set Vt ∩ V ′t there exists γ ∈ Γ
that maps Vt∩Vt′ to Vt∩Vs. This automorphism either stabilizes Vt, or it maps
Vt to Vs. If there is an adhesion set which cannot be mapped to Vt ∩ Vs by an
automorphism which stabilizes Vt, then �x one such adhesion set Vt ∩ Vs′ and
let γ0 ∈ Γ be an automorphism mapping Vt ∩ Vs′ to Vt ∩ Vs.

Now let Vt ∩ Vt′ be an adhesion set, and let γ ∈ Γ be an automorphism
mapping Vt ∩ Vt′ to Vt ∩ Vs. If γ �xes Vt setwise, then every vertex of Vt ∩ Vt′
lies in the ΓVt

-orbit of some vertex of Vt ∩ Vs. If γ does not stabilize Vt, then γ
maps Vt to Vs, and consequently γ−1

0 γ maps Vt ∩ Vt′ to Vt ∩ Vs′ and stabilizes
Vt. It follows that every vertex of Vt ∩ Vs lies in the ΓVt-orbit of some vertex of
Vt ∩ Vs′ . Since all adhesion sets are �nite, this immediately implies that there
are only �nitely many ΓVt

-orbits on vertices contained in adhesion sets.

Subtrees of connected, splitting tree-decompositions that contain a common
adhesion set cannot be too large as the following lemma shows.

Lemma 4.6. Let Γ be a group acting quasi-transitively on a connected, locally
�nite graph G with at least two ends and let (T,V) be a connected, splitting
tree-decomposition of G with respect to Γ. For an adhesion set X let TX be the
maximal subtree of T such that X ⊆ Vt for all t ∈ V (TX). Then the diameter
of TX is at most 2.

Proof. The set X is contained in every Vt for t ∈ V (TX), and thus also in every
adhesion set Vt∩Vt′ for tt′ ∈ E(TX). Since all adhesion sets have the same size,
we have Vt ∩ Vt′ = X for every tt′ ∈ E(TX).

Suppose the diameter of TX is at least 3, and let R = . . . t0t1 . . . be a maximal
path in TX . We shall show that R is a double ray.

Let us suppose that ti+3 is the last vertex on R. As (T,V) is splitting, we
�nd γ ∈ Γ such that γ(titi+1) = ti+2ti+3. Note that γ �xes X = Vti ∩ Vti+1 =

7



Vti+2
∩ Vti+3

setwise. If γ(ti) = ti+2, then γ(ti+2) is a neighbour of ti+3 distinct
from ti+2 that contains X, a contradiction to the choice of i. If γ(ti) = ti+3,
then γ �xes the edge ti+1ti+2 but neither of its incident vertices. Let γ

′ ∈ Γ map
ti+1ti+2 to ti+2ti+3. Note that γ′ �xes X setwise, too. Then either γ′ or γ′γ
maps ti to a neighbour of ti+3 distinct from ti+2. This is again a contradiction,
which shows that R has no last vertex. Analogously, R has no �rst vertex. So
it is a double ray.

Note that the part of some node of TX contains X properly as G = X is
�nite otherwise. But as Γ acts transitively on E(T ), we have at most two Γ-
orbits on V (T ). Hence in�nitely many parts of R contain X properly. Since
each Vti is connected, one vertex of X must have in�nitely many neighbours.
This contradiction to local �niteness shows the assertion.

Our next result is a characterisation of the �nite parts of a connected, split-
ting tree-decomposition.

Proposition 4.7. Let Γ be a group acting quasi-transitively on a connected,
locally �nite graph G with at least two ends and let (T,V) be a connected, splitting
tree-decomposition of G. Then the degree of a node t ∈ V (T ) is �nite if and
only if Vt is �nite.

Proof. Let Vt be �nite. Since (T,V) is splitting, we have only one Γ-orbit on
the adhesion sets. Local �niteness of G thus implies that each vertex of Vt lies
in only �nitely many distinct adhesion sets and that each of these adhesion sets
separates the graph in only �nitely many components. Therefore, the degree
of t is �nite.

Now let us assume that the degree of t is �nite. Let U be a subset of Vt that
consists of one vertex from each ΓVt

-orbit that meets Vt. By Proposition 4.5
the set U is �nite. The vertices in U have bounded distance to the union W of
all adhesion sets in Vt. As they meet all ΓVt-orbits and ΓVt �xes W setwise, all
vertices in Vt have bounded distance to W . Note that W is �nite as t has �nite
degree. Since G is locally �nite, Vt must be �nite.

Let (T,V) be a tree-decomposition of a graph G. We say that an end η of T
captures an end ω of G if for every ray R = t1, t2, . . . in η the union

⋃
i∈N Vti

captures ω. A node of T captures ω if its part does so.
Let us now investigate where the ends of G lie in (T,V).

Proposition 4.8. Let G be a graph and let (T,V) be a connected tree-decom-
position of G such that the maximum size of its adhesion sets is at most k ∈ N.
Then the following hold.

(i) Each end of G is captured either by an end or by a node of T .

(ii) Every thick end of G is captured by a node of T .

(iii) Every end of T captures a unique thin end of G, which has degree at
most k.

(iv) Assume that Γ acts quasi-transitively on G and that (T,V) is Γ-invariant
with �nitely many Γ-orbits on E(T ). Every end of G that is captured by
a node t ∈ V (T ) corresponds to a unique end of G[Vt], that is, for every
end ω of G that is captured by t ∈ V (T ) there is a unique end ωt of G[Vt]
with ωt ⊆ ω.
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Proof. Let ω be an end of G and let Q,R be two rays in ω. For an edge
st ∈ E(T ), let Ts and Tt be the subtrees of T −st with s ∈ V (Ts) and t ∈ V (Tt).
If the ray Q has all but �nitely many vertices in

⋃
x∈V (Ts) Vx and R has all but

�nitely many vertices in
⋃
x∈V (Tt)

Vx or vice versa, then we have a contradiction
as Q and R cannot lie in the same end if they have tails that are separated by
the �nite vertex set Vs ∩ Vt. We now orient the edge st from s to t if tails of Q
and R lie in

⋃
x∈V (Tt)

Vx, and we orient it from t to s if tails of Q and R lie in⋃
x∈V (Ts) Vx. Obviously, every node of T has at most one outgoing edge. Let

tQ, tR be nodes of T such that the �rst vertex of Q lies in VtQ , and the �rst
vertex of R lies in VtR , and let PQ and PR be the maximal (perhaps in�nite)
directed paths in our orientation of T that start at tQ and tR, respectively. Note
that if PQ and PR meet at a vertex, they continue in the same way. Thus, if they
meet, they either end at a common vertex or have a common in�nite subpath.
We shall show that PQ and PR meet. Let P be the tQ-tR path in T . Then there
is a unique sink x on it as every node of T has at most one outgoing edge. This
sink is a common node of PQ and PR. If PQ and PR end at a node, this node
captures ω and if they share a common in�nite subpath, this is a ray whose end
captures ω. We proved (i).

Now let us assume that ω has degree at least k + 1. Then there are k + 1
pairwise disjoint rays R1, . . . , Rk+1 in ω. Let ti, Pi be a node and a path of T
de�ned for Ri as we de�ned tR and PR for the ray R. By an easy induction,
we can extend the above argument that PQ and PR meet to obtain that all
P1, . . . , Pk+1 have a common node x. Let us suppose that ω is captured by an
end η of T . Let y be the node of T that is adjacent to x and that separates
x and η. Then all rays Ri must contain a vertex of Vx ∩ Vy. This is not
possible as Vx∩Vy contains at most k vertices and the rays Ri are disjoint. This
contradiction shows (ii) and the second part of (iii).

Let R,Q be two rays that lie in ends of G that are captured by the same
end η of T . With the notations PQ, PR as above, the intersection PQ ∩ PR is
a ray in ω. As G is locally �nite and (T,V) is a connected tree-decomposition,
there are in�nitely many disjoint paths between Q and R and thus, they are
equivalent and lie in the same end of G. This proves (iii).

To prove (iv), let us assume that Γ acts quasi-transitively on G and has
�nitely many orbits on the edges of the decomposition tree T . Let ω be an end
of G that is captured by a node t ∈ V (T ) and let R be a ray in ω that starts at a
vertex in Vt. Since Vt captures ω, there are in�nitely many vertices of Vt on R.
Whenever R leaves Vt through an adhesion set, it must reenter it through the
same adhesion set by Remark 3.1. We replace every such subpath P , where the
end vertices of P lie in a common adhesion set and the inner vertices of P lie
outside of Vt, by a geodesic in G[Vt] between the end vertices of P . We end up
with a walkW with the same starting vertex as R. We shall see thatW contains
a one-way in�nite path. First, we recursively delete closed subwalks of W to
end up with a path R′. Since G is locally �nite and R meets Vt in�nitely often,
R contains vertices of Vt that are arbitrarily far away from the starting vertex
of R. As we only took geodesics to replace the subpaths of R that were outside
of Vt and as Γ acts on (T,V) with only �nitely many orbits on the edges of T ,
these replacement paths have a bounded length. Hence, W eventually leaves
every ball of �nite diameter around its starting vertex. This implies that R′ is
a ray. Obviously, R and R′ are equivalent. Thus G[Vt] contains a ray in ω. Let
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ωt be the end of G[Vt] that contains R
′ and let Q be a ray in ωt. Since no �nite

separator can separate Q and R′ in G[Vt], the rays are also equivalent in G.
Thus, we have shown ωt ⊆ ω.

Let ω′t be an end in G[Vt] di�erent from ωt, let S be a �nite subset of Vt that
separates ωt from ω′t, and let P be a path in G connecting vertices in di�erent
components of G[Vt]−S. As before, whenever P leaves Vt through an adhesion
set, it must reenter it through the same adhesion set by Remark 3.1. We again
replace every such subpath, where the end vertices lie in a common adhesion set
and the inner vertices lie outside of Vt, by a geodesic in G[Vt] to obtain a walk
P ′ in G[Vt]. Since P and P ′ have the same endpoints and P ′ must meet S, we
know that P either contains a vertex in S, or it contains a vertex in an adhesion
set which meets S. Let S′ be the set containing all vertices of S and all vertices
contained in adhesion sets that meet S. There are only �nitely many orbits of
vertices in adhesion sets, hence there is an upper bound on the diameter of the
adhesion sets. Since S is �nite and G is locally �nite, this implies that S′ is
�nite. By de�nition, there is no path in G− S′ connecting vertices in di�erent
components of G[Vt]−S. In particular, S′ separates every ray in ωt from every
ray in ω′t, and hence (iv) holds.

5 Tree amalgamations

In this section, we prove our main result, Theorem 1.1. Before we move on to
that proof, we need to state some de�nitions, in particular, the main de�nition:
tree amalgamations, a notion introduced by Mohar [19].

For the de�nition of tree amalgamations, let G1 and G2 be graphs. Let
(Sik)k∈Ii be a family of subsets of V (Gi). Assume that all sets Sik have the same
cardinality and that the index sets I1 and I2 are disjoint. For all k ∈ I1 and
` ∈ I2, let φk` : S1

k → S2
` be a bijection and let φ`k = φ−1

k` . We call the maps
φk` and φ`k bonding maps.

Let T be a (|I1|, |I2|)-semiregular tree, that is, a tree in which for the canon-
ical bipartition {V1, V2} of V (T ) the vertices in Vi all have degree |Ii|. Denote
by D(T ) the set obtained from the edge set of T by replacing every edge xy by
two directed edges

→
xy and

→
yx. For a directed edge

→
e =

→
xy ∈ D(T ), we denote

by
←
e =

→
yx the edge with the reversed orientation. Let f : D(T ) → I1 ∪ I2 be

a labelling, such that for every t ∈ Vi, the labels of edges starting at t are in
bijection to Ii.

For every i ∈ {1, 2} and for every t ∈ Vi, take a copy Gt of the graph Gi.
Denote by Stk the corresponding copies of S

i
k in V (Gt). Let us take the disjoint

union of the graphs Gt for all t ∈ V (T ). For every edge
→
e =

→
st with f(

→
e) = k

and f(
←
e) = ` we identify each vertex x in the copy of Ssk with the vertex φk`(x)

in St`. Note that this does not depend on the orientation we pick for
→
e , since

φ`k = φ−1
k` . The resulting graph is called the tree amalgamation of the graphs G1

and G2 over the connecting tree T and is denoted by G1 ∗G2 or by G1 ∗T G2 if
we want to specify the tree.

In the context of tree amalgamations the sets Sik and Ssk are called the
adhesion sets of the tree amalgamation. More speci�cally, the sets S1

k are the
adhesion sets of G1 and the sets S2

k are the adhesion sets of G2. If the adhesion
sets of a tree amalgamation are �nite, then this tree amalgamation has �nite
adhesion. For every node t ∈ V (T ), there is a canonical map mapping each
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vertex x ∈ V (Gt) to the vertex of G1∗TG2 obtained from x by all identi�cations.
We call a tree amalgamation G1 ∗T G2 trivial if for some t ∈ V (T ) this canonical
map is a bijection. Note that if the tree amalgamation has �nite adhesion, it is
trivial if V (Gi) is the only adhesion set of Gi and |Ii| = 1 for some i ∈ {1, 2}.

The tree amalgamation G = G1 ∗ G2 distinguishes ends if there is some
adhesion set Ssk = St` for adjacent s, t ∈ V (T ) such that for every component C
of T − st the subgraph of G induced by

⋃
x∈C G

x
i contains an end.

We remark that the map described in the de�nition of a trivial tree amal-
gamation does not necessarily induce a graph isomorphism Gt → G1 ∗T G2: it
is a bijection V (Gt) → V (G1 ∗T G2) but need not induce a bijection E(Gt) →
E(G1 ∗T G2).

The identi�cation size of a vertex x ∈ V (G1 ∗T G2) is the size of the subtree
T ′ of T induced by all nodes t for which a vertex of Gt is identi�ed with x. The
tree amalgamation has �nite identi�cation if all identi�cation sizes are �nite.
The identi�cation length of a vertex x ∈ V (G1 ∗T G2) is the diameter of the
subtree T ′ of T induced by all nodes t for which a vertex of Gt is identi�ed
with x. The identi�cation length of the tree amalgamation is the supremum of
the identi�cation lengths of its vertices. We note that if a quasi-transitive tree
amalgamation has �nite identi�cation, then its identi�cation length is �nite.

We remark that in Mohar's de�nition of a tree amalgamation [19] the iden-
ti�cation length is always at most 2. But apart from this, our de�nition is
equivalent to his.

It is worth noting that every tree amalgamation gives rise to a tree decom-
position in the following sense.

Remark 5.1. Let G be a graph. If G is a tree amalgamation G1 ∗T G2 of
�nite adhesion, then there is a naturally de�ned tree-decomposition of G. For
t ∈ V (T ) let Vt be the set obtained from V (Gt) after all identi�cations in
G1 ∗G2. Set V := {Vt | t ∈ V (T )}. Obviously, all vertices of G lie in

⋃
t∈V (T ) Vt

and for each edge there is some Vt ∈ V containing it. Property (T3) of a tree-
decomposition is satis�ed as the copies Gvi are arranged in a treelike way and
identi�cations to obtain a vertex take place in subtrees of T . So (T,V) is a
tree-decomposition. If G1 ∗T G2 has �nite adhesion, so does (T,V). If the tree
amalgamation distinguishes ends, then so does the tree-decomposition.

So far, the tree amalgamations do not interact with any group actions on G1

and G2. In particular, it is easy to construct a tree amalgamation of two quasi-
transitive graphs which is not quasi-transitive: for instance, let G1 be a double
ray and let G2 be any �nite non-trivial graph. Pick precisely two adhesion sets
in G1 sets and at least two adhesion sets in G2, all of �nite size. Then it is easy
to see that the tree amalgamation G1 ∗G2 is not quasi-transitive by noting that
vertices of G1 at di�erent distances from the adhesion sets cannot be mapped
to one another.

In the following, we describe some conditions on tree amalgamations which
will ensure that tree amalgamations of quasi-transitive graphs are again quasi-
transitive; this will be proved in Lemma 5.8.

Let Γi be a group acting on Gi for i = 1, 2, let t ∈ Vi, let γ ∈ Γi and let
j ∈ {1, 2} r {i}. We say that the tree amalgamation respects γ if there is a
permutation π of Ii such that for every k ∈ Ii there is ` ∈ Ij and τ in the
setwise stabiliser of S` in Γj such that

φk` = τ ◦ φπ(k)` ◦ γ |Sk
.
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Note that this in particular implies that γ(Sik) = Siπ(k). The tree amalgamation
respects Γi if it respects every γ ∈ Γi.

Let k ∈ Ii and let `, `′ ∈ Ij . We call the bonding maps from k to ` and `′

consistent if there is γ ∈ Γj such that

φk` = γ ◦ φk`′ .

We say that the bonding maps between two sets J1 ⊆ I1 and J2 ⊆ I2 are
consistent if they are consistent for any i ∈ {1, 2}, k ∈ Ji, and `, `′ ∈ Jj .

We say that the tree amalgamation G1∗G2 is of Type 1 respecting the actions
of Γ1 and Γ2 or (G1,Γ1) ∗ (G2,Γ2) is a tree amalgamation of Type 1 for short
if the following holds:

(i) The tree amalgamation respects Γ1 and Γ2.

(ii) The bonding maps between I1 and I2 are consistent.

We say that the tree amalgamation G1∗G2 is of Type 2 respecting the actions
of Γ1 and Γ2 or (G1,Γ1) ∗ (G2,Γ2) is a tree amalgamation of Type 2 for short
if the following holds:

(o) G1 = G2 =: G, Γ1 = Γ2 =: Γ, and I1 = I2 =: I,2 and there is J ⊆ I such
that f(

→
e) ∈ J , if and only if f(

←
e) /∈ J .

(i) The tree amalgamation respects Γ.

(ii) The bonding maps between J and I \ J are consistent.

In this second case we also say that G1 ∗ G2 = G ∗ G is a tree amalgamation
of G with itself.

We say that G1 ∗G2 is a tree amalgamation respecting the actions of Γ1 and
Γ2 if it is of either Type 1 or Type 2 respecting the actions Γ1 and Γ2 and we
speak about the tree amalgamation (G1,Γ1) ∗ (G2,Γ2). It is worth noting that
the tree amalgamation also depends on the choices of adhesion sets and bonding
maps, but we usually suppress this dependency.

We note that in the case of a tree amalgamation of Type 1, all adhesion sets
Sik lie in the same Γi-orbit, while in the case of a tree amalgamation of Type 2
we potentially have two Γi-orbits of adhesion sets Sik.

We now give some examples illustrating the behaviour of tree amalgamations
which respect group actions. The �rst set of examples shows that the groups
acting on the factors have a substantial impact on the outcome of the tree
amalgamation if we insist that it must respect the actions. They also show
that sometimes (if the setwise stabilisers of the adhesion sets do not agree), we
have to take multiple copies of the same adhesion set in order to be able to
amalgamate consistently.

Example 5.2. Let G1 consist of a single edge with end vertices u, v and let
Γ1 = Z2 acting in the obvious way. Let G2 be a 4-cycle on vertices x, y, z, w,
and let Γ2 = Z2 where the non-trivial element swaps x with y, and z with w.

2Technically this is not allowed, in particular since for the de�nition of φk` we needed I1
and I2 to be disjoint. These technicalities can be easily dealt with by an appropriate notion
of isomorphism the details of which we leave to the reader.
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Let S1
1 = S1

2 = {u, v}, let S2
a = {x,w}, and let S2

b = {z, y} and de�ne bonding
maps by

φ1a(u) = x, φ1a(v) = w, φ1b(u) = y, φ1b(v) = z,

φ2a(u) = w, φ2a(v) = x, φ2b(u) = z, φ2b(v) = y.

and φji = φ−1
ij . The resulting tree amalgamation is an in�nite double ladder

with the in�nite dihedral group D∞ acting on it, and a straightforward case
check shows that this tree amalgamation respects the action of the groups.

It is worth pointing out that once we have picked S1
1 and S2

a, this is the small-
est tree amalgamation which respects the groups. We must have the adhesion
set S2

b , otherwise the tree amalgamation cannot respect the action of Γ2. Fur-
thermore, the adhesion set {u, v} must appear at least twice in order to respect
the nontrivial element of Γ1 (since the stabilisers of S2

a and S2
b are trivial). It

is also worth noting that any other choice of bonding maps would either violate
consistency or not respect one of the group actions. We would also like to point
out that the action on the tree amalgamation is transitive although the action
of Γ2 on G2 was not transitive.

For a di�erent example of a tree amalgamation, choose (G1,Γ1) and (G2,Γ2)
as above, pick S1

1 = {u, v}, but choose S2
a = {x, y}. Then the bonding map

φ1a(u) = x, φ1a(v) = y results in a tree amalgamation respecting the actions.
In fact, this is an example of a trivial tree amalgamation. Moreover, the tree
amalgamation is isomorphic to (G2,Γ2): the vertices of G1 are simply identi�ed
with a subset of G2.

Let us give two examples for tree amalgamations of Type 2 that use the
same graph as factors but with di�erent adhesion sets.

Example 5.3. Let Gi be the graph obtained from a complete graph on three
vertices {bi, ci, di} with a new vertex ai attached to bi and let T3 be a 3-regular
tree, see Figure 1. The adhesion sets are {ai}, {ci}, and {di}. Let φ−1

ajci =

φciaj : {ci} → {aj} and φ−1
ajdi

= φdiaj : {di} → {aj} be the bonding maps,

where i 6= j ∈ {1, 2}. These bonding maps already de�ne f : D(T3) → I1 ∪ I2,
where Ii is the index set of the adhesion sets in Gi such that I1 and I2 are
disjoint. For i = 1, 2, the automorphism groups of Gi are C2, cyclic groups of
order 2. Let us show that (G,C2) ∗T3 (G,C2) is a tree amalgamation of Type 2.
Let Ji be the set consisting of the index set of the adhesion sets {ci}, and {di}.
Then for i 6= j and for every edge xixj ∈ E(T3), we have f(

−→
xixj) ∈ Ji, if and

only if f(
←−
xixj) /∈ Jj . In addition, it is a straightforward case to check that the

bonding maps between Ji and Ij \ Jj are consistent.
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Figure 1: The connecting tree T3 on the left and G1 ∗T3 G2 on the right side.

Example 5.4. As in the previous example, let Gi be the graph obtained from
a complete graph on three vertices {bi, ci, di} with a new vertex ai attached
to bi. Let T4 be a 4-regular tree, see Figure 2. Let the adhesion sets be {ai},
{ai}, {ci}, and {di} for i = 1, 2. Note that the adhesion set {ai} occurs twice
in this example. Let φ−1

ajci = φciaj : {ci} → {aj}, φcidj : {ci} → {dj}, and
φdiaj : {di} → {aj} be the bonding maps, where i 6= j ∈ {1, 2}. This de�nes a
map f : D(T4) → I1 ∪ I2, where Ii is the index set of the adhesion sets in Gi
such that I1 and I2 are disjoint. Again, C2 are the automorphism groups of G1

and G2. The proof that (G1, C2) ∗T4
(G2, C2) is a tree amalgamation of Type 2

follows analogously to the proof in Example 5.3.

Figure 2: The connecting tree T4 on the left and G1 ∗T4
G2 on the right side.

The next two examples illustrate the relation of Type 1 and 2 tree amalga-
mations to amalgamated free products and HNN-extensions of groups.

We �rst recall the de�nition of the free product with amalgamation. Let
Γi = 〈Si | Ri〉 be a �nitely generated group with a subgroup ∆i for i = 1, 2 such
that an isomorphism φ : ∆1 → ∆2 exists. Then the free product of Γ1 and Γ2
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with amalgamation over ∆1 and ∆2 is the group de�ned by

〈S1 ∪ S2 | R1, R2, {δ−1φ(δ) | δ ∈ ∆1}〉,

and we denote it by Γ1 ∗∆1 Γ2,

Example 5.5. Let Γi = 〈Si〉 be a �nitely generated group with a �nite sub-
group ∆i for i = 1, 2 such that an isomorphism φ : ∆1 → ∆2 exists. In addition
let Gi be the Cayley graph of Γi with respect to Si for i = 1, 2. We show that
the Cayley graph of Γ = Γ1∗∆1

Γ2 with respect to S1∪S2 is a tree amalgamation
of G1 and G2.

In order to make sense of the above statement, we need to de�ne adhesion
sets and bonding maps for the tree amalgamation. The adhesion sets are the left
cosets of ∆i in Γi, formally we can pick a system {tik}k∈Ii of coset representatives
and let Sik = tik∆i. Note that {Sik}k∈Ii is a family of pairwise disjoint sets. Next
we de�ne the bonding maps. For k ∈ I1 and ` ∈ I2, de�ne φk` : S1

k → S2
` by

φk`(t
1
kg) = t2`φ(g) and φ`k = φ−1

k` . Let T be a (|I1|, |I2|)-semiregular with the
canonical partition (V1, V2) of V (T ). We can assume that the vertices of T
are the left cosets of Γ1 and Γ2 and the edges correspond to the left cosets
of ∆1. Set the label under f : D(T )→ I1 ∪ I2 of the edge corresponding to g∆1

directed towards hΓi as k ∈ Ii such that h−1g∆1 = Sik. It is easy to see
that the edges directed towards hΓi have all of Ii as their labels. We have to
show that (G1,Γ1) ∗ (G2,Γ2) is a tree amalgamation of Type 1. Let γ ∈ Γi and
let j ∈ {1, 2}r{i}. For every k in Ii, there exists k′ ∈ Ii such that γtik∆i = tik′∆i

and such that, for every m ∈ Ii with m 6= k, we have k′ 6= m′. This mapping of
k to k′ for every k ∈ Ii de�nes a permutation π. Then for ` ∈ Ij the following
holds

φk` = id ◦ φπ(k)` ◦ γ |Sk
.

In order to see that the bonding maps between I1 and I2 are consistent, let k ∈ Ii
and let `, `′ ∈ Ij . Let γ ∈ Γj such that γtj`∆j = tj`′∆j . Then it is straightfor-
ward to check that

φk`′ = γ ◦ φk`.

Therefore we proved that (G1,Γ1) ∗ (G2,Γ2) is a tree amalgamation of Type 1.
By the choice of f , we obtain an isomorphism Φ from G to (G1,Γ1) ∗ (G2,Γ2).

Let Γ = 〈S | R〉 be a �nitely generated group. Let ∆1 and ∆2 be �nite
subgroups such that there is an isomorphism φ : ∆1 → ∆2. Moreover, let t be
a symbol which is not an element of Γ. Then the HNN-extension of Γ over ∆i

with respect to φ is given by

Γ∗φ = 〈S, t | R, {δt = tφ(δ) | δ ∈ ∆}〉.

Example 5.6. Let Γ = 〈S〉 be a �nitely generated group with isomorphic �nite
subgroups ∆1 and ∆2 and let φ : ∆1 → ∆2 is an isomorphism. In addition let G
be the Cayley graph of Γ with respect to S. Let G∗ be the graph obtained
from G by adding for each vertex v of G a new vertex vt and joining these by
an edge. We note that the action of Γ on G extends to an action of Γ on G∗.
Let {gik∆i}k∈Ji be the set of all left cosets of ∆i in Γ for i = 1, 2. The adhesion
sets are the elements of {Sk}k∈J1 = {g1

k∆1t}k∈J1 and of {T`}`∈J2 = {g2
`∆2}`∈J2 .

Without loss of generality we can assume Sk0 = ∆1t and T`0 = ∆2. The
bonding maps are φk`0 : Sk → T`0 and φk`0 : T` → Sk0 with φk`0(gkδt) = φ(δ)
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and φ`k0(gkδ) = φ−1(δ). Let T be the tree whose vertices are the left cosets
of Γ and whose edges correspond to the left cosets of ∆1. Set the label under
f : D(T )→ J1∪J2 of the edges corresponding to g∆1 directed towards hΓ with
g∆1 ⊆ hΓ as k ∈ J2 such that h−1g∆1 = Tk and set the label of the same
edge but with the reverse direction as ` ∈ J1 such that S` = Tk. To show that
G∗ ∗G∗ respects Γ, let γ ∈ Γ. For every k ∈ J1, there exists k

′ ∈ J1 such that
γg1
k∆1t = g1

k′∆1t and such that, for every m ∈ J1 with m 6= k, we have k′ 6= m′.
This mapping of k to k′ for every k ∈ J1 de�nes a permutation π. Then for
` ∈ J2 the following holds

φk` = id ◦ φπ(k)` ◦ γ |Sk
.

Analogously, we obtain a permutation π′ such that for every k ∈ J2 there is
` ∈ J1 with

φk` = id ◦ φπ′(k)` ◦ γTk
.

Thus, the tree amalgamation respects γ. In order to prove that the bonding
maps between Ji and Jj for i 6= j are consistent, let k ∈ Ji and `, `′ ∈ Jj . Let
γ ∈ Γ such that γg1

`∆1t = g1
`′∆1t if j = 1 and such that γg2

`∆2 = g2
`′∆2 if j = 2.

Then it is easy to see that
φk`′ = γ ◦ φk`.

Thus, G∗∗G∗ is a tree amalgamation of Type 2. By the choice of f , we obtain an
isomorphism Φ from the Cayley graph of Γ∗φ with respect to S∪{t} to G∗ ∗G∗.

Note that conditions (i) and (ii) in both cases of the de�nition of tree amal-
gamations respecting the actions do not depend on the speci�c labelling of the
tree. This is no coincidence. In fact we will show that any two legal labellings
of D(T ) give isomorphic tree amalgamations, see Lemma 5.8. Furthermore,
any γ ∈ Γi (interpreted as an isomorphism between parts of two such tree
amalgamations) can be extended to an isomorphism of the tree amalgamations,
which also implies that the tree amalgamations obtained this way are always
quasi-transitive.

Before we turn to the proof of these facts, we need some notation. A legally
labelled star centred at Vi is a function Λ from Ii to Ij . If the tree amalgamation
is of Type 2, we further require that Λ(k) ∈ J if and only if k /∈ J . Informally,
think of this as a star whose labels on directed edges could appear on a subtree
of T induced by a vertex t ∈ Vi and its neighbours: for

→
e with label k, the value

Λ(k) tells us the label of
←
e .

An isomorphism of two legally labelled stars Λ,Λ′ is a triple (γ, π, (γk)k∈Ii)
consisting of some γ ∈ Γi, a permutation π of Ii, and a family (γk)k∈Ii of
elements of Γj such that for every k ∈ Ii

φk,Λ(k) = γk ◦ φπ(k)Λ′(π(k)) ◦ γ |Sk
.

In our interpretation of legally labelled stars as subtrees of T , this corresponds
to an isomorphism of the corresponding subgraphs of the tree amalgamation.

Proposition 5.7. Let Λ,Λ′ be two legally labelled stars with respect to a tree
amalgamation (G1,Γ1) ∗T (G2,Γ2) centred at Vi and let γ ∈ Γi. Then γ extends
to an isomorphism (γ, π, (γk)k∈Ii) of Λ and Λ′. Furthermore, if we are given
k̃, k̃′ ∈ Ii and γ̃k ∈ Γj such that

φk̃,Λ(k̃) = γ̃k ◦ φk̃′Λ′(k̃′) ◦ γ |Sk
,
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then we can choose π(k̃) = k̃′ and γk̃ = γ̃k.

Proof. Since the tree amalgamation respects γ, there are π and Λ̄ : Ii → Ij and
τk in the stabiliser of SΛ(k) in Γj such that

φkΛ̄(k) = τk ◦ φπ(k)Λ̄(k) ◦ γ |Sk
.

Let γ′k ∈ Γj be such that φkΛ(k) = γ′k ◦ φkΛ̄(k), and let γ′′k ∈ Γj be such that
φπ(k)Λ̄(k) = γ′′k ◦ φπ(k)Λ′(π(k)). These exist by (ii); for Type 2 recall that by the
de�nition of legally labelled stars k ∈ J if and only if Λ(k) /∈ J . Now clearly

φkΛ(k) = γ′k ◦ τk ◦ γ′′k ◦ φπ(k)Λ′(π(k)) ◦ γ |Sk
,

thus showing that the two stars are isomorphic by means of the isomorphism
(γ, π, (γk)k∈Ij ), where γk = γ′k ◦ τk ◦ γ′′k .

For the second part, let (γ, π, (γk)k∈Ii) be an isomorphism between Λ and Λ′.
Let k̃′′ = π−1(k̃′). De�ne ρ(k̃) = k̃′ and ρ(k̃′′) = π(k̃). Let δk̃ = γ̃k and let

δk̃′′ = γk̃′′ ◦ γ̃
−1
k ◦ γk̃.

For the remaining k ∈ Ii, let ρ(k) = π(k) and δk = γk. It is straightforward to
check that γ, ρ, and (δk)k∈Ii de�ne an isomorphism between Λ and Λ′ with the
desired properties.

Lemma 5.8. Let G1 and G2 be connected, locally �nite graphs and let Γi be a
group acting quasi-transitively on Gi for i = 1, 2. Then any tree amalgamation
(G1,Γ1) ∗T (G2,Γ2) is quasi-transitive and independent (up to isomorphism) of
the particular labelling of T .

Proof. Let T and T ′ be two labelled trees giving rise to tree amalgamations
G = (G1,Γ1) ∗T (G2,Γ2) and G′ = (G1,Γ1) ∗T ′ (G2,Γ2), respectively, such that
the adhesion sets as well as the bonding maps for both tree amalgamations
are the same. Let t ∈ V (T ) and let t′ ∈ V (T ′) be such that Gt and Gt′ are
both isomorphic to Gi. Let γt ∈ Γi. We claim that there is an isomorphism
γ̄ : G→ G′ such that

γ̄ |Gt= idt′ ◦ γt ◦ id−1
t ,

where idt and idt′ denote the canonical isomorphisms from Gi to Gt and Gt′

respectively. Clearly, the lemma follows from this claim.
For the proof of the claim de�ne the star around s ∈ V (T ) by the map Λs

mapping k to the label of
←
ek, where

→
ek is the unique edge with label k starting

at s. By Proposition 5.7, there are a bijection π : N(t) → N(t′) and a family
(γs ∈ Γj)s∈N(t) which extend γt to an isomorphism of the stars around t and t′.
Iteratively apply Proposition 5.7 to vertices at distance n = {1, 2, 3, . . . } from t.
We obtain an isomorphism π : T → T ′ and maps γs ∈ Γi for each s ∈ Vi such
that the restriction of π to s and its neighbours and the corresponding maps γx
form an isomorphism between the stars at s and π(s).

For v ∈ V (Gs), de�ne γ̄(v) = idπ(s)◦γs◦id−1
s (v). If ss′ is an edge, v ∈ V (Gs)

and u ∈ V (Gs′ such that u and v get identi�ed in the construction of G, then
γ̄(u) = γ̄(v). Hence γ̄ is well de�ned, and since it obviously maps edges to edges
and non-edges to non-edges, it is the desired isomorphism.
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A closer inspection of the proof of Lemma 5.8 together with Remark 5.1
shows that tree amalgamations respecting the actions of quasi-transitive groups
give rise to splitting tree-decompositions of (G1,Γ1) ∗ (G2,Γ2). The following
lemma shows that the converse also holds, that is, splitting tree-decompositions
of quasi-transitive graphs give rise to tree amalgamations respecting the actions
of some quasi-transitive group on the parts.

Lemma 5.9. Let Γ be a group acting quasi-transitively on a connected, locally
�nite graph G and let (T,V) be a connected, splitting tree-decomposition of G
with respect to Γ. Then one of the following holds.

(1) There are Vt, Vt′ ∈ V such that G is a non-trivial tree amalgamation

G[Vt] ∗T G[Vt′ ]

of Type 1 respecting the actions of the stabilisers of G[Vt] and G[Vt′ ] in Γ.

(2) There is Vt ∈ V such that G is a non-trivial tree amalgamation

G[Vt] ∗T G[Vt]

of Type 2 respecting the actions of the stabiliser of G[Vt] in Γ.

Proof. Choose an oriented edge
→
e0 ∈ D(T ). We say that

→
e ∈ D(T ) is positively

oriented, if there is γ ∈ Γ mapping
→
e0 to

→
e . Otherwise we say that

→
e is negatively

oriented. If Γ contains an element that reverses an edge of T , then let Γ′ be the
subgroup preserving the bipartition of T . This subgroup has index 2, and still
acts quasi-transitively on G and transitively on the edges of T . Hence we can
without loss of generality assume that no element of Γ swaps the endpoints of
an edge, and thus every edge is either positively or negatively oriented, but not
both.

Let s and t be the start and end point of
→
e0 respectively. Let (

→
ek)k∈K be

the positively oriented edges starting at s and let (
→
e`)`∈L be the negatively

oriented edges starting at t. Without loss of generality, assume that K and L
are disjoint, and that

→
e0 =

→
ek0 =

←
e`0 . For every k ∈ K pick a γk ∈ Γ which

maps
→
e0 to

→
ek (with γk0 = id). For every ` ∈ L pick γ` ∈ Γ which maps

←
e0 to

→
e`

(with γ`0 = id). If there is an element γst of Γ that maps s to t, then for every
k ∈ K, ` ∈ L let γ′k = γk ◦ γst and γ′` = γ` ◦ γ−1

st .
Note that e0 can be mapped to any edge incident to e0 by a unique element

of the form γk or γ
′
k for some k ∈ K ∪L. For an arbitrary edge e 6= e0, let e

′ be
the �rst edge of the path connecting e to e0. If γe′ ∈ Γ maps e0 to e′, then by
the above remark there is a unique element δe of the form γk or γ′k such that
γe ◦ δe maps e0 to e. Use this to inductively construct (starting from δe0 = id)
for each e ∈ E(T ) an automorphism γe ∈ Γ such that γe(e0) = e. Let

→
e be the

orientation of e pointing away from e0 if e 6= e0 and
→
e =

→
e0 otherwise. De�ne

the label f(
→
e) to be the unique k ∈ K ∪ L such that the δe from above equals

γk or γ′k. Note that k ∈ K if and only if
→
e is positively oriented. In this case

de�ne f(
←
e) = `0, otherwise de�ne f(

←
e) = k0.

The following observation will be useful later. Let v be a vertex of T , and
let

→
e be the �rst edge of the path from v to e0 (in case v is s or t this is an

orientation of e0). Let ∆v = {δf | v ∈ f, f 6= e}.
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• If all edges starting at v are positively (resp. negatively) oriented, then
∆v = {γk | k0 6= k ∈ K} (resp. ∆v = {γ` | `0 6= ` ∈ L}).

• Otherwise, if
→
e is positively (resp. negatively) oriented, then ∆v = {γk, γ′` |

k0 6= k ∈ K, ` ∈ `} (resp. ∆v = {γ′k, γ` | k ∈ K, `0 6= ` ∈ L}).

In particular, taking into account the label of
→
e , in the �rst case the edges

starting at v are labelled bijectively by K (resp. L), while in the second case
they are labelled bijectively by K ∪ L.

Next we show how this labelling de�nes a tree amalgamation. First assume
there is no automorphism γ ∈ Γ mapping s to t. Then all positively oriented
edges must point from V1 to V2, where V1 ∪ V2 is the bipartition of T with
s ∈ V1�this corresponds to the �rst case in the above observation. Let G1 be
isomorphic to G[Vs], and let G2 be isomorphic to G[Vt]. Let ids and idt be the
respective isomorphisms.

For the de�nition of the adhesion sets let I1 = K and I2 = L. For k ∈ K let
tk be the endpoint of

→
ek and de�ne Sk = id−1

s (Vs ∩ Vtk). Similarly, for ` ∈ L,
let s` be the endpoint of

→
e` and de�ne Sk = id−1

t (Vt ∩ Vs`). Finally, de�ne the
adhesion maps by φk` = id−1

t ◦ γ` ◦ γ−1
k ◦ ids |Sk

.
The labels of directed edges starting at each vertex are in bijection to K or

L depending on whether the vertex is in V1 or V2. Hence the above information
together with the labelling de�nes a tree amalgamation. If Γi is a group acting
on Gi in the same way as the setwise stabiliser (in Γ) of Gs, of Gt acts on Gs, on
Gt respectively, then it is straightforward to verify that this tree amalgamation
is of Type 1 respecting the actions. Note that the possible replacement of Γ
by Γ′ changes neither Γ1 nor Γ2.

It only remains to show that the tree amalgamation is isomorphic to G. Let
ev be the �rst edge on the path from v ∈ V (T ) to e0. If v ∈ V1, then set
idv = γev ◦ ids. Otherwise set idv = γev ◦ idt. It is easy to verify that for an
edge e = uv with labels f(

→
e) = k, f(

←
e) = ` we have that id−1

v ◦ idu = φk`, and
this clearly shows that the tree amalgamation is isomorphic to G.

The proof in the case where there is γst mapping s to t is very similar to
the �rst case. De�ne G1 and G2 as before, but make sure that γst ◦ ids = idt.
This ensures that the actions Γ1 on G1 and Γ2 on G2 are the same, hence we
can without loss of generality assume that G1 = G2 and Γ1 = Γ2.

Set I1 = I2 = K ∪ L and let J = K. Recall that f(
→
e) ∈ K if and only if

f(
←
e) ∈ L. Since we can map s to t, there are positively and negatively oriented

edges starting at each vertex, hence the labels of edges starting at any vertex
are in bijection with K ∪L. Hence (o) for tree amalgamations of Type 2 holds.
De�ne the adhesion sets and adhesion maps exactly as above (but note that
all adhesion sets end up in the same graph since G1 = G2). This gives a tree
amalgamation of Type 2 by construction which is isomorphic to G by the same
argument as above.

Now we are ready to prove the main result of this section, the graph-
theoretical analogue of Stallings' theorem, Theorem 1.1. We are proving a
slightly stronger version than the one we stated in the introduction.

Theorem 5.10. Let Γ be a group acting quasi-transitively on a connected, lo-
cally �nite graph G with more than one end. Then there are connected subgraphs
G1, G2 of G and groups Γ1,Γ2 acting quasi-transitively on G1, G2, respectively,
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such that G is a non-trivial tree amalgamation (G1,Γ1) ∗ (G2,Γ2) of �nite ad-
hesion and �nite identi�cation distinguishing ends.

Furthermore, Γi can be chosen to be the setwise stabiliser of Gi in Γ.

Proof. By Corollary 4.4, G has a splitting tree-decomposition (T,V) with con-
nected adhesion sets. Using Lemma 5.9, G is a non-trivial tree amalgamation
(G1,Γ1) ∗T (G2,Γ2), where Γi is the setwise stabiliser of Gi in Γ for i = 1, 2.
Proposition 4.5 implies that Γi acts quasi-transitively on Gi for i = 1, 2. It re-
mains to show that the tree amalgamationhas �nite identi�cation. Since Γ acts
transitively on adhesion sets, each adhesion set induces a connected subgraph
of the same size n. If some vertex x was contained in in�nitely many distinct
adhesion sets, then there would be in�nitely many distinct paths of length at
most n starting at x, contradicting local �niteness of G. In particular for a
node t ∈ V (T ) only �nitely many edges incident with t correspond to adhesion
sets that contain any �xed vertex x. If the tree amalgamation does not have
�nite identi�cation, then there must be a ray t1t2 . . . in T such that all edges
titi+1 correspond to adhesion sets that contain x. Since there are only �nitely
many distinct adhesion sets that contain x, we may assume by (T3) that all
titi+1 correspond to the same adhesion set S. As (T,V) is connected, in every
Vti 6= S there is a neighbour of some vertex of S. Applying (T3) shows that
these are all distinct neighbours of S. Thus, we have Vti = S for all but �nitely
many i ∈ N. In particular, there is an edge titi+1 with Vti = Vti+1

. Since Γ acts
transitively on E(T ), this implies V (G) = Vti . This is not possible by (i) from
the de�nition of a splitting tree-decomposition. Thus, the tree amalgamation
has �nite identi�cation. It distinguishes ends, since (T,V) does that.

6 Accessible graphs

Let G be a connected, quasi-transitive, locally �nite graph with more than one
end and let Γ act quasi-transitively on G. We say that G splits (non-trivially)
into connected, quasi-transitive, locally �nite graphs G1, G2 if it is a non-trivial
tree amalgamation G = G1 ∗ G2 of �nite adhesion respecting the actions of
groups Γi acting quasi-transitively on Gi and if the tree-decomposition de�ned
by G1 ∗ G2 (as in Remark 5.1) is splitting with respect to Γ. Note that the
stabilizer in Γ of Gi acts quasi-transitively on Gi by Proposition 4.5. Now if
one of the factors G1 or G2 also has more than one end, we can split it with
respect to its stabilizer, too. We can continue this for every factor and call this
a process of splittings. Note that it is important in a process of splittings to
use the group action of the stabiliser of the factor in order to split the factor.
If we eventually end up with factors that are either �nite or have at most one
end, that is, if the process of splittings terminates, we call the (multi-)set of
these factors a terminal factorisation of G. (Also, if G is one-ended, we say it
is a terminal factorisation of itself.) We call G accessible if it has a terminal
factorisation.

Remark 6.1. Let G be an accessible connected, quasi-transitive, locally �nite
graph. Then there are connected, quasi-transitive, locally �nite graphs G1, . . .,
Gn, H1, . . . ,Hn−1 with G = Hn−1 and trees T1, . . . , Tn−1 such that the following
hold:

(i) every Gi has at most one end;
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(ii) for every i ≤ n − 1, the graph Hi is a tree amalgamation H ∗Ti
H ′ with

respect to group actions of �nite adhesion, where

H,H ′ ∈ {Gj | 1 ≤ j ≤ n} ∪ {Hj | 1 ≤ j < i}.

Remark 6.2. Let G0 be the class of all connected, quasi-transitive, locally �-
nite graphs with at most one end. For i > 0, let Gi be the class obtained by
tree amalgamations of �nite adhesion of elements in

⋃
j<i Gj respecting group

actions. Set G :=
⋃
i∈N Gi. Then G is the class of all accessible connected,

quasi-transitive, locally �nite graphs.

The following result generalizes a graph theoretical characterisation of ac-
cessibility of �nitely generated groups: Thomassen and Woess [27, Theorem 1.1]
proved that a �nitely generated group is accessible if and only if it has a locally
�nite Cayley graph that is accessible in their sense.

Theorem 6.3. Let G be a connected, locally �nite, quasi-transitive graph. Then
the following statements are equivalent.

(1) G is accessible.

(2) G is TW-accessible.

Before we prove Theorem 6.3, we need another result. Recall that a tree-
decomposition e�ciently distinguishes two ends if there is an adhesion set Vt1 ∩
Vt2 separating them such that no set of smaller size than Vt1 ∩ Vt2 separates
them.

Theorem 6.4. Let G be a connected, locally �nite graph such that there is an
n ∈ N such that every two ends of G can be separated by at most n vertices.
Let Γ be a group acting quasi-transitively on G. Then there exists a Γ-invariant
tree-decomposition (T,V) of G of �nite adhesion such that (T,V) distinguishes
all ends of G e�ciently and such that there are only �nitely many Γ-orbits
on E(T ).

Proof. By Theorem 3.2 we �nd a Γ-invariant tree-decomposition (T,V) of G of
adhesion at most k that distinguishes all ends e�ciently.

For every adhesion set Vt∩Vt′ that does not separate any two ends e�ciently,
we contract the edge tt′ in T and assign the vertex set Vt ∪Vt′ to the new node.
It is easy to check that the resulting pair (T ′,V ′) is again a tree-decomposition.
It only has adhesion sets that distinguish ends e�ciently. Note that Γ still acts
on (T ′,V ′) as the set of adhesion sets that do not separate ends e�ciently is
Γ-invariant. A result of Thomassen and Woess [27, Proposition 4.2] says that
there are only �nitely many vertex sets S of size at most n containing a �xed
vertex such that for two components C1, C2 of G − S every vertex of S has
a neighbour in C1 and in C2. Since G is locally �nite and quasi-transitive, it
follows that there are only �nitely many orbits of adhesion sets that separate
ends e�ciently. This proves the assertion.

Proof of Theorem 6.3. To prove that (2) implies (1), let G be TW-accessible
and let Γ be a group acting on G with only �nitely many orbits. As G is
quasi-transitive, there is an n ∈ N such that their ends of G can be separated
by at most n vertices. By Theorem 6.4 we �nd a Γ-invariant tree-decomposi-
tion (T,V) of G of �nite adhesion such that (T,V) distinguishes all ends of G
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e�ciently and such that there are only �nitely many Γ-orbits on E(T ). We
apply Proposition 4.1, and obtain a tree-decomposition (T,U) with connected
adhesion sets and Vt ⊆ Ut for all t ∈ V (T ). We prove the assertion by induction
on the number of Γ-orbits of adhesion sets of (T,U). Let tt′ ∈ E(T ). For every
edge t1t2 ∈ E(T ) that does not lie in the same Γ-orbit as tt′, we contract the
edge t1t2 in T and assign the vertex set Ut1 ∪ Ut2 to the new node. Let T ′ be
the resulting tree and U ′ = {Us | s ∈ V (T ′)}. It is easy to verify that (T ′,U ′)
is a tree-decomposition. The only edges of T ′ are those that have their origin
in the Γ-orbit of the edge tt′ ∈ E(T ) and Γ still acts on (T ′,U ′) so that (T ′,U ′)
is a connected, splitting tree-decomposition of G with only connected adhesion
sets. Lemma 5.9 implies that G is a non-trivial tree amalgamation G1 ∗T ′ G2

with respect to group actions, where the graphs G1 and G2 are induced by
the parts of (T ′,U ′). The tree-decomposition (T,U) induces a tree-decomposi-
tion (TW ,W) on the parts W of (T ′,U ′) and there are fewer ΓW -orbits on the
adhesion sets of (TW ,W) than Γ-orbits on the adhesion sets of (T,U). Thus, we
can apply induction on the number of orbits of adhesion sets. This shows (1).

To prove that (1) implies (2), we will use the graph classes Gi and G as de�ned
in Remark 6.2 and show inductively that every Gi contains only connected,
quasi-transitive, locally �nite graphs for which there exists an n ∈ N such that
any two of its ends can be separated by at most n vertices. This clearly implies
that every Gi only contains graphs that are TW-accessible. This is obviously
true for G0. Let G ∈ Gi for i > 0. Then there are G1, G2 ∈

⋃
j<i Gj such that G

is a tree amalgamation G1 ∗T G2 of �nite adhesion respecting group actions. By
induction, we may assume that G1 and G2 are TW-accessible and quasi-transi-
tive. Note that quasi-transitivity of G follows from Lemma 5.8 since G1 and G2

are quasi-transitive. For i = 1, 2, let ki be a positive number such that any two
ends of Gi can be separated by at most ki many vertices. Let (T,V) be the
tree-decomposition we obtain from the tree amalgamation G1 ∗T G2 according
to Remark 5.1. Let k be the maximum of k1, k2 and the size of adhesion sets
of G1 ∗T G2.

Let Q,R be two rays in di�erent ends ωQ, ωR of G, respectively. If there
is some adhesion set Vt ∩ Vt′ such that Q and R have tails that are separated
by Vt ∩ Vt′ , then the ends they lie in must be separated by that adhesion set
as well. Hence, they are separable by a separator of order at most k. So
we may assume that, eventually, they lie on the same side of each adhesion
set. By Proposition 4.8 (i) every end of G is captured either by an end or by
a node of T . Since no separator separates any tails of Q and R, their ends
are captured by the same node or end of T . By Proposition 4.8 (iii) an end
of T captures a unique end of G. Thus, ωQ and ωR are captured by the same
node of T . By Proposition 4.8 (iv) every end of G that is captured by a node
t ∈ V (T ) corresponds to a uniquely determined end of G[Vt]. These ends can be
separated by a separator S in G[Vt] of order at most k by assumption. However,
S need not be a separator of G that separates those ends. Still, it is possible to
enlarge S to a separator of G that separates ωQ and ωR and still has bounded
size: if K is the maximum diameter of the adhesion sets measured in G1 and
in G2, then every vertex of S has distance at most K to only �nitely many
adhesion sets that are contained in Vt as G is locally �nite; so we can add all
these adhesion sets to S and obtain a set S′. As G is quasi-transitive, the size
of S′ only depends on k, the number of orbits of vertices of G, the maximum
number of adhesion sets in Vt that have distance at most K to a common vertex
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and the size of any adhesion set of (T,V), in particular, it is bounded by some
` ∈ N and it is independent of the chosen ends. If we show that S′ separates
ωQ and ωR, then it follows immediately that there is an n ∈ N such that every
two ends of G can be separated by at most n vertices.

Let P = . . . , x−1, x0, x1, . . . be a double ray with its tail x0, x1, . . . in ωQ and
its tail x0, x−1, . . . in ωR. Since both ends ωQ and ωR are captured by Vt, there
are in�nitely many xi with i > 0 that lie in Vt and in�nitely many xi with i < 0
that lies in Vt. Let us assume x0 ∈ Vt. Whenever the ray P+ := x0x1 . . . leaves
Vt through an adhesion set Vt ∩ Vt′ , it must reenter Vt and this must happen
through the same adhesion set. Since S is �nite and separates ωQ and ωR, there
are i1, i2 ∈ Z such that no xi ∈ Vt with i ≥ i1 is separated in G[Vt] by S from ωQ
and no xi ∈ Vt with i ≤ i2 is separated in G[Vt] by S from ωR. Then there
must be some path xi, . . . , xj with j ≥ i+ 1 and whose inner vertices lie outside
of Vt such that xj is not separated by S from ωQ and xi is not separated by S
from ωR. Thus, the shortest xi-xj path in G[Vt] meets S. As xi and xj lie in a
common adhesion set, we conclude that this lies in S′. Thus, S′ separates ωQ
from ωR in G. This shows (2).

In the proof of the implication (2) to (1) of Theorem 6.3 we chose a speci�c
way to split the factors. (It was based on a Γ-invariant tree-decomposition of G.)
In an earlier version of this paper, we did not know if we can split arbitrarily in
each step and still have to end in a terminal factorisation. But we conjectured
that this is true.

Conjecture 6.5. Let G be an accessible, connected, quasi-transitive, locally
�nite graph. Every process of splittings must end after �nitely many steps.

This conjecture has been veri�ed in [15].
Accessibility of �nitely generated groups received a lot of attention after

Wall [28] conjectured that all �nitely generated groups are accessible and among
the main results in this area are Dunwoody's results that Wall's conjecture is
false in general [7] but true for (almost) �nitely presented groups [6]. In the case
of quasi-transitive, locally �nite graphs, the investigation focused on graphs that
are TW-accessible, see [13, 22, 27]. However, Theorem 6.3 enables us to carry
over these results to graphs that are accessible in our sense.

7 Applications

7.1 Stallings' theorem

There are several proofs of Stallings' theorem in the literature, see [5, 16, 23, 25].
In this section we will discuss how to obtain Stallings' theorem from our results.

Let Γ be a �nitely generated group with in�nitely many ends and let G be
a locally �nite Cayley graph of Γ. Then G has in�nitely many ends, too. By
Theorem 5.10, G is a non-trivial tree amalgamation G1 ∗T G2 of �nite adhesion
respecting group actions. Since it has �nite adhesion and Γ acts regularly3 on G,
the stabiliser in Γ of an edge of T , which is a subgroup of the stabiliser in Γ
of the corresponding adhesion set, is �nite. If the induced action of Γ on T is
with inversion of edges, then we subdivide each edge of T once. On the edges

3that is, for every two u, v ∈ V (G) there is a unique element of Γ mapping u to v
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of the resulting tree, the group Γ acts transitively but without inversion. Now
we apply Bass-Serre theory via the following theorem.

Theorem 7.1. [24] Let T be a tree without leaves and let Γ act on T without
inversion of edges but transitively on E(T ). If Γ acts transitively on T then Γ
is an HNN-extension of the stabilizer of a vertex over the pointwise stabilizer
of an edge. If there are two Γ-orbits on V (T ), then Γ is the free product of
the stabilizers of two adjacent vertices with amalgamation over the pointwise
stabilizer of the incident edge.

We thus obtain Stallings' theorem.

Theorem 7.2. [25] A �nitely generated group has more than one end, if and
only if it is either a free product with amalgamation over a �nite subgroup or
an HNN-extension over a �nite subgroup.

Note that the groups acting on tree amalgamations of Type 1 respecting the
actions of groups acting on the factors act on the connecting trees with two orbits
and thus lead to free products with amalgamation via Theorem 7.1. Similarly,
groups acting on tree amalgamations of Type 2 respecting the action of groups
act transitively on the connecting trees and thus lead to HNN-extension via
Theorem 7.1.

7.2 Graphs without thick ends

In this section, we prove that connected, quasi-transitive, locally �nite graphs
with only thin ends are the connected, quasi-transitive, locally �nite graphs that
have terminal factorisations with only �nite factors. But before we go into the
proof, we need some de�nitions.

Let G and H be graphs. A map ϕ : V (G)→ V (H) is a (γ, c)-quasi-isometry
if there are constants γ ≥ 1, c ≥ 0 such that

γ−1dG(x, y)− c ≤ dH(ϕ(x), ϕ(y)) ≤ γdG(x, y) + c

for all x, y ∈ V (G) and such that sup{dH(x, ϕ(V (G))) | x ∈ V (H)} ≤ c. We
then say that G is quasi-isometric to H.

Krön and Möller [17, Theorem 5.5] showed that a connected, quasi-transi-
tive, locally �nite graph has only thin ends if and only if it is quasi-isometric
to a tree. Trees are obviously TW-accessible and it follows from their de�nition
of accessibility that the class of quasi-transitive, locally �nite such graphs is
invariant under quasi-isometries. Thus, we have veri�ed the following.

Proposition 7.3. Every connected, locally �nite, quasi-transitive graph that
has only thin ends is TW-accessible.

We mention that Thomassen and Woess [27, Theorem 5.3] showed Proposi-
tion 7.3 for transitive graphs directly with a nice graph theoretical argument.
It is not too hard to modify their argument in such a way that the proof works
for quasi-transitive graphs as well.

Another result we need for our investigation here is due to Thomassen.

Proposition 7.4. [26, Proposition 5.6.] If G is an in�nite, connected, quasi-
transitive, locally �nite graph with only one end, then the end is thick.
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Recently, Carmesin et al. [3, Theorem 5.1] extended Proposition 7.4 to
graphs that need not be locally �nite.

Now we are able to give a new characterisation of connected, quasi-transitive,
locally �nite graphs with only thin ends.

Theorem 7.5. A connected, quasi-transitive, locally �nite graph has only thin
ends if and only if it has a terminal factorisation of only �nite graphs.

Proof. Let G be a connected, quasi-transitive, locally �nite graph. First, let us
assume that every end of G is thin. By Proposition 7.3, G is TW-accessible.
So Theorem 6.3 implies that G is accessible and hence has a terminal factorisa-
tion. All the factors of that terminal factorisation have at most one end. Since
they are quasi-transitive by Proposition 4.5, they cannot have one end due to
Proposition 7.4. So they are locally �nite graphs without ends, which implies
that they are �nite graphs.

For the other direction, we follow the steps to factorise G, factorise each of
its factors and so on until we end up with a terminal factorisation. Note that
by Proposition 4.8 (ii) every thick end of G is captured by nodes of the involved
splitting tree-decompositions. So if G had a thick end, then one of the factors
of the terminal factorisation must have a thick end, which is impossible as these
factors are �nite by assumption. Thus, all ends of G are thin.

Note that there are several characterisations of (quasi-transitive or Cay-
ley) graphs that are quasi-isometric to trees, see e. g. Antolín [1], Krön and
Möller [17], Manning [18] and Woess [29]. We enlarged their list of characteri-
sations by our theorem.

A natural class of quasi-transitive graphs are Cayley graphs. So our theorems
apply in particular for such graphs and we obtain as a corollary of Theorem 7.5
a result for virtually free groups. A group Γ is virtually free if it contains a free
subgroup of �nite index.

Woess [29] showed that a �nitely generated group is virtually free if and only
if every end of any of its locally �nite Cayley graphs is thin. Thus we directly
obtain the following corollary.

Corollary 7.6. A �nitely generated group is virtually free if and only if any
of its locally �nite Cayley graphs has a terminal factorisation of only �nite
graphs.

In [12] the interplay between tree amalgamations and quasi-isometries is
investigated further and the results of this section are extended to graphs other
than trees in two ways. First, it is shown that the quasi-isometry type of
(iterated) tree amalgamations only depend on the quasi-isometry types of the
in�nite factors. Then, in the case of accessible in�nitely-ended graphs, it is
shown that the quasi-isometry types of the graphs determine the quasi-isometry
types of the in�nite factors in any of its terminal factorisations.

7.3 Planar graphs

Mohar [19] raised the question whether tree amalgamations are powerful enough
to characterise (3-connected) planar, transitive, locally �nite graphs in terms of
�nite or one-ended, locally �nite, planar, transitive graphs. We are able to give
an a�rmative answer in case of planar, quasi-transitive graphs. This does not
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give a complete answer Mohar's question, since we cannot guarantee the factors
in the case of transitive graphs to be transitive again: we only prove that they
are quasi-transitive. Also, we remind the reader that our notion of tree amalga-
mations di�ers slightly from Mohar's notion, since his tree amalgamations have
identi�cations length at most 2.

Dunwoody [8] proved that planar, quasi-transitive, locally �nite graphs are
TW-accessible, see also [14]. This allows us to apply Theorem 6.3 to these
graphs. We directly obtain the following result.

Theorem 7.7. For every planar, connected, quasi-transitive, locally �nite graph
G there are �nitely many planar, connected, quasi-transitive, locally �nite graphs
G1, . . . , Gn with at most one end such that G can be obtained by �nitely many
(iterated) tree amalgamations of G1, . . . , Gn.

We point out that examples given in [9] show that we cannot replace the
term `quasi-transitive' by `transitive' or `Cayley' in the above theorem; Geor-
gakopoulos [9] suggests that Mohar's question is to be interpreted in terms of
subdivisions, that is, we can replace `quasi-transitive' by `transitive' if in addi-
tion to tree amalgamations we allow subdivisions.

7.4 Further applications

In this section we brie�y mention further applications of our main results. In [11]
we prove that tree amalgamations and hyperbolic graphs �t well together in that
we prove that a locally �nite, quasi-transitive graph with more than one end is
hyperbolic if and only if it is the non-trivial tree amalgamation of two locally
�nite, quasi-transitive, hyperbolic graphs. Additionally, the homeomorphism
type of the hyperbolic boundary is uniquely determined by the homeomor-
phism types of the hyperbolic boundaries of their factors [11, Theorem 1.2].
Since hyperbolic, locally �nite, quasi-transitive graphs are TW-accessible [13],
this implies by Theorem 6.3 that the homeomorphism type of the hyperbolic
boundary is uniquely determined by the homeomorphism types of the hyperbolic
boundaries in any terminal factorisation.

Similarly, we consider in [12] quasi-isometry types of tree amalgamations
and prove that they only depend on the quasi-isometry types of their factors.
In the case of accessible graphs with the same number of ends, we obtain that
two graphs are quasi-isometric if and only if all terminal factorisations have the
same quasi-isometry types of in�nite factors.

As a third application, we obtain in [10] a sharp upper bound of the asymp-
totic dimension of tree amalgamations depending on the asymptotic dimensions
of their factors.
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