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Abstract. We study the existence of periodic colorings and orientations in locally
finite graphs. A coloring or orientation of a graph G is periodic if the resulting colored
or oriented graph is quasi-transitive, meaning that V (G) has finitely many orbits under
the action of the group of automorphisms of G preserving the coloring or the orientation.
When such a periodic coloring or orientation of G exists, G itself must be quasi-transitive
and it is natural to investigate when quasi-transitive graphs have such periodic colorings
or orientations. We provide examples of Cayley graphs with no periodic orientation
or non-trivial coloring, and examples of quasi-transitive graphs of treewidth 2 without
periodic orientation or proper coloring. On the other hand we show that every quasi-
transitive graph G of bounded pathwidth has a periodic proper coloring with χ(G) colors
and a periodic orientation. We relate these problems with techniques and questions from
symbolic dynamics and distributed computing and conclude with a number of open
problems.

1. Introduction

The purpose of this paper is to investigate when highly-symmetric graphs have highly-
symmetric colorings or orientations. Questions of the same flavor have been raised in a
number of different settings. In the emerging field of descriptive graph theory (see [Pik21]
for a recent survey), the graphs under study are equipped with a topology or a measure,
and the goal is to find combinatorial objects, such as proper colorings, that behave well
with respect to the underlying topology or measure. This defines notions such as the
Borel chromatic number of a Borel graph, and these notions are then compared with
the classical chromatic number for various graph classes. Another example is that of the
recursive chromatic number of a recursive graph: here the graphs under consideration are
recursive sets (adjacency in the graph can be computed by a Turing machine), and the
goal is to find a proper coloring which is also recursive [Bea76, Kie81, Sch80].

The early motivation for studying recursive colorings of infinite (recursive) graphs is
that a number of classical coloring results for infinite graphs [dBE51, Got51] use compact-
ness arguments and thus do not provide an explicit description of the resulting colorings.
If a graph G is highly-symmetric, for instance if G is the Cayley graph of some group Γ,
a simple way to give a finite description of a proper coloring of G is to assign colors to
a finite subset X of vertices of G, and then transfer the colors of X to all the remaining
vertices using the action of a specific subgroup Γ′ of Γ on the graph G. This provides
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an explicit, finite description of a coloring of G, provided for instance that Γ and Γ′ are
automatic. As a simple example of this procedure, consider any Cayley graph G of Z2,
and observe that any precoloring of any large enough square region around the identity,
with pairwise distinct colors, can be extended to a proper coloring of G by translation.

We now explain what we mean by a highly-symmetric graph or coloring, starting with
graphs. A natural choice is the class of vertex-transitive graphs, which are graphs G in
which for any two vertices u, v of G, there is an automorphism of G that maps u to v (in
other words, the automorphism group Aut(G) of G acts transitively on G). Note that this
class contains all Cayley graphs. We will indeed consider the slightly more general class
of quasi-transitive graphs, which are graphs G such that the vertex set of G has finitely
many orbits under the action of Aut(G). This means that V (G) can be partitioned into
V1, . . . , Vk so that for any 1 ⩽ i ⩽ k and any u, v ∈ Vi, there is an automorphism of G
that maps u to v. Every vertex-transitive graph is quasi-transitive. In this paper, all
the graphs we consider will be locally finite, meaning that every vertex has finite degree.
Note that for quasi-transitive graphs, being locally finite is equivalent to having bounded
degree.

One motivation for considering quasi-transitive graphs instead of transitive graphs is
that these graphs are much less regular (which allows inductive approaches involving
tree-decompositions into simpler quasi-transitive graphs [EGLD24, Ham15, Ham18]) and
even though the class is more general, several classical group decomposition results such
as Stallings theorem still apply to them [HLMR22]. The definition of quasi-transitive
graph can be naturally extended to vertex-colored (resp. edge-colored or oriented) graphs
by restricting the group of automorphisms to automorphisms preserving the colors of the
vertices (resp. the colors or orientations of the edges).

We say that a vertex- or edge-coloring or an orientation of a graph G is periodic if
the resulting vertex- or edge-colored or oriented graph is quasi-transitive. In particular,
observe that every periodic coloring of a graph G always involves a finite number of
colors. Note that this definition corresponds precisely to the procedure described above:
in the case of a periodic vertex coloring we only have to fix the colors of a finite number
of vertices (one in each vertex-orbit for the action of the subgroup of color-preserving
automorphisms), and then this coloring naturally extends to the whole graph by the
action of this subgroup. Similarly, in a periodic edge-coloring or orientation, we only
have to fix the colors or orientations of a finite set of edges and these extend to the whole
graph by a group action.

Note that if a periodic coloring or orientation exists, then G itself must be quasi-
transitive. This motivates the following questions, which were raised in [EGLD24].

Problem 1.1 (Problem 6.3 in [EGLD24]). Is it true that any locally finite quasi-transitive
graph has a periodic proper vertex-coloring?

Problem 1.2 (Problem 6.4 in [EGLD24]). Is it true that any locally finite quasi-transitive
graph has a periodic orientation?

The following related problem is attributed to Bowen and Lyons in [Tim11].

Problem 1.3 (Question 4.8 in [Tim11]). Is it true that every locally finite quasi-transitive
planar graph has a periodic proper vertex-coloring with 4 colors?

These questions are specific instances of a more general problem, which asks whether
every quasi-transitive graph G can be decorated with a non-trivial additional structure
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such that the graph G is still quasi-transitive if we restrict ourselves to automorphisms
that fix the additional structure. It should be noted that the original motivation for
raising Problems 1.1 and 1.2 is a bit different from the motivation presented in this
introduction (the original goal of the authors was to find periodic structures in specific
quasi-transitive graphs in order to simplify some canonical decompositions).

Observe that a positive answer to Problem 1.1 would imply a positive answer to Prob-
lem 1.2: the orientation defined from a vertex-coloring by choosing a total ordering on the
colors and orienting each edge from the endpoint with the smaller color to the endpoint
with the larger color is preserved by every automorphism that preserves the coloring.

Main results. The goal of this note is to present examples showing that Problems 1.1,
1.2 and 1.3 have negative answers. The first example showing that Problem 1.1 has
a negative answer was constructed by Hamann and Möller. It was then observed by
Abrishami, Esperet and Giocanti, and independently by Norin and Przytycki, that a
variant of this example could also be used to provide a negative answer to Problem 1.2.
Norin and Przytycki furthermore showed that the examples can be chosen to be Cayley
graphs (and thus vertex-transitive), rather than merely quasi-transitive. The examples
are presented in Section 3. They are based on the existence of finitely generated infinite
simple groups, whose known constructions are highly non-trivial. As the resulting graphs
are 1-ended, a natural question is whether similar negative examples can be obtained for
graphs with 2 or infinitely many ends. We indeed present a simple alternative construction
of a negative answer to Problems 1.1 and 1.2 which has treewidth 2 (and is in particular
planar and ∞-ended) and is perfect. This gives in particular a negative answer to Problem
1.3 as well, in a very strong sense (the answer remains negative for any number of colors).
We also construct a graph G which has a periodic proper coloring with χ(G) + 1 colors,
but admits no periodic proper coloring with χ(G) colors.

On the positive side, we prove that for graphs of bounded pathwidth, Problems 1.1 and
1.2 have a positive answer (and moreover a periodic proper coloring with χ(G) colors can
always be obtained in this case). The setting of bounded pathwidth is very natural (for
infinite Cayley graphs, it corresponds to the case of 2-ended groups) and has interesting
connections with symbolic dynamics.

Related work. Problem 1.1 has a natural dual problem: Is it possible to find a vertex
coloring so that no non-trivial automorphism of the graph preserves the coloring? Is it
possible with just two colors? Assuming that no non-trivial automorphism fixes all but
finitely many vertices, Babai proved that two colors suffice [Bab22].

Probabilistic variants of Problems 1.1 and 1.2 have been investigated extensively in
probability theory. In this setting, the goal is not to find a specific coloring which is
invariant (or almost invariant) under automorphisms, but rather a random coloring which
is invariant under automorphims (in the sense that the random process that generates
the proper coloring is invariant under automorphism). See for instance [Tim24] and
the references therein. The results there seem to be more positive than in our setting
(in particular it is proved in [Tim24] that a specific type of random proper coloring
based on factors of iid with independence at distance more than 4 exists in any graph of
bounded degree, using a bounded number of colors – this type of random proper coloring
is invariant under automorphisms). Note however that random proper colorings that



4 T. ABRISHAMI, L. ESPERET, U. GIOCANTI, M. HAMANN, P. KNAPPE, AND R.G. MÖLLER

are invariant under automorphisms do not necessarily produce proper colorings that are
invariant under automorphisms.

The connections between our problems and symbolic dynamics are highlighted in Sec-
tion 5 (we refer the reader to this section for the details).

Finally, we mention an interesting connection between the topic of this paper and
techniques from distributed computing in Section 2.

Organization of the paper. We start by giving some definitions and basic results on
graph theory and group theory in Section 2. In Section 3, we give our first example
providing a negative answer to Problems 1.1 and 1.2. It turns out that the example even
provides a negative answer to a much weaker problem, where we only seek a periodic
non-trivial coloring (instead of a periodic proper coloring). In Section 4 we show how to
construct graphs of bounded treewidth with no periodic orientation, providing a negative
answer to Problems 1.1 and 1.2 even for graphs of bounded treewidth. In Section 5 we
show that Problems 1.1 and 1.2 have a positive answer if we restrict ourselves to graphs of
bounded pathwidth. This is done using connections between our problems and classical
results on subshifts of finite type in symbolic dynamics. We conclude in Section 6 with a
discussion and a number of open problems.

2. Preliminaries

Graphs. A vertex-coloring of a graph G is proper if every two adjacent vertices in G are
assigned distinct colors. The chromatic number of G, denoted by χ(G), is the minimum
number of colors in a proper vertex-coloring of G. A path is a connected acyclic graph in
which every vertex has degree at most 2.

A tree-decomposition of a graph G is a pair (T,X ) such that T is a tree and X is a
collection (Xt : t ∈ V (T )) of subsets of V (G), called the bags, such that

•
⋃

t∈V (T )Xt = V (G),
• for every e ∈ E(G), there exists t ∈ V (T ) such that Xt contains the endpoints of
e, and

• for every v ∈ V (G), the set {t ∈ V (T ) : v ∈ Xt} induces a connected subgraph of
T .

For a tree-decomposition (T,X ) as above, the sets Xt ∩Xt′ for tt′ ∈ E(T ) are called the
adhesion sets of (T,X ), and the width of (T,X ) is supt∈V (T )|Xt| − 1. The treewidth of G
is the minimum width of a tree-decomposition of G.

If the tree T in a tree-decomposition (T,X ) of a graph G is a path, then (T,X ) is
called a path-decomposition of G, and the pathwidth of G is the minimum width of a
path-decomposition of G.

A ray in an infinite graph G is an infinite one-way path in G. Two rays of G are
said to be equivalent if there are infinitely many disjoint paths between them in G. An
end of G is an equivalence class of rays in G. It is known that the number of ends of a
connected locally finite quasi-transitive graph is either 0, 1, 2 or ∞ [Bab97, Proposition
2.1]. A graph with k ends (for k ∈ N ∪ {∞}) is said to be k-ended. For every finite set
S ⊆ V (G) and every ray r, note that there exists a unique connected component of G−S
containing an infinite number of vertices of r. If X denotes such a component, we say
that r lives in X. We say that an end ω lives in a component X of G− S if some (and
thus all) of its rays live in X.
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Groups. The index of a subgroup Γ′ in a group Γ is the cardinality of the family of left
cosets {gΓ′ : g ∈ Γ}, where gΓ′ = {gh : h ∈ Γ′}. Equivalently, the index of Γ′ in Γ is the
cardinality of the family of right cosets {Γ′g : g ∈ Γ}, where Γ′g = {hg : h ∈ Γ′}. If a group
Γ has a subgroup Γ′ of finite index then we say that Γ is virtually Γ′. Furthermore, if P
is a group theoretic property then Γ is said to be virtually P if Γ contains a subgroup of
finite index that has property P .

Given a finitely generated group Γ and a finite set of generators S not containing the
identity element 1Γ, the (left) Cayley graph of Γ with respect to the set of generators S is
the graph Cay(Γ, S) whose vertex set is the set of elements of Γ and where for every two
elements g, h ∈ Γ there is an edge between g and h if and only hg−1 ∈ S∪S−1. Whenever
we talk about a Cayley graph Cay(Γ, S), we always assume that S is finite and does not
contain 1Γ (even if this is not stated explicitly). For a graph class C, we say that a finitely
generated group is in C if it has a Cayley graph that is in C.

The number of ends of a Cayley graph of a finitely generated group does not depend
on the choice of generators (it follows from the observation that the number of ends of a
locally finite graph is a quasi-isometric invariant), so we can also talk about the number
of ends of a group. A group is 0-ended if and only if it is finite. A finitely generated group
is 2-ended if and only if it is virtually Z [Hop44], if and only if it has finite pathwidth. A
finitely generated group has finite treewidth if and only if it is virtually free [Ant11].

A subgroup Γ′ of a group Γ is normal if gg′g−1 ∈ Γ′ for every g ∈ Γ and g′ ∈ Γ′

(equivalently, the left and right cosets gΓ′ and Γ′g are equal for every g ∈ Γ). A group
Γ is simple if the only normal subgroups of Γ are Γ itself and the trivial subgroup {1Γ}
consisting of the identity element 1Γ of Γ.

We will need the following basic result (which is standard, but we include a proof for
the sake of completeness).

Lemma 2.1. Let Γ′ be a subgroup of finite index in a group Γ. Then Γ has a normal
subgroup Γ′′ of finite index such that Γ′′ is a subgroup of Γ′.

Proof. The action of Γ on the right cosets C = {Γ′g : g ∈ Γ} of Γ′ induces a permutation
of C (where each h ∈ Γ maps each right coset Γ′g to Γ′gh), and this action is a group
homomorphism f from Γ to Sym(C), the symmetric group on C. Moreover, since Γ′ has
finite index, Sym(C) is finite. The kernel ker f of f consists of all elements g ∈ Γ which
stabilize every right coset of Γ′ (in particular, ker f is contained in Γ′). By the first
isomorphism theorem, ker f is a normal subgroup of Γ and the quotient group Γ/ ker f
is isomorphic to the image of f (which is a finite subgroup of Sym(C)). Hence, ker f is a
subgroup of finite index in Γ. □

This directly implies the following classical property of infinite simple groups.

Corollary 2.2. Let Γ be an infinite simple group. Then Γ has no proper subgroup of
finite index.

Proof. Assume for the sake of contradiction that Γ has proper subgroup Γ′ of finite index.
By Lemma 2.1, there is a normal subgroup Γ′′ of finite index in Γ which is a subgroup of
Γ′. Note that since Γ′ is a proper subgroup of Γ, Γ′′ is also a proper subgroup of Γ. As Γ
is a simple group, Γ′′ is the singleton consisting of the identity element of Γ. Since Γ is
infinite, we obtain that Γ′′ has infinite index in Γ, which is a contradiction. □
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Periodicity and strong periodicity. We say that a vertex- or edge-coloring or an
orientation of a graph G is periodic if the subgroup of all automorphisms of G preserving
the coloring or the orientation acts quasi-transitively on V (G), meaning that V (G) has
finitely many orbits under the action of the color-preserving (or orientation-preserving)
automorphisms of G. In other words, there is a partition of V (G) into finitely many
subsets V1, . . . , Vk such that for every 1 ⩽ i ⩽ k and every u, v ∈ Vi, there is a color-
preserving (or orientation-preserving) automorphism of G that maps u to v. Here, we
say that an automorphism of a vertex-colored graph is color-preserving if the image of
any vertex is a vertex of the same color. Similarly, a color-preserving automorphism of
an edge-colored graph maps any edge to an edge of the same color, and an orientation-
preserving automorphism of an oriented graph maps every edge to an edge with the same
orientation.

We say that a vertex- or edge-coloring or an orientation of a graph G is strongly periodic
if the subgroup of all automorphisms of G preserving the coloring (or the orientation)
has finite index in Aut(G), the group of automorphisms of G. Strongly periodic colorings
naturally arise in symbolic dynamics (see Section 5) and are related to periodic colorings
via the following simple results.

Lemma 2.3. For every quasi-transitive graph G, every subgroup Γ of finite index of
Aut(G) acts quasi-transitively on V (G).

Proof. Let v1, . . . , vk ∈ V (G) be finitely many representatives of the orbits of V (G) under
the action of Aut(G), and let Γg1, . . . ,Γgℓ be the finitely many right cosets of Γ, where
gj ∈ Aut(G) for any 1 ⩽ j ⩽ ℓ. Note that for every 1 ⩽ i ⩽ k and 1 ⩽ j ⩽ ℓ, the group Γ
acts transitively on the set Γgj(vi) := {ggj(vi) : g ∈ Γ}. As the family of sets {Γgj(vi) :
1 ⩽ i ⩽ k, 1 ⩽ j ⩽ ℓ} covers the vertex set V (G), it follows that Γ acts quasi-transitively
on V (G), as desired. □

The converse of Lemma 2.3 does not hold in general. To see this, consider the free
group Fa,b on 2 generators a and b, and let T = Cay(Fa,b, {a, b}) be the natural Cayley
graph associated to Fa,b and its two generators (T is the infinite 4-regular tree). Now
Fa,b ⊆ Aut(T ) acts transitively on V (T ), but as Aut(T ) is not virtually free, Fa,b does
not have finite index in Aut(T ).

By taking Γ to be the subgroup of color-preserving or orientation-preserving automor-
phisms of G, we obtain the following immediate consequence of Lemma 2.3.

Corollary 2.4. Every strongly periodic coloring or orientation of a quasi-transitive graph
G is periodic.

Graphical regular representations. Consider a Cayley graph G = Cay(Γ, S) of a
finitely generated group Γ. Note that Γ naturally acts by right-multiplication on G
(for any g ∈ Γ, the map h 7→ hg induces an automorphism of G). The Cayley graph
G = Cay(Γ, S) is said to be a graphical regular representation of Γ if Γ = Aut(G) (in
other words, the only automorphisms of G are the right-multiplications by elements of
Γ). We now prove that for graphical regular representations of groups, the converse of
Lemma 2.3 holds.

Lemma 2.5. Let G be a graphical regular representation of a finitely generated group.
Then every subgroup of Aut(G) acting quasi-transitively on V (G) has finite index in
Aut(G).
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Proof. Let Γ be a finitely generated infinite group and S be a finite set of generators of
Γ such that the automorphism group of the Cayley graph G = Cay(Γ, S) is equal to Γ.
Let Γ′ be a subgroup of Aut(G) = Γ acting quasi-transitively on V (G) = Γ. The finitely
many orbits of V (G) = Γ under the action of Γ′ are precisely the left cosets of Γ′. It
follows that Γ′ has finite index in Γ = Aut(G). □

As before, we obtain the following immediate corollary, which shows that the notions
of periodicity and strong periodicity are equivalent in the case of graphical regular rep-
resentations of groups.

Corollary 2.6. Let G be a graphical regular representation of a finitely generated group.
Then every periodic coloring or orientation of G is strongly periodic.

Next, we discuss an observation on the minimum number of colors in a periodic proper
vertex-coloring of a graph G (when such a periodic proper vertex-coloring exists). This
is connected to classical results and techniques in distributed computing.

Color reduction. The maximum degree of a graph G is denoted by ∆(G). Every locally
finite quasi-transitive graph has bounded maximum degree. Using a classical technique
from distributed computing, we show that every periodic proper vertex-coloring of a
graph G with more than ∆(G) + 1 colors can be turned into a periodic proper vertex-
coloring of G with one less color, and thus after several iterations into a periodic proper
vertex-coloring of G with ∆(G) + 1 colors.

Lemma 2.7. Let G be a locally finite graph with a periodic proper vertex-coloring. Then
G has a periodic proper vertex-coloring with at most ∆(G) + 1 colors.

Proof. As G is quasi-transitive and locally finite, it has finite maximum degree ∆=∆(G).
Consider a periodic proper vertex-coloring c of G with N > ∆ + 1 colors (call them
1, . . . , N). Consider the set S of vertices colored with color N (and note that S is an
independent set in G). The set S is divided into finitely many orbits S1, . . . , Sk under the
action of the group of color-preserving automorphisms of G. For each vertex v ∈ S, assign
to v the smallest color from the set 1, . . . , N that does not appear in its neighborhood,
and for each vertex v ̸∈ S, leave the color of v unchanged. Let c′ be the resulting vertex-
coloring of G. Since N > ∆ + 1, for each vertex of S, the smallest color c′(v) that does
not appear in its neighborhood is an element of 1, . . . , N − 1, so c′ uses at most N − 1
colors. Moreover, for each 1 ⩽ i ⩽ k, all the vertices of Si are recolored with the same
color (as all the vertices of Si see the same set of colors in their neighborhood), so every
automorphism of G preserving c also preserves c′, and thus c′ is periodic. Finally, since
S is an independent set, the vertex-coloring c′ is proper (each vertex has been recolored
with a color distinct from that of its neighbors, and no two adjacent vertices have been
recolored in the process).

This shows that given a periodic proper vertex-coloring of G with N >∆+1 colors, we
can produce a periodic proper vertex-coloring of G with at most N − 1 colors. Iterating
this procedure at most N −∆− 1 times, we obtain a periodic proper vertex-coloring of
G with at most ∆+ 1 colors, as desired. □

Remark 2.8. In distributed computing, much faster procedures reducing the number of
colors than that of the proof of Lemma 2.7 are usually needed. Together with the color
reduction technique described above, a classical algorithm of Cole and Vishkin [CV86]
can be used to produce a periodic proper (∆+ 1)-vertex-coloring of G in ∆O(∆) + log∗N
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iterations starting from a periodic proper N -vertex-coloring of G, compared to the N −
∆−1 iterations needed in the proof of Lemma 2.7. The idea is to view the colors 1, . . . , N
as O(logN)-bit words, and to record, for each vertex v and neighbor u of v, a bit in the
color of v that differs from the corresponding bit in the color of u. Using this, we can
obtain a periodic proper O(logN)-vertex-coloring of G in a single iteration, and a periodic
proper ∆O(∆)-vertex-coloring in log∗N iterations.

Basic examples of periodic colorings and orientations. We conclude this section
of preliminary results with two simple lemmas describing special cases where Problems
1.1 and 1.2 have positive answers.

Lemma 2.9. Let G be a connected quasi-transitive bipartite graph (not necessarily locally
finite). Then, G has a periodic proper vertex-coloring with 2 colors.

Proof. Let {X1, X2} be the bipartition of G ({X1, X2} is unique since G is connected). Let
c be the proper 2-coloring of G where for i= 1, 2, vertices from Xi are assigned color i. For
each i=1, 2, any two vertices of Xi are at even distance apart. As automorphisms preserve
distances (and thus the parity of distances), for every i = 1, 2, every automorphism of
G that maps some vertex colored i to a vertex colored i is color-preserving (i.e., all the
vertices of Xi are mapped to Xi for every i = 1, 2).

Let V1, . . . , Vk be the orbits of V (G) under the action of Aut(G), and for each 1⩽ j ⩽ k

and each i = 1, 2, let V
(i)
j be the set of vertices of Vj colored i. The paragraph above

implies that the orbits of V (G) under the action of the subgroup of color-preserving
automorphisms are precisely the sets V

(i)
j , for 1 ⩽ j ⩽ k and i = 1, 2. As this collection

is finite, c is periodic. □

We say that an automorphism g of G inverts an edge uv ∈ E(G) if g(u) = v and
g(v) = u. It is straightforward to observe that for any subgroup Γ of automorphisms
that preserve some proper vertex-coloring or orientation of a graph G, Γ does not contain
any automorphism that inverts an edge of G. In the next lemma it is shown that this
condition is also sufficient to prove the existence of a periodic orientation.

Lemma 2.10. Let G be a locally finite quasi-transitive graph. Then, G has a periodic
orientation if and only if there is a subgroup Γ ⊆ Aut(G) acting quasi-transitively such
that no automorphism of Γ inverts an edge of G.

Proof. If G has a periodic orientation, then no element of the automorphism group that
preserves the orientation inverts an edge of G (otherwise it would not preserve the orien-
tation of that edge). Conversely, suppose Γ ⊆ Aut(G) acts quasi-transitively and is such
that no element of Γ inverts an edge of G. We will construct an orientation preserved
by Γ. Let E1, . . . , Ek be the orbits of E(G) under Γ (since Γ acts quasi-transitively on
V (G) and G is locally finite, Γ also acts quasi-transitively on E(G)). Fix an edge ei ∈ Ei

and an orientation −→ei of ei for all i = 1, . . . , k. For every e′i ∈ Ei, since no element of Γ
inverts an edge of G, there is exactly one orientation

−→
e′i of e′i so that an automorphism of

Γ maps −→ei to
−→
e′i . Now, the fixed orientations of e1, . . . , ek define an orientation of E(G)

that is preserved by Γ. □

A corollary of Lemma 2.10 is that Problem 1.2 has a positive answer when G is the Cay-
ley graph of some finitely generated group Γ with respect to a generating set containing
no elements of order 2 (i.e., elements s ̸= 1Γ such that s−1 = s).
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3. Periodic non-trivial colorings

A vertex-coloring of a graph G is said to be trivial if for each connected component
C of G, all the vertices of C are assigned the same color. The vertex-coloring is said
to be non-trivial otherwise. A vertex-coloring of G is trivial if and only if for every
edge uv of G, u and v are assigned the same color. Hence, if G contains at least one
edge, for every non-trivial coloring of G there is a pair u, v of adjacent vertices which are
assigned different colors. In particular, if G contains at least one edge, then every proper
vertex-coloring of G is non-trivial.
Remark 3.1. For non-trivial vertex-colorings, color reduction (as described in the previous
section) is much simpler. Given a non-trivial vertex-coloring c with colors 1, . . . , N we
obtain a new coloring c′ as follows: for each connected component C, we consider the
color of smallest index appearing in C and rename it color 1. We then recolor the vertices
of the other colors in the component with color 2. The resulting coloring is non-trivial,
and if c is periodic then the resulting coloring is also periodic. It follows that a graph has
a periodic non-trivial vertex-coloring if and only if it has a periodic non-trivial vertex-
coloring with 2 colors.

Recall that Problems 1.1 and 1.2 ask whether every locally finite quasi-transitive graph
has a periodic proper vertex-coloring and a periodic orientation. We now give a negative
answer for graphical regular representations of finitely generated infinite simple groups
using the results from the previous section, relating periodicity and strong periodicity.
For vertex-colorings, we show that even if the notion of proper coloring is replaced by the
much weaker notion of non-trivial coloring, the answer to Problem 1.1 remains negative.
Lemma 3.2. Let G = Cay(Γ, S) be a graphical regular representation of a finitely gen-
erated infinite simple group Γ, for some finite set S of generators. Then every periodic
vertex-coloring of G is trivial. Moreover, if S contains an element of order 2, then G
does not have a periodic orientation.
Proof. For the sake of contradiction, consider some non-trivial vertex-coloring c of G
which is periodic, and denote by Γ′ the subgroup of Aut(G) = Γ of automorphisms of G
preserving the colors of the vertices of G. By Lemma 2.5, Γ′ has finite index in Γ.

Since c is non-trivial, there exist vertices u, v of G such that c(u) ̸= c(v). As G is a
Cayley graph, it is vertex-transitive and thus there is an automorphism g ∈ Aut(Γ) that
maps u to v. This automorphism g does not preserve the colors of the vertices, so this
shows that Γ′ must be a proper subgroup of Γ. By Corollary 2.2, this contradicts the fact
that Γ′ has finite index in Γ.

It now remains to prove the second part of the statement. So assume that S contains
some element s of order 2. Consider any g ∈ Γ = V (G), and its neighbor h = sg in G. As
s has order 2, the corresponding automorphism of G maps g to h and h to g, so it maps
the pair (g, h) to (h, g). If G has a periodic orientation, then the subgroup of orientation-
preserving automorphisms of G does not contain s, and is thus a proper subgroup of Γ.
Using Corollary 2.2 again, the same argument as in the previous paragraph then implies
that no such periodic orientation of G exists. □

Remark 3.3. As any proper vertex-coloring of a graph containing at least one edge is
non-trivial, Lemma 3.2 implies in particular that no graph satisfying the assumptions
of the lemma has a periodic proper vertex-coloring, and thus any graph satisfying the
conditions of Lemma 3.2 provides a negative answer to Problem 1.1.
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It remains to prove that a Cayley graph satisfying the conditions of Lemma 3.2 exists. A
specific example comes from R. Thompson’s group V , which is a finitely presented infinite
simple group. We omit the precise definition of V in this paper, and instead refer the
interested reader to the lecture notes [CFP96] for more details on R. Thompson’s groups.
It was proved by Leemann and de la Salle [LdlS22] that any finitely generated group
which is not virtually abelian has a graphical regular representation (see also [God80] for
related result in the finite case). It immediately follows that V has a graphical regular
representation. However, for our applications we need some control on the order of the
elements in the generating set. This is achieved in the following lemma, which uses
earlier results of Leemann and de la Salle [LdlS21] on graphical regular representations,
together with specific presentations of R. Thompson’s group V discovered by Bleak and
Quick [BQ17].

Lemma 3.4. R. Thompson’s group V has two finite sets S and T of generators such that
S contains an element of order 2, T does not contain any element of order 2, and both
Cay(V, S) and Cay(V, T ) are graphical regular representations of V .

Proof. Bleak and Quick [BQ17, Theorem 1.2] gave a presentation of V with three gener-
ators a, b, c, two of them having order 2. Using the fact that V has rank 2 and contains
elements of arbitrarily large order, [LdlS21, Corollary 11] by Leemann and de la Salle
implies that the set {a, b, c} of generators of V is a subset of a finite set S of generators
of V such that Cay(V, S) is a graphical regular representations of V .

Bleak and Quick [BQ17, Theorem 1.3] also gave a presentation of V with two generators
u, v, none of them having order 2. Using [LdlS21, Theorem 9], this implies that there
is a finite set T of generators of V containing u and v, such that T does not contain
any element of order 2 and Cay(V, T ) is a graphical regular representations of V , as
desired. □

Using Lemma 3.2, this immediately implies the following.

Corollary 3.5. R. Thompson’s group V has a finite generating set S such that Cay(V, S)
has no periodic orientation and no periodic non-trivial vertex-coloring.

Remark 3.6. We have chosen R. Thompson’s group V for simplicity but it should be
mentioned that other families of infinite finitely generated simple groups provide even
more striking negative answers to Problem 1.1 (and Problem 1.2, with some additional
work). For instance, if we consider again the setting of non-trivial vertex-coloring, we can
take a graphical regular representation G of a Tarski monster group of exponent p (see
[LdlS21, Theorem 14] for the existence of such a representation for sufficiently large p).
This group is infinite, finitely generated, and has the property that any proper subgroup
is isomorphic to the cyclic group of order p. As in the proof of Lemma 3.2, observe
that for any non-trivial vertex-coloring of G, the subgroup of Aut(G) of color-preserving
automorphisms of G must be a proper subgroup of Aut(G), and thus it must be finite
(which is stronger than being of infinite index).

It was pointed out to us by Emmanuel Jeandel that another infinite finitely generated
simple group, constructed by Osin [Osi10], provides a negative answer to Problem 1.1
which is even more remarkable. The group Γ constructed by Osin is an infinite, finitely
generated simple group with the property that any two non-identity elements are conju-
gate. Consider any graphical regular representation G = Cay(Γ, S) of such a group, for
some finite generating set S (the fact that such a representation exists follows directly
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from [LdlS22, Theorem 1.1], since infinite simple groups are not virtually abelian), and
a proper vertex-coloring c of G. Let g ∈ Aut(G) = Γ be any non-trivial automorphism
of G, and let s ∈ S. As g and s are conjugate, there exists h ∈ Γ such that gh = hs.
So the automorphism g of G maps h to its neighbor hs in G. As c(h) ̸= c(hs), g is
not color-preserving. It follows that the only color-preserving automorphism of G is the
identity. Hence, G is an infinite Cayley graph with the property that for every proper
vertex-coloring of G, the subgroup of color-preserving automorphisms of G is trivial! We
note that this seems to only apply to proper vertex-colorings (and not to the more general
setting of non-trivial vertex-colorings).

Alternative version (without graphical regularity). In the previous paragraphs
we have used specific graphical regular representations (that is, specific Cayley graphs)
of simple groups. We now explain how to turn any Cayley graph of a finitely generated
infinite simple group into a quasi-transitive graph with no periodic proper vertex-coloring
(and without periodic orientation, with an additional assumption). This does not require
any result on graphical regularity, but the downside is that the resulting examples are
only quasi-transitive (instead of being Cayley graphs).

Take any finitely generated infinite simple group Γ and any finite set S of generators (if
we want to give a negative answer to Problem 1.2, we only ask that S contains an element
of order 2). Write S = s1, . . . , sk and consider the graph G obtained from Cay(Γ, S) by
doing the following: for any vertex g ∈ Γ and element si ∈ S we add a path of length
(number of edges) 3i between g and gsi, say Pg,si = v0, v1, . . . , v3i with v0 = g and v3i = gsi,
and we add a new vertex whose unique neighbor is v3i−1. We also keep in G the (simple)
edges of from Cay(Γ, S). Note that G is quasi-transitive, and we claim that Aut(G) = Γ.
To see this, observe first that for the labelled, directed version Ĝ of Cay(Γ, S) where arcs
are labelled with the corresponding generators (i.e., in Ĝ we add an arc labelled s from
g to gs for any g ∈ Γ and s ∈ S), we have Aut(Ĝ) = Γ. Observe now that the paths Pg,si

in G force every automorphism of G to coincide with an automorphism of Ĝ on V (Ĝ).

A proof along the lines of that of Lemma 3.2 now shows that G has no periodic
proper vertex-coloring, and if S contains an element of order 2, then G has no periodic
orientation. On the other hand, G has a periodic non-trivial vertex-coloring (obtained
by coloring all the vertices of the original Cayley graph Cay(Γ, S) with color 1, and all
the newly added internal vertices of the paths with color 2). More generally, any quasi-
transitive graph which is not vertex-transitive has a periodic non-trivial vertex-coloring.

4. Infinitely-ended graphs and finite treewidth

Recall from Section 2 that the number of ends of a quasi-transitive graph is either
0, 1, 2 or ∞. The graphs presented in Section 3 providing negative answers to Problems
1.1 and 1.2 are all quasi-isometric to finitely generated infinite simple groups and are thus
1-ended [Los86]. It is thus natural to investigate whether we can also construct examples
with 2 or infinitely many ends (graphs with 0 ends are finite, and therefore not of interest
for these problems). In this section we will construct ∞-ended graphs providing negative
answers to Problems 1.1 and 1.2, and in the next section we will show on the other
hand that the answer to both problems is positive for 2-ended graphs. More precisely,
the negative examples we will construct in this section have bounded treewidth, while
all locally finite quasi-transitive 2-ended graphs have bounded pathwidth, so this shows
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that graphs of bounded pathwidth and bounded treewidth behave very differently in the
context of our problems.

4.1. Graphs of bounded treewidth. We now describe a simple construction of a quasi-
transitive locally finite graph of treewidth 2 that does not admit any periodic orientation.
This provides a negative answer to Problem 1.2, and thus also to Problems 1.1 and 1.3, as
the graph is planar. This example is a particular case of a more general family of examples
that we will describe in the next subsection. We start by giving a self-contained proof
that the graph does not admit a periodic orientation, and then we show more generally
that this holds for a wider family of examples.

Consider an orientation
−→
T of the infinite 3-regular tree T where each vertex has in-

degree 2 and out-degree 1. Next, for every arc (u, v) in
−→
T , replace (u, v) by a (non-

oriented) path u− ruv − suv − v, and add a new vertex tuv adjacent to suv only. Finally,
for each original vertex u of

−→
T , replace u by a triangle △u = u1u2u3, where each ui is

adjacent to a unique neighbor of u and where u1 is the closest vertex from the unique
out-neighbor of u in

−→
T . The resulting graph is denoted by G (see Figure 1 for an

illustration).

u v

ruv suv

tuv

u v

u

u1

u2 u3

. . . . . . . . . . . . . . . . . . . . . . . .

. . .. . .

. . .. . .. . .. . .. . .. . .. . .. . .

Figure 1. The orientation
−→
T of the infinite 3-regular tree T (left), and the

resulting graph G (right). The local modifications performed to construct
G from

−→
T are illustrated at the top.

It is easily seen that G has treewidth at most 2 (and is planar). The fact that G is quasi-
transitive easily follows from the fact that

−→
T is vertex-transitive, and that there is a natu-

ral bijection between the automorphisms of
−→
T and the automorphisms of G: given an au-

tomorphism g of
−→
T , the corresponding automorphism of G maps u1 to g(u)1 and {u2, u3}

to {g(u)2, g(u)3} for any vertex u ∈ V (
−→
T ), and ruv, suv, tuv to rg(u)g(v), sg(u)g(v), tg(u)g(v) for

any arc (u, v) of
−→
T . In the other direction, observe that any automorphism h of G must

map each triangle △u to some triangle △g(u), and the resulting map g is an automorphism
of

−→
T .

Remark 4.1. Every automorphism of
−→
T translates some 2-way infinite directed path

or stabilizes some vertex (this is a classical result of Tits [Tit70, Proposition 3.2], but
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follows also easily from a result of Halin [Hal73, Theorem 7]). In the latter case, if the
automorphism is distinct from the identity, then there is a vertex v such that the two
in-neighbors of v are exchanged by the automorphism.

This remark implies the following.

Claim 4.2. For every subgroup Γ of Aut(G) acting quasi-transitively on V (G), there
exists some automorphism g ∈ Γ and some u ∈ V (

−→
T ) such that g(u2) = u3 and g(u3) = u2.

Proof of the Claim: Recall that there is a natural bijection between Aut(G) and Aut(
−→
T ).

If some automorphism g ∈ Γ distinct from the identity has the property that the cor-
responding automorphism of

−→
T stabilizes a vertex of

−→
T , then the result follows from

Remark 4.1. So we only need to prove the existence of such an automorphism g ∈ Γ.
We say that v is an ancestor of u in

−→
T if there is a directed path from u to v in

−→
T .

The minimum common ancestor of two vertices u and v refers to the common ancestor
of u and v which is minimum in the ancestor relation (viewed as a partial order on
V (

−→
T )). We define a relation ∼ on V (

−→
T ) as follows. Given two vertices u, v ∈ V (

−→
T ),

u∼ v if and only if dT (u,w) = dT (v, w), where w denotes the minimum common ancestor
of u and v and the function dT denotes the distance in T (or equivalently

−→
T ). Note

that ∼ is an equivalence relation, and each equivalence class is infinite. In particular,
since Γ acts quasi-transitively on V (G), there exist an automorphism g ∈ Γ such that the
corresponding automorphism of

−→
T maps some vertex u to some different vertex v ∼ u.

But then such a non-trivial automorphism must stabilize all common ancestors of u and
v in

−→
T , as desired. ♢

Now, assume for the sake of contradiction that G has a periodic orientation. Then,
by definition, the subgroup of orientation-preserving automorphisms of G acts quasi-
transitively on V (G). By Claim 4.2, some orientation-preserving automorphism g of G
must exchange two vertices u2 and u3, for some u ∈ V (

−→
T ). Assume by symmetry that

(u2, u3) is an arc in the periodic orientation of G. Then g maps the arc (u2, u3) to (u3, u2),
which contradicts the property that g is orientation-preserving (cf. Lemma 2.10). This
contradiction shows that G does not admit a periodic orientation (and thus does not
admit a periodic proper vertex-coloring either).

Edge-colorings. We now describe a similar construction of a quasi-transitive locally
finite tree that does not admit any periodic proper edge-coloring. Consider the tree T ′

obtained from the orientation T⃗ of the infinite 3-regular tree we described above, after
replacing every arc (u, v) by a (non-oriented) path u−ruv−suv−v and after adding a vertex
tuv adjacent to suv. Equivalently, T ′ is obtained from the graph G we constructed above
after contracting every triangle ∆u into a single vertex u (see Figure 2). Then the exact
same arguments used in the proof of Claim 4.2 apply to show that for every subgroup Γ of
Aut(T ′) acting quasi-transitively on T ′, there exists some non-trivial element g ∈ Γ\{1Γ}
that fixes a vertex w ∈ V (T ) while exchanging two of its neighbors. In particular, g
maps some edge e to some edge f incident to e, which contradicts the fact that g is
color-preserving (since e and f have distinct colors in any proper edge-coloring). This
contradiction shows that T ′ cannot admit a periodic proper edge-coloring.

4.2. Obstructions to periodic orientations and colorings. We say that a tree-
decomposition (T,X ) of a graph G is canonical, if Aut(G) induces a group action by
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. . .. . .

. . .. . .. . .. . .. . .. . .. . .. . .

Figure 2. The construction of a quasi-transitive tree T ′ with no periodic
proper edge-coloring (right), starting from the orientation

−→
T of the infinite

3-regular tree (left). In every periodic edge-coloring of T ′, some color-
preserving automorphism of T ′ has to exchange a pair of incident edges
(depicted in red and blue on the figure).

automorphisms on T such that for every g ∈ Aut(G) and t ∈ V (T ), g(Xt) = Xg·t. Here
t 7→ g ·t denotes the action of g ∈Aut(G) on t ∈ V (T ). In particular, every automorphism
of G sends bags of (T,X ) to bags and adhesion sets to adhesion sets.

Recall that the action of a group Γ on a set X is free if the only element of Γ stabilizing
an element of X is the identity element 1Γ. We will need the following result, whose proof
is based on the same arguments we used to prove Claim 4.2.

Lemma 4.3. Let Γ be a group acting quasi-transitively on a ∞-ended tree T and stabi-
lizing an end of T . Then the action of Γ on T cannot be free.

Proof. Let ω denote an end of T fixed by the action of Γ on T , and consider the orientation
T⃗ of T obtained after orienting every edge e = uv toward ω, i.e., if Tu, Tv denote the two
components of T − e containing respectively u and v, then we add the arc (u, v) in T⃗ if
ω lives in Tv. Now every vertex of T⃗ has out-degree exactly 1, and Γ induces a group
action on T⃗ .

The remainder of the proof is identical to the one in the proof of Claim 4.2: we define
similarly an equivalence relation ∼ on T⃗ by letting u ∼ v if and only if u and v lie at the
same distance from their minimum common ancestor. As T is quasi-transitive and has
infinitely many ends, the equivalence classes of ∼ must be infinite. In particular, as Γ
acts quasi-transitively on T , there exist u, v ∈ V (T ) with u ̸= v, u ∼ v and some g ∈ Γ
such that g(u) = v. Then g is non-trivial, and stabilizes every common ancestor of u and
v, so it follows that the action of Γ on T is not free. □

The results of this subsection deal with the situation of locally finite infinitely ended
graphs with an automorphism group fixing an end and acting transitively on the graph. It
is known [Möl92] that these graphs are quasi-isometric to trees and hence have bounded
treewidth. It follows that the same is true if the action fixes an end but only acts quasi-
transitively on the graph.

The example presented in the previous subsection is a particular case of a more general
family of graphs whose structure is described by the following lemma.

Lemma 4.4. Let G be a locally finite quasi-transitive graph and let (T,X ) be a canonical
tree-decomposition of G such that:
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• for every automorphism g of G that stabilizes the bag of some vertex t ∈ V (T ) but
does not stabilize the bag of some neighbor of t in T , g exchanges two adjacent
vertices in G, and

• there is an end of G which is stabilized by all automorphisms of G.
Then G does not have a periodic orientation (and thus does not have a periodic proper
vertex-coloring either).

Proof. Assume for the sake of contradiction that G has a periodic orientation, and let Γ
be the group of orientation-preserving automorphisms of G, acting quasi-transitively on
G, and thus also on T . Note that Γ stabilizes the end of T corresponding to the end of G
stabilized by Aut(G). By Lemma 4.3, the action of Γ on T cannot be free, so there is an
automorphism g ∈ Γ that stabilizes some bag Xt of (T,X ), but does not stabilize some
bag Xt′ where t′ is a neighbor of t in T . It follows that g inverts an edge uv in G, which
contradicts the fact that Γ is orientation-preserving. □

The following slightly different class of graphs also provides examples of locally finite
quasi-transitive graphs of bounded treewidth with no periodic proper vertex-coloring.

Lemma 4.5. Let G be a locally finite ∞-ended quasi-transitive graph, and let (T,X ) be
a canonical tree-decomposition of G such that:

• every bag is a finite clique, and
• for every adhesion set X there is a unique edge tt′ ∈ E(T ) such that X is the

intersection of the bags of t and t′, and
• there is an end of G which is stabilized by all automorphisms of G.

Then G does not have a periodic proper vertex-coloring.

Proof. Assume for the sake of contradiction that G has a periodic proper vertex-coloring
c, and let Γ be the subgroup of color-preserving automorphisms of G (acting quasi-
transitively on G, and thus also on T ). For g ∈ Γ, we denote by gT the action of g on T .
Suppose for a contradiction that Γ does not act freely on T . Then, there exists an edge
tt′ ∈ E(T ) and g1, g2 ∈ Γ such that gT1 (t) = gT2 (t) but gT1 (t

′) ̸= gT2 (t
′). Since the bag Xt

of t in (T,X ) is a clique, every vertex of Xt is colored with a distinct color, and since Γ
respects the coloring, it follows that g1(v) = g2(v) for all v ∈ Xt. In particular, g1 and
g2 agree on Xt ∩Xt′ , the adhesion set of (T,X ) corresponding to the edge tt′ of T . But
since the adhesion sets of Xt are unique, it follows that gT1 (t

′) = gT2 (t
′), a contradiction.

This shows that Γ acts freely on T , a contradiction with Lemma 4.3. □

4.3. Limits of color reduction. Lemma 2.7 shows that Problem 1.1 is equivalent to
the stronger version where we ask for a periodic proper (∆(G) + 1)-vertex-coloring. This
raises the following natural question.

Problem 4.6. Is it true that every locally finite graph G with a periodic proper vertex-
coloring has a periodic proper vertex-coloring with χ(G) colors?

We will see in the next section that the answer to this question is positive for 2-ended
graphs, but in the remainder of this section we show that the answer is negative for
∞-ended graphs.

Consider the unique orientation
−→
T of the infinite 3-regular tree where every vertex

has out-degree exactly one (see Figure 3, left), and replace every vertex v ∈ V (
−→
T ) by a

copy Hv of the finite graph H depicted in Figure 3, top right, connecting incident edges
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c H

Figure 3. The construction of a quasi-transitive graph G with no periodic
proper vertex-coloring with χ(G) = 3 colors but with a periodic proper
vertex-coloring with χ(G)+1= 4 colors (right), starting from an orientation
−→
T of the infinite 3-regular tree (left).

as illustrated there. The resulting graph G is depicted in Figure 3, right. This graph is
locally finite, ∞-ended, quasi-transitive, and satisfies χ(G) = 3. Figure 3 (right) illustrates
the fact that G has a periodic proper vertex-coloring with 4 = χ(G) + 1 colors. On the
other hand, we claim that G does not have such a periodic coloring with 3 = χ(G) colors.
To see this, we first observe that automorphisms of G map copies of H to copies of H, so
any automorphism of G induces an automorphism of

−→
T . Moreover, every automorphism

of
−→
T must stabilize the end ω of

−→
T containing all infinite 1-way directed paths.

Assume for the sake of contradiction that G has a periodic proper coloring c with 3
colors, and let Γ be the subgroup of Aut(G) of automorphisms preserving the coloring
c. By Lemma 4.3, the action of Γ on

−→
T cannot be free, so there is an automorphism

g ∈ Γ \ {1Γ} whose induced action on
−→
T stabilizes some vertex v ∈

−→
T , but does not

stabilize some in-neighbor u of v in
−→
T . In particular, g stabilizes Hv, and maps Hu to

some disjoint copy Hu′ of H, for some u′ ̸= u. This automorphism must exchange the
two vertices of Hv connected to the copies of H associated to the in-neighbors of v in

−→
T

(these vertices are depicted in white in Figure 3, top right). However it can be checked
easily that in any proper vertex-coloring of H with χ(H) = 3 colors, these 2 vertices have
distinct colors, which contradicts the fact that g is color-preserving. This shows that G
does not have a periodic proper vertex-coloring with χ(G) colors, while it has a periodic
proper vertex-coloring with χ(G) + 1 colors.

Remark 4.7. Consider the graph G described above, and replace in G every vertex by a
clique of size k, and every edge be a complete bipartite graph Kk,k. Then the resulting
graph has chromatic number 3k, and a proof similar to that above shows that every
periodic proper vertex-coloring requires at least 4k colors.

Remark 4.8. We have proved in Lemma 2.7 that any graph G with a periodic proper
vertex-coloring has a periodic proper vertex-coloring with ∆(G) + 1 colors. The example
constructed above has maximum degree ∆(G) = 4, and no periodic proper vertex-coloring
with 3 = ∆(G)− 1 colors, which shows that Lemma 2.7 is close to best possible.
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Our construction in this section gives a negative answer to Problem 4.6 as it stands,
but the following weaker problem remains open (even for f(x) = 4

3
x+ 1).

Problem 4.9. Is there a function f such that every locally finite graph G with a periodic
proper vertex-coloring has a periodic proper vertex-coloring with f(χ(G)) colors?

5. 2-ended graphs and bounded pathwidth

In previous sections we have seen 1-ended and ∞-ended examples of quasi-transitive
locally finite graphs with no periodic orientation (and thus no periodic proper vertex-
coloring). In this section, we show that every 2-ended quasi-transitive locally finite graph
has a periodic vertex-coloring (and thus a periodic orientation). We start with the case
of Cayley graphs of finitely generated groups, for which the result directly follows from
classical results on subshifts of finite type in symbolic dynamics. We then show that the
same ideas can be applied more generally to any 2-ended quasi-transitive locally finite
graph.

5.1. 2-ended groups and subshifts of finite type. Consider a finitely generated
group Γ. Let A be a finite set of colors and consider any coloring σ : Γ → A. For every
g ∈ Γ, we define the coloring g · σ : Γ → A by setting for each x ∈ Γ, g · σ(x) := σ(g−1x).
Note that this defines a group action of Γ on the set AΓ of A-colorings of Γ.

Let F be a finite subset of Γ, and let α : F → A be a coloring of F . A coloring
σ : Γ→ A of the elements of Γ is said to avoid the pattern α (we also say that the pattern
α is forbidden in σ) if for any g ∈ Γ, the restriction of g · σ to F is distinct from α. In
other words, this means that for all sets S in the Γ-orbit of F , the corresponding coloring
α of S is avoided in σ.

A subshift of finite type in Γ is the set of all colorings of Γ avoiding a given finite set
of patterns. We say that a coloring σ : Γ → A is strongly periodic if StabΓ(σ) has finite
index in Γ, or equivalently if the orbit Γ · σ is finite. We say that Γ is strongly periodic if
any non-empty subshift of finite type in G contains a strongly periodic coloring.

Remark 5.1. Let σ : Γ → A, and fix a finite generating set S of Γ. Then σ is strongly
periodic if and only if Γ induces a quasi-transitive group action on the colored graph
(Cay(Γ, S), σ). This follows from the fact that the elements of Γ that induce automor-
phisms of the colored graph (Cay(Γ, S), σ) are exactly the elements from StabΓ(σ). Thus
the Γ-orbits of the vertices of the colored graph (Cay(Γ, S), σ) correspond to the differ-
ent right-cosets StabΓ(σ)g. (This is just a rephrasing of the arguments in the proofs of
Lemmas 2.3 and 2.5 in Section 2.)

It was proved in [CP15] that every group which is virtually Z is strongly periodic
(see also [Coh17]). This directly implies the following, which gives a positive answer to
Problem 4.6 in the case of Cayley graphs of bounded pathwidth.

Theorem 5.2. For every finitely generated 2-ended group Γ and every finite generating
set S, the graph G = Cay(Γ, S) has a periodic proper vertex-coloring with χ(G) colors.

Proof. Let c be an optimal proper vertex-coloring of G, with colors from a finite set A
with |A|= χ(G), and consider the subshift of finite type X in Γ where for each edge uv in
G, the vertices u and v are required to have different colors. This can clearly be encoded
by a finite set of forbidden patterns in Γ (all colorings of pairs (1Γ, s) for s ∈ S where 1Γ
and s have the same color). The coloring c witnesses that the subshift of finite type X
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defined above is non-empty. Since Γ is a finitely generated 2-ended group, it is virtually
Z and thus strongly periodic [CP15]. It follows that G has a proper vertex-coloring c′

with colors from A which has a finite orbit under the action of Γ. By Remark 5.1, this
implies in particular that c′ is periodic, as desired. □

We note here that the approach using subshifts of finite type is inherently limited: it
was proved in [Pia08] that non-abelian free groups are not strongly periodic, and it was
even conjectured in [CP15] that a group is strongly periodic if and only if it is virtually
cyclic (that is, finite or virtually Z).

5.2. 2-ended graphs and bounded pathwidth. We now extend Theorem 5.2 to all
2-ended locally finite quasi-transitive graphs (or equivalently, to all locally finite quasi-
transitive graphs of bounded pathwidth). Recall that a finitely generated group is 2-ended
if and only if it is virtually Z [Hop44].

A separation in a graph G is a triple (Y, S, Z) where Y, S, Z are pairwise disjoint subsets
of V (G) with V (G) = Y ∪ S ∪ Z and no edge of G has an endpoint in Y and the other
in Z. The order of (Y, S, Z) is |S|. A separation (Y, S, Z) is said to separate two ends
ω1, ω2 of G if all but finitely many vertices of each ray of ω1 lie in Y , and similarly all
but finitely many vertices of each ray of ω2 lie in Z.

The following is a folklore result (see [Jun81, Theorem 1.1] for a weaker version for
vertex-transitive graphs, with essentially the same proof).

Lemma 5.3. Let G be a connected locally finite quasi-transitive graph with two ends.
Then G has a separation (Y, S, Z) of finite order separating the two ends of G and there
is an element g ∈ Aut(G) of infinite order such that g(S ∪ Z) ⊆ Z.

Proof. Let k ∈ N\{0} be the minimum order of a separation (Y, S, Z) separating the two
ends of G, i.e. such that both G[Y ] and G[Z] contain an infinite component of G − S,
and let (Y, S, Z) be a separation of order k separating the two ends of G such that G[Z] is
connected. Let g1 ∈ Aut(G) be such that g1(S) ⊆ Z (as Z is infinite and quasi-transitive,
such an element g1 exists), and set (Y1, S1, Z1) := (g1(Y ), g1(S), g1(Z)). If Z1 ⊆ Z, we
set g := g1, and claim that g must have infinite order, as an easy induction shows that
then gi+1(S ∪ Z) ⊆ gi(Z) ⊊ Z for all i ⩾ 0. If Z1 is not included in Z, then as G[Z] is
connected (and thus G[Z1] also is) we must have Y ⊆ Z1 and Y1 ⊆ Z. Let g2 ∈ Aut(G) be
such that g2(S) ⊆ Y1 ⊆ Z, and set (Y2, S2, Z2) := (g2(Y ), g2(S), g2(Z)). Again, if Z2 ⊆ Y1,
then Z2 ⊆ Z and we conclude as before choosing g := g2; thus we can assume that we do
not have Z2 ⊆ Y1. As G[Z2] is connected we have S1 ⊆ Z2 and thus S1 ∪ Z1 ⊆ Z2. We
now conclude by choosing g := g1g

−1
2 , which satisfies g(S2 ∪ Z2) = S1 ∪ Z1 ⊆ Z2. Again,

the fact that g has infinite order immediately follows. □

We now prove the main result of this section, giving a positive answer to Problem 4.6
for connected locally finite 2-ended quasi-transitive graphs, and extending Theorem 5.2.

Theorem 5.4. Let G be a connected locally finite quasi-transitive graph with 2 ends.
Then G has a periodic proper vertex-coloring with χ(G) colors.

Proof. We let (Y, S, Z) and g ∈ Aut(G) be given by Lemma 5.3. For each i ∈ Z, let
(Yi, Si, Zi) := (gi(Y ), gi(S), gi(Z)). Then Sj ∪ Zj ⊆ Zi for all i < j and (Yi, Si, Zi) also
separates the two ends of G. Let c : V (G)→ [χ(G)] be a proper vertex-coloring of G. By
the pigeonhole principle there exist i < j such that c(gi(x)) = c(gj(x)) for all x ∈ S. Up
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to replacing g by gj−i, we may assume that i = 0 and j = 1, i.e., that c(g(x)) = c(x) for
all x ∈ S.

For all i ∈ Z, we let Vi := V (G) \ (Yi ∪ Zi+1). Then for each i ∈ Z, Si ∪ Si+1 ⊆ Vi,
Vi+1 = g(Vi), Vi ∩ Vi+1 = Si+1, and as G has two ends and bounded degree, the graph
Gi := G[Vi] is finite. Moreover, note that {Vi : i ∈ Z} covers V (G). We also observe that
for every i ⩽ i′ ⩽ j, we have Vi ∩ Vj = V (G) \ (Yj ∪ Zi+1) ⊆ V (G) \ (Yi′ ∪ Zi′+1) = Vi′ .
This last inclusion implies in particular that for every i < j and v ∈ Vi ∩ Vj, we have
v ∈ Vi ∩ Vi+1 ∩ Vj−1 ∩ Vj = Si+1 ∩ Sj+1. Hence, by our choice of (Y, S, Z), we then have
c(g−i(v)) = c(g−j(v)).

We now define a vertex-coloring c̃ : V (G) → [χ(G)] by setting for each i ∈ Z and v ∈
Vi, c̃(v) := c(g−i(v)). In other words, the vertex-coloring c̃ is obtained by repeating
periodically c|V0 on each Gi. First, note that by our previous remark and the fact that
{Vi : i ∈ Z} covers V (G), c̃ is well-defined on V (G). Moreover, by definition g is color-
preserving, i.e., c̃(g(v)) = c̃(v) for all v ∈ V (G).

We show that c̃ is a proper vertex-coloring. For this, we show that for every edge
uv ∈E(G), there exists i ∈ Z such that u, v ∈ Vi. This simply follows from the observation
that for each i < j, Si′+1 separates Yi from Zj. In particular, for every edge uv ∈ E(G),
if is such that u, v ∈ Vj, then g−i(u) and g−i(v) are also adjacent in G0 and thus c̃(u) =
c(g−i(u)) ̸= c(g−i(v)) = c̃(v), proving that c̃ is a proper vertex-coloring of G.

As the sets Vi are finite and cover V (G), and g(Vi) = Vi+1 for each i ∈ Z, the subgroup
of Aut(G) generated by g induces a quasi-transitive action on V (G). We conclude that
G has a periodic proper χ(G)-coloring. □

We recall that the chromatic index of a graph G, denoted by χ′(G), is the minimum
number of colors in a proper edge-coloring of G. This is well defined when the maximum
degree of the graph is finite, which is the case for locally finite quasi-transitive graphs.
The line-graph L(G) of a graph G is the graph with vertex set E(G) in which two
vertices are adjacent if and only if the corresponding edges of G share a vertex. Note
that χ′(G) = χ(L(G)) for any graph G.

We obtain the following consequence of Theorem 5.4 for edge-colorings of 2-ended
locally finite quasi-transitive graphs.

Corollary 5.5. If G is a connected locally finite quasi-transitive graph with 2 ends, then
there exists a periodic proper edge-coloring of G with χ′(G) colors.

Proof. Note that the line-graph L(G) is also locally finite, connected, and quasi-transitive
(if there are k orbits of V (G) under the action of Aut(G), there are at most k∆(G) orbits
of E(G) under the action of Aut(G)). Moreover, as rays in L(G) are in correspondence
with rays of G and similarly finite subsets separating the ends of G are in correspondence
with finite subsets separating the ends of L(G) (in both cases we use the fact that G has
bounded degree), L(G) is also 2-ended. We can thus conclude by applying Theorem 5.4
to L(G). □

Remark 5.6. Corollary 5.5 can also be proved directly by a simple modification of the
proof of Theorem 5.4, and by similar modifications the proof can be adapted to work
with other types of objects in graphs, for instance periodic perfect matchings (assuming
G has a perfect matchings), periodic nowhere-zero k-flows (assuming G has a nowhere-
zero k-flow), etc. In all these cases, if a connected locally finite 2-ended quasi-transitive
graph G can be decorated with an additional structure S, then G can be decorated with
a periodic version of S.
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6. Discussion and open problems

Recall our original question: is it true that every quasi-transitive graph G can be
decorated with a non-trivial additional structure such that the graph G is still quasi-
transitive if we restrict ourselves to automorphisms preserving the additional structure?
We have considered two specific instances of this problem (Problems 1.1 and 1.2) and
proved that each of them has a negative answer, even for Cayley graphs and graphs of
bounded treewidth. The examples providing a negative answer to Problem 1.1 even rule
out the existence of a non-trivial vertex-coloring that is periodic, which immediately rules
out the existence of a number of other natural structures in graphs (any non-trivial vertex
subset for instance) that would be periodic, in the same sense as before.

The corresponding problem for edge-colorings or edge-subsets appears to be more diffi-
cult. We say that an edge-coloring of a graph G is trivial if for each connected component
C of G, all the edges of C are assigned the same color. We also say that a graph is trivial
if all its connected components contain at most one edge (note that every edge-coloring
of a trivial graph is trivial).

Problem 6.1. Is it true that every non-trivial locally finite quasi-transitive graph has a
periodic non-trivial edge-coloring?

Color reduction arguments also work for non-trivial edge-colorings. Consider a non-
trivial edge-coloring c of a graph G. If a component C of G contains at least two edges,
then c uses at least two different colors from C, say colors 1, 2. For every e ∈ E(G), let
c′(e) = 1 if c(e) = 1, and c′(e) = 2 otherwise. Note that c′ is non-trivial and only uses 2
colors. It follows that Problem 6.1 is equivalent to the following problem.

Problem 6.2. Is it true that every non-trivial locally finite quasi-transitive graph has a
periodic non-trivial edge-coloring with two colors?

Note that coloring the edges of G with two colors is equivalent to choosing a spanning
subgraph H of G, by which we mean a subgraph of G with vertex set V (G) (that is,
obtained from G by only removing edges). This can be seen by considering the spanning
subgraph of G whose edges are all the edges of G colored 1 (note that this spanning
subgraph possibly contains isolated vertices). So we can ask equivalently:

Problem 6.3. Is it true that every non-trivial locally finite quasi-transitive graph has a
periodic non-trivial spanning subgraph?

Here, by non-trivial subgraph H of a graph G, we mean that at least one connected
component of G contains an edge of H and a non-edge of H (that is an edge of G which
is not in H). By periodic subgraph we mean a subgraph H of G such that the subgroup
of automorphisms of G stabilizing H (that is, mapping edges of H to edges of H and
non-edges of H to non-edges of H) acts quasi-transitively on G.

Note that these problems have a trivial (positive) answer for graphs that are not edge-
transitive (by taking H to be an orbit of the action of Aut(G) on the edge-set of G), so
any possible counterexample must be edge-transitive.

While we were not able to provide a negative answer to these problems, the examples
constructed in the previous sections severely restrict the properties of such a spanning
subgraph H in general. Let us say that a class of graphs C is periodizing if any non-trivial
locally finite quasi-transitive graph G has a periodic non-trivial spanning subgraph H ∈ C.
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Problem 6.3 asks whether the class of all graphs is periodizing. We now give a number
of sufficient conditions on periodizing graph classes.

Lemma 6.4. Every periodizing class contains a vertex-transitive (and thus regular) infi-
nite graph of minimum degree at least 2.

Proof. Consider the Cayley graph G= Cay(V, T ) given by Lemma 3.4, where we consider
Thompson’s group V , which is a finitely generated infinite simple group, and where T
is a finite generating set of V containing no element of order 2, and such that G is a
graphical regular representation of V (that is, Aut(G) = V , see Section 3). Assume that
G has a non-trivial spanning subgraph H such that the subgroup Γ of automorphisms of
G stabilizing H acts quasi-transitively on G. As in the proof of Lemma 3.2, it directly
follows from Corollary 2.2 that Γ = V , that is, all the automorphisms of G stabilize H.
Since G is vertex-transitive, H is also vertex-transitive and thus d-regular with d ⩾ 1,
since H is non-trivial. Assume for the sake of contradiction that d = 1 and consider two
adjacent vertices u, v in H. Consider an automorphism g of G that maps u to v, and
observe that g must map v to u, since otherwise v would have degree 2 in H. It then
follows that the element s ∈ T corresponding to the edge uv in G has order 2 in V , a
contradiction. □

A k-factor in a graph is a spanning subgraph in which every vertex has degree k.
Observe that Lemma 6.4 implies that Problem 6.3 has a negative answer if we require H
to be a forest, and in particular a 1-factor (i.e., a perfect matching). The simplest version
of Problem 6.3 we can think of is thus the following.

Problem 6.5. Is it true that every 4-regular vertex-transitive infinite graph has a periodic
2-factor?

A classical result of Petersen [Pet91] asserts that every finite Eulerian graph G has a
spanning subgraph H such that for every vertex v ∈ V (G), dH(v) = dG(v)/2, and the
result can be extended to infinite locally finite graphs by compactness. Hence, every
infinite 4-regular graph contains a 2-factor.

Planar graphs. Planar Cayley graphs are a well-studied topic (see [GH19] and the refer-
ence therein), and by extension planar quasi-transitive graphs have been extensively stud-
ied (see for instance [Bab97, Ham15, EGLD24, Mac23]). We have seen examples of planar
quasi-transitive graphs with no periodic orientation in Section 4 (these examples are all
∞-ended), and in Section 5 we have seen that all 2-ended quasi-transitive graphs have a
periodic proper vertex-coloring (and thus a periodic orientation). A natural question is
whether all planar 1-ended quasi-transitive graphs have a periodic proper vertex-coloring.
Using a theorem of Babai [Bab97] providing embeddings of planar 1-ended 3-connected
quasi-transitive graphs in the Euclidean plane or the hyperbolic plane, it can be proved
that in the Euclidean case the graphs have a periodic proper vertex-coloring (see also the
discussion following Question 4.8 in [Tim11]). However, it is unclear whether the same
holds in the hyperbolic case.

Problem 6.6. Are there 1-ended quasi-transitive planar graphs without periodic proper
vertex-coloring?
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