MINOR EXCLUSION IN QUASI-TRANSITIVE GRAPHS

MATTHIAS HAMANN

ABSTRACT. In this note, we show that locally finite quasi-transitive graphs are
quasi-isometric to trees if and only if every other locally finite quasi-transitive
graph quasi-isometric to them is minor excluded. This generalizes results by
Ostrovskii and Rosenthal and by Khukhro on minor exclusion for groups.

1. INTRODUCTION

For two graphs G, H, we call H a minor of G if H can be obtained from G by
contracting edges and deleting edges and vertices. A graph is minor excluded if
there exists some finite graph that is not a minor of it.

In graphs, minor exclusion has played an important role for a long time, e. g. via
Kuratowski’s planarity criterion. Considering groups, minor exclusion was mostly
considered in the case of planar groups, where a finitely generated group is planar
if it has a planar locally finite Cayley graph. Ostrovskii and Rosenthal [7] looked at
minor exclusion for groups from a broader viewpoint: do there exist locally finite
groups all of whose locally finite Cayley graphs are minor excluded (not minor
excluded)? They answered both questions positively: they proved for an infinite
class of finitely generated groups that all of their locally finite Cayley graphs are not
minor excluded and they proved that every locally finite Cayley graph of any finitely
generated virtually free group is minor excluded. This latter result was extended
by Khukhro [5]. She showed the reverse direction, i.e. characterised the finitely
generated groups all of whose locally finite Cayley graphs are minor excluded as
the finitely generated virtually free groups.

We generalise this characterisation to quasi-transitive graphs, where a graph is
quasi-transitive if its automorphism group acts on it with only finitely many orbits.
The analogue of looking at Cayley graphs in this situation is that we ask for minor
exclusion for all locally finite quasi-transitive graphs that are quasi-isometric to the
original one. For two graph G and H a map ¢: V(G) — V(H) is quasi-isometric
if there exist v > 1 and ¢ > 0 such that the following holds for all z,y € (G):

%dH«o(z), o) — ¢ < da(z,y) < vdu (), o)) +

where dg and dpy denote the distance functions in G and H, respectively. We will
prove the following theorem.

Theorem 1.1. Let G be a locally finite quasi-transitive graph. Then G is quasi-
isometric to a tree, if and only if every locally finite quasi-transitive graph quasi-
isometric to G is minor excluded.
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Bonamy et al. [1] proved that all locally finite Cayley graphs of finitely generated
groups of asymptotic dimension at least 3 are not minor excluded, moreover from
their discussion follows that all quasi-transitive locally finite graphs of asymptotic
dimension at least 3 are not minor excluded. On the other side, quasi-transitive
locally finite graph that are quasi-isometric to trees have asymptotic dimension 1.
However there are finitely generated groups of asymptotic dimension 1 that are not
virtually free, see Gentimis [2]. The following question remains open: do there exist
locally finite quasi-transitive graphs of asymptotic dimension at most 2 such that all
locally finite quasi-transitive graphs quasi-isometric to it are not minor excluded?

2. PrROOF

Before we start the proofs, we need some definitions. Let G and H be graphs.
We call H a minor of G, if there exists a set {G, | x € V(H)} of disjoint subsets
of V(G) such that if zy € E(H), then there exists uv € E(G) with v € G, and
v € Gy. The vertex sets G, are the branch sets.

By G? we denote the graph with vertex set V(G) such that two vertices are
adjacent if and only if their distance in G is either 1 or 2.

A ray is a one-way infinite path. Two rays in G are equivalent if for every finite
S C V(G) there exists a component of G — S that contains all but finitely many
vertices of both rays. This is an equivalence relation whose classes are the ends
of G. Let m € N. An end has degree at least m if it contains m pairwise disjoint
rays. An end is thin if there exists an n € N such that the end does not have degree
at least n. It is thick if it is not thin.

Proposition 2.1. Let G be an infinite graph with an end of degree at least m.
Then G? contains a K,,-minor.

Proof. Let w be an end of G of degree at least m and let Ry, ..., R,, be m disjoint

rays in w. Let Py,...,P, with n = W be an enumeration of the two-element
subsets of {Ry,..., R}
For all i € {0,...,n} we construct a finite vertex set S; of G, m disjoint rays

t...,Rl in G? and a set Q; of i disjoint paths in G2 such that the following
holds:
(i) R, and R,, coincide outside of S;;
ii) the last vertex of R!, in S; lies on R,,;
the vertices of R! outside of S; form a tail of R! ;
every Q € Q; is internally disjoint from all RY;
every () € Q; has all its vertices in S;;
(vi) for every 1 < j <4, there is a path Q; € Q; joining the rays in P;.
Note that (i) implies that R!, has a tail in G.

For ¢ =0, set S; = 0 and Q; = () and R; = R; for all 1 < j < m. This satisfies
(i)—(vi) trivially.

Now let us assume that we have constructed S; 1, R®™*,...  Ri>" and Q; ;. Let
P; = {Rk, Ry} and let Q be a path in G — S;_1 joining Ry and R,. Note that @
also joins R}:l and szl. We may assume that @) meets those two rays only in its
end vertices. Let Rﬁl_l be the ray that @ meets first after its starting vertex. Let
be the first common vertex on @ of Q) and Rﬁfl and let z2 be the last such vertex.

Now we modify @ and R;l_l as shown in Figure 1: we remove every second vertex of
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FiGure 1. Modifying z1Qzs and lefl_lzz:g depending on the

length of leZ_le: the middle figure shows an example for odd
distance and the rightmost figure for even distance.

lejflxg from that ray, so that the remaining vertices still form a ray in G2. Now
we replace x1Qz2 by the vertices that we just removed from lefl_lxg. Together
with Qx; without 21 and x5Q without x5 it forms a path in G?. We continue doing
these modifications for all remaining intersections of the new path with other rays
Rﬁ;l, where we put the vertices with even distance to the first vertex of Q and
Rjj_l into the modification of @) if the last common vertex of Rﬁj_}l and Q) was not
put into that path and otherwise the vertices with odd distance. If we have not
modified the ray R;fl, then we set R;- = R;fl. By the choice of when to put the
first common vertex of @ and the rays into the modification of Q) or the new rays,
the resulting path @’ and the rays Rﬁj are indeed a path and rays. Then Q' will
be added to the set Q;_1 to obtain the set Q;. Let S; be S;_1 together with all
vertices of Q' and, for each 1 < j < m, a finite starting path of R; such that R;
coincides with R; after this path and such that the last vertex of that path also lies
on R;. By construction, (i)—(vi) hold.

For 1 <i <m, let P; be a subpath of R} that contains all vertices of R} that lie
on paths of Q,,. Then it is easy to see that G? contains a K,,-minor, where each
P; lies in a different branch set and each @@ € Q,, that connects P; and P; is split
among those branch sets. (]

Using a result of Thomassen [8], we obtain the following corollary of Proposi-
tion 2.1.

Corollary 2.2. Let G be a one-ended quasi-transitive locally finite graph. Then
G? is not minor excluded.

Proof. By Thomassen [8, Proposition 5.6], the unique end of a one-ended quasi-
transitive locally finite graph is thick. Thus, Proposition 2.1 implies the assertion.
O

Proposition 2.3. Let G be a graph of bounded degree that is quasi-isometric to a
tree of bounded degree. Then G is minor excluded.

Proof. Let T be a tree of bounded degree and let ¢: V(G) — V(T) be a (v,c¢)-
quasi-isometry for some v > 1 and ¢ > 0. Let Dg, D1 be the maximum degrees
of G and T, respectively. Then

yt+c—2 c—1
Mp:= Y (Dr—1),  Mg:=)» (Dg—1)
=0 =0

are the maximum sizes of balls around vertices of T', of G of radius v+ ¢ — 1, of
radius ¢, respectively. Let H be a minor of G that is isomorphic to K, for some
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n € N. We will show that n < max{2M2ZMZ, DrMyMc}, which implies that G
is minor excluded. For z € V(H), we denote by G, the branch set of = in G. For
an edge e = st € E(T), let Ts, T; be the component of T' — e that contains s, ¢,
respectively. Note that since ¢ is a (7, ¢)-quasi-isometry, we have |¢~1(¢)| < Mg.

Let us assume that there is an edge e = st € E(T) and z,y € V(H) with
©(G;) CV(Ts) and p(Gy) € V(T}). Since H is a complete graph, there is a G,-G,
edge uv in G. By the assumption on ¢, we have d(¢(u), p(v)) < v+ c. Let us
assume that o(u) € V(Ts). Then ¢(u) lies in the ball of radius at most v+ ¢ — 1
around s and ¢(v) lies in the ball of radius at most v + ¢ — 1 around ¢. There
are at most M?% many such pairs (u,v). Since |¢~'(a)| < Mg for every a € V(T),
there are at most MZMZ many such pairs (u,v). Now let z € V(H) such that
©(G,) meets Ty and T;. Then there are adjacent u,v € G, with p(u) € V(Ty) and
o(v) € V(T}). So as above, we find at most MZMZ such edges uv and hence such
vertices z. This implies n < QM%Mé

Now let us assume that for every edge e = st € E(T) there is at most one
component of T' — e that contains some ¢(G;). If T, T; contains some ¢(G,),
then we orient the edge e towards s, t, respectively. If neither T nor 7} contains
any ¢(G,), we do not orient e at all. Note that this orientation is consistent: if
s1t1, sato € E(T) and they are oriented towards si, sa, respectively, then we must
have either Ts, C T,, or T, C Ty,. Thus and since H is finite, there is a unique
non-empty subtree 7" of T whose inner edges are not directed at all but such that
every edge outside of T is directed towards 7. If 7' has an edge e = st, then
for every x € V(H), the set ¢(G,) meets Ty and T;. By the same argument as
in the previous case, there are at most M%Mg such branch sets. Thus, we have
n < M%Mé in this case. So let us assume that T’ consists of a unique vertex t.
Then every branch set G, contains a vertex u with d(¢(u),t) < v + ¢. There
are at most Dy M7 many possibilities for p(u) and thus at most DrMp Mg many
possibilities for w. This implies n < Dy M7 Mg in this situation.

So we have n < max{2M2MZ, Dr Mz Mg}, which proves the assertion as dis-
cussed above. ]

Now we are able to prove our main result.

Proof of Theorem 1.1. Assume that G is not quasi-isometric to any tree. Since
locally finite quasi-transitive graphs without thick ends are quasi-isometric to trees
by Krén and Mdller [6, Theorem 2.8], G has a thick end. Thus, G? is not minor
excluded by Proposition 2.1. Since G? is quasi-isometric to G, it is not minor
excluded, either.

Let us now assume that G is quasi-isometric to a tree. Note that G has bounded
degree by assumption. According to Krén and Moller [6, Theorem 2.8], every end
of G is thin. Thus, [4, Theorem 7.5] and [3, Lemma 2.9] imply that G is quasi-iso-
metric to a 3-regular tree. By Proposition 2.3, G is minor excluded. Since being
quasi-isometric is an equivalence relation, every graph that is quasi-isometric to G
is also quasi-isometric to a tree. Hence, they are minor excluded as well. O
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