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Chapter 1

Introduction

There are various notions of symmetry on graphs. A rather weak form is ob-
tained if the automorphism group of a graph acts transitively on the vertices of
the graph, i. e. if the graph is transitive. This is a very rich class, as it contains
all Cayley graphs. On the other side of symmetry, that of homogeneous graphs
is very strong, that is every isomorphism between two finite induced subgraphs
extends to an automorphism of the graph. Whereas the countable homogeneous
graph have been classified – these are the C4, the C5, the line graph of K3,3,
countably many copies of a complete graph, a generic Kn-free graph or a generic
graph, see [4, 8, 10, 30, 35] –, the condition of transitivity is too weak to obtain
a classification of such graphs.

As the homogeneous and the transitive graphs form the two opposite sides
of symmetry notions and have quite di↵erent answers to the problem of their
classification, a natural question is to ask what happens between these two
notions, that is, are there natural symmetry conditions that still lead to full
classification of graphs with such a kind of symmetry? So we look at symmetries
that are stronger than transitivity but not as strong as homogeneity.

Considering the notion of homogeneity, one can ask, what happens if we
require the finite subgraphs to be connected. Then we obtain the notion of
connected-homogeneous graphs: we call a graph connected-homogeneous, or C-
homogeneous for short, if every isomorphism between finite induced connected
subgraphs extends to an automorphism of the whole graph. Indeed, this is a
notion of symmetry that lies somewhere between transitivity and homogeneity.
The countable C-homogeneous graphs have been classified, see [8, 11, 13, 20].

When we consider digraphs instead of graphs the same notions apply. But
although the definitions for digraphs do not di↵er (much) from the undirected
case, the class of digraphs for each of these conditions is in most situations
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2 CHAPTER 1. INTRODUCTION

harder to determine. The countable homogeneous digraphs are classified in [2,
3, 4, 28, 29]. This class contains the homogeneous tournaments, see [3, 29].

Gray and Möller [14] started tha project of classifying the countable C-
homogeneous digraphs by classifying the infinite connected two-ended digraphs
and o↵ering a list of examples for the connected locally finite C-homogeneous
digraphs with infinitely many ends. Here, we complete the classification of the
countable C-homogeneous digraphs.

On our way, we classify the countable C-homogeneous bipartite graphs where
we only require that isomorphisms between finite induced connected subgraphs
that respects the bipartition extend to automorphisms of the bipartite graph
and we classify the countable homogeneous 2-partite digraphs, that is, we only
require that isomorphisms between finite induced subdigraphs that respects the
bipartition extend to automorphisms of the 2-partite digraph.

We state our main theorem in the next section and, thereafter, we give an
overview of its proof and the remaining chapters in Section 1.2.

Here, we present the content of the papers [15, 16, 17, 18].

1.1 The main result

In this section, we state our main theorem, the classification of the countable C-
homogeneous digraphs (Theorem 1.1). Afterwards, we describe all the digraphs
that occur in the list and that need some explanations.

Theorem 1.1. A countable digraph is C-homogeneous if and only if it is a
disjoint union of countably many copies of one of the following digraphs:

(i) a countable homogeneous digraph;

(ii) H[In] for some n 2 N1 and with either H = S(3) or H = T^ for some
countable homogeneous tournament T 6= S(2);

(iii) X�(T ) for some countable homogeneous tournament T and � 2 N1;

(iv) a regular tree;

(v) DL(�), where � is a bipartite digraph such that G(�) is one of

(a) C2m for some integer m � 2,

(b) CPk for some k 2 N1 with k � 3,

(c) Kk,l for k, l 2 N1, k, l � 2, or

(d) the countable generic bipartite graph;



1.1. THE MAIN RESULT 3

(vi) M(k,m) for some k 2 N1 with k � 3 and some integer m � 2;

(vii) M 0(2m) for some integer m � 2;

(viii) Yk for some k 2 N1 with k � 3;

(ix) Cm[Ik] for some k,m 2 N1 with m � 3;

(x) Rm for some m 2 N1 with m � 3;

(xi) X2(C3)⇠, where ⇠ is a non-universal Aut(X2(C3))-invariant equivalence
relation on V X2(C3); or

(xii) the generic orientation of the countable generic bipartite graph.

Those countable homogeneous digraphs that are not explicitely mentioned
within Theorem 1.1 will be described in Section 3.3.

Figure 1.1: The digraph H = C^3

A tournament is a complete digraph. For a tournament T , let T+ be T

together with a new vertex x such that xv 2 ET+ for all v 2 V T . Then T^

is the disjoint union of two copies T+'1, T+'2 with isomorphisms '1,'2 and
with v'1u'2 2 ED if and only if uv 2 ET+ and v'2u'1 2 ED if and only if
uv 2 ED. In Chapter 6, we denote by H the digraph C^3 , which is depicted in
Figure 1.1.

Let V S(2) be a dense subset of the unit circle such that the angle between
any two points is rational. A vertex x is the successor of a vertex y if the
angle between them is smaller than ⇡ modulo 2⇡ (counterclockwise). The re-
sulting tournament is S(2). Similarly, let V S(3) be a dense subset of the unit
circle such that the angle between any two points is rational, too. Two vertices
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in S(3) are adjacent if the angle between them is smaller than 3⇡/2 modulo 2⇡
(counterclockwise).

For two digraphs D,D0 let the lexicographic product D[D0] be the digraph
with vertex set V D ⇥ V D0 and edge set

{(x, x0)(y, y0) | xy 2 ED or (x = y and x0y0 2 ED0)}.

For a homogeneous tournament T 6= I1 and a cardinal �, let X�(T ) be the
digraph such that every vertex is a cut vertex and lies in � distinct blocks each
of which is isomorphic to T . The digraph X2(C3) is shown in Figure 1.2.

Figure 1.2: The digraph X2(C3)

For a bipartite edge-transitive digraph �, let DL(�) be the digraph such
that every vertex is a cut vertex and lies in precisely two blocks each of which
is isomorphic to � and such that the vertex has its successors in one of the two
blocks and its predecessors in the other.

The complete bipartite graph with one side of size k and the other of size `
is Kk,`. The (bipartite) complement of a perfect matching CPk is a complete
bipartite graph Kk,k where the edges of a perfect matching are removed. A
generic bipartite graph is a bipartite graph with partition {X,Y } such that for
each two disjoint subsets A,B of the same side we find a vertex in the other
partition set with A inside and B outside its neighbourhood.

A digraph is a tree if its underlying undirected graph is a tree. It is regular
if all vertices have the same in-degree and all vertices have the same out-degree
(but these two values need not coincide).

An undirected tree is semiregular if for the canonical bipartition {X,Y } of
the vertices of the tree the vertices in X have the same degree and the vertices
in Y have the same degree. If the degree of the vertices in X is k 2 N1 and
those in Y is ` 2 N1, then we denote the semiregular tree by Tk,`.
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Given integers m � 2 and k � 3 consider the tree Tk,m and let {U,W} be its
natural bipartition such that the vertices in U have degree m. Now subdivide
each edge once and endow the neighbourhood of each u 2 U with a cyclic order.
Then for each new vertex y let uy be its unique neighbour in U and denote by
�(y) the successor of y in the cyclic order of N(uy). For each w 2 W and each
x 2 N(w) we add an edge directed from x to all �(y) with y 2 N(w) \ {x}.
Finally, we delete the vertices of the Tk,m together with all edges incident with
such a vertex to obtain the digraph M(k,m). The locally finite subclass of this
class of digraphs coincides with those digraphs M(k, n) for k, n 2 N that are
described in [14, Section 5]. In Figure 1.3 the digraph M(3, 3) is shown: once
with its construction tree and once with the set of C-separators for its unique
basic cut system C.1

Figure 1.3: The digraph M(3, 3)

For an integer m � 2 consider the tree T2,2m and let {U,W} be its natural
bipartition such that the vertices in U have degree 2m. Now subdivide every
edge once and enumerate the neighbourhood of each u 2 U from 1 to 2m in
a such way that the two neighbours of each w 2 W have distinct parity. For
each new vertex x let ux be its unique neighbour in U and define �(x) to be the
successor of x in the cyclic order of N(ux). For any w 2 W we have a neighbour
aw with even index, and a neighbour bw with odd index. Then we add edges
from both aw and �(aw) to both bw and �(bw). Finally we delete the vertices
of the T2,2m together with all edges incident with such a vertex. By M 0(2m) we
denote the resulting digraph. Figure 1.4 shows the digraph M 0(6): on the left
side with its construction tree and on the right side with the separators of the
two possible basic cut systems.

1See Section 2.4 for the definition of a cut system and related notation.
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Figure 1.4: The digraph M 0(6)

A tripartite digraph D is a digraph whose vertex set can be partitioned into
three sets V1, V2, V3 such that

V E ✓ (V1 ⇥ V2) [ (V2 ⇥ V3) [ (V3 ⇥ V1).

The directed tripartite complement of D is the digraph

(V D, (
[

i=1,2,3

(Vi ⇥ Vi+1)) \ED),

where V4 = V1.
For k 2 N1, let Yk be the digraph with vertex set V1 [ V2 [ V3 where

the Vi denote pairwise disjoint independent sets of the same cardinality k such
that the subdigraphs of Yk induced by Vi [ Vi+1 (for i = 1, 2, 3 with V4 = V1)
are complements of perfect matchings such that all edges are directed from Vi

to Vi+1 and such that the directed tripartite complement of Yk is the disjoint
union of k copies of the directed triangle C3.
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The digraph Rm for m 2 N1 with m � 3 is constructed as follows: take m

pairwise disjoint countably infinite sets Vi for i = 1 . . .m if m is finite and i 2 Z
otherwise. Then Rm has vertex set

S
Vi and edges only between Vi and Vi+1

(with Vm+1 = V1) such that the digraph induced by Vi and Vi+1 is a countable
generic bipartite digraph such that the edges are directed from Vi to Vi+1.

We call a 2-partite digraph D with partition {X,Y } a generic orientation
of the countable generic bipartite graph if for all finite A,B,C ✓ X (and all
finite A,B,C ✓ Y ) there is a vertex v 2 X (a vertex v 2 Y , respectively) with
A ✓ N+(v) and B ✓ N�(v) and such that v is not adjacent to any vertex of C.
A back-and-forth argument shows that, up to isomorphism, there is a unique
generic orientation of the countable generic bipartite graph. It is easy to verify
that the underlying undirected graph of D is the countable generic bipartite
graph (see Section 3.1 for the definition of a generic bipartite graph).

1.2 Overview of the proof of Theorem 1.1

First, we introduce in Chapter 2 all necessary notations for the remainder of the
paper. In Chapter 3, we state and prove several classifications results that we
shall need throughout our proof of Theorem 1.1. These are the homogeneous
and C-homogeneous bipartite graphs and digraphs, the homogeneous 2-partite
digraphs2, the homogeneous digraphs with the subcases of the finite ones as
well as the homogeneous tournaments, and last the result on C-homogeneous
digraphs that have been done by Gray and Möller [14].

In Chapter 4, we prove that all digraphs listed in Theorem 1.1 are C-
homogeneous. So we can concentrate in the remaining three chapters that
the list in Theorem 1.1 is complete. Chapter 5 deal with those connected C-
homogeneous digraphs that have more than one end. Our main tool in that
section are the ‘vertex cuts’ defined by Dunwoody and Krön [7]. After some
local analysis, we distinguish the cases whether the underlying undirected graph
is C-homogeneous (Section 5.2) or not (Section 5.3).

In Chapter 6, we look at those C-homogeneous digraphs that have finite
degree. We prove that the out-neighbourhood as well as the in-neighbourhood
of any vertex induce (finite) homogeneous digraphs and thus, we are able to
consider the list of finite homogeneous digraphs one by one and look at each
case individually. If there are edges in these homogeneous digraphs, then the
structure of those digraphs gives us a lot of information that we can use to
complete these cases. So the only remaining case is if the out-neighbourhood

2Note that we shall make a di↵erence between 2-partite and bipartite digraphs: both have

a bipartition of their vertex set, but whereas the first may have edges directed in both ways

between these sets, the edges of the latter all have the same direction.
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as well as the in-neighbourhood of our locally finite C-homogeneous digraph is
an independent vertex set. In that case, we use the reachability relation (see
Section 2.2 and we shall prove that it is never universal. So we can use the
reachability digraph, which turns out to be a C-homogeneous bipartite digraph.
Again having just some cases, we consider them one by one and thereby complete
the situation of finite degree.

In Chapter 7, we look at the case that the countable C-homogeneous digraph
has at most one end (but infinite degree). The proof of this situation is similar to
the one of Chapter 6, but keeping the structure of the papers that are combined
to this thesis untouched we have not combined these two chapters. Once more,
the out-neighbourhood of each vertex as well as the in-neighbourhood induce
a (countable) homogeneous digraph. With this in mind, we consider Cherlin’s
classification of the countable homogeneous digraphs and investigate each of
its cases one after another. If the out-neighbourhood of some vertex is not an
independent set (Section 7.1), then – as in the previous case – we can prove the
outcome of each case relatively easy. Interestingly, some of the ideas of the proofs
of the corresponding cases for undirected C-homogeneous graphs [13] carries
over but have to deal with the new situation of directed edges. These cases are
for example the generic H-free digraphs (versus generic Kn-free graphs), the
generic In-free digraphs (versus generic In-free graphs), and the (semi-)generic
n-partite digraphs (versus the complete n-partite graphs).

In Section 7.2, we consider the case that the out-neighbours of each vertex
form an independent set and the same for the in-neighbours. Again, we can
use the reachability relation and finish the situation of a bipartite reachability
digraph, which is a C-homogeneous digraph, relatively easy. But in contrast to
locally finite digraphs, we now can have a universal reachability relation. We
treat this case in Section 7.2.2 and our main tool for that part is the classification
of the homogeneous 2-partite digraphs.



Chapter 2

Definitions and

Preliminaries

2.1 Basics

A digraph D is a pair of a non-empty set V D of vertices and an irreflexive and
antisymmetric binary relation ED on V D, its edges. For a subset of vertices
X ✓ V D, let D[X] := (X,ED \X ⇥X) be the digraph induced by X.1 Two
vertices x, y 2 V D are adjacent if either xy 2 ED or yx 2 ED. The out-
neighbours or successors of x 2 V D are the elements of the out-neighbourhood
N+(x) := {y 2 V D | xy 2 ED} and its in-neighbours or predecessors are the
elements of the in-neighbourhood N�(x) := {y 2 V D | yx 2 ED}. Furthermore,
let D+(x) := D[N+(x)] and D�(x) := D[N�(x)]. If D is vertex-transitive,
that is, if the automorphisms of D act transitively on V D, then the digraphs
D+(x) and D+(y) (the digraphs D�(x) and D�(y)) are isomorphic for any
two vertices x, y and we denote by D+ (by D�, respectively) one element of
their isomorphism class. For induced subdigraphs A and B of D and x 2 V D,
let A + B be the digraph D[V A [ V B], let A + x = D[V A [ {x}], and let
A � x = D[V A \ {x}]. If B ✓ A, let A � B = D[V A \ V B]. An independent
vertex set is a set whose elements are pairwise non-adjacent. By Ik we denote
an independent vertex set of cardinality k and also a digraph whose vertex set
is an independet set of cardinality k. It will always be obvious from the context,
whether In describes a vertex set or a digraph. A tournament is a digraph such
that each two of its vertices are adjacent.

1Note that if X ✓ V D, then D[X] is a subdigraph of D (the restiction of D onto X) and,

if D0 is a digraph, D[D0] is a new digraph (the lexicographic product).

9
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For k 2 N, a k-arc is a sequence x0 . . . xk or k+1 vertices with xixi+1 2 ED

for all i  k� 1. A path (of length ` 2 N) is a sequence x0 . . . x` of `+1 distinct
vertices such that for all i  `�1 the vertices xi and xi+1 are adjacent. If we have
xixi+1 2 ED for all i  `� 1 then we call the path directed. Hence, a directed
path of length ` is an `-arc all whose vertices are distinct. A digraph is connected
if each two vertices are joined by a path. A vertex, vertex set, or subdigraph
separates a digraph if its deletion leaves more than one component. It separates
two vertices, vertex sets, or subgraphs if these lie in distinct components after
the deletion.

An ancestor (descendant) of a vertex x is any vertex y for which there exists
an arc from y to x (from x to y). The descendant-digraph (ancestor-digraphs) of
x is the subdigraph desc(x) ✓ D (the subdigraph anc(x) ✓ D) that is induced
by the set of all its descendants (its ancestors, respectively).

A cycle (of length ` � 3) is a path of length ` � 1 whose end vertices are
joined by an edge. A directed cycle, denoted by C`, is a cycle x1 . . . x`�1 either
with xixi+1 2 ED and x`�1x1 2 ED or with xi+1xi 2 ED and x1x`�1 2 ED.
Triangles are cycles of length 3. Up to isomorphism, there are two distinct kinds
of triangles. We call those triangles that are not directed transitive. We also
denote graphs that are cycles of length ` by C`. It will always be clear from the
context whether C` is a graph or a digraph.

For an equivalence relation ⇠ on V D let D⇠ be the digraph whose vertices
are the equivalence classes of ⇠ and where XY 2 ED⇠ if and only if there
are x 2 X and y 2 Y with xy 2 ED. We call D⇠ a quotient digraph of D

(induced by ⇠). In general, this is not a digraph since it may have loops as well
as edges XY and Y X. However, we only consider equivalence relations ⇠ such
that ED⇠ is an irreflexive and antisymmetric relation. But in each situation in
which we consider quotient digraphs D⇠ we will prove that ED⇠ is irreflexive
and antisymmetric.

The underlying undirected graph of a digraph D = (V,E) is the graph G =
(V, {{x, y} | xy 2 E}). A tournament is a digraph whose underlying undirected
graph is a complete graph.

Let N1 = N [ {!}. The diameter of D is defined by

diam(D) = inf{n 2 N1 | d(x, y)  n for all x, y 2 V D}.

A ray in a graph is a one-way infinite path and a double ray is a two-way
infinite path. Two rays are equivalent if for every finite vertex set S both rays
lie eventually in the same component of G� S. This is an equivalence relation
whose classes are the ends of the graph. Rays, double rays, and ends of a digraph
are those of its underlying undirected graph. For abbreviation, we denote by
C1 the directed double ray.
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If the underlying undirected graph of a digraph D is bipartite then D is
2-partite. If in addition all edges are directed from the same partition set to the
other then we call D bipartite.

2.2 Reachability relation

A digraph D is called k-arc-transitive if its automorphisms act transitively on
the k-arcs of D and it is called highly-arc-transitive if it is k-arc-transitive for
every k 2 N.

Let D be a digraph. A walk is a sequence x0 . . . xk of vertices such that xi

and xi+1 are adjacent for all 0  i < k. If xi�1 2 N+(xi) , xi+1 2 N+(xi) for
all 0 < i < k then the walk is called alternating. Two edges on a common alter-
nating walk are reachable from each other. This defines an equivalence relation,
the reachability relation A. For an edge e 2 ED, let A(e) be the equivalence
class of e and let hA(e)i be the reachability digraph of D that contains e, that
is, the vertex set incident with some edge in A(e) and edge set A(e). If D is
1-arc transitive, then the digraphs hA(e)i are isomorphic for all e 2 ED and we
denote by �(D) one digraph of their isomorphism class.

The following proposition is due to Cameron et al.

Proposition 2.1. [1, Proposition 1.1] Let D be a connected 1-arc transitive
digraph. Then �(D) is 1-arc transitive and connected. Furthermore, either

(a) A is the universal relation on ED and �(D) ⇠= D, or

(b) �(D) is a bipartite reachability digraph.

We say that a cycle C witnesses that A is universal if C contains an in-
duced 2-arc and if there is an edge e on C such that C without the edge e is an
alternating walk.

Lemma 2.2. Let D be a non-empty vertex-transitive and 1-arc transitive di-
graph whose reachability relation A is universal. Then D contains a cycle that
witnesses that A is universal.

Proof. As D is non-empty, it contains some edge xy and, since D is vertex-
transitive, it also has some edge yz. Hence, D contains a (not necessarily in-
duced) 2-arc xyz. By universality of A, there must be a minimal alternating
walk P in D whose first edge is xy and whose last edge is yz. Either this walk
is a cycle or there is a vertex incident with at least three edges of that walk. If
the walk is a cycle, then it obviously witnesses that A is universal. If the walk
contains a vertex v incident with three edges of the walk, then one edge incident
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with v is directed towards v and one is directed away from v, as otherwise we
have a contradiction to the minimality of the alternating walk. So v is the mid-
dle vertex of two 2-arcs uvw and either u0vw or uvw0 in the digraph (V P,EP ),
say u0vw. Then we find a shorter alternating walk – a proper subwalk of P –
either between uv and vw or between u0v and vw and we are done by induction.
(Note that this is not necessarily a contradiction since, e.g., xyz might be an
induced 2-arc but uvw induces a triangle.)

Lemma 2.2 just tells us that we find some cycle witnessing thatA is universal.
Next, we show that we can even find an induced cycle with the same property.

Lemma 2.3. Let D be a non-empty vertex-transitive and 1-arc transitive di-
graph whose reachability relation A is universal. If D contains some cycle wit-
nessing that A is universal, then it contains an induced such cycle of at most
the same length.

Proof. Let us suppose that none of the minimal cycles witnessing the univer-
sality of A is induced. Let C be such a cycle of minimal length. This exists by
Lemma 2.2. Let xy 2 EC such that C without the edge xy is an alternating
walk P . Since C is not induced, it has a chord uv. If u and v lie in the same
set of the canonical bipartition of V P , then the subwalk uPv together with the
edge uv is a smaller cycle witnessing that A is universal. By minimality of C,
this cannot be. So u and v lie in distinct sets of the canonical bipartition of P .
But then we also find a smaller cycle in C together with the edge uv: if the
out-degree of v in P is 0, then we take uv together with the subwalk of C that
contains xy, and otherwise we take uv together with uPv. This contradiction
to the minimality of C shows the lemma.

2.3 Group actions

Let � be a group acting on a digraph D and let U ✓ V D. We denote by �U

the (pointwise) stabilizer of U , that is the subgroup of � that fixes each element
of U . The same notion holds for an edge e 2 ED or a single vertex x 2 V D. If
� fixes the set U setwise, then we denote by �U the group of all automorphisms
of U that are obtained by restricting elements of � to U .

We will use the following theorem on subgroups of the symmetric group Sn.

Theorem 2.4. [22, Satz II.5.2] Every proper subgroup of Sn with n 6= 4 is
equal to An or has index at least n. If n = 4, then, except for An, the Sylow
2-subgroups are the only proper subgroups of index less than n.



2.4. STRUCTURE TREES 13

2.4 Structure trees

In this section we introduce the terms of cuts and structure trees that were
developed by Dunwoody and Krön in [7]. Compared to [7] we use a di↵erent
notation for the cut systems in order to indicate the relation of cut systems with
the well-known graph theoretic concept of separations, see [5].

Let G be a connected graph and let A,B ✓ V (G) be two vertex sets. The
pair (A,B) is a separation of G if A[B = V (G) and E(G[A])[E(G[B]) = E(G).
The order of a separation (A,B) is the cardinality of its separator A\B and the
subgraphs G[A \B] and G[B \A] are the wings of (A,B). With (A,⇠) we refer
to the separation (A, (V (G)\A)[N(V (G)\A)). A cut is a separation (A,B) of
finite order with non-empty wings such that the wing G[A\B] is connected and
such that no proper subset of A\B separates the wings of (A,B). A cut system
of G is a non-empty set S of separations (A,B) of G satisfying the following
three properties.

1. If (A,B) 2 S then there is an (X,Y ) 2 S with X ✓ B.

2. Let (A,B) 2 S and C be a component of G[B \ A]. If there is a separation
(X,Y ) 2 S with X \ Y ✓ C, then the separation (C [N(C),⇠) is also in S.

3. If (A,B) 2 S with wings X,Y and (A0, B0) 2 S with wings X 0, Y 0 then there
are components C in X \X 0 and D in Y \ Y 0 or components C in Y \X 0

and D in X \ Y 0 such that both C and D are wings of separations in S.

Two separations (A0, A1), (B0, B1) 2 S are nested if there are i, j 2 {0, 1}
such that one wing of (Ai \Bj ,⇠) does not contain any connected component
C with (C [N(C),⇠) 2 S and A1�i \B1�j contains (A0 \A1)[ (B0 \B1). A
cut system is nested if each two of its cuts are nested.

Remark 2.5. The following two assertions hold.

1. If, for two C-cuts (A0, A1), (B0, B1), the separator A0 \A1 contains vertices
of both wings of (B0, B1), then the two cuts are not nested.

2. In any transitive graph G with an Aut(G)-invariant cut system C, any two
nested cuts (A0, A1) and (B0, B1) with (A0 \A1)[ (B0 \B1) ✓ A1�i \B1�j

have the property that Ai \Bj is empty by [7, Lemma 3.5].

A cut in a cut system S is minimal if its order in S is minimal. A minimal
cut system is a cut system all whose cuts are minimal and thus have the same
order.

Let us describe two minimal cut systems one of which was introduced by
Dunwoody and Krön [7, Example 2.2]. Both will be used in our proofs.
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Example 2.6. Let G be a connected infinite graph with at least two ends. Let
n be the smallest cardinality of a finite vertex set X such that there are at least
two components in G�X that contain a ray each. Let S be the set of all cuts
(A,B) with order n such that both G[A] and G[B] contain a ray. Then S is a
minimal cut system.

An S-separator is a vertex set S that is a separator of some separation in S.
Let W be the set of S-separators. An S-block is a maximal induced subgraph
X of G such that

(i) for every (A,B) 2 S there is V (X) ✓ A or V (X) ✓ B but not both;

(ii) there is some (A,B) 2 S with V (X) ✓ A and A \B ✓ V (X).

Let B be the set of S-blocks. For a nested minimal Aut(G)-invariant cut system
S let T be the graph with vertex set W[B. Two vertices X,Y of T are adjacent
if and only if either X 2W, Y 2 B, and X ✓ Y or X 2 B, Y 2W, and Y ✓ X.
Then T = T (S) is called the structure tree of G and S.

Lemma 2.7. [7, Lemma 6.2] Let G be a connected graph, and let S be a nested
minimal cut system. Then the structure tree of G and S is a tree.

A cut system S of a connected graph G is basic if S is minimal, nested,
Aut(G)-invariant, if S is a subsystem of the minimal cut system given in Ex-
ample 2.6 and if all separators A \ B with (A,B) 2 S belong to the same
Aut(G)-orbit.

We state here that part of Theorem 7.2 of [7] that we shall use here.

Theorem 2.8. For every graph G with at least two ends there is a basic cut
system S of G.

If we take, for a connected graph G, all those cuts whose separators consist
of one vertex, each, then we obtain as the structure tree the well-known block-
cutvertex tree. So in this case the two obtained trees coincide, but have di↵erent
notations. That is, in the proof of Theorem 5.9 we could argue using the block-
cutvertex tree instead of the structure tree. But for consistency reasons we have
not done so.

Lemma 2.9. Let G be a graph and let C be a nested cut system of G such that
no C-separator contains any edge. For any path P that has both its end vertices
in the same C-separator S, there is a C-block with maximal distance to S in T (C)
that contains edges of P . This C-block contains at least two edges of P .

Proof. Any two vertices that are not in a common C-block, are separated by
some C-separator. So we conclude that for each edge of G there is a unique
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C-block that contains this edge, as it is not contained in any C-separator. The
path P has only finitely many edges, so there are just finitely many C-blocks
that contain edges of P and we may pick one, X say, with maximal distance
to S in T (C). Let xy be an edge on P that lies in X. Then either x or y does
not lie in that C-separator S0 that separates X from S and lies in X. We assume
that this is y. Let z be the other neighbour of x on P . The edge yz cannot lie
further away from S than X in the structure tree, but since y /2 S0, we have
yz 2 EX. So X contains two edges of P .

In the context of a digraph D all concepts introduced in this section are
related to the underlying undirected graph G of D except for one definition:
We call a cut system C for a digraph D basic if it has the following properties.

(i) C is non-empty, minimal, nested and Aut(D)-invariant.

(ii) Aut(D) acts transitively on S.

(iii) For each C-cut (A,B) both A and B contain an end of D and there is no
separation of smaller order that has this property.

Then Theorem 2.8 does not only hold for any graph but also for any digraph
by the results in [7]. We have to define the property of being basic di↵erently,
because we know in general only that we may consider Aut(D) as a subgroup
of Aut(G), but we do not know whether it is a proper subgroup or not. Thus,
our cut system could have more than one Aut(D)-orbit of separators which
would be more di�cult to deal with.
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Chapter 3

Some homogeneous

structures

3.1 Homogeneous and connected-homogeneous

bipartite graphs and digraphs

In this section, we cite the classifications of the countable homogeneous bipartite
graphs and classify the C-homogeneous bipartite graphs. Then, for countable
(C-)homogeneous bipartite digraphs, the analogous theorems hold.

A bipartite graph G (with bipartition {X,Y }) is homogeneous bipartite if
every isomorphism between two isomorphic finite induced subgraphs A and B

of G that preserves the bipartition (that means that V A \ X is mapped onto
V B\X and V A\Y is mapped onto V B\Y ) extends to an automorphism of G

that preserves the bipartition. We call G connected-homogeneous bipartite, or
simply C-homogeneous bipartite, if every isomorphism between two isomorphic
finite induced connected subgraphs A and B of G that preserves the bipartition
extends to an automorphism of G that preserves the bipartition. The same
notions apply to bipartite and 2-partite digraphs.

We begin with the classification of the homogeneous bipartite graphs.

Theorem 3.1. [12, Remark 1.3] A countable bipartite graph is homogeneous if
and only if it is isomorphic to one of the following graphs:

(i) a complete bipartite graph;

(ii) an empty bipartite graph;

(iii) a perfect matching;

17
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(iv) the bipartite complement of a perfect matching; or

(v) the countable generic bipartite graph.

The generic bipartite graph is the bipartite graph G with bipartition {X,Y }
such that for every two finite subsets UX ,WX ✓ X and every two finite subsets
UY , VY ✓ Y there exists x 2 X and y 2 Y with UX ✓ N(y) and VX \N(y) = ;
and with UY ✓ N(x) and VY \N(x) = ;. Next, we complete the classification of
connected C-homogeneous bipartite graphs, which was already done for locally
finite graphs, by Gray and Möller [14]. They already mentioned that their work
should be extendable with not too much e↵ort – and indeed this section has
essentially the same structure.

The proof of the locally finite analog [14, Lemma 4.4] of Lemma 3.2 is self
contained and does not use the local finiteness of the graph. Thus we can omit
the proof here.

Lemma 3.2. Let G be a connected C-homogeneous bipartite graph with bipar-
tition X [ Y . If G is not a tree and has at least one vertex with degree greater
than 2 then G embeds C4 as an induced subgraph.

Let G be a bipartite graph with bipartition X [ Y . Then for each edge
xy 2 EG we define the neighbourhood graph to be:

⌦(x, y) := G[N(x) + N(y)� {x, y}]

A C-homogeneous graph G is, in particular, edge-transitive. Hence there is a
unique neighbourhood graph ⌦(G).

Lemma 3.3. Let G be a connected C-homogeneous bipartite graph. Then ⌦(G)
is a homogeneous bipartite graph, and therefore is one of: an edgeless bipartite
graph, a complete bipartite graph, a complement of a perfect matching, a perfect
matching, or a homogeneous generic bipartite graph.

Proof. If we do not ask ⌦(G) to be finite, the proof of the locally finite analogue
[14, Lemma 4.5] carries over. Compared to the locally finite case, we only have
to deal with one other ’type’ of graph, due to [12, Remark 1.3]

Lemma 3.4. Let G be a C-homogeneous generic bipartite graph. Then G is
homogeneous bipartite.

Proof. Let V G = A [ B be the natural bipartition of G, let X and Y be two
isomorphic induced finite subgraphs of G, and let ' : X ! Y be an isomorphism.
Let a 2 A\X be a vertex adjacent to all the vertices of X \B and let b 2 B \X

be a vertex adjacent to all the vertices of X \ A and to a. Let a0, b0 be the
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corresponding vertices for Y . Since G is bipartite, both G[X + a + b] and
G[Y +a0+b0] are connected induced subgraphs of G that are isomorphic to each
other. Furthermore there is an isomorphism  : G[X + a + b] ! G[Y + a0 + b0]
such that the restriction of  to X is '. As there is an automorphism of G that
extends  , this automorphism also extends ' and G is homogeneous.

Now we are able to prove the classification result of the C-homogeneous
bipartite graphs.

Theorem 3.5. A connected graph is a C-homogeneous bipartite graph if and
only if it belongs to one of the following classes:

(i) T,� for cardinals ,�;

(ii) C2m for m 2 N;

(iii) K,� for cardinals ,�;

(iv) CP for a cardinal ;

(v) homogeneous generic bipartite graphs.

Proof. The nontrivial part is to show that this list is complete. So consider an
arbitrary connected C-homogeneous bipartite graph G with bipartition X [ Y .
If G is a tree then it is obviously semi-regular and hence a T,�. So suppose G

contains a cycle. Then, since G is C-homogeneous, each vertex lies on a cycle.
Now G is either a cycle, which is even since G is bipartite, or at least one vertex
in G has a degree greater than 2 and G embeds a C4, due to Lemma 3.2. Thus
⌦(G) contains at least one edge and by Lemma 3.3 we have to consider the
following cases:

Case 1: ⌦(G) is complete bipartite. Suppose that there is an induced path P =
uxyv in G. Then ⌦(x, y) gives rise to an edge between u and v, a contradiction.
Hence G is complete bipartite.

Case 2: ⌦(G) is the complement of a perfect matching. Consider x 2 X and
y 2 Y such that {x, y} is an edge of G. Since ⌦(x, y) is the complement of a
perfect matching and G is not a cycle, there is an index set I ◆ {1, 2} such that
N(x) = {y} [ {yi|i 2 I}, N(y) = {x} [ {xi|i 2 I} and for i 2 I the vertex xi is
nonadjacent to yi but adjacent to all yj with j 2 I \ {i}. Since ⌦(x, y1) is also
the complement of a perfect matching there is a unique vertex a 2 N(y1)\N(y).
Since xi with i 6= 1 is adjacent to y1 it is contained in ⌦(x, y1) and therefore
yi is adjacent to a. Thus for all i 2 I we have N(yi) = N(y) � xi + a. Now
by symmetry there is a unique vertex b adjacent to all xi with i 2 I but non-
adjacent to x and for all i 2 I there is N(xi) = N(x) � yi + b. If we look at
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⌦(x1, y2) we have x, a 2 N(y2) and y, b 2 N(x1) which implies {a, b} 2 EG and
hence N(a) = N(x)� y + b and N(b) = N(y)� x + a. Because G is connected
we have X = N(y) + a and Y = N(x) + b which means that G is itself the
complement of a perfect matching.

Case 3: ⌦(G) is a perfect matching. For the same reason as for locally finite
graphs this case cannot occur (cp. [14, Theorem 4.6]).

Case 4: ⌦(G) is homogeneous generic bipartite. Let U and W be two disjoint
finite subsets of X (of Y). Since G is connected there is a finite connected
induced subgraph H ⇢ G that contains both U and W . By genericity, we find
an isomorphic copy H⌦ of H in ⌦(G). Because G is C-homogeneous there is
an automorphism ' of G with H'

⌦ = H. Now there is a vertex v in Y (in X)
that is adjacent to all vertices in U'�1

and non-adjacent to all vertices in W'�1
.

Hence v' is adjacent to all vertices in U and none in W which implies that G

is generic bipartite. Furthermore G is homogeneous bipartite by Lemma 3.4, as
it is C-homogeneous.

Note that Theorems 3.1 and 3.5 also apply to homogeneous and C-homo-
geneous bipartite digraphs, but not to 2-partite digraphs. The 2-partite digraphs
are in the case of homogeneity subject of the next section.

3.2 Homogeneous 2-partite digraphs

As mentioned before, a 2-partite digraph D with partition {X,Y } is homoge-
neous if every isomorphism ' between finite induced subdigraphs A and B with
(V A\X)' ✓ X as well as (V A\Y )' ✓ Y extends to an automorphism ↵ of D

with X↵ = X and Y ↵ = Y . Let us state the classification of the countable
2-partite digraphs:

Theorem 3.6. Let D be a countable 2-partite digraph with partition {X,Y }.
Then D is homogeneous if and only if one of the following cases holds:

(i) D is a homogeneous bipartite digraph;

(ii) D ⇠= CP 0k for some k 2 N1 with k � 2;

(iii) D is the countable generic 2-partite digraph; or

(iv) D is the generic orientation of the countable generic bipartite graph.

For k 2 N1 with k � 2, let CP 0k be the 2-partite digraph with partition
{X,Y } such that ECP 0k\(X⇥Y ) induces a CPk on V CP 0k and ECP 0k\(Y ⇥X)
induces a perfect matching on V CP 0k. Note that its underlying undirected graph
is a complete bipartite graph.



3.2. HOMOGENEOUS 2-PARTITE DIGRAPHS 21

We call a 2-partite digraph D with partition {X,Y } generic if for every
finite A,B ✓ X (for every finite A,B ✓ Y ) there is a vertex v 2 Y (a vertex
v 2 X, respectively) with A ✓ N+(v) and B ✓ N�(v). A back-and-forth
argument shows that there is a unique countable generic 2-partite digraph (up
to isomorphism). Similarly, we call a 2-partite digraph D with partition {X,Y }
a generic orientation of a generic bipartite graph if for all pairwise disjoint
finite subsets AX , BX , CX ✓ X and AY , BY , CY ✓ Y there are vertices y 2 Y

and x 2 X with AX ✓ N+(y), BX ✓ N�(y) and CX ✓ y? as well as with
AY ✓ N+(x), BY ✓ N�(x) and CY ✓ x?. It is easy to verify that its underlying
undirected graph is a generic bipartite graph.

To prove Theorem 3.6, we change our notation a bit: a bipartite graph is
a triple G = (X,Y,E) of pairwise disjoint sets such that every e 2 E is a set
consisting of one element of X and the one element of Y . We call V G = X [ Y

the vertices of G and E the edges of G. So (X[Y,E) is a bipartite graph in the
usual sense with bipartition {X,Y } A 2-partite digraph is a triple D = (X,Y,E)
of pairwise disjoint sets with E ✓ (X ⇥ Y ) [ (Y ⇥X) and such that (u, v) 2 E

implies (v, u) /2 E. Again, V D = X [ Y are the vertices of D and E are the
edges of D. So (X [ Y,E) is a digraph in the usual sense, whose underlying
undirected graph is bipartite. We write uv instead of (u, v) for edges of D. A 2-
partite digraph (X,Y,E) is bipartite if either E ✓ X ⇥ Y or E ✓ Y ⇥X. The
underlying undirected bipartite graph of a 2-partite digraph (X,Y,E) is defined
by

(X,Y, {{u, v} | uv 2 E}).

Two vertices u, v of a 2-partite digraph D = (X,Y,E) are adjacent if ei-
ther uv 2 E or vu 2 E. The successors of u 2 V D are the elements of the
out-neighbourhood N+(u) := {w 2 V D | uw 2 E} and its predecessors are the
elements of the in-neighbourhood N�(u) := {w 2 V D | wu 2 E}. For x 2 X,
we define

x? = {y 2 Y | y not adjacent to x}

and, for y 2 Y , we define

y? = {x 2 X | x not adjacent to y}.

A bipartite graph G = (X,Y,E) is homogeneous if every isomorphism '

between finite induced subgraphs A and B with

(V A \X)' ✓ X and (V A \ Y )' ✓ Y

extends to an automorphism ↵ of G with X↵ = X and Y ↵ = Y . Similarly, a
2-partite digraph D = (X,Y,E) is homogeneous if every isomorphism ' between
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finite induced subdigraphs A and B with

(V A \X)' ✓ X and (V A \ Y )' ✓ Y

extends to an automorphism ↵ of D with X↵ = X and Y ↵ = Y .
A first step towards the classification of the homogeneous 2-partite digraphs

was already done when Goldstern et al. [12] classified the homogeneous bipartite
graphs, cp. Theorem 3.1: for bipartite digraphs (X,Y,E), Theorem 3.1 applies
analogously in the following sense: as we have either E ✓ X⇥Y or E ✓ Y ⇥X,
the underlying undirected bipartite graph is homogeneous, so belongs to some
class of the list in Theorem 3.1. Conversely, every orientation of a homoge-
neous bipartite graph that results in a bipartite digraph gives a homogeneous
bipartite digraph. Note that homogeneous bipartite digraphs are in particu-
lar homogeneous 2-partite digraphs. Hence, the above classification gives us a
partial classification in the case of the homogeneous 2-partite digraphs in that
it gives a full classification of the homogeneous bipartite digraphs. In the re-
mainder of this note we extend this partial classification by classifying those
homogeneous 2-partite digraphs that are not bipartite.

Theorem 3.7. A 2-partite digraph is homogeneous if and only if it is isomorphic
to one of the following 2-partite digraphs:

(i) a homogeneous bipartite digraph;

(ii) an M for some cardinal  � 2;

(iii) a generic 2-partite digraph;

(iv) a generic orientation of a generic bipartite graph.

For a cardinal  � 2, let M be a bipartite digraph (X,Y,E) with |X| =
 = |Y | such that either (X,Y,E \ (X ⇥Y )) or (X,Y,E \ (Y ⇥X)) is a perfect
matching and the other is the bipartite complement of a perfect matching. In
particular, the underlying undirected bipartite graph is a complete bipartite
graph.

We call a 2-partite digraph (X,Y,E) generic if its underlying undirected
bipartite graph is a complete bipartite graph and if for all pairwise disjoint finite
subsets AX , BX ✓ X and AY , BY ✓ Y there are vertices y 2 Y and x 2 X

with AX ✓ N+(y) and BX ✓ N�(y) as well as AY ✓ N+(x) and BY ✓ N�(x).
Similarly, we call a 2-partite digraph (X,Y,E) a generic orientation of a generic
bipartite graph if for all pairwise disjoint finite subsets AX , BX , CX ✓ X and
AY , BY , CY ✓ Y there are vertices y 2 Y and x 2 X with AX ✓ N+(y),
BX ✓ N�(y) and CX ✓ y? as well as with AY ✓ N+(x), BY ✓ N�(x) and
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CY ✓ x?. It is easy to verify that its underlying undirected graph is a generic
bipartite graph.

Note that standard back-and-forth arguments show that, up to isomorphism,
there are a unique countable generic 2-partite digraph and a unique countable
generic orientation of the (unique) countable generic bipartite graph.

It is worthwhile noting that by Theorem 3.6 the underlying undirected bipar-
tite graph of a homogeneous 2-partite digraph is always homogeneous, which
is false for arbitrary homogeneous digraphs and their underlying undirected
graphs.

The fact that the listed 2-partite digraphs in Theorem 3.6 are homogeneous
is already discussed in the previous section for case (i), while in case (ii) it is
a consequence of the fact that the bipartite complement of a perfect matching
is homogeneous. The cases (iii) and (iv) can be easily verified by the above
mentioned back-and-forth argument. (This can also be applied if they are not
countable to show that they are homogeneous.) Before we start with the re-
maining direction of the proof of Theorem 3.6, we show some lemmas.

Lemma 3.8. Let D = (X,Y,E) be a homogeneous 2-partite digraph. If N+(v)
and N�(v) are infinite and v? is finite for some v 2 V D, then v? = ;.

Proof. Let x 2 X. First, let us suppose that m := |x?| = 1. We note that
any automorphism of D that fixes x must also fix the unique element xY 2 x?.
Indeed, since D is homogeneous and each of the two sets {y1, y2} and {y, xY }
induces a digraph without any edge, we can extend every isomorphism between
them to an automorphism ↵ of D and, if x’ is the common predecessor of y1

and y2, then x0↵ is the common predecessor of y and xY . Let y be a successor
of x. As N+(x) is infinite, we find two vertices y1, y2 in Y that have a common
predecessor. Homogeneity then implies that the two vertices y and xY in Y have
a common predecessor z. Let z0 be a successor of xY . By homogeneity, we find
an automorphism � of D that fixes x and maps z to z0. As mentioned above, �
must fix xY as it fixes x. But we have zxY 2 E and (xY z)↵ = xY z0 2 E, which
is impossible.

Now let us suppose that |x?| � 2. By homogeneity and as m is finite, we
find for any subset A of Y of cardinality m a vertex a 2 X with a? = A. As Y is
infinite, there are two subsets A1, A2 of Y of cardinality m with |A1\A2| = m�1
and two such subsets B1, B2 with |B1\B2| = m�2. Let ai, bi 2 X with a?i = Ai

and b?i = Bi, respectively. Then there is no automorphism of D that maps a1

to b1 and a2 to b2 even though D is homogeneous as the number of vertices that
are not adjacent to a1 and a2 is larger than the corresponding number for b1

and b2. Analogous contradictions for any vertex in Y instead of x 2 X show
the assertion.
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Lemma 3.9. Let D = (X,Y,E) be a homogeneous 2-partite digraph. If N+(v)
and N�(v) are infinite and v? = ; for all v 2 V D, then D is a generic 2-partite
digraph.

Proof. It su�ces to show that for any two disjoint finite subsets A and B of X we
find a vertex v 2 Y with A ✓ N+(v) and B ✓ N�(v). Indeed, the corresponding
property for subsets of Y then follows analogously. Note that we find for every
y 2 Y two sets Ay ✓ N+(y) and By ✓ N�(y) with |A| = |Ay| and |B| = |By|.
As D is homogeneous and as A [ B and Ay [ By induce (empty) isomorphic
finite subdigraphs of D, there exists an automorphism ↵ of D that maps Ay

to A and By to B. So y↵ is a vertex we are searching for.

Lemma 3.10. Let D = (X,Y,E) be a homogeneous 2-partite digraph. If the
sets N+(v), N�(v), and v? are infinite for all v 2 V D, then D is a generic
orientation of a generic bipartite graph.

Proof. Similarly to the proof of Lemma 3.9, it su�ces to show that for any
three pairwise disjoint finite subsets A,B,C of X we find a vertex v 2 Y with
A ✓ N�(v) and B ✓ N+(v) and C ✓ v?. For every y 2 Y , we find subsets
Ay ✓ N+(y) and By ✓ N�(y) and Cy ✓ y? with |A| = |Ay| and |B| = |By|
and |C| = |Cy|. Note that each of the two sets A[B [C and Ay [By [Cy has
no edge. Applying homogeneity, we find an automorphism ↵ of D that maps
Ay to A and By to B and Cy to C. So y↵ is a vertex that has the desired
properties.

Now we are able to prove Theorem 3.6.

Proof of Theorem 3.6. Let D = (X,Y,E) be a homogeneous 2-partite digraph
that is not bipartite. Then we find in X some vertex with a predecessor in Y

and some vertex with a successor in Y . By homogeneity, we can map the first
onto the second and conclude the existence of a vertex in X that has a prede-
cessor and a successor in Y . Analogously, we obtain the same for some vertex
of Y . By homogeneity, every vertex of D has predecessors and successors. In
particular, we have |X| � 2 and |Y | � 2.

Let us suppose that two vertices u, v 2 X have the same successors, that is,
N+(u) = N+(v). By homogeneity, we can fix u and map v onto any vertex w

of X \ {u} by some automorphism of D and thus obtain N+(w) = N+(u) for
every w 2 X. So no vertex in N+(u) has successors in X, which is impossible
as we saw earlier. Hence, we have N+(u) 6= N+(v) for each two distinct vertices
u, v 2 X. Analogously, the same holds for each two distinct vertices in Y and
also for the set of predecessors of every two vertices either in X or in Y . Thus,
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we have shown

N+(u) 6= N+(v) and N�(u) 6= N�(v) for all u 6= v 2 X (3.1)

and

N+(u) 6= N+(v) and N�(u) 6= N�(v) for all u 6= v 2 Y. (3.2)

Let us assume that n := |N+(u)| is finite for some u 2 X. Note that, for
any subset A of Y of cardinality n, we find a vertex a 2 X with N+(a) = A

by homogeneity. If |Y | > n + 1 and n � 2, then we find two subsets of Y

of cardinality n whose intersection has n� 1 elements and two such sets whose
intersection has n�2 elements. So we find two vertices in X with n�1 common
successors and we also find two vertices in X with n � 2 common successors.
This is a contradiction to homogeneity, because we cannot map the first pair of
vertices onto the second pair. Thus, we have either n = 1 or |Y | = n + 1. If
|Y | = n + 1, then we directly obtain D ⇠= Mn+1 since every vertex in X also
has some predecessor in Y . So let us assume n = 1. If we have 1 < k 2 N for
k := |N�(u)|, then we obtain D ⇠= Mk+1, analogously. So let us assume that
either |N�(u)| = 1 or N�(u) is infinite. First, we consider the case that N�(u) is
infinite. An empty set u? directly implies D ⇠= M|Y |. So let us suppose u? 6= ;.
Let u+ be the unique vertex in N+(u). Since u? 6= ;, we find for some and hence
by homogeneity for every vertex in Y some vertex in X it is not adjacent to. Let
w 2 (u+)? and let v 2 N+(u+). By homogeneity, we find an automorphism ↵

of D that fixes u and maps v to w. Since ↵ fixes u, it must also fix u+. But since
u+v 2 E and (u+v)↵ = u+w /2 E, this is not possible. Hence, if N+(u) is finite,
it remains to consider the case n = 1 = k. Due to (3.1), no two vertices of X

have a common predecessor or a common successor. Thus, also every vertex
in Y has precisely one predecessor and one successor. Let v 2 Y and w 2 X

with uv, vw 2 E. Then we can map the pair (u,w) onto any pair of distinct
vertices of X, as D is homogeneous. Thus, for all x 6= z 2 X, there exists y 2 Y

with xy, yz 2 E. This shows |X| = 2 as every vertex of D has precisely one
successor. Hence, D is a directed cycle of length 4, which is isomorphic to M2.

Analogous argumentations in the cases of finite N�(u), N+(v) or N�(v)
with u 2 X and v 2 Y show that the only remaining case is that every vertex
in D has infinite in- and infinite out-neighbourhood. Due to Lemma 3.8, we
know that |u?| is either 0 or infinite and that |v?| is either 0 or infinite. Since
x? 6= ; if and only if y? 6= ; for all x 2 X and y 2 Y , the assertion follows from
Lemmas 3.9 and 3.10.
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3.3 Homogeneous digraphs

In this section, we state Cherlin’s classification of the countable homogeneous
digraphs.

Theorem 3.11. [4, 5.1] A countable digraph is homogeneous if and only if it is
isomorphic to one of the following digraphs:

(i) In for some n 2 N1;

(ii) T [In] for some homogeneous tournament T 6= I1 and some n 2 N1;

(iii) In[T ] for some homogeneous tournament T 6= I1 and some n 2 N1;

(iv) the countable generic H-free digraphs for some set H of finite tournaments;

(v) the countable generic In-free digraphs for some integer n � 3;

(vi) T^ for some tournament T 2 {I1, C3, Q, T1};

(vii) the countable generic n-partite digraph for some n 2 N1 with n � 2;

(viii) the countable semi-generic !-partite digraph;

(ix) S(3);

(x) the countable generic partial order P; or

(xi) P(3).

For Chapter 6, it is convenient to have a list of the finite homogeneous
digraphs. This partial result of Theorem 3.11 is due to Lachlan.

Theorem 3.12. [28, Theorem 1] A finite digraph is homogeneous if and only
if it is isomorphic to one of the following digraphs:

(i) C4;

(ii) In for some n � 1;

(iii) In[C3] for some n � 1;

(iv) C3[In] for some n � 1;

(v) the digraph H.

Furthermore, we state Lachlan’s classification of the countable homogeneous
tournaments.
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Theorem 3.13 ([3, Theorem 3.6]). A countable tournament is homogeneous
if and only if it is the trivial tournament on one vertex, the directed triangle,
the generic tournament on countably many vertices, the tournament Q, or the
tournament P.

The generic tournament T1 that is the Fräıssé limit (see [32] for more on
these limits) of all finite tournaments, so the unique homogeneous tournament
that embeds all finite tournaments. The tournament Q has vertex set Q and
edges xy if and only if x < y.

For a set H of finite tournaments, the countable generic H-free digraph is
the Fräıssé limit of the class of all finite H-free digraph. Similarly, for n 2 N, the
countable generic In-free digraph is the Fräıssé limit of the class of all finite In-
free digraphs and the countable generic n-partite digraph is the Fräıssé limit of
all orientations of finite complete n-partite graphs (where some partition classes
may have no element).

The countable semi-generic !-partite digraph is the Fräıssé limit of those
finite complete !-partite digraphs that have the additional property that

for each two pairs (x1, x2), (y1, y2) from distinct classes, the number
of edges from {x1, x2} to {y1, y2} is even.

(3.3)

By P we denote the countable generic partial order, the Fräıssé limit of all
finite partial orders. Every partial order P is in a canonical way a digraph: for
two elements x, y of P we have xy 2 EP if and only if x < y. We call digraphs
that are obtained from partial orders in this way also partial orders. Note that
no partial order contains an induced 2-arc.

It remains to define the variant P(3) of P. This digraph was first described
in [4]. A subset X of V P is dense if for all a, b 2 V P with ab 2 EP there is
a vertex c 2 X with ac, cb 2 EP. Let {P0, P1, P2} be a partition of V P into
three dense sets. For this definition, let x?y if x and y are not adjacent. Let
H = (P0, P1, P2) be the digraph on V P such that for all x, y 2 Pi we have

xy 2 EH if and only if xy 2 EP

and such that for all x 2 Pi and y 2 Pi+1 we have

xy 2 EH if and only if yx 2 EP,

yx 2 EH if and only if x?y 2 EP, and

x?y 2 EH if and only if xy 2 EP.

Let p be an element not in V P. Then P(3) is the digraph on the vertex set
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V P [ {p} such that (p?, p!, p ) = H, where

p? := V P \N(p),

p! := N+(p), and

p := N�(p).

3.4 Previous results on connected-homogeneous

digraphs

We cite the classification of locally finite connected C-homogeneous digraphs
with precisely two ends that is due to Gray and Möller [14], whose paper was
the starting point of the classification process of the C-homogeneous digraphs.

Theorem 3.14. [14, Theorem 6.2] A connected locally finite digraph with pre-
cisely two ends is C-homogeneous if and only if it is isomorphic to C1[In] for
some n 2 N.

Note that it should be possible without too much e↵ort to obtain this pre-
vious result with our methods from Chapter 5.



Chapter 4

Verification of

C-homogeneity

Within this chapter, we verify that all digraphs that are listed in Theorem 1.1
are C-homogeneous.

It is straight forward to see that the digraphs DL(�) with � as specified
in Theorem 1.1 are C-homogeneous. Let D ⇠= M(,m) for an m 2 N with
m � 2 and a cardinal . Let C be a basic cut system of D. Let A and B be
two connected induced finite and isomorphic subdigraphs of D and let ' be
an isomorphism from A to B. Let us first consider the case that A contains
no 2-arc. Then both A and B lie in a reachability digraph, each. Without
loss of generality we may assume that they lie in the same reachability digraph
� of D. But, as the reachability-digraphs are obviously C-homogeneous, it
is straight forward to see that the isomorphism ' from A to B first extends
to an automorphism of � and then also to an automorphism of D. So let
us assume that A contains a 2-arc. Let us consider the case that A is a k-
arc for some k � 2. Let A1, A2 be two induced subdigraphs of A that have
one common vertex, are both connected, and whose union is A. Then both
are shorter arcs and, by induction, we can extend both restrictions, '|A1 and
'|A2 , to automorphisms  1, 2 of D, respectively. Let S be a C-separator that
contains the common vertex of A1 and A2. There are two possibilities for S

if m � 3, and one possibility if m = 2. If m = 2, then it is an immediate
consequence that S 1 = S 2 and that we can combine the two automorphisms
to one that extends ' by setting '|Ki =  i|Ki , where Ki is the component of
D � S that contains vertices of Ai, and '|S =  1|S . So we assume that m � 3.
We choose in this case S so that it lies in a common C-block with an edge of A1.

29
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Let S0 = S 1 . As we had just two possibilities for the choice of S, the image
of S under  2 has to be S0, too. In the same way as above, we can combine
appropriate restrictions of  1 and  2 to an automorphism of D that extends '.

Now let us assume that A is no k-arc. Then there is a C-block X that contains
two edges of A that have a common vertex. Let us first assume that X contains
three edges of A. Then, since � ⇠= CP, we know that X \ A is connected.
Thus, (X \ A)' lies in a C-block Y of B and we have (X \ A)' = B \ Y . We
have already shown that we can extend '|A\X to an automorphism  X of D. If
each component of D �X contains at most one component of A, then we have
the extensions of the restriction of ' to these components and we can construct,
as in the case of k-arcs, an automorphism of D. So we assume that there is
at least one component C of D � X such that, for the C-separator S ✓ X

that separates X and C, the digraph A0 = A \ (C [ S) contains at least two
components. As the C-separators have cardinality 2, A0 consists of precisely two
components. Let Z 6= X be the second C-block that contains S. If Z contains
edges, that means m = 2, then A \ Z consists of precisely two edges that have
their other incident vertices again in a common separator. Since the same must
be true for Z X \B, we may assume inductively that we have extended '|A\X

so that  X coincides with '|Z\A on Z \A. Thus, we can consider the case that
Z does not contain any edge. There is an enumeration z1, . . . , zm of the vertices
of Z such that {zm, z1} and for all i  m also {zi, zi+1} are all the C-separators
in X. We may assume that S = {z1, zm}. Let Ci be the subdigraph induced
by zi, zi+1 and that component of D � {zi, zi+1} that contains no other zj . If
Ci \A consists of one component and contains zi and zi+1, then we can extend
the restriction of ' to that component to an automorphism  i of D and we
may suppose that we have chosen  X so that they are equal on Ci. If there is
one Ci that has at least two components of A \ Ci, then it is unique and we
can suppose that  X |Ci =  i|Ci on all Ci such that A \ Ci is connected. By
induction, we can assume that the same holds also for a component Ci such that
A \ Ci is not connected. So the only remaining case is if Ci \ A is connected
but contains only one of the vertices zi, zi+1. But in this case we know that
this situation occurs in at most one other Cj with i 6= j. Then '|A\Ck with
k 2 {i, j} extends to an automorphism  k of D by induction. Because these
two automorphisms exist, we know that S k

i contains only one vertex of B, and
hence we can assume that  X and  k coincide on Ck. Thus, if we extend this
to all the components of D �X, we know that  X extends '.

The final case that remains is when the block X contains only two edges.
Then it might be the case that X \ A is not connected. If it is not connected,
then there has to be a C-block that contains at least three edges, so we assume
that X \A is connected. If, for the C-block Y that contains (X \A)', we have
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that Y \B is connected, then we can construct an automorphism that extends
' as in the case where X contained three edges of A. On the other hand, if
Y \B is not connected, there has to be a C-block that contains three edges of B,
and the same must be true for a C-block and A. Since we know that in this case
there is an automorphism of D that extends ', we have proved that M(,m) is
C-homogeneous.

In the case that D ⇠= M 0(2m) for an m 2 N the arguments used are analog
ones as in the case D ⇠= M(,m) and therefore we omit that proof here.

We will postpone the proof for the quotients of X2(C3) to the proof of
Theorem 6.16.

That H[In] is C-homogeneous, follows from the fact that H is homogeneous.
Obviously, Cm is C-homogeneous for all m � 3 (even for m = 1), so the same
is true for Cm[In] as its reachability digraph is a complete bipartite digraph.

Next, we consider the digraphs Yk with k � 3. Let A and B be two iso-
morphic connected induced subdigraphs of D := Yk. Let V1, V2, V3 be the three
vertex sets as in the proof of Lemma 6.14 and let �1,�2,�3 be the correspond-
ing reachability digraphs such that �i = D[Vi [ Vi+1] with V4 = V1. Let ↵
be an isomorphism from A to B. It is straightforward to see that (V A \ Vi)↵
is precisely the intersection of V B with some Vj : consider an undirected path
between two vertices of V A and subtract from the number of forward directed
edges on that path the number of backward directed edges. The resulting num-
ber is divisible by 3 if and only if the end vertices of the path lie in the same
Vi. Hence, we may assume that (V A \ Vi)↵ = V B \ Vi for all i  3. Let us
first assume that �i \ A is connected for some i  3, say for i = 1. Let �01
be a minimal subdigraph of �1 isomorphic to some CP` with `  k such that
A\�1 = A\�01. By replacing B by B�, for an automorphism � of D, we may
assume that also B \�1 = B \�01 holds. Since G(CP`) is a C-homogeneous
bipartite graph, we can extend every isomorphism from �01 \ A to �01 \ B, in
particular the restriction of ↵, to an automorphism of �01. Let ↵0 be the auto-
morphism of �01 that extends the above restriction of ↵. Let V 03 ✓ V3 be the
set of those vertices that are non-adjacent to at least one vertex of �01. As each
vertex in V 03 is uniquely determined by two non-adjacent vertices one of which
lies in V1 \ V �01 and the other in V2 \ V �01, the isomorphism ↵0 has precisely
one extension � on D0 := D[V �01 [ V 03 ]. By the construction of � it is easy to
see that the restriction of ↵ to A \ D0 is again an isomorphism from A \ D0

to B \ D0 and is equal to the restriction of � to A \ D0. Since all vertices of
A\(V3 \V 03) are adjacent to all vertices of A\(V1[V2) and since the same holds
for B instead of A, the isomorphism � can be extended to an automorphism
of D whose restriction to A is ↵.

If no �i \ A is connected, then we have |Vi \ V A|  2 for all i  3. In
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particular, we have |V A|  6. As |V A|  4 also leads to some connected �i\A,
we have 5  |V A|  6. Hence, we may assume that |V A \ V1| = 2 = |V A \ V2|
and |V A \ V3| 2 {1, 2}. As �1 \ A is not connected, it is a perfect matching.
Either the same holds for �2 \A and �3 \A and we conclude that A ⇠= C6, or
|V3 \ V A| = 1 and A is a directed path of length 4. In both cases it is easy to
verify that ↵ extends to an automorphism of D.

The only remaining digraphs of Theorem 1.1 we have to consider are the di-
graphs Rm and the generic orientation of the countable generic bipartite graph.
Whereas the latter is a direct consequence of the fact, that it is a homogeneous
2-partite digraph that has an automorphism that switches its partition sets, we
only have to consider the digraphs Rm. But this is an easy consequence of the
fact that the subdigraph of Rm induced by Vi [ Vi+1 is the countable homoge-
neous bipartite digraph and that two vertices in finite induced subdigraphs lie
in the same set Vi if and only if any path between them has the same number
of forward and backward directed edges modulo m.



Chapter 5

The case:

more than one end

This chapter deals with infinite connected C-homogeneous digraphs with more
than one end, that need not be countable. The chapter is structured as fol-
lows. First, we determine the infinite connected C-homogeneous digraphs with
infinitely many ends whose underlying undirected graph is a C-homogeneous
graph those of Type I (Section 5.2), followed by those with infinitely many ends
whose underlying undirected graph is not a C-homogeneous graph that are the
digraphs of Type II (Section 5.3).

It is well known that a transitive connected locally finite graph either con-
tains one, two, or infinitely many ends. For arbitrary transitive connected in-
finite graphs, this was proved by Diestel, Jung and Möller [6]. Since the un-
derlying undirected graph of a transitive digraph is also transitive, the same
holds for infinite transitive digraphs. As two-ended connected transitive graphs
are locally finite [6, Theorem 7] we refer to Gray and Möller [14, Theorem 6.2]
for the classification result in the case of two-ended C-homogeneous digraphs.
Consequently, we complete in this chapter the classification of the locally finite
C-homogeneous digraphs and of the connected C-homogeneous digraphs with
more than one end.

Due to [19], the only connected C-homogeneous graphs with more than one
end are the graphs X,� where  and � are cardinals larger than 1. These are
the graphs in which every vertex is a cut vertex and lie in � distinct blocks all
of which are complete graphs on  vertices.

33
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5.1 Local structure of C-homogeneous digraphs

of Type I and Type II

In this section we summarize some preliminary results of the relation between a
C-homogeneous digraph and a basic cut system C of this digraph. In particular
we investigate the local structure around C-separators.

Lemma 5.1. Let D be a connected C-homogeneous digraph with more than one
end. Let C be a basic cut system and let S be a C-separator. Then there is no
edge xy in D with both vertices in S. In particular, no two C-blocks can share
an edge.

Proof. Let (A,B) 2 C with A \ B = S and let us suppose that there is xy 2
ED with x, y 2 S. By the minimality of C each vertex in a C-separator has
neighbours in both wings of the corresponding separation. Let a 2 A \ B

and b 2 B \ A be such neighbours of y. Then there are di↵erent possibilities
for the direction of their connecting edges. Let us first consider the case that
ay, by 2 ED. Then there is an automorphism ↵ that maps xy onto by. Then S↵

lies in B, since C is nested and b 2 S↵, and we have either A ✓ A↵ or A ✓ B↵

by the nestedness of C. So we have a vertex b0, which is either a↵ or b↵, that
lies either in B \B↵ or in B \A↵ such that b0y 2 ED and S0 := S↵ separates
a and b0. Let {A0, B0} = {A↵, B↵} such that a 2 A0 and b0 2 B0.

Now let ↵0 be an automorphism of D such that a↵0 = a and (by)↵0 = b0y.
Hence the vertex b1 := b↵0

0 lies in B1 \ A1, where A1 := A↵0
0 and B1 := B↵0

0 ,
and we have b1y 2 ED. Since A0 meets A1, S1 := S↵0

0 6= S0 lies in B0, and C is
nested, we know that A0 is a proper subset of A1, B1 is a proper subset of B0

and S0 lies in A1, which implies x 2 A1. Furthermore b1 and a are separated
from each other by both S0 and S1. By repeating this process recursively, we
have an ↵i that fixes a and y and maps bi�1 onto bi and we get a further vertex
bi+1 = b↵i

i 2 Bi+1 \Ai+1 that is separated by Si+1 := S↵i
i from a 2 Ai+1 \Bi+1.

And with the same argument as before we have that Ai is a proper subset of
Ai+1 := A↵i

i , that Bi+1 := B↵i
i is a proper subset of Bi and that bi 2 Ai+1.

Hence, bj 2 Ai+1 for all j  i, which implies bi 6= bj for all i 6= j.
Thus, after the step m := |S|+1 there has to be some k < |S| such that bk is

not contained in Sm and therefore lies in Am \Bm. That is, bk is also separated
from bm by Sm and I := {a, bk, bm} forms an independent set. Note that by
construction all elements in I have y as a common out-neighbour. Hence, due to
the C-homogeneity of D, there is an automorphism � of D which interchanges
a and bk and fixes y and bm. Note that a 2 A \ B ⇢ Ak+1 \ Bk+1 and bm 2
Bm \Am ⇢ Bk+1 \Ak+1. Thus, Sk+1 is a separator containing bk that separates
a and bm, which implies that Sk+1� is a separator containing a that separates
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bk and bm. But due to the minimality of C, there is a bk-bm-path in Bk+1

that meets Sk+1 only in bk and therefore Sk+1� meets both Ak+1 \ Bk+1 and
Bk+1 \Ak+1, contradicting the nestedness of C (confer Remark 2.5).

So let us suppose by, ya 2 ED. Let ↵ be an automorphism of D with
(xy)↵ = ya and choose {X,Y } = {A↵, B↵} such that b 2 X \ Y . Then there
is a neighbour c of y in Y \ X, which is separated from b by S↵. Note that
by nestedness, and since both X and Y meet A, we have that either X \B or
Y \B is empty. So b 2 X \B yields c 2 A. If cy 2 ED then we may take the
vertices c, b instead of a, b and get a contradiction by the first case above. Thus
we may assume that yc 2 ED. But then we can map the digraph D[b, y, a] onto
D[b, y, c] such that the number of separators that separate b from a without
containing one of them equals the number of separators that separate b and c

without containing one of them. Due to [7, Lemma 4.1] this number is finite.
Because of the nestedness of C, every separator that separates the vertices b and
a lies entirely in X, and since a and c are joined by a path that lies except for a

in Y \X, it also separates b and c. But S↵ contains a and separates b from c,
a contradiction. The case ay, yb 2 ED is analogous.

Let us finally suppose that ya, yb 2 ED. By considering the digraph D�1

instead of D we also may assume that there are a0 2 A \B and b0 2 B \A with
a0x, b0x 2 ED. Let ↵ be an automorphism of D with (xy)↵ = yb. Then there
is a vertex b00 2 B \A that is separated by S↵ from a and such that b00y 2 ED.
But then we have the situation of the previous case and thus we know that no
such edge xy exists.

Let X and Y be distinct C-blocks, then there is x 2 X \ Y . Since Y , being
a C-block, is maximally C-inseparable, there is a C-separator S that separates x

from Y . As X is also C-inseparable, we have X \ Y ✓ S. Therefore X and Y

cannot share an edge.

Lemma 5.2. Let D be a connected C-homogeneous digraph with more than
one end and let C be a basic cut system. Then for each 2-arc P in D we have
|P \ S|  1 for all C-separators S.

Proof. Let P = xay be a 2-arc in D and S a C-separator. By Lemma 5.1 we
only have to show that S cannot contain both x and y. So assume {x, y} ✓ S.
Let (A,B) 2 C with A \ B = S and a 2 A. Since D is transitive there is an
arc zx in D. If z lies in A consider a neighbour z0 of x in B. Now either zxa,
zxz0 or z0xa is an induced 2-arc in D, which we denote by Q, with one vertex
in A \ B and one vertex in B \ A. Because D is connected-homogeneous there
is an automorphism ↵ with P↵ = Q. Then S↵ contains vertices of both wings
of (A,B). By Remark 2.5, this contradicts the nestedness of C.
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Lemma 5.3. Let D be a connected C-homogeneous digraph with more than one
end, let C be a basic cut system of D, and let S be a C-separator. Then there is
no directed path in D with both endvertices in S.

Proof. Suppose that there is such a path P . We may choose the path such that
it has minimal length. Then all of the vertices of P lie in the same C-block X.
By Lemma 5.2 the endvertices of any directed path of length 2 are separated
by a C-separator. Hence no directed path of length at least 2 can lie in any
C-block.

Lemma 5.4. Let D be a connected C-homogeneous triangle-free digraph with
more than one end, and let C be a basic cut system. Then for any cut (A,B) 2 C
there is no path xyz in D [A] with y 2 A \B.

Proof. By Lemma 5.1 we only have to show that given a cut (A,B) 2 C there is
no 2-arc xyz in D such that y 2 S := A\B and x, z 2 A \B. So let us suppose
there is such a path. Then y has a neighbour b 2 B \ A. We may assume
that their connecting edge is pointing towards y, since otherwise changing the
direction of each edge gives a digraph D0 which is C-homogeneous and has this
property.

Suppose that there is a second neighbour c 2 B \ A of y. If yc 2 ED, then
there is an ↵ 2 Aut(D) that fixes b, y, z and with x↵ = c, c↵ = x, as D is
triangle-free. But then the separations (A,B) and (A↵, B↵) are not nested.
Thus we may assume that cy 2 ED. In this situation let � be an automorphism
of D that fixes x, y, b and maps z onto c and vice versa – a contradiction as
before.

So b is the unique neighbour of y in B. We may assume that there is another
vertex a, say, that lies in S, since otherwise we could map the 2-arc byz onto
xyz, as D is C-homogeneous and triangle-free, and, thus, y would seperate x

from z, contradicting the fact that x and z lie in the same component of D�S.
Now consider a path P in D connecting a and y and let T denote the structure
tree of D and C. Let M be the set of C-blocks containing edges of P . Since
C-separators do not contain any edge, distinct blocks cannot contain a common
edge. Thus we choose a block M 2 M whose distance to S in T is maximal
with respect to M.

Now each nontrivial component of P \M has to contain exactly two edges:
An isolated edge would either be contained in a separator, in contradiction
to Lemma 5.1, or it would connect M to two distinct neighbours in T \M,
contradicting the choice of M . If there is a segment of P in M with a length of
at least three, then it contains either a directed subsegment, isomorphic to byz,
or a subsegment isomorphic to by[xy. In each case there exists an isomorphism
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' such that S' separates the endvertices of this subsegment, which is impossible
since M is a C-block.

Considering an arbitrary nontrivial component of P \M , its two edges have
a common vertex which we denote by m. With an analogous argument as above,
both edges are directed away from m. Let us denote their heads by u and v,
respectively. By construction, u and v lie both in the separator SM ⇢ M that lies
on the unique shortest path between M and S in T . Consider an arbitrary cut
with seperator SM . Then u has a neighbour u0 in the wing not containing m. Let
 be an automorphism with (mu) = by and either (uu0) = yz, if uu0 2 ED

or (u0u) = xy, if u0u 2 ED. Since C is nested we have SM ⇢ B which
means that x and z are separated from b by SM . By relabeling S := SM and
a := v , if neccessary, we may assume that ba is an edge.

Then there is a neighbour z0 of b in B \A, and we can find an automorphism
� with (by)� = ba and either x� = z0 or z� = z0, depending on the orientation
of the edge between b and z0. Again by the nestedness of C we have S� ⇢ B

and also B� ✓ B. And since x is separated from b by S� we have y 2 S�.
But that implies that y and a both have b as their unique neighbour in B�.
Hence, S� \ {y, a}[ {b} is a seperator in D that seperates ends and has smaller
cardinality, contradicting the fact that C is basic.

Lemma 5.5. Let D be a connected C-homogeneous triangle-free digraph that is
not a tree and that has more than one end, and let C be a basic cut system of D.
Let S be a C-separator and let s 2 S. Then there is precisely one C-block that
contains s and all edges directed away from s, and there is precisely one C-block
that contains s and all edges directed towards s. Furthermore there is d+(s) > 1
and d�(s) > 1.

Proof. By Lemma 5.4 there is at most one kind of neighbours in each C-block.
Suppose first that there is a C-block Z with only one neighbour a of s. We may
assume that as 2 ED. By C-homogeneity, we can map each edge xs onto as. As
there is by Lemma 5.1 precisely one C-block Y that contains xs, Y contains no
other neighbour of s, because the same holds for s and Z. Thus each component
of each C-block is either a single vertex or a star the edges of which are directed
towards the leaves of the star. If each C-block is a tree and every C-separator
consists of one vertex, then the digraph D has to be a tree. Since we excluded
this case, there is a second vertex t 2 S. For every component C of D�S, there
is an (undirected) s-t-path P with all its vertices but s and t in C. Let X be a
C-block with maximal distance to S in the structure tree of G and C such that
there are at least two edges from P in X. This C-block exists by Lemma 2.9.
As each component of X that contains edges is a star, the longest subpath of P

that lies completely in X has length 2. Let xyz be such a subpath. Then due to
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Lemma 5.2 we have xy, zy 2 ED and y is the only X-neighbour of both x and
z. Let S0 be the C-separator in X that separates X from S. Then, S0 contains
x and z. But, as in the previous lemma, S0 \ {x, z} [ {y} would be a separator
of smaller cardinality separating two ends, a contradiction.

Thus a C-block cannot contain s together with a single neighbour of s and
by C-homogeneity there has to be one C-block that contains all in-neighbours
of s and one that contains all out-neighbours of s.

Lemma 5.6. Let D be a connected C-homogeneous triangle-free digraph that is
not a tree and that has more than one end, and let C be a basic cut system of D.
Then each C-separator has degree two in the structure tree T for D and C.

Proof. Let S be a C-separator. Then for each component X of T �S the vertex
set (

S
X) \ S is the union of components of D � S. Since each s 2 S has a

neighbour in each component of D � S, it also has at least one neighbour in
each component of T � S. With Lemma 5.5 we have dT (S) = 2.

If we combine Lemma 5.5 and Lemma 5.6 we get the following

Corollary 5.7. Let D be a connected C-homogeneous triangle-free digraph that
is not a tree and that has more than one end, and let C be a basic cut system
of D. Let B be a C-block, S ⇢ B a C-separator and s 2 S. If s has no neighbour
in B, then there is exactly one C-separator S0 ⇢ B such that s 2 S0 \ S. If s

has a neighbour in B, then S is the only C-separator in B that contains s.

Lemma 5.8. Let D be a connected C-homogeneous digraph with more than one
end that embeds a triangle, and let C be a basic cut system of D. Then every
C-block that contains edges is a tournament and D has connectivity 1.

Proof. Let S be a C-separator and let x 2 S. Then x has adjacent vertices in
both wings of each cut (A,B) 2 C with A \ B = S. As D contains triangles,
each edge lies on a triangle. We know that each wing of (A,B) contains both
an in- and an out-neighbour of x, as any triangle contains a 2-arc and D is
edge-transitive. Thus every induced path of length 2 in D can be mapped on
a path crossing S, i.e. a path both end vertices of which lie in distinct wings
of (A,B). Hence no two vertices in the same C-block can have distance 2 from
each other and, in particular, every component of every C-block has diameter 1.

To prove that each C-block has diameter 1 we just have to show that each
C-block is connected. So let us suppose that this is not the case. Let X be a
C-block and let P be a minimal (undirected) path in D from one component
of X to another. Let Y be a C-block with maximal distance in the structure tree
of D and C to X that contains edges of P . By Lemma 5.1 the block Y has to
contain at least two edges and there are two non-adjacent vertices in the same
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component of Y . This contradicts the fact that these components are complete
graphs. Hence each C-block that contains edges has precisely one component
which has diameter 1.

For any C-block X, there is a C-separator S with S ✓ X. By Lemma 5.1,
S contains no edge and thus precisely one vertex.

5.2 C-homogeneous digraphs of Type I

In this section we shall completely classify the countable connected C-homoge-
neous digraphs of Type I with more than one end and give – apart from the
classification of infinite uncountable homogeneous tournaments – a classification
of uncountable such digraphs. As a part of the countable classification we apply
the classification of Lachlan [29], see also [3], of the countable homogeneous
tournaments (see Theorem 3.13).

The underlying undirected graph of a digraph X�(T ) for a homogeneous
tournament T is some X,�, which is a distance-transitive graph1 as described
in [19, 31, 34]. Thus, if a digraph X�(T ) is C-homogeneous, then so is its
underlying undirected graph.

Theorem 5.9. Let D be a connected digraph with more than one end. Then D

is C-homogeneous of Type I if and only if one of the following statements holds:

(1) D is a tree with constant in- and out-degree;

(2) D is isomorphic to a X�(T), where  and � are cardinals with � � 2 and
 either 3 or infinite and T is a homogeneous tournament on  vertices.

Proof. Let us first assume that D is a C-homogeneous digraph of Type I. Then
the underlying undirected graph is isomorphic to a X,� for cardinals ,� � 2.
If  = 2, then D is a tree with constant in- and out-degree, so we may assume
 � 3. As each block is a complete digraph, it is homogeneous and, thus, we
conclude from Theorem 3.13 that the cardinal  has to be either 3 or infinite.
This proves the necessity-part of the statement.

Since the digraphs of part (1) are obviously C-homogeneous of Type I, we
just have to assume for the remaining part that D is isomorphic to X�(T) for
a cardinal � � 2 and a homogeneous tournament T on  vertices for a cardinal
 that is either 3 or infinite. Let C be a basic cut system of D. Let X and Y be
two connected induced finite and isomorphic subdigraphs of D. Let ' be the
isomorphism from X to Y . If X has no cut vertex, then X lies in a subgraph

1A graph G is called distance-transitive if for each two pair (x1, x2) and (y1, y2) of vertices

with d(x1, x2) = d(y1, y2) there is an automorphism ↵ of G with xi↵ = yi.
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of D that is a homogeneous tournament and the same is true for Y , so ' extends
to an automorphism of D. So let x 2 V X be a cut vertex of X. Hence x' is a
cut vertex of Y . It is straight forward to see that for any C-block B the image of
X\B in Y is precisely the intersection of Y with a C-block A. Since the C-blocks
are all isomorphic homogeneous tournaments, the isomorphism from X \ B to
Y \A extends to an isomorphism from X to Y . Thus the isomorphism from X

to Y easily extends to an automorphism of D. Since the underlying undirected
graph is C-homogeneous (see [13]), D is C-homogeneous of Type I.

Lachlan’s theorem together with Theorem 5.9 enables us to give a complete
classification of countable connected C-homogeneous digraphs of Type I and
with more than one end:

Corollary 5.10. Let D be a countable connected digraph with more than one
end. Then D is C-homogeneous of Type I if and only if one of the following
assertions holds:

(1) D is a tree with constant countable in- and out-degree;

(2) D is isomorphic to a X�(Y ), where  is a countable cardinal greater or
equal to 2 and Y is one of the four non-trivial homogeneous tournaments of
Theorem 3.13.

5.3 C-homogeneous digraphs of Type II

5.3.1 Reachability and descendant digraphs

In this subsection we prove that, if a connected C-homogeneous digraph D

with more than one end contains no triangles, then D is highly-arc-transitive,
each reachability digraph of D is bipartite, and, if furthermore D has infinitely
many ends, then the descendants of each vertex in D induce a tree. All these
properties were proved to be true in the case that D is locally finite, see [14,
Theorem 4.1].

Theorem 5.11. Let D be a connected C-homogeneous triangle-free digraph with
more than one end. Then D is highly-arc-transitive.

Proof. Let C be a basic cut system. It su�ces to show that each directed path is
induced. Suppose this is not the case. Then there is a smallest k such that there
is a k-arc A = x0 . . . xk that is not induced. Hence there is an edge between
x0 and xk. Consider a C-separator S that contains x1. By Lemma 5.3 we have
xk /2 S and by Lemma 5.1 we have x0 /2 S; hence x0 and xk lie on the same side
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of S. But then the same holds for xk�1 and so on. So finally x0 and x2 have to
lie on the same side of S, in contradiction to Lemma 5.4.

Theorem 5.12. Let D be a connected C-homogeneous triangle-free digraph with
more than one end. Then �(D) is bipartite and if D is not a tree, then each
�e with e 2 ED is a component of a C-block. Furthermore, if D has infinitely
many ends, then every descendant digraph desc(x) with x 2 V D is a tree.

Proof. Let C be a basic cut system. We first show that either D is a tree or
any �e with e 2 ED is a component of a C-block. Let us assume that D is
not a tree. Lemma 5.5 immediately implies that �e for any e 2 ED, cannot
be separated by any C-separator and, thus, each �e lies in a C-block. As there
are induced paths of length 2 crossing some C-separator and as D contains no
triangle, a component of a C-block X cannot contain more vertices than �e

with e 2 E(D[X]) contains. Thus �e is a component of a C-block.
Suppose that �(D) is not bipartite. Then there is a cycle of odd length in

�(D). Thus there has to be a directed path of length at least 2 on that cycle.
By Lemma 5.2 this path lies in distinct C-blocks. This is not possible as shown
above and thus �(D) has to be bipartite.

Now suppose that there is x 2 V D such that desc(x) contains a cycle. So by
transitivity there is a descendant y of x such that there are two x-y-arcs that
are apart from x and y totally disjoint. Thus, since we are C-homogeneous,
any two out-neighbours of x have a common descendant. Assume that there
are two distinct C-separators S, S0 such that both Y := S \ S0 and Y 0 := S0 \ S

contain an out-neighbour of x. Then it exists a vertex z in D with Y -z- and
Y 0-z-arcs. But by the Lemmas 5.3 and 5.4 the vertices x and z cannot lie on
the same side of S and S0, respectively, hence S and S0 meet on both sides,
a contradiction to the nestedness of C. Thus there is a C-separator S+1 that
contains the whole out-neighbourhood of x. This implies that all descendants of
distance k are contained in a common C-separator S+k, since either all distinct
k-arcs originated at x are disjoint, and we can apply the same argument as
above, or each two of those k-arcs intersect in a vertex x0 in D that has the
same distance to x on both arcs by Lemma 5.3, and we are home by induction.

With a symmetric argument we get that each k-arc that ends in x has to
start in a common C-separator S�k. For a path P in D that starts in x, let �(P )
denote the di↵erence of the number of edges in P that are directed away from x

(with respect to P ) minus the number of edges of the other type. Then one easily
checks that the endvertex of P lies in S�(P ). Since all C-separators have the same
finite order s, say, there can be at most 2s rays that are eventually pairwise
disjoint. Hence D has finitely many ends, which proves the last statement of
the theorem.
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Lemma 5.13. Let D be a connected C-homogeneous triangle-free digraph with
more than one end and let C be a basic cut system of D. Then for each C-
separator S of order at least 2 there is a reachability digraph �e and a C-block
K such that |S \�e| � 2, �e ✓ K, and S ✓ K.

Proof. Let S be a C-separator with |S| � 2. Suppose that there is no reachability
digraph �e with |S \ �e| � 2. Let x, y 2 S and let P be an x-y-path in a
component of D�S. Let B be a C-block that contains edges of P and such that
dT (S,B) is maximal with this property. Then the C-separator SB ✓ B that
separates S and B in T has the desired property and thus each C-separator has
it, in contradiction to the assumption.

We have roughly described the global structure of C-homogeneous digraphs.
To investigate the local structure of these graphs, we show that the underlying
undirected graph of each reachability digraph is a connected C-homogeneous
bipartite graph. Such graphs were already described in Section 3.1.

Lemma 5.14. Let D be a connected C-homogeneous digraph such that �(D)
is bipartite. Then the underlying undirected graph of �(D) is a connected C-
homogeneous bipartite graph.

5.3.2 The classification

As a first result we prove that no connected C-homogeneous digraph of Type II
with more than one end contains any triangle.

Lemma 5.15. Let D be a connected C-homogeneous digraph of Type II with
more than one end. Then D contains no triangle.

Proof. Let C be a basic cut system and suppose that D contains a triangle. By
Lemma 5.8, every C-block of D that contains an edge is a tournament and D

has connectivity 1. Hence, each C-block contains edges and the C-blocks have
to be homogeneous tournaments. Thus, D is of Type I in contradiction to the
assumption.

Now we are able to classify the connected C-homogeneous digraphs of Type I
with at least two ends and connectivity 1.

Lemma 5.16. Let D be a connected C-homogeneous digraph of Type II with
more than one end. If D has connectivity 1, then D is isomorphic to DL(�(D)).

Proof. This is direct consequence of Lemma 5.15 and Lemma 5.5.
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In the next two theorems we prove that in the cases that the reachability
digraph is either isomorphic to CP or to K2,2 the digraph has connectivity
at most 2. Thus, in this case it remains to determine those with connectivity
exactly 2.

Theorem 5.17. Let D be a connected C-homogeneous digraph of Type II with
infinitely many ends and with �(D) ⇠= CP for a cardinal  � 3. If D has
connectivity more than one, then D is isomorphic to M(,m) for an m 2 N
with m � 2.

Proof. By Lemma 5.15 the digraph D contains no triangle. Let C be a basic cut
system and let T be the structure tree of D and C. Let S0 be a C-separator,
let X0 = �e for an e 2 ED such that |S0 \X0| � 2, and let K0 be a C-block
with S0 ✓ K0 and �e ✓ K0, which all exists by Lemma 5.13. Let A [ B be
the natural bipartition of X0 such that its edges are directed from A to B. For
each a 2 A let us denote by ba the unique vertex in B such that aba is not an
edge in X0. By symmetry we may assume that A \ S0 6= ;, so let a 2 A \ S0.

First we will show that X0 \ S0 = {a, ba}. Since S0 contains no edges by
Lemma 5.1 it su�ces to show that A \ S0 = {a}. So let us suppose that there
is another vertex a0 6= a in A \ S0. Since any two vertices in A have a common
successor in B, we have A ✓ S0 by C-homogeneity. Let a0 2 A be distinct from
a and P an induced a-a0-path whose interior is contained in D �K0. Denote
the unique neighbour of a on P by c. Taking into account that X0 is a CP,
there is a common successor for each pair of A-vertices; let b be such a common
successor of a and a0. Since S0 separates both, b and ba, from the interior of P ,
the paths cPb and cPba are isomorphic and,by C-homogeneity, we can map cPb

onto cPba by an automorphism ' of D. Then a' is a successor of c that sends
an edge to ba. Hence a' lies in A and is distinct from a, contradicting the fact
that desc(c) is a tree. Thus we know that X0 \S0 = {a, ba} for a vertex a 2 A.

For the remainder let X0\S0 = {x0, x1}. Because each vertex clearly lies in
exactly two distinct reachability digraphs, there is a unique reachability digraph
X1 6= X0 that contains x1. If x0 2 X1 then it is straight forward to see that
D ⇠= M(, 2). So assume x0 /2 X1 and let  be an automorphism of D mapping
X0 onto X1 and x0 to x1. Let S1, K1 denote the image under  of S0, K0,
respectively, and let x2 = x1 . Since C is basic there is an induced x0-x1-path
P the interior of which lies in D �K0. We shall show that P contains x2.

Suppose that P does not contain x2 and has minimal length with this prop-
erty. Let u be the neighbour of x1 on P , which clearly lies in X1, and let v be
a neighbour of u in X1 distinct from x1. If v does not lie on P , then Puv is
a path of the same length as P which is induced by the minimality of P and
Theorem 5.12, contradicting the fact that x0 and v cannot lie in a common
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reachability digraph. On the other hand, if v lies on P then consider a neigh-
bour w of x2 in X1 distinct from v. Remark that since X1 is a CP there is
an edge between v and x2. Thus by the choice of P the path Pvx2w is induced
and of the same length as P , which is impossible since x0 and w do not belong
to a common reachability digraph. Hence P contains x2.

We have just proved that {x1, x2} separates x0 from any neighbour of x1

in X1. Hence all C-separators have order 2 and thus the blocks which contain
edges consist each of a single reachability digraph. Now we repeat the previous
construction to continue the sequences (Xi)i2N, (Si)i2N, (Ki)i2N and (xi)i2N,
respectively. Since Px2 is an induced x0-x2-path the interior of which lies in
D �K1, we can apply the same argument as above to assure that P contains
x3. Hence by induction we have xi 2 P for all i 2 N, and since P is finite there
is an m 2 N such that xm = x0. Furthermore we have Xm = X0, Sm = S0

and Km = K0. One can verify that {x0, x1, . . . , xm�1} forms a maximal C-
inseparable set – a C-block – which means that D is isomorphic to M(,m).

Theorem 5.18. Let D be a connected C-homogeneous digraph of Type II with
infinitely many ends and with �(D) ⇠= K2,2. If D has connectivity more than
one, then D is isomorphic to M 0(2m) for 2  m 2 N.

Proof. Lemma 5.15 implies that D contains no triangle. Let C be a basic cut
system of D. Let S0 be a C-separator and let X0 = �e for an e 2 ED such
that |S0 \X0| � 2. Such an X0 exists by Lemma 5.13. As �(D) ⇠= K2,2 and as
no C-separator contains any edge by Lemma 5.1, there is |S0 \X0| = 2. So let
x0, x1 be the two vertices in X0 \S0. Let X1 be the other reachability digraph
that contains x1 and let x2 be the unique vertex in X1 that is not adjacent to
x1. Let  be an automorphism of D that maps X0 onto X1 and let S1 be the
image of S0 under  .

With the same technique as in the previous proof, we can verify that {x1, x2}
separates D and so S0 = {x0, x1}. We can continue the sequences (xi)i2N and
(Si)i2N so that S1 = {x1, x2} and Si = {xi, xi+1}, and there is an n 2 N such
that xn = x0. Since D has infinitely many ends we have n � 3, and as xi 2 Si

only holds for all even integers i we have n = 2m with m � 2. Now analog as in
the proof of Theorem 5.17

S
i Si forms a C-block that contains no edges. Hence

there are precisely two Aut(D)-orbits on the C-blocks and D is isomorphic to
M 0(2m).

If we assume �(D) to be one of the other possibilities as described in Theo-
rem 3.5, then the C-homogeneous digraphs have – in contrast to the other two
cases – connectivity 1.
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Lemma 5.19. Let D be a connected C-homogeneous digraph of Type II with
infinitely many ends and such that �(D) is isomorphic to a T,� for cardinals
,�, a C2m with 4  m 2 N, a K,� for cardinals ,� � 2, or an infinite
homogeneous generic bipartite digraph. Then D has connectivity 1.

Proof. Since D is of Type II, it contains no triangle by Lemma 5.15. Let us
suppose that D has connectivity at least 2 and let C be a basic cut system of D.
Let S be a C-separator and let X be a reachability digraph with |S \X| � 2 as
in Lemma 5.13. We investigate the given reachability digraphs one by one and
get in each case a contradiction and, thereby, we get a contradiction in general
to the assumption that D has connectivity at least 2. So let us assume that
X ⇠= T,� for cardinals ,�. By Lemma 5.5 we know that ,� � 2, as D is not
a tree. Let x, y 2 S \X such that dX(x, y) is maximal. Such vertices exist as
S is finite. Let e1 be the first edge on the path from x to y in X and let e2

be another edge incident with x. There is an ↵ 2 Aut(D) with e1↵ = e2. But
then y↵ lies in a common separator with x, as x↵ = x. By Corollary 5.7 the
separator S↵ has to be the same as S. But this contradicts the maximality of
dX(x, y), as dX(y↵, y) > dX(x, y).

Let us now assume that X ⇠= C2m for a 4  m 2 N and let x, y be distinct
vertices in S \X. Then there is an induced path P from x to y that lies apart
from x and y in a component of D � S that intersects trivially with X. We
first show that we may assume that dX(x, y) � 4. Let e1, e2 be the two edges
in D[X] that are incident with x. If dX(x, y) = k  3, then let ↵ 2 Aut(D)
with e1↵ = e2. Then there is dX(y, y↵) = 2k, as m � 4. Thus we have shown
that there are x, y 2 S \ X with dX(x, y) � 4. Let s1 and s2 be the vertices
in X that are adjacent to y and let t be a vertex in X that is adjacent to x.
Since dX(x, y) � 4, the graphs txPysi for i = 1, 2 are induced paths. Hence
there is an automorphism ↵ of D that maps txPys1 onto txPys2 and thus
dX(s1, x) = dX(s2, x) and dX(s1, t) = dX(s2, t), a contradiction as X is a cycle.

For the next case let us assume that X ⇠= K,� for cardinals ,� � 2. Let
A[B be the natural bipartition of X. Since |S \X| � 2, the vertices in S \X

lie in the same partition set, A say. By the C-homogeneity it is an immediate
consequence that A ✓ S. As the C-separators have minimal cardinality with
respect to separating ends, there is |A|  |B|. If there is a C-separator S0 with
|S0 \ B| � 2, then B ✓ S0. If in addition the intersection of B with another
reachability digraph distinct from X is B, then it is a direct consequence that
 = � is finite and that D has two ends. Thus there are two distinct reachability
digraphs X1,X2 that intersect with B non-trivially and that are distinct from X.
Let A1, B1, A2, B2 be the natural bipartitions of X1,X2, respectively. Let P be
an induced path from A1\B to A2\B in a component of D�S0 that intersects
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non-trivially with X. Let a be the vertex on P that is adjacent to the vertex in
P\A1 and let b be a vertex in B\A1 not on P . Then there is an automorphism ↵

of D that maps P onto baP . But this contradicts the fact that the endvertices
of P lie both in B but the endvertices of baP do not lie in in any common
reachability digraph as |A1\B| = 1. Thus we conclude that |B\S0| = 1. So let
x, y, z 2 B be three distinct vertices. There is a shortest induced path P from
x to y in that component of D � S that contains B. Let a 2 A and let b be
the vertex on P with distance 2 to y. Then there is an automorphism ↵ of D

that maps zaxPb onto yaxPb. Thus we conclude that d(b, z) = 2. But then z

has to have incident edges that are directed both towards or both from distinct
C-blocks. This contradicts Lemma 5.5.

Let us finally assume that X is isomorphic to an infinite homogeneous generic
bipartite digraph. Let again A [B be the natural bipartition of X. Since X is
homogeneous, all vertices in the same set A or B have distance 2 to each other.
We conclude that |S \A| � 2 immediately implies A ✓ S which contradicts the
finiteness of S. Conversely we also know |B \ S|  1. Since D has connectivity
at least 2, there is |A\S| = 1 = |B\S|. Let a, b be the vertices in A\S,B\S,
respectively, and let ab0a0b be a path of length 3 from a to b. This path exists
because each two vertices in the same set A or B have distance 2 to each other as
before. Since there are infinitely many vertices in A that are adjacent to b0 but
not to b, all these vertices have to lie in S, a contradiction. Thus we conclude
that D has connectivity 1.

Let us summarize the conclusions of this section in the following theorem.
In its proof we will finally prove that all the candidates for C-homogeneous
digraphs are really C-homogeneous.

Theorem 5.20. Let D be a connected digraph of Type II with infinitely many
ends. Then D is C-homogeneous if and only if one of the following holds:

(1) �(D) ⇠= CP for a cardinal  � 3 and D ⇠= DL(�(D)).

(2) �(D) ⇠= C2m for 2  m 2 N and D ⇠= DL(�(D)).

(3) �(D) ⇠= K,� for cardinals ,� � 2 and D ⇠= DL(�(D)).

(4) �(D) is isomorphic to an infinite homogeneous generic bipartite digraph
and D ⇠= DL(�(D)).

(5) �(D) = CP and D ⇠= M(,m) for a cardinal  � 3 and 2  m 2 N.

(6) �(D) = K2,2 and D ⇠= M 0(2m) for 2  m 2 N.
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Proof. The theorem follows from Lemmas 5.15, 5.16, and 5.19 and by Theo-
rems 5.17 and 5.18 as we have already shown in Chapter 4 that the digraphs
mentioned are C-homogeneous.

5.3.3 Line digraphs of C-homogeneous digraphs

It is well known (see [1]) that line digraphs of highly-arc-transitive digraphs
are again highly-arc-transitive. In some cases also C-homogeneity is preserved
under taking the line digraph: Gray and Möller [14] stated that the line digraph
of a DL(C2m) is C-homogeneous. In terms of our classification:

Remark 5.21. For each m 2 N we have L(DL(C2m)) ⇠= M 0(2m).

Proof. Consider the digraph D = DL(C2m) for a m 2 N. By construction the
deletion of each single vertex v of D splits the digraph into two components such
that v has two out-neighbours in the one and two in-neighbours in the other
component. Thus the four edges that are incident with v form a K2,2 in L(D)
whose independent vertex sets separate L(D). Furthermore the edges of each
C2m in D form an independent set in L(D) so that any two adjacent edges lie
in a common K2,2 in L(D). One can easily verify that this digraph is indeed
isomorphic to M 0(2m).

Interestingly, our classification of the C-homogeneous digraphs with infinitely
many ends implies that C-homogeneity is not generally preserved under taking
line digraphs. Indeed, for all m 2 N the line digraph of M 0(2m) is triangle-free,
has infinitely many ends, and has connectivity 4, hence it is not of Type II.
Thus, by Theorem 5.20, we know that L(M 0(2m)) ⇠= L(L(DL(C2m))) is not
C-homogeneous. This had remained an open question in [14].
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Chapter 6

The case:

finite degree

In the chapter we look at the C-homogeneous digraphs that have finite degree
and at most one end. The first results in this part are obtained in the case
that the out-neighbourhood (or in-neighbourhood) of any vertex is not inde-
pendent (Section 6.1) and then we look at the more di�cult case, where the
out-neighbourhood and also the in-neighbourhood is independent (Section 6.2
and Section 6.3). This latter case also divides into two parts: either the directed
triangle embeds into the digraph or not. Note that the next chapter has basi-
cally the same structure. It just deals with countable C-homogeneous digraphs
of arbitrary degree. This chapter is based on [15] and Chapter 7 is based on [16].

6.1 The non-independent case

for C-homogeneous digraphs with at most

one end

It is a straightforward argument that the out-neighbourhood as well as the in-
neighbourhood of any vertex of a C-homogeneous digraph have to be homoge-
neous digraphs: extend any two finite isomorphic induced subdigraphs in D+(x)
(in D�(x)) for x 2 V D with the aid of x to connected such digraphs. As any
of their isomorphisms extend to automorphisms of the whole digraph, so do the
isomorphisms between the two original subdigraphs. Let us fix this as a lemma.

Lemma 6.1. Let D be a C-homogeneous digraph. Then D+ and D� are ho-
mogeneous digraphs.

49
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We investigate which of the homogeneous digraphs of Theorem 3.12 may oc-
cur as a subdigraph D+ or D�. In this section we take a look at those cases that
contain an edge and show that there is precisely one such case that may occur.
This case is a generalization of the digraph H that occurs in the case (v) of The-
orem 3.12. Our first aim is to show that neither D+ nor D� is isomorphic to H.

Lemma 6.2. Let D be a connected locally finite C-homogeneous digraph. Then
D+ 6⇠= H and D� 6⇠= H.

Proof. By regarding the digraph whose edges are directed in the inverse way, if
necessary, we may suppose that D+(x) ⇠= H for every x 2 V D. Let z 2 N+(x).
As D+(x) ⇠= H, the digraph D+(x) \ D+(z) consists of a directed triangle.
Let v1, v2, v3 be three vertices in N+(z) \N+(x) such that v1 has precisely two
neighbours in N+(x) \N+(z), such that N+(x) \N+(z) ✓ N+(v2), and such
that N+(x) \ N+(z) ✓ N�(v3). These vertices exist because D+(z) ⇠= H.
Then there are two vertices vi, vj (i 6= j) such that they are both either in
the in-neighbourhood of x or not adjacent to x. This implies that D[z, x, vi] ⇠=
D[z, x, vj ]. As D is C-homogeneous, there is an automorphism of D mapping the
first onto the second subdigraph that fixes x and z. But this is a contradiction
to the choice of vi and vj as they behave di↵erently to N+(x) \N+(z).

The next case that we exclude is that the out- or the in-neighbourhood
induces a subdigraph isomorphic to C4.

Lemma 6.3. Let D be a connected locally finite C-homogeneous digraph. Then
D+ 6⇠= C4 and D� 6⇠= C4.

Proof. Analogously to the proof of Lemma 6.2, we may suppose that D+(x) ⇠=
C4. Let us denote by v1, . . . , v4 the four vertices in N+(x) such that vivi+1 2
ED for 1  i  3 and v4v1 2 ED. According to Lemma 6.2, we know that
D�(v1) 6⇠= H.

Let us suppose that there is a vertex y 2 N�(v1) \N�(v2) distinct from x.
An immediate consequence of C-homogeneity is N+(x) = N+(y). Indeed, we
can extend the isomorphism from D[x, y, v1] to D[x, y, v2] that fixes x and y to
an automorphism of D, which implies that v3 2 N+(y). Analogously, we have
v4 2 N+(y), too, so N+(x) = N+(y). Hence, neither xy nor yx can be an
edge of D. The subdigraph D[x, y, v4] is a subdigraph of D�(v1) and thus, by
Theorem 3.12, we have D�(v1) ⇠= C3[In] for some n > 1. Asx 2 N�(v1), there
is a vertex in N+(x) \N�(v1) which is distinct from v4. As this is impossible,
we have proved

N�(v1) \N�(v2) = {x}. (6.1)
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Due to C-homogeneity, we know that (6.1) holds for each two adjacent vertices
vi and vj in N+(x).

The next step in the proof is to show

N�(v1) \N+(v2) = ;. (6.2)

Let us suppose that there is a vertex y 2 N�(v1) \N+(v2). If y is neither
adjacent to x nor to v4, then by Theorem 3.12 D�(v1) has to be isomorphic to
In[C3] for some n > 1. So there is a vertex z 2 N�(v1) that lies in N+(v4) \
N�(x). As xv2 2 ED and as v2 and v4 are not adjacent, C-homogeneity implies
that we must have v2z 2 ED. Indeed, otherwise we could map z either to x

or to v4 and fix v1 and v2 by an automorphism of D. But both cases imply
that then the whole directed triangle D[x, v4, z] in D�(v1) must have the same
adjacency to v2 which is impossible. Both digraphs D[z, v1, v2] and D[y, v1, v2]
are directed triangles. Hence, there is an automorphism ↵ of D that maps z

to y and fixes v1 and v2. But as x and y are not adjacent, we know that x 6= x↵.
Since also x↵ lies in N�(v1) \N�(v2), this contradicts (6.1). So y is adjacent
to at least one of x and v4.

If y is adjacent to x but not to v4, then yx lies in ED as y /2 {v1, . . . , v4} =
N+(x). Since an induced 2-arc embeds into N�(v1), we know that D�(v1) ⇠=
C4, as the only other possible case D�(v1) ⇠= H is not possible due to Lemma 6.2.
Hence, there is a vertex z 2 N�(v1) that lies in N+(v4) \ N�(y) and that is
not adjacent to x. As a consequence of (6.1) we know that zv2 is not an edge
in D. If z and v2 are not adjacent, we also obtain a contradiction. Indeed, then
there is an automorphism � of D that maps v4 to z and fixes v1 and v2. So
x� 6= x but both lie in N�(v1) \N�(v2), which is impossible. Hence, we know
that v2z 2 ED. So there is an automorphism � of D that maps y to z and fixes
v1 and v2. As x and y are adjacent but x and z are not, we have again two
distinct vertices, x and x� in N�(v1) \N�(v2) which is impossible by (6.1).

If y is adjacent to v4 but not to x, then we know by (6.1) applied to v4

and v1 that yv4 /2 ED. So v4y is an edge of D. This implies as above that
D�(v1) ⇠= C4. Hence, there is a vertex z 2 N�(v1) \ {v4, x, y}. If z is not
adjacent to v2, then there is an automorphism of D that maps z to v4 and fixes
v1 and v2. Since this automorphism cannot fix x, the image of x is a second
vertex in N�(v1) \ N�(v2) contrary to (6.1). Hence, z and v2 are adjacent.
Due to (6.1), zv2 is no edge of D, so we have v2z 2 ED. Then there is an
automorphism of D that maps y to z and fixes v1 and v2. Again, x and its
image under that automorphism are distinct. But both lie in N�(v1)\N�(v2)
in contradiction to (6.1).

Thus, we conclude that both x and v4 are adjacent to y. Due to (6.1), we
have v4y 2 ED and not yv4 2 ED, and because of y /2 N+(x) we have yx 2 ED.
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By C-homogeneity, there is an automorphism � of D that maps v2 to v4 and
fixes y and x. Hence, we have v1� = v3 and yv3 2 ED. But then D[v1, x, v3] is
a subdigraph of N+(y) that cannot be embedded into a C4. This contradiction
shows that (6.2) is true.

Let us suppose that there exists a vertex y 2 N�(v1)\N+(v4). Due to (6.2),
we have yv3 62 ED. The existence of an edge v3y in D implies that there is
an automorphism ↵ of D that maps v3 to v1 and fixes x and y. But then, we
have v4↵ = v2 and hence v2y 2 ED contrary to (6.2). So we have v3y /2 ED.
Thus, there is an automorphism � of D that maps v1 to y and fixes v3 and v4.
Since y /2 N+(x), we have x 6= x� 2 N�(v3)\N�(v4) and thus a contradiction
to (6.1). This shows

N�(v1) \N+(v4) = ;. (6.3)

Since there is a vertex in N�(v1) \ N+(x), the same is true for N�(v1) \
N+(v4) due to C-homogeneity. This contradiction to (6.3) shows that D+(x)
cannot be isomorphic to C4.

Lemma 6.4. Let D be a connected locally finite C-homogeneous digraph such
that D+ ⇠= In[C3] and D� ⇠= Im[C3] with m,n � 1. Then m = n = 1.

Proof. Let xy 2 ED. Then there exists z 2 N�(y) \ N�(x). By considering
D�(y), we obtain a vertex a 2 N�(y) \ N+(x) with az 2 ED. Let b be the
third vertex of N+(x) in that isomorphic image of C3 that contains y and a.
If either zb or bz lies in ED, then we have either by 2 E(D+(x) \ D+(z)) or
ab 2 E(D+(x)\D�(z)). This is a contradiction as each of N+(x)\N+(z) and
N+(x) \ N�(z) consists of precisely one vertex by the assumption D+(x) ⇠=
In[C3]. Hence, z and b are not adjacent. So in the isomorphic copy D[y, a, b]
of C3 in D+(x), there is an in- and an out-neighbour of z and one vertex not
adjacent to z.

Let us suppose that n > 1. Then there exists a vertex y0 2 N+(x) that is
distinct from a, b, and y. So there is a vertex v 2 {a, b, y} and an automorphism
of D that maps v to y0 and fixes x and z. Hence, the isomorphic image of C3

in D+(x) that contains y0 contains a vertex of N+(z). We may suppose that
this is y0. But then D[y, x, y0] is a digraph that cannot be embedded into
D+(z). This contradiction shows n = 1. By a symmetric argument we also
have m = 1.

Lemma 6.5. Let D be a connected locally finite C-homogeneous digraph. If
either D+ ⇠= C3[In] or D� ⇠= C3[In] for some n � 1, then D ⇠= H[In].

Proof. Analogously to the proof of Lemma 6.2, we may suppose that D+(x) ⇠=
C3[In] for some n � 1. Let xy 2 ED. Then x and n independent vertices of
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N+(x) lie in N�(y) and hence either n = 1 and D�(y) ⇠= Im[C3] for some m � 1
or D�(y) ⇠= C3[Im] for some m � n. In the first case, we have m = 1 according
to Lemma 6.4. So in both cases, we have D�(y) ⇠= C3[Im] for some m � n.
With a symmetric argument we conclude m = n. Hence, there is a vertex
z 2 N�(x)\N�(y). As D+(z) ⇠= C3[In] and x 2 N+(z) and as D�(x) ⇠= C3[In]
and z 2 N�(x), we have that

N+(x) \N+(z) and N�(x) \N�(z) are independent sets of cardi-
nality n.

(6.4)

An immediate consequence of the C-homogeneity of D is N+(x)\N�(z) 6= ;
as D contains some directed triangle. Our next aim is to show that

N+(x) \N�(z) is an independent set of cardinality n. (6.5)

Let us suppose that there is an edge ab with its two incident vertices in
N+(x)\N�(z). Then the digraphs D[x, z, a] and D[x, z, b] are isomorphic and
there is an automorphism ↵ of D mapping a to b and fixing x and z. As a
consequence of (6.4), both a and b have to be adjacent to all the vertices in
N+(x) \ N+(z). Since D+(x) ⇠= C3[In] and a, b 2 N+(x), we have y0a 2 ED

and by0 2 ED for all y0 2 N+(x)\N+(z). Indeed, an edge ay0 would imply that
y0 and b are not adjacent and the same would be true for an edge y0b. Thus,
the automorphism ↵ cannot exist and we conclude that no such edge ab exists.
So N+(x) \ N�(z) is an independent set. Since every edge lies on at least n

distinct directed triangles, there are at least n vertices in N+(x)\N�(z) and, as
a largest independent set in N+(x) consists of n vertices, we have proved (6.5).

As a further step in this proof, we prove the following:

Each two non-adjacent vertices in N+(x) have the same in-neigh-
bors.

(6.6)

Let a, b 2 N+(x) be non-adjacent and x0 2 N�(a) with x0 6= x. Let us first
assume that x and x0 are adjacent. In each of the two sets N+(x) and N+(x0)
there is precisely one maximal independent set that contains a as D+(x) ⇠=
C3[In]. Due to (6.4) applied to x and x0 instead of x and z, these two maximal
sets must be N+(x) \ N+(x0). Hence, also b must lie in N+(x0). So let us
assume that x and x0 are not adjacent. Then there is a third vertex x00 in
N�(a) that is adjacent to both x and x0. Applying the previous case, we know
that x00 2 N�(b) and hence also x0 2 N�(b). This shows (6.6).

The remaining step in the proof is to show the following:

There is an equivalence relation ⇠ on V D, each of whose equiva-
lence classes has precisely n independent vertices, such that D⇠ is
isomorphic to H and D⇠[In] is isomorphic to D.

(6.7)
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Let us define a relation ⇠ on V D via

a ⇠ b :() N�(a) = N�(b).

Obviously, ⇠ is an equivalence relation. First, we note that every equivalence
class must be an independent vertex set due to the definition of the relation ⇠.
Hence, there are more than one equivalence classes. Let A and B be two distinct
equivalence classes, a1, a2 2 A, and b1, b2 2 B such that a1b1 2 ED. According
to the definition of ⇠, we have a1b2 2 ED and thus, B ✓ N+(a1). As B is
an independent set and D+(a1) ⇠= C3[In], there are at most n vertices in B.
On the other side, (6.6) with x replaced by a1 implies that there are n vertices
in B, so B is the maximal independent set in N+(a1) that contains b1. The
vertex b1 has a successor c that is a predecessor of a1. By definition of ⇠, we
have ca2 2 ED. Since |A| = n, we conclude by (6.5) with x, z replaced by c, b1

that a2b1 2 ED. So we also have a2b2 2 ED. Thus, D⇠ is a digraph with
D ⇠= D⇠[In]. The digraph D⇠ is C-homogeneous, since D is C-homogeneous
and since we can lift any connected induced subdigraph F of D⇠ to a connected
induced subdigraph of D that has as its vertices the union of the vertices of F

– note that the vertices of F are equivalence classes of vertices of D. It remains
to show that D⇠

⇠= H. As D⇠ is a C-homogeneous digraph with D+(v) ⇠= C3

for all v 2 V D⇠, it su�ces to assume n = 1 and to show that D ⇠= H.
Let x 2 V D. We know that D+(x) ⇠= C3

⇠= D�(x). Let N+(x) = {v1, v2, v3}
and N�(x) = {u1, u2, u3} with vivi+1 2 ED and viui+1 2 ED (where v4 = v1

and u4 = u1). As xv1 is an edge in D[x, v1, v2], also u1x must lie in the same
position in some triangle. Thus, there is an edge from u1 to one of the vertices
vi, say to v1. Then N�(v1) = {u1, x, v3} and hence, we have v3u1 2 ED.
As N+(u1) = {u2, x, v1}, we have v1u2 2 ED. Now we can apply similar
arguments and obtain that v2u3, u2v2, and u3v3 lie in ED. Let y be the third
out-vertex of v3 distinct from v1 and u1. Notice that y cannot be u2. Because
of D+(v3) ⇠= C3, we have yu1 2 ED and v1y 2 ED. By D+(v1) ⇠= C3 we
conclude v2y 2 ED and yu2 2 ED and D�(u1) ⇠= C3 implies yu3 2 ED. The
constructed digraph has the correct out- and in-degree at every vertex and is
isomorphic to H. This finishes the proof of Lemma 6.5.

Let us combine the results of this section with Theorem 3.12:

Theorem 6.6. Let D be a connected locally finite C-homogeneous digraph and
x 2 V D. Either N+(x) and N�(x) are independent vertex sets or there is an
n � 1 such that D+ ⇠= C3[In] ⇠= D� and D ⇠= H[In].
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6.2 The independent case

for C-homogeneous digraphs with at most

one end

In this section, we consider the situation that every out-neighbourhood – and
hence due to Theorem 6.6 also every in-neighbourhood – is independent. Let us
briefly outline the content of this section. First, we show that if either the out-
degree or the in-degree is 1, then the connected locally finite C-homomgeneous
digraph is a tree (Lemma 6.7). Thereafter, we show in Lemmas 6.8 and 6.11
that the reachability relation is not universal in our situation. So due to Propo-
sition 2.1, the reachability digraphs are bipartite. That is why we turn our
attention towards connected (locally finite) C-homogeneous bipartite graphs.
We use their classification (Theorem 3.5) to obtain a complete classification in
the case of connected locally finite C-homogeneous digraphs with at most one
end if the digraphs contain no directed triangle (Lemma 6.14) and then a partial
classification of such digraphs if they contain a directed triangle (Lemma 6.15).
We continue the investigation of this situation in Section 6.3.

Lemma 6.7. Let D be a connected vertex-transitive digraph and let x 2 V D.
If N+(x) or N�(x) consists of precisely one vertex, then D is either an infinite
tree or a directed cycle.

Proof. By regarding the digraph whose edges are directed in the inverse way, if
necessary, we may assume that N+(x) consists of precisely one vertex. Let us
assume that D is not a tree. Then there is a cycle C in D. If C is not a directed
cycle, then there is a vertex with out-degree at least 2 on that cycle. Hence, we
may assume that C is a directed cycle. For every vertex on C, its descendants
must lie on C, so they induce a subdigraph that is a cycle. If D 6= C, then there
must be a vertex u outside C that is adjacent to some vertex v on C. The edge
between u and v cannot be vu as we already mentioned, so it must be uv. So
the descendants of u do not induce a directed cycle, as they contain u and all
vertices of C. But as D is vertex-transitive, the descendants of u and those of v

induce isomorphic digraphs. This contradiction shows that D = C is a directed
cycle.

Notice that C-homogeneous digraphs are edge-transitive and hence Lem-
ma 6.7 holds for them. Let us now look at the reachability relation of C-
homogeneous digraphs. The proof that this relation is not universal splits into
two cases: whether a directed triangle embeds into D or not. We start with the
latter case:
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Lemma 6.8. Let D be a connected locally finite C-homogeneous digraph such
that N+(x) and N�(x) are independent sets for all x 2 V D and such that
D contains no directed triangle. Then the reachability relation of D is not
universal.

Proof. Let x 2 V D. By regarding the digraph whose edges are directed in
the inverse way, if necessary, we may assume that d+(x) � d�(x) and due
to Lemma 6.7, we may also assume that d�(x) � 2. Let y 2 N+(x) and
⌦ = N+(y). Since D is C-homogeneous and contains no directed triangle and
since ⌦ and N+(x) are independent sets of vertices, the group � := Aut(D)xy

acts on ⌦ like S⌦, the symmetric group on ⌦, i.e. �⌦ ⇠= S⌦. By induction, we
will show (�Q)⌦ = �⌦ for all alternating walks Q with initial edge xy. Let P

be such an alternating walk. Let us assume that (�P )⌦ = �⌦ and let e 2 ED

such that Pe is an alternating walk. Let z be the vertex incident with e but
distinct from the end vertex of P . We will show that (�Pe)⌦ = �⌦, and hence,
(�z)⌦ = �⌦. There are at most |⌦|� 1 vertices in {z↵ | ↵ 2 �P }, as this set is
contained either in the out- or in the in-neighbourhood of z0, the other vertex
that is incident with e, but it does not contain the neighbour of z0 on P . So we
have |�P : �Pe| < |⌦|. Since �⌦ = (�P )⌦, we have either |⌦| = 2 or

|�⌦ : (�z)⌦|  |� : �z| = |{z↵ | ↵ 2 �}| < |⌦|.

Let us first assume that |⌦| 6= 2. Then, due to Theorem 2.4, (�z)⌦ is either
�⌦ or isomorphic to A⌦, the alternating group on ⌦, or |⌦| = 4 and (�z)⌦ is
a Sylow 2-subgroup of �⌦. In each of these cases, the group (�z)⌦ = (�Pe)⌦

acts transitively on ⌦. But then, as ⌦ is an independent set, for any A,B ✓ ⌦
with |A| = |B|, the digraph D1 induced by Pe and A must be isomorphic to the
subdigraph D2 induced by Pe and B and any bijection from A to B extends
to an isomorphism from D1 to D2 fixing Pe. Hence, (�z)⌦ must be the full
symmetric group S⌦.

Let us now consider the case that |⌦| = 2. Then we have d+(x) = d�(x) = 2.
Hence, the orbit of z under �P contains only z and we conclude � = �z. As for
a 2 ⌦ the orbit of a under � contains both successors of y, the vertex z cannot
lie in ⌦.

In both cases, no vertex of ⌦ can lie on an alternating walk that contains
the edge xy and thus, the reachability relation of D cannot be universal.

Before we turn our attention to investigate the reachability relation if D

contains directed triangles, we prove some lemmas.

Lemma 6.9. Let D be a connected locally finite C-homogeneous digraph such
that N+(x) and N�(x) are independent sets for all x 2 V D. If C3 embeds
into D, then d+(x) = d�(x).
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Proof. Let n be the number of directed triangles that contain a fixed edge xy

of D. As D is C-homogeneous, we conclude for the number of directed triangles
that contain x:

|N+(x)|n = |N�(x)|n.

Hence, we have d+(x) = d�(x).

Lemma 6.10. Let D be a connected locally finite C-homogeneous digraph such
that N+(x) and N�(x) are independent sets for all x 2 V D. If D contains a
directed triangle, then the number of directed triangles that contain a given edge
xy 2 ED is either 1 or at least (d+ � 1).

Proof. Let ⌦1 be the set of all vertices in N+(y) that lie on a common directed
triangle with xy, let ⌦2 = N+(y) \ ⌦1, and let ⌦3 := N+(x) \ {y}. Note that
⌦3 \N+(y) = ; as N+(x) is an independent set. Let d1 = |⌦1| and d2 = |⌦2|.
Then we have d = d1+d2 where d := d+ which is the same as d� by Lemma 6.9.

Let us suppose that d1 and d2 are both at least 2, so we have |⌦3| � 3. We
consider the action of � := Aut(D)xy on ⌦3. Since N+(x) is an independent
set and since D is C-homogeneous, � acts on ⌦3 like S⌦3 , the symmetric group
on ⌦3. For every z 2 ⌦i, i = 1, 2, we have |� : �z| = di < d+ � 1 = |⌦3|. Thus
and due to Theorem 2.4, we have either (�z)⌦3 ⇠= S⌦3 , or (�z)⌦3 ⇠= A⌦3 , or
|⌦3| = 4 and |� : �z| = 3. In each case, �z acts transitively on ⌦3. As ⌦3 is
an independent set, the subdigraph D1 induced by x, y, z, and A is isomorphic
to the subdigraph D2 induced by x, y, z, and B for any two subsets A and B

of ⌦3 with |A| = |B| and, furthermore, any bijection from A to B extends to an
isomorphism from D1 to D2 fixing x, y, and z. As D is C-homogeneous, each
of these isomorphisms extends to an automorphism of D, so (�z)⌦3 cannot be a
proper subgroup of S⌦3 and we have that �z acts on ⌦3 like S⌦3 . But then for all
y1, y2 2 N+(x) \ {y} we have N+(y) ✓ N+(y1) if and only if N+(y) ✓ N+(y2)
and we have either N+(y) ✓ N+(y1) or N+(y) \N+(y1) = ;. So we conclude
that each edge lies either on precisely one or on d distinct directed triangles.
This contradicts the assumptions that d1 � 2 and d2 � 2 and hence shows the
assertion.

Now we are able to prove also for connected locally finite C-homogeneous
digraphs that contain directed triangles that their reachability relation is not
universal.

Lemma 6.11. Let D be a connected locally finite C-homogeneous digraph such
that N+(x) and N�(x) are independent sets for all x 2 V D. If D contains a
directed triangle, then the reachability relation of D is not universal.
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Figure 6.1: On the left side the digraph D1 and on the right side the digraph D2.

Proof. For this proof, we use two certain digraphs D1 and D2 depicted in Fig-
ure 6.1.

Let d = d+. By Lemma 6.9 we have d = d�. Let us suppose that the
reachability relation A of D is universal. The digraph D1 is an example of a
cycle witnessing that A is universal (removing the uppermost edge leaves an
alternating walk of length 3) and up to isomorphism D1 is the only such cycle
of length 4. Remember that Lemma 2.2 tells us that

there is a cycle in D witnessing that A is universal (6.8)

and that Lemma 2.3 tells us that

if D contains a cycle witnessing that A is universal, then it contains
an induced such cycle of shorter or equal length.

(6.9)

The next step is to show:

If D contains an induced cycle C of even length witnessing that A
is universal, then each edge lies on precisely one directed triangle.

(6.10)

Let xyz be a directed path of length 2 on C. Then C � y has an automor-
phism that interchanges x and z. This automorphism of C � y extends to an
automorphism ↵ of D. As C is induced, the same holds for C↵. Thus and
since y and y↵ cannot be adjacent because N+(y) and N�(y) are independent,
we obtain that y and y↵ are not adjacent. Hence, y is the first vertex of at
least two directed paths of length 2 that share the edge yz: one is yzy↵ and
the other is yzu where u is the second neighbour of z on C. Thus, the edge yz

lies on at most d+(z)� 2 directed triangles which directly implies (6.10) due to
Lemma 6.10 and as Aut(D) acts transitively on the edges of D.

Let us show:

If D contains an induced cycle of length 4 witnessing that A is uni-
versal, then it contains an isomorphic copy of D2.

(6.11)

Let u, v, x, y be the vertices of D1 such that uv, vx, xy 2 ED. Then there
is an automorphism ↵ of D that fixes u and interchanges v and y. As the out-
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and the in-neighbourhood of x is independent, the vertices x and x↵ are not
adjacent and D1 together with x↵ forms all but the rightmost vertex of D2. An
automorphism � that maps u to v, v to x and x to y gives us the remaining
vertex z of D2: take z = y�. An edge between z and u either contradicts (6.10)
or leads to an out- or an in-neighbourhood that is not independent – depending
on its direction. Similarly, z and x are not adjacent. This shows (6.11).

Now we exclude the existence of induced cycles witnessing thatA is universal
step by step: first we exclude such cycles if they have precisely four vertices,
then we exclude odd such cycles of length at least 5 and last we exclude even
such cycles of length at least 6. When we have shown that none of these cases
occur, we have a contradiction to the assumption that A is universal.

No induced cycle of length 4 in D witnesses that A is universal. (6.12)

To show (6.12), let us suppose for a contradiction that there is an induced
cycle of length 4 witnessing that A is universal. Due to (6.11), D contains an
isomorphic copy D0 of D2. Let x be the leftmost and y the rightmost vertex
and let a, b, u, v the vertices of the inner cycle such that x and y are adjacent to
a and u and such that uv 2 ED. Since D contains a directed triangle, there is a
vertex a0 2 N+(a)\N�(x). Then a0 is adjacent neither to b, nor to v, nor to y,
since the only directed triangle that contains aa0 is D[x, a, a0] and since the in-
and the out-neighbourhoods of every vertex are independent sets. Hence, there
is an automorphism ↵ of D that fixes a0, x, and u, and maps v onto y. Then ↵
also has to fix a, since it fixes together with x and a0 the unique vertex in the
directed triangle that contains the edge a0x. As va 2 ED but ay 2 ED, this is
a contradiction that shows (6.12).

No induced odd cycle of length at least 5 in D witnesses that A is
universal.

(6.13)

Let us suppose that D contains an induced odd cycle C of length at least 5
that witnesses that A is universal. Let xy be an edge on C such that either
d+

C(x) = 2 and d+
C(y) = 1 or d+

C(x) = 1 and d+
C(y) = 0. Let z be the second

neighbour of y on C. Then C�x and C�y are isomorphic and hence, there is an
automorphism ↵ of D that maps C � x onto C � y. The digraph D[x, y, z, x↵]
is isomorphic to D1 because N�(z) and N+(z) are independent sets. This
contradicts (6.12). So we proved (6.13).

The next claim will finish the proof of Lemma 6.11.

No induced even cycle in D witnesses that A is universal. (6.14)

Let us suppose that D contains an induced even cycle C of minimal length
witnessing that A is universal. Due to (6.12), the length of C is at least 6. As
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its length is even, there is a directed path xyzu on C. Due to C-homogeneity,
D has an automorphism ↵ that maps C � y onto itself with x↵ = z. Hence,
the path xyz lies on a directed cycle of length 4, the cycle induced by x, y, z,

and y↵. Note that y and y↵ cannot be adjacent as y has independent out-
and independent in-neighbourhood. Let a be the neighbour of u on C that
is not z. As every edge lies on precisely one directed triangle due to (6.10),
there are uniquely determined vertices a0 and z0 such that a, a0, and u induce a
directed triangle and the same holds for z, z0, and u. Furthermore, the vertex
a0 is not adjacent to z or z0 and z0 is also not adjacent to a because of the
independent out- and in-neighbourhoods and due to (6.10). The induced 2-arc
zua0 lies on a directed cycle of length 4 as the same holds for xyz. Let y0 be the
fourth vertex on that cycle. Then y0 cannot be adjacent to a as otherwise the
in-neighbourhood of a0 is not independent. We shall show that a0y 2 ED. This
is true if y0 = y, so let us assume that y0 6= y. Then the digraphs D[a, u, z, y]
and D[a, u, z, y0] are isomorphic. Hence, there is an automorphism � of D that
fixes a, u, and z and maps y0 to y. As a and u lie on precisely one common
directed triangle, � must also fix a0, so y = y0� must be adjacent to a0� = a0.
Then the digraph induced by a0 and all the vertices of C but u and z contains
a cycle C0 witnessing that A is universal and this cycle C0 has smaller length
than C. Due to (6.9), there is also an induced such cycle C00 of at most the
same length as C0. If the length of C00 is either 4 or odd, then we obtain the
claim by (6.12) or (6.13), and if the length of C00 is even and at least 6, then we
obtain a contradiction to the minimality of the length of C. This shows (6.14)
and finishes the proof of the lemma.

As the reachability relation is not universal for any locally finite C-homoge-
neous digraph D if N+(x) and N�(x) are independent sets for all x 2 V D, we
conclude with Proposition 2.1 that D has a bipartite reachability digraph. That
is, why we are interested in the classification of the locally finite C-homogeneous
bipartite graphs.

Now, we use the classification result of the C-homogeneous bipartite graph
(Theorem 3.5) to continue our classification of the connected locally finite C-
homogeneous digraphs. Remember that Lemma 5.14 tells us that G(�(D)) is
a connected C-homogeneous bipartite graph, if �(D) is bipartite. At this place
the assumption that the digraphs have at most one end will be used for the first
time in this chapter and the remaining lemmas of this section will also build on it.

Lemma 6.12. Let D be a locally finite connected C-homogeneous digraph with
at most one end such that N+(x) and N�(x) are independent sets for all vertices
x 2 V D. Then either �(D) is a finite digraph or D contains a directed triangle
and G(�(D)) ⇠= T2,2.



6.2. THE INDEPENDENT CASE 61

Proof. Due to Lemmas 6.8 and 6.11, we know that the reachability relation
of D is not universal and hence that the reachability digraphs are bipartite
by Proposition 2.1 and that we can apply Theorem 3.5. Let us suppose that
�(D) is not finite. Since D is locally finite, we conclude from Theorem 3.5
that G(�(D)) ⇠= Tk,` for integers k, ` � 2. Let us first assume that k � 3. By
regarding the digraph whose edges are directed in the inverse way, if necessary,
we may assume that k = d+(x). Let u 2 V D and x, y, z 2 N+(u). As there is a
ray in G(�(D)) and as D has at most one end, it has precisely one end. Hence,
removing the (finite) set S of all vertices with distance at most 3 to u separates D

into components such that precisely one of them is infinite, because D is locally
finite. Let C be this infinite component. Let Rx, Ry be rays that start at u and
contain x, y, respectively, and that lie in the same reachability digraph � that
contains u and x. Since D is locally finite, there are vertices a, b on Rx, Ry,
respectively, that lie in C. So we have d(a, x) � 3 and d�(a, x) = d�(a, u)� 1
as well as d(b, y) � 3 and d�(b, y) = d�(b, u)�1, where d� denotes the distance
in �. Let P be a path (not necessarily directed) in C from a to b, and let Q

be the path in � between a and x. Note that neither P nor Q has y or z as
a neighbour. Indeed, for P this follows from the fact P ✓ D � S and for Q it
is a consequence of the fact that � is an induced subdigraph and Q contains
no neighbour of y in � by the choice of a. Then the digraph induced by P ,
Q, u, and y is isomorphic to the digraph induced by P , Q, u, and z, but
there is no automorphism of D that maps one onto the other by fixing P , Q,
and u and mapping y to z since d�(b, y) = d�(b, z) � 2, which follows from
d�(b, y) = d�(b, u) � 1 as � is a tree. This shows k = 2. The case ` � 3 is
analogous, so we conclude k = ` = 2 and d+ = d� = 2.

It remains to show that D contains a directed triangle. So let us suppose
that there is no directed triangle in D. Let z 2 V D, let x and y be the two pre-
decessors of z and let z1 be a successor of z. Due to the assumptions, D[x, z, z1]
and D[y, z, z1] are induced 2-arcs and we conclude with C-homogeneity that
� := Aut(D)zz1 acts transitively on {x, y}. Let z1z2, . . . be the ray with z2 6= z

in that reachability digraph that contains z and z1. The group � must fix z2 as
d� = 2 and, inductively, it fixes every zi as also d+ = 2. Let zi be a vertex on
that ray that has distance at least 3 to z. As above, there is a path P from zi

to a vertex a that lies in the same reachability digraph as the edge xz and has
distance at least 3 to z such that every vertex of P has distance at least 3 from z.
So neither x nor y has a neighbour on P . Furthermore, � = �zz1...zi acts tran-
sitively on {x, y}, so any successor or predecessor of x is also a successor or pre-
decessor of y, respectively. Hence, the digraphs D1 := D[{x, z, z1, . . . , zi}[V P ]
and D2 := D[{y, z, z1, . . . , zi} [ V P ] are isomorphic. So the isomorphism that
maps x to y and fixes all other vertices of D1 extends to an automorphism ↵
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of D that fixes hA(xz)i = hA(yz)i. Hence, a = a↵ has the same distance to x

and to x↵ = y. But because of d+ = d� = 2 the unique path in hA(xz)i
from z to a contains either x or y but not both. Thus, a has distinct distance
to x and to y. This contradiction shows that D contains a directed triangle if
G(�(D)) ⇠= T2,2.

Lemma 6.13. Let D be a locally finite connected C-homogeneous digraph with
at most one end such that N+(x) and N�(x) are independent sets for all x 2
V D. If �(D) is finite and if the intersection of any two reachability digraphs
does not separate each of them, then no reachability digraph separates D.

Proof. As in the proof of Lemma 6.12, we know that �(D) is bipartite. Let us
suppose that there is a reachability digraph �1 that separates D but that there
are no two reachability digraphs whose intersection separates each of them. Let
�2 be a reachability digraph with V �1 \ V �2 6= ;, let x 2 V �1 \ V �2, y be a
neighbour of x in �2, and z be a neighbour of y outside �2. Note that z exists as
otherwise every neighbour of y lies in �2, which implies by C-homogeneity that
every neighbour of x lies in a unique reachability digraph in contradiction to the
choice of �1 and �2. Let Di, i = 1, 2, be the component of D��i that contains
y or contains z, respectively. If D2 does not contain any vertex of �1, then we
have D2 ✓ D1 with D2 6= D1. So both D1 and D2 must be infinite since they
are isomorphic – there is an automorphism ↵ of D with x↵ = y and y↵ = z, and
this automorphism maps �1 to �2 and D1 to D2. As D is locally finite, it has
one end in D1 \D2 and symmetrically also another one in (D�D1)\ (D�D2)
contrary to the assumptions. Hence, D2 contains a vertex of �1 and D2 6✓ D1.
But then, as �1��2 is connected and D��2 is not connected, there is another
component D02 of D ��2 that is completely contained in D1 and contains no
vertex of �1. The component D02 need not be isomorphic to D1, but since there
is a reachability digraph �3 6= �2 in D[V D02[N(V D02)], we obtain a component
D3 of D � �3 with D3 ✓ D02 and so on. Because the degree of any vertex is
finite, there are m,n 2 N with m  n such that Dm and Dn – or D02 if m

is 2 – are isomorphic and we obtain an analogous contradiction as before: we
conclude as above that there is one end in D1. On the other side the component
En of D ��n that contains �m ��n contains an isomorphic component Em

of D��m and we obtain a second end of D in Em, which is impossible due to
our assumptions.

The following lemma is the main lemma for the case that there is no isomor-
phic copy of C3 in the C-homogeneous digraph.

Lemma 6.14. Let D be a locally finite connected C-homogeneous digraph with
at most one end that contains no directed triangle. If N+(x) and N�(x) are
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independent sets for all x 2 V D, then D is isomorphic to Cm[In] for some
m � 4, n � 1.

Proof. As in the previous proofs, we know that �(D) is bipartite. By Lem-
ma 6.13, �(D) is finite. So due to Lemma 6.7, we may assume that d+ � 2 and
d� � 2. Let x ⇠ y for x, y 2 V D if x and y lie on the same side of a reachability
digraph, that is, both have the same out-degree and the same in-degree in that
reachability digraph and one of these two values is 0. If x and y lie in a common
reachability digraph but not on the same side they lie on distinct sides of a
reachability digraph. Remark that, a priori, ⇠ is not an equivalence relation.
But we shall show later that it is an equivalence relation in our situation.

Let us show for any two distinct reachability digraphs �1 and �2 with non-
empty intersection the following property:

Either �1 \ �2 lies on the same side of �1 or �(D) ⇠= CPk for
some k � 3 and the intersection consists of precisely one unmatched
pair in CPk.

(6.15)

Let us suppose that (6.15) does not hold. As reachability digraphs are
induced subdigraphs, D consists of at least three reachability digraphs and �(D)
cannot be a complete bipartite digraph because �2 contains vertices on distinct
sides of �1. Therefore, D is either the complement of a perfect matching or a
directed cycle according to Theorem 3.5 and Lemma 6.12. Let x, y 2 �1\�2 be
on distinct sides of �1 with minimal distance in �1. So either all predecessors
of x and all successors of y lie in �1 or the other way round. Thus, x and y lie
also on distinct sides of �2. The distance between x and y in �1 is at least 3
as they are not adjacent and as they do not lie on the same side of �1. If
�(D) ⇠= C2m for some m � 4, then we choose a minimal path P in �2 from x

to y. Let x0 be a neighbour of x in �1, let y1, y2 be the two neighbours of y in �1,
and let y0 be the neighbour of y on P . The subdigraphs induced by y0, y, y1 and
by y0, y, y2 are isomorphic, as D contains no triangles at all – neither directed
nor the unique second kind of triangles, as N+(x) is an independent set. Thus,
there is an automorphism ↵ of D that fixes y0 and y and maps y1 to y2. This
automorphism must fix the reachability digraph that contains the edge between
y and y0, which is �2, and hence it fixes �1, the only other reachability digraph
that contains y, too. As y↵ = y and y0↵ = y0, the automorphism ↵ fixes one
edge of �2 and hence the whole digraph �2 because of �2

⇠= C2m. In particular,
we have x↵ = x. Let Pi be the unique path in �1 from y to x containing yi,
respectively. As ↵ fixes x and y and maps y1 to y2, we conclude P1↵ = P2.
Thus, they have the same length, which must be m. Hence, x and y are the
only vertices in �1\�2. We conclude that the subdigraphs induced by x0xPyy1
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and x0xPyy2 are isomorphic: if x0xPyy1 is not a path, then y1 is adjacent to
a vertex z on P but also y1↵ = y2 must be adjacent to z↵ = z. As x0xPyy1

and x0xPyy2 are isomorphic via an isomorphism that fixes x0xPy, we conclude
as before for y and x using the two paths Qi in �1 from y to x0 such that yi

lies on Qi that the distance between y and x0 in �1 is m, a contradiction. So
�(D) is isomorphic to CPk for some k � 3 and �1 \ �2 consists of precisely
two vertices that are not matched. This shows (6.15).

For x, y 2 V D, let x ⇡ y if x and y lie on the same side of two reachability
digraphs. As every vertex lies in precisely two reachability digraphs, ⇡ is an
equivalence relation. The next aim is to show that ⇠ and ⇡ are (despite their
di↵erent definition) the same relation, that is:

For all x, y 2 V D, we have x ⇠ y if and only if x ⇡ y. (6.16)

Let x, y 2 V D. In order to prove (6.16), it su�ces to show that x ⇠ y implies
x ⇡ y. So let us suppose that x ⇠ y but x 6⇡ y and let � be the reachability
digraph that contains x and y on the same side. If for every vertex each two
of its successors are ⇡-equivalent, then one whole side of � lies in a second
reachability digraph �0 on the same side. If G(�(D)) 6⇠= Kk,`, then its sides have
the same size due to Theorem 3.5 as �(D) is finite by Lemma 6.12 and d+ � 2
and d� � 2, so ⇠ and ⇡ are the same relation in contradiction the choice of x

and y. Hence for some vertex, two of its successors are not ⇡-equivalent. Thus,
we assume G(�(D)) ⇠= Kk,` but then some vertex in �0 has two predecessors
in � \ �0 and by C-homogeneity each two of its predecessors, and hence one
whole side of �0, lie in �\�0. This shows also in the remaining situation that
for some vertex two of its successors are not ⇡-equivalent. Similarly, there is
a vertex with two predecessors that are not ⇡-equivalent. By C-homogeneity,
for every vertex and each two of its successors z1 and z2, we have z1 ⇠ z2 but
z1 6⇡ z2 and the same for any two of its predecessors. Thus, we may assume
that x and y have distance 2 in G(�).

The next step is to show that no reachability digraph separates D. Let us
suppose that the converse holds. Due to Lemma 6.13, there are two reachability
digraphs whose intersection separates at least one of them. As there is a 2-arc
in these two reachability digraphs, we can map them onto each two reachability
digraphs with non-trivial intersection. Since there is no separating vertex in any
of the possible reachability digraphs given by Theorem 3.5 as due to Lemma 6.12
and because of d+ � 2 and d� � 2 the digraph �(D) is not a tree, we conclude
that each two reachability digraphs with at least one common vertex have at
least two common vertices. Thus and due to (6.15), either the intersection of
each two reachability digraphs is contained on the same side of each of them or
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�(D) ⇠= CP3 since no two vertices in CPk, for k � 4, separate that digraph. Let
us first assume that �(D) 6⇠= CP3. Note that no two vertices with a common
successor can lie in the intersection of two reachability digraphs, as otherwise
C-homogeneity implies x ⇡ y. Thus, Theorem 3.5 implies that G(�(D)) is a
cycle of length 2m for some m � 4, as �(D) is finite by Lemma 6.12. Let a and
b be two vertices in the same two reachability digraphs �1 and �2 of minimal
distance to each other and let P be a minimal path between a and b in �1. Let
w1, w2 be the neighbours of b in �2, let u1 be the vertex on P that is adjacent
to a, and let u2 be a vertex in �2 that is adjacent to a. With an analogous
argument as in the proof of (6.15), we know that aPbw1 and aPbw2 induce
isomorphic digraphs. Hence, there is an automorphism of D that maps the first
onto the second one and fixes P . Thus, the distance in �2 from a to w1 is the
same as the one from a to w2. Because of m � 4, also the digraphs induced
by u2aPbw1 and by u2aPbw2 are isomorphic. Thus, u2 and w1 have the same
distance in �2 like u2 and w2. But this cannot be true. Let us now assume that
�(D) ⇠= CP3. Then the intersection of two reachability digraphs �1,�2 is, if it
is not empty, precisely one unmatched pair a, b in each of the two reachability
digraphs since x ⇠ y but x 6⇡ y. Let uavw be a 3-arc in D. Let us assume
that ua 2 E�1 and av 2 E�2. We cannot have w 2 V �2, because �2 contains
no 2-arc. Since D contains no directed triangle, w cannot lie on the same side
of �1 as b since otherwise wa 2 E�1. Since v /2 V �1, we have vw /2 E�1, so
w cannot lie on the same side of �1 as a. This shows w /2 V �1. Analogous
arguments show that the same holds for any vertex w0 in �3��2, where �3 is
the reachability digraph that contains the edge vw, because we find for w0 either
a 3-arc that has its first edge in �1 and w0 as its last vertex or a 3-arc whose first
vertex is w0 and whose last edge lies in �1 where we may assume that this 3-arc
contains b and the neighbour of v in the directed bipartite complement of �2.
Since D[(V �2 \ V �1) [ V �3] is connected, we know that �2 ��1 lies in one
component of D��1 and we can apply the proof of Lemma 6.13 to show that
�1 does not separate D. Hence, we proved in each case that no reachability
digraph separates D.

Let v1 be a vertex in the same reachability digraph as x and y that is
adjacent to both x and y. By regarding the digraph whose edges are directed in
the inverse way, if necessary, we may assume that xv1, yv1 2 ED. Due to what
we just showed, we find a second induced (aside from the edge yv1) path R from
v1 to y whose only vertices in � are v1 and y and that does not use the edge
yv1. We may choose R so that the only vertices on R that are adjacent to x are
v1 or the neighbour of y on R by applying C-homogeneity to an automorphism
that fixes v1 and maps x and y onto each other. Let v3, v2, y be the last three
vertices on R. So we have v2y 2 ED. Since v2 /2 V � and x 6⇡ y, the vertices x
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and v2 are not adjacent. So v1 is the only neighbour of x on R. If v3 ⇠ y, then
we have v2v3 2 ED. If v3 ⇠ x, then as v2 /2 V � their common reachability
digraph must be the one that contains x and its predecessors. By definition
of ⇠, it must be hA(v2v3)i = hA(v2y)i. So we have x ⇡ y in contradiction to
their choice. Thus, we have v3 6⇠ x. By C-homogeneity, yv1Rv3 can be mapped
onto xv1Rv3 by an automorphism of D that fixes v1Rv3 and thus, we obtain
v3 ⇠ x, a contradiction.

So we have v3 6⇠ y and hence v3v2 2 ED. As D is C-homogeneous, there
is as above an automorphism ↵ of D that maps yv1Rv3 onto xv1Rv3 and fixes
v1Rv3. We conclude that there is a vertex v4 = v2↵ in D with v3v4 2 ED

and v4x 2 ED. Let v0 be the neighbour of v1 on R. Since v0 /2 �, we have
v1v0 2 ED. As D contains no directed triangle and N+(x) is an independent
set, D contains no triangle at all. Hence, there is an automorphism � of D

that maps v3v2yv1 onto v2yv1v0. Let y0 = v4� and v01 = x�. The vertices
v1, v0, v01, y

0, v2, y induce a cycle. So if neither y0 nor v01 lies in �, then we could
have chosen R0 = v1v0v01y

0v2y instead of R and obtain a contradiction as above
since y ⇠ y0. Thus, either y0 or v01 lies in �. If y0 lies in �, then we have that y

and y0 must lies on the same side of � since v2 lies not in �. So we have y ⇡ y0

and hence also v1 ⇡ v01. As v1 and v01 have a common successor, C-homogeneity
implies that any two predecessors of any vertex are ⇡-equivalent. In particular,
we have x ⇡ y. Thus, y0 does not lie in �, but v01 does. If v01 lies on the same
side of � as v1, then we obtain again v1 ⇡ v01 and x ⇡ y. So v01 lies on the
same side as y and x. But then v0 lies on the same side of � as v1 and there
is an edge between vertices of that side in contradiction to the assumption that
�(D) is bipartite. This shows (6.16).

Since ⇡ is an equivalence relation on V D, we conclude from (6.16) that the
same is true for ⇠. Let us define a digraph � on the equivalence classes of ⇠ as
vertices such that there is a directed edge from one class X1 to a second class
X2 if and only if there are vertices x1 2 X1 and x2 2 X2 with x1x2 2 ED.
By (6.16) each vertex of � has precisely one successor and one predecessor.
Every equivalence class of ⇠ is finite, since �(D) is finite by Lemma 6.12. If
G(�) is a double ray, then this implies that D has at least two ends. Since this
is false, � must be a directed cycle Cn for some n � 3.

An edge e of � corresponds to a reachability digraph � of D in that the two
equivalence classes of ⇠ in � are the two vertices that are incident with e. Thus,
it remains to show that �(D) is a complete bipartite digraph because then we
have D ⇠= Cn[In]. Let V1, . . . , Vn denote the equivalence classes of ⇠ such that
ViVi+1 2 E� for i < n and VnV1 2 E�. Due to Theorem 3.5 and Lemma 6.12
and as d+ � 2 and d� � 2, we just have to show that G(�(D)) is neither an
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undirected cycle C2m nor the complement of a perfect matching CPk.
First, let us suppose that G(�(D)) ⇠= C2m for some m � 4. Let x 2 V1 and

let a, b be its successors. Let a1 and a2 be the successors of a. As D contains
no directed triangle and as � is a directed cycle, x is adjacent neither to a1 nor
to a2. Thus, there is an automorphism ↵ of D that maps a1 to a2 and fixes a

and x. Hence, also b must be fixed by ↵ and the two a-b paths in G(D[V2 [V3])
must have the same length, which must be m. But then the same holds for
the second predecessor y 6= x of a with its two successors instead of x and
its two successors. Thus, y also has to be adjacent to b and we have m = 2,
a contradiction.

Let us now suppose that �(D) ⇠= CPk for some k � 3. Let x 2 V1. If n = 3,
then there is a directed triangle in D, as k � 3, which is impossible. So we
conclude n � 4. There exists a unique vertex in V2 that is not adjacent to x and
this vertex itself has a unique vertex y 2 V3 to which it is not adjacent. Let P

be a path that consists of x and of one vertex from every Vi for i � 4 such that
the vertex in V4 is the only vertex incident with all of V3 but y. This path exists
since k � 3. Let X = D[(V3 \ {y}) [ V P ], let x0 be another vertex of V1 that is
adjacent to the predecessor of x on P and let Y = D[(V X \ {x})[ {x0}]. Then
the finite subdigraphs X and Y are isomorphic but there is no automorphism
of D that maps the first onto the second one, since there is a unique vertex
in V2 that is not adjacent to x and y, but for x0 and y there is no such vertex.
Hence, we have �(D) 6⇠= CPk. So �(D) is a complete bipartite digraph. As D is
C-homogeneous, it is transitive and thus, all equivalence classes have the same
size, that is �(D) ⇠= Kk,k for some k � 1. As D contains no directed triangle,
we also conclude that n � 4, which proves the assertion.

Having completed the case that the locally finite connected C-homogeneous
digraph with at most one end contains no directed triangle, we look at those
that contain directed triangles. The following lemma is the main lemma for this
situation. The case (iv) of the conclusions of Lemma 6.15 will be investigated
in more detail in Section 6.3.

Lemma 6.15. Let D be a locally finite connected C-homogeneous digraph that
contains a directed triangle. If N+(x) and N�(x) are independent sets for all
x 2 V D, then one of the following cases holds.

(i) The digraph D has at least two ends.

(ii) The reachability digraph �(D) is isomorphic to a complete bipartite di-
graph Kk,k for some k � 3 and D is isomorphic to C3[Ik].

(iii) The reachability digraph �(D) is isomorphic to CPk for some k � 4 and
D is isomorphic to Yk.
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(iv) The underlying undirected graph of the reachability digraph �(D) is iso-
morphic either to C2m for some m � 2 or to T2,2.

Proof. Due to Lemma 6.11 and Proposition 2.1, the reachability digraph �(D)
is bipartite. Let us assume that D has at most one end and that G(�(D))
is neither isomorphic to C2m for some m � 2 nor isomorphic to T2,2. Due to
Lemma 6.7, we may assume d+ � 2 and d� � 2. According to Lemma 6.12
and Theorem 3.5, we know that �(D) is finite and either a complete bipartite
digraph or the directed complement of a perfect matching.

Let us first assume that �(D) is a complete bipartite digraph Kk,l for k, l 2 N
but not K2,2 as that is a cycle. By Lemma 6.9, we know that k = l. If
we have |� \ �0| � 2 for two distinct reachability digraphs � and �0, then
� \ �0 lies on one side of � and it is a direct consequence of C-homogeneity
that � \�0 is a complete side of � and hence of �0 since some two vertex in
� \�0 have a common predecessor x in either � or �0 and by C-homogeneity
each two successors of x lie in � \ �0. But then, as shown in the proof of
Lemma 6.14, we know that (ii) holds in this case. So let us suppose that there
are two reachability digraphs � and �0 with |� \ �0| = 1. If an edge lies
in more than one directed triangle, then it lies in at least k � 1 distinct such
triangles due to Lemma 6.10. So the intersection �\�0 has to contain at least
k � 1 elements which is a contradiction. Hence, every edge lies in a uniquely
determined directed triangle.

To show that this situation cannot occur, let x and y be two vertices on
the same side of � such that their out-degree in � is 0. Let u be a common
predecessor of x and y. As every edge lies on a unique directed triangle, we
find successors a, b of x, y, respectively, such that they are predecessors of u.
As k � 3 and as every edge lies on precisely one directed triangle, there is a
successor c of a and b such that neither D[x, a, c] nor D[y, b, c] are triangles, in
particular, we may choose any successor of a except for u. As k � 3, there is a
second predecessor z of b such that z and c as well as z and u are not adjacent.
The vertices a and z cannot be adjacent because otherwise either y and x have
to lie in two common reachability digraphs (if za 2 ED) which we supposed to
be false or z and c lie in a common reachability digraph (if az 2 ED) and then it
is not a bipartite reachability digraph because zbc is a 2-arc in that reachability
digraph. Furthermore, zx cannot be an edge of D, because then the edge yb

would have its two incident vertices on the same side of a reachability digraph.
Let us suppose that xz is an edge of D. Then there is an automorphism ↵

of D that maps D[x, a, c, b] onto D[z, b, c, a]. We conclude that there is a vertex
z0 = z↵ 2 N�(a) with zz0 2 ED. But the edge zz0 has the wrong direction: in
a bipartite reachability digraph all edges are directed from one side to the other,
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but zz0 is directed the other way round compared with the edges xa, xz, and
z0a. This contradiction shows that x and z cannot be adjacent. Hence, we have
shown that the subdigraphs D[x, a, c, b, y] and D[x, a, c, b, z] are isomorphic. But
there is no automorphism of D that maps one onto the other by fixing all of
x, a, c, b, since x and y lie on the same side of a reachability digraph but x and z

do not because of uz /2 ED. Thus, we showed that there are no two reachability
digraphs whose intersection consists of precisely one vertex. This completes the
case �(D) ⇠= Kk,l.

The next and only remaining situation which we consider is that �(D) ⇠=
CPk for some k � 3. If k = 3, then G(�(D)) is a cycle, so we may assume
k � 4. Let �1 and �2 be two distinct reachability digraphs of D with non-
trivial intersection. Let us suppose that |�1 \�2| = 1. Then this holds for any
two distinct reachability digraphs with non-trivial intersection. Let a, b, c, v, w 2
V �1 such that b, v, w 2 N+(a) and b, w 2 N+(c) but cv /2 ED. Such vertices
exist as k � 4. Since any edge lies in a directed triangle, there are x, y 2 N�(a)
with x 2 N+(v) and y 2 N+(w). Because of |�1\�2| = 1, no other edges than
the described ones lie in D[a, b, c, v, w, x, y]. Then the digraphs D1 := D[a, b, c, x]
and D2 := D[a, b, c, y] are isomorphic but there is no automorphism of D that
maps D1 onto D2 because such an automorphism has to map v, the unique
predecessor of x in �1, onto w, the unique predecessor of y in �1, but w is
adjacent to c and v is not. Thus, we have proved

|�1 \�2| � 2. (6.17)

Let us suppose that �1 \ �2 is not contained in any of the sides of �1.
Then �1\�2 consists of precisely two vertices that are adjacent in the directed
bipartite complement of �1 and, furthermore, any edge lies in at most two
directed triangles (because of |�1 \ �2| = 2) and by Lemma 6.10 any edge
lies in precisely one directed triangle (because of k � 4). Let us consider the
subdigraph of �1 with vertices a, b, c, d and edges ba, bc, dc such that {a, d} =
V (�1\�2). Let z be the vertex on the unique directed triangle that contains ba

and let x and y be two predecessors of d in �2 such that x is the neighbour
of z in the directed bipartite complement of �2 and such that neither x nor y

is adjacent to c. We can choose them in this way as k � 4 and as dc lies in
precisely one directed triangle. Furthermore, neither x nor y can be adjacent
to b, as b and d do not lie in two common reachability digraphs. Hence, the
subdigraphs D[b, c, d, x] and D[b, c, d, y] are isomorphic to each other, so there
is an automorphism ↵ of D that fixes each of b, c, and d and maps x to y. Then
also a must be fixed by ↵, as it is the unique neighbour of d in the directed
bipartite complement of �1, and hence, we also have z↵ = z by the choice of z.
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But this is impossible because y and z are adjacent in contrast to x and z. Thus,
we proved that �1 \�2 is contained in one side of �1. C-homogeneity directly
implies that �1 \�2 is a whole side of �1, as we can map any two vertices of
�1 \ �2 with a common neighbour in �1 onto any other two vertices on the
same side as �1 \�2 of �1 with a common neighbour in �1. Thus, we have

|�1 \�2| = k. (6.18)

Now, we are able to prove D ⇠= Yk. Due to (6.18) and as every edge lies in
a directed triangle, D consists of precisely three reachability digraphs �1, �2,
and �3. Let Vi := V �i \ V �i+1 with �4 = �1 and let D denote the directed
tripartite complement of D. Since �(D) ⇠= CPk, the digraph D is a union of
directed cycles. We shall show that every component of D is a directed cycle of
length 3. So let us suppose that this is not the case. Then there are x, y 2 V1

that lie in a common directed cycle of length at least 6 in D and have distance
3 on that cycle. Since k � 4, there is a vertex a 2 V2 that is adjacent in D

to both x and y. We conclude by C-homogeneity that for every vertex z 2 V1,
distinct from x, we have that x and z lie on a common directed cycle in D and
have distance 3 on that cycle. It is a direct consequence that k  3 in contrast
to the assumption k � 4. Hence, we have shown D ⇠= Yk.

6.3 An imprimitive case

In this section, we investigate the situation from Lemma 6.15 (iv): we look at
locally finite connected C-homogeneous digraphs that contain directed triangles,
all whose vertices have independent out- and in-neighbourhood and for whose
reachability digraph the underlying undirected graph is either T2,2 or C2m for
some m � 2. In [14], Gray and Möller showed the existence of such a digraph,
in that they showed that X2(C3) has all these properties. It has infinitely many
ends. But although we are interested only in digraphs with at most one end,
this particular digraph turns out to be very important in our situation: we shall
show that every digraph with the above described properties and with at most
one end is a homomorphic image of X2(C3). More precisely, we prove:

Theorem 6.16. The following assertions are equivalent for any locally finite
connected digraph D all whose vertices have independent out- and in-neighbour-
hood.

(i) The digraph D is C-homogeneous and contains a directed triangle. If D 6⇠=
C3, then the underlying undirected graph of its reachability digraph is either
T2,2 or C2m for some m � 2.
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(ii) There is a non-universal Aut(X2(C3))-invariant equivalence relation ⇠ on
V X2(C3) such that X2(C3)⇠ is a digraph that is isomorphic to D.

Furthermore, D has at most one end if and only if one, and hence every, equiv-
alence class of ⇠ consists of more than one element.

Proof. To see that (i) implies (ii), we may assume that D is not isomorphic to C3:
otherwise take any labeling of the vertices of X2(C3) with labels in {0, 1, 2} such
that no two adjacent vertices have the same label and such that out-neighbours
of vertices labeled by i are labeled by i + 1 (mod 3). This labeling induces an
Aut(X2(C3))-invariant equivalence relation ⇠ on V X2(C3) such that X2(C3)⇠
is a directed triangle.

Therefore, every vertex of D has out-degree 2. So every edge lies in at most
two directed triangles. Let us first assume that every edge of D lies in precisely
two directed triangles. For an edge xy, the two successors of y are the two
predecessors of x. So the other successor of x must have the same successors
as y. The analogous statements hold for the second predecessor of y. It is a direct
consequence that G(�(D)) ⇠= C4

⇠= K2,2 and that D ⇠= C3[I2]. Let xi, yi, zi for
i = 1, 2 be the vertices of D such that xiyj , yizj and zixj , for all i, j 2 {1, 2},
are the edges of D. We label the vertices of X2(C3) with labels from V (D) so
that for every vertex labeled by xi its successors obtain di↵erent labels from
{y1, y2} and its predecessors obtain di↵erent labels from {z1, z2} and so that
the analogue statements hold for vertices labeled by yi and by zi. Starting with
a triangle labeled by x1y1z1, there is a unique way to extend its labelling to the
whole digraph X2(C3) such that the just described property holds. Two vertices
are ⇠-equivalent if they have the same label. Then by definition, X2(C3)⇠ is
a digraph and isomorphic to D. Furthermore, the Aut(X2(C3))-invariance is a
consequence of the unique extension property of the labeling by starting it at a
directed triangle.

Let us now assume that every edge of D lies in precisely one directed triangle.
As d+ = 2, every vertex lies in precisely two. Let xy 2 ED and ab 2 EX2(C3).
For every vertex u in X2(C3) there exists a unique shortest path P = a1 . . . an

from a to u. In D there are precisely two walks x1 . . . xn and y1 . . . yn starting
at x (i.e. with x1 = x = y1) such that D[xi, xi+1, xi+2] and D[yi, yi+1, yi+2]
are isomorphic to D[ai, ai+1, ai+2] for all i  n � 2 in the canonical way (i.e.
such that xi and yi are mapped to ai and so on). That there are precisely two
such walks in D follows from the fact that every vertex of D lies in precisely
two directed triangles and in the middle of precisely two induced 2-arcs. In
particular, no two end vertices of any subpath of length 2 of the walks in D are
adjacent. If a2 = b or if a2 is adjacent to b, then let Q be that one of the two
above described walks in D whose second vertex is y or is adjacent to y, and in
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the other case for a2 let Q be the other described walk in D. Let uD denote the
last vertex of Q. Thereby, we define for every vertex v of X2(C3) a vertex vD

in D.
We are now able to define the equivalence relation ⇠: let u ⇠ v for two

vertices u, v 2 V X2(C3) if uD = vD. Obviously, this is a non-universal equiv-
alence relation. It remains to show that X2(C3)⇠ is a digraph, that D ⇠=
X2(C3)⇠ and that ⇠ is Aut(X2(C3))-invariant. Let us first show that ⇠ is
Aut(X2(C3))-invariant. Let ⇡ be the map from X2(C3) to D that maps z to zD,
let u, v 2 V X2(C3) with u ⇠ v and let  be an automorphism of X2(C3). It
su�ces to show u ⇠ v . First, let us consider the case that the shortest path
P = u1 . . . un from u to v does not contain any other vertex of the equivalence
class that contains u. If we have shown this, then the assertion follows by an
easy induction on the number of elements on P that are equivalent to u. We look
at the images of P and P under ⇡. These are walks due to the definition of ⇡,
because adjacent vertices in X2(C3) are mapped to adjacent vertices of D. As
u ⇠ v, the walk P⇡ starts and ends at the same vertex uD. For every i  n, we
can map (u1 . . . ui)⇡ onto (u1 . . . ui) ⇡ inductively, since D is C-homogeneous
and since (ui+1)D is uniquely determined in D by the two walks (u1 . . . ui)⇡ and
(u1 . . . ui) ⇡. We conclude that also the walk P ⇡ has the same end vertices.
So we have u ⇠ v . Hence, ⇠ is Aut(X2(C3))-invariant.

Next, we show that X2(C3)⇠ is a digraph. That there are no loops in
X2(C3)⇠ is a direct consequence of the definition of ⇠, as we do not have
a0D = aD for any neighbour a0 of a and as D is Aut(X2(C3))-invariant. The
only other obstacle for X2(C3)⇠ being a digraph is that the edge set contains
loops or is not antisymmetric. Another consequence of the definition of ⇠ is
that no two neighbours of a are ⇠-equivalent, as every vertex of D and every
vertex of X2(C3) lies in precisely two directed triangles. Let us suppose that
there are vertices a1, a2, b1, and b2 in X2(C3) with a1a2, b1b2 2 EX2(C3) and
a1 ⇠ b2 and a2 ⇠ b1. Due to transitivity of X2(C3), there is an automorphism
↵ of X2(C3) that maps a2 to b1. Since ⇠ is Aut(X2(C3))-invariant, there is also
an in-neighbour of b1 in the same equivalence class as b2, which is impossible as
we already saw. Thus, we have shown that X2(C3)⇠ is a digraph.

That D and X2(C3)⇠ are isomorphic is a direct consequence of the definition
of ⇠, since they have the same in- and out-degree. This shows (ii).

Let us now assume that (ii) holds, more precisely, that D = X2(C3)⇠. We
shall prove (i). As X2(C3) is vertex-transitive so is D. Let us assume that
D is not a directed triangle. So every vertex of D has two successors and, as
every edge lies in a directed triangle since they do so in X2(C3), every vertex
of D lies in at least two directed triangles and no two neighbours of a vertex
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of X2(C3) are ⇠-equivalent. Thus, for every uv 2 ED and every x 2 X2(C3)
whose equivalence class is u, there is a vertex y 2 N+(x) whose equivalence class
is v, as d+(x) = 2 = d�(x). We also obtain that �(D) is a homomorphic image
of �(X2(C3)), so its underlying undirected graph is either T2,2 or C2m for some
m � 2. To show that D is C-homogeneous, let A and B be isomorphic induced
connected subdigraphs of D and let ' : A ! B be an isomorphism. Let TA be
a spanning tree of A. Then we can map TA by an injective homomorphism ⇡A

to X2(C3) such that a is the equivalence class of ⇡A(a) for all a 2 V A. Notice
that ⇡A is uniquely determined by the image of one vertex of A. Analogously,
we define TB and ⇡B such that TB = TA'. The subdigraphs of X2(C3) induced
by A0 := TA⇡A and B0 := TB⇡B are isomorphic by an isomorphism that induces
on the equivalence classes of the vertices of A0 and of B0 the isomorphism '.
As X2(C3) is C-homogeneous, this isomorphism extends to an automorphism
 of X2(C3). Since ⇠ is Aut(X2(C3))-invariant, this automorphism induces an
automorphism � of D that extends '. So D is C-homogeneous.

The only remaining part to show is the additional claim on multi-ended
digraphs which is a direct consequence of [14, Theorem 7.1], because X2(C3)⇠
is not isomorphic to X2(C3) as soon as each equivalence class contains at least
two elements.

Figure 6.2 shows two C-homogeneous digraphs that arise as quotient di-
graphs in Theorem 6.16 one of which is finite and the other being infinite and
one-ended. In the finite digraph the edges of each reachability digraph, which
is isomorphic to C10, are drawn in di↵erent styles. The reachability digraphs of
the infinite digraph are the cycles of length 6.

Figure 6.2: A finite and an infinite one-ended C-homogeneous digraph

As the automorphism group of X2(C3) is a free product of the cyclic groups
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C2 and C3, it is isomorphic to the modular group. Let us consider the Cayley
digraph ⇤ of � := C2⇤C3 = hxi⇤hyi with respect to the two canonical generators
x and y. If we contract the edges in ⇤ that correspond to the involution x, then
we obtain the digraph X2(C3). Let ⇠ be an Aut(X2(C3))-invariant equivalence
relation on V X2(C3) and let X be the equivalence class that contains the vertex
that arose from 1 and x in ⇤ by contracting the edges labeled by x. It is
straight-forward to show that X corresponds to vertices of ⇤ that coincide with
a subgroup of � that contains x. Conversely, the cosets of any subgroup of �
that contains x induce in a canonical way a partition of V X2(C3) and hence
an equivalence relation of V X2(C3) that is Aut(X2(C3))-invariant. Therefore,
instead of giving a precise list of the digraphs that may occur as quotients
in Theorem 6.16, it is equivalent to describe all those subgroups of C2 ⇤ C3

that contain x. By Kurosh’s Subgroup Theorem [27], every subgroup of the
modular group is a free product of cyclic groups of orders 2, 3, or 1 and the
involutions form a conjugacy class in �. Thus, any subgroup of � that contains
an involution is – up to conjugation – an example of a subgroup that corresponds
to a C-homogeneous digraph in Theorem 6.16. As the number of cosets of
a subgroup of � coincides with the number of vertices in the C-homogeneous
digraph to which it corresponds in the above sense, the subgroups of finite index
correspond to the finite and the subgroups of infinite index correspond to the
infinite C-homogeneous digraphs in Theorem 6.16. There are numerous papers
written on the subgroups of the modular group. Some of them deal with those
of finite index, see [23, 33], and some with those of infinite index, see [36, 37, 38].

6.4 The classification result for locally finite C-

homogeneous digraphs with at most one end

Let us now state our main result. We shall prove it by applying all the results
of the previous sections.

Theorem 6.17. Let D be a locally finite connected digraph with at most one
end. Then D is C-homogeneous if and only if one of the following cases holds.

(i) D ⇠= Cm[In] for integers m � 3, n � 1;

(ii) D ⇠= H[In] for an integer n � 1;

(iii) D ⇠= Yk for an integer k � 3;

(iv) there exists a non-trivial Aut(T2(C3))-invariant equivalence relation ⇠ on
V T2(C3) such that D ⇠= T2(C3)⇠.
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Proof. Let us assume that D is C-homogeneous and that D has at least one
edge. If the out-neighbourhood (or symmetrically the in-neighbourhood) of any
vertex of D is not independent, then we conclude from Theorem 6.6 that D is
finite and isomorphic to H[In] for some n � 1. So we may assume that the out-
neighbourhood of each vertex is independent. Then, it is a direct consequence
of Lemma 6.14, Lemma 6.15, and Theorem 6.16 that either (ii), (iv), or (v)
holds. As we already proved that all digraphs mentioned in the theorem are
C-homogeneous, we completed this classification result.
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Chapter 7

The case:

countably infinite degree

and one end

7.1 The case: D+ 6⇠= In 6⇠= D�

In this section we will investigate the situation that D+ contains some edge.
Before we tackle this situation, we first show some general lemmas. Remember
that we showed in Lemma 6.1 that D+ and D� are homogeneous digraphs
if D is a C-homogeneous digraph. Thus, we are able to go through the list of
countable homogeneous digraphs and look at each of them one by one, which is
the general strategy for the proof of our main theorem.

Lemma 7.1. Let D be a countable connected C-homogeneous digraph with in-
finite out-degree. Then either the in-degree is also infinite or D+ is isomorphic
to either I! or I![C3].

Proof. The claim follows directly from Theorem 3.11 and Lemma 6.1.

As the locally finite C-homogeneous digraphs have already been classified by
Theorem 6.17, the previous lemma allows to concentrate (mostly) on digraphs
with infinite D+.

Lemma 7.2. Let D be a C-homogeneous digraphs such that it contains isomor-
phic copies of every orientation of C5. Then the diameter of D is 2.

Proof. Since D contains some orientation of C5, it contains two non-adjacent
vertices. Hence, the diameter of D is at least 2. Let us suppose that D does

77
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not have diameter 2. Let x and y be vertices of distance 3 in D and P be a
shortest path between them. Then there is an injection from P into one of the
orientations of C5. Let C be a copy of this orientation in D. By C-homogeneity,
we find an automorphism ↵ of D that maps P into C. Let z be the vertex
on C that is adjacent to the end vertices of P↵. Then z↵�1 is adjacent to x

and y, which is a contradiction to the choice of these two vertices. Thus, D has
diameter 2.

Lemma 7.3. Let D be a C-homogeneous digraph such that it contains isomor-
phic copies of all orientations of C4. Then each two non-adjacent vertices of D

have a common successor and a common predecessor.

Proof. Let a and b be two non-adjacent vertices of D. By Lemma 7.2 there is
a vertex x that is adjacent to a and b. Since every orientation of C4 embeds
into D, there is one such copy that has an isomorphic image of D[a, x, b] in D

such that the images of a and b are the predecessors of the fourth vertex y, and
there is one such image such that the images of a and b are the successors of
the fourth vertex y0. By C-homogeneity, we can map D[a, x, b] onto such copies
by automorphisms ↵,� of D. Then y↵�1 and y0��1 verify the assertion.

7.1.1 Generic In-free digraphs as D+

Throughout this section, let D be a countable connected C-homogeneous di-
graph such that D+ is isomorphic to the countable generic In-free digraph for
some integer n � 3. (Note that n = 2 implies that D+ is a tournament. We
consider this case in a later section.) Our first step is to show that D+ and D�

are isomorphic.

Lemma 7.4. We have D+ ⇠= D�.

Proof. Let F be any finite In-free digraph. Then we find an isomorphic copy
of F in D+ and, in addition, we find a vertex x 2 V D+ with yx 2 ED for all
y 2 V F . Hence, D� contains an isomorphic copy of F .

Since D� contains every finite In-free digraph, it is a direct consequence of
Theorem 3.11 that D� is either a generic Im-free digraph for some m � n or
a generic H-free digraph with H = ;. The latter or the first with m > n is
impossible since they contain a vertex with n independent successors. So D� is
also the countable generic In-free digraph.

Our next aim is to show that every finite induced In-free subdigraph of D

lies in D+(x) for some x 2 V D. We do this in two steps and begin with the
case that the subdigraph is some Im with m < n.
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Lemma 7.5. If H ✓ D is an isomorphic copy of Im for some m < n, then
there exist vertices x, y 2 V D with H ✓ D+(x) and with H ✓ D�(y).

Proof. Note that d� 6= 0. So for m = 1 the assertion is obvious and for m = 2 it
follows from Lemma 7.3. Let m � 3 and let H ⇠= Im be a subdigraph of D with
V H = {x1, . . . , xm}. By induction, we find a, b 2 V D with {x1, . . . , xm�1} ✓
N+(a) and {x2, . . . , xm} ✓ N+(b). The digraph F := H + a + b is connected
because of m � 3. Since F is In-free, D+(a) contains an isomorphic copy F 0

of F . Applying C-homogeneity, we find an automorphism ↵ of D that maps F 0

to F . So we have H ✓ F 0 ✓ D+(a↵).
By an analogous argument, we find y 2 V D with H ✓ D�(y).

Lemma 7.6. If H ✓ D is a finite induced In-free digraph, then there exist
vertices x, y 2 V D with H ✓ D+(x) and H ✓ D�(y).

Proof. If H ⇠= Im for some m < n, then the assertion follows from Lemma 7.5.
So we may assume that H has a vertex a with N+(a)\V H 6= ;. By induction,
there is a vertex u in D with H � a ✓ D+(u). Thus, H + u is connected and
In-free. Applying an analogous argument as in the proof of Lemma 7.5, we find
a vertex x in D with H ✓ H + u ✓ D+(x).

The existence of y follows analogously.

Our next aim is to show that, for any two disjoint finite induced In-free
digraphs A and B, we find a vertex x in D with A ✓ D+(x) and B ✓ D�(x).
We do not know whether this is true, even if we assume that A is maximal In-
free in A + B. In particular, we need more structure on D[N(x)] than we have
till now. But if we make the additional assumption that we find an isomorphic
situation somewhere in D, that is, if we find subdigraphs A0 and B0 such that
there exists an isomorphism ' : A + B ! A0 + B0 with A' = A0 and B' = B0

and if A0 + B0 has the claimed property, then we find such a vertex x without
any further knowledge on the structure of D[N(x)].

Lemma 7.7. Let A be a finite induced In-free subdigraph of D and let z 2 V D

such that z has a predecessor in A. Then there exists a vertex x 2 V D with
A ✓ D�(x) and z 2 N+(x).

Proof. Due to Lemma 7.6, we find a vertex v 2 V D with A ✓ D+(v). Let
a 2 V A be a predecessor of z. Let x1, . . . , xn�1 be n � 1 independent ver-
tices in N+(v) with a0xi 2 ED for all a0 2 V A. These vertices exist as
D[A,x1, . . . , xn�1] is In-free by construction and as D+ is the generic In-free
digraph. All the vertices z, x1, . . . , xn�1 lie in N�(a), so they cannot be inde-
pendent. By the choice of the xi, we know that z must be adjacent to at least
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one of them, say xi. As A + z is not In-free, we do not have zxi 2 ED. Hence,
we have xiz 2 ED and xi is a vertex we are searching for.

Lemma 7.8. Let A,B,A0, B0 be finite induced In-free subdigraphs of D such
that an isomorphism ' : A0 + B0 ! A + B with A0' = A and B0' = B exists.
If A is maximal In-free in A + B and if D has a vertex v with A0 ✓ D+(v) and
B0 ✓ D�(v), then there exists x 2 V D with A ✓ D+(x) and B ✓ D�(x).

Proof. If A + B is connected, then the assertion is a direct consequence of C-
homogeneity and, if B has no vertex, then the assertion follows from Lemma 7.6.
So we may assume that there is some z 2 V B. Let z0 = z'�1.

By induction, we find a vertex w with A ✓ D+(w) and B � z ✓ D�(w).
Hence, we can map A0 + B0 � z0 + v onto A + B � z + w by an automorphism
↵ of D with u↵ = u' for all u 2 V (A + B � z). Taking A0↵, B0↵, z0↵, and v↵

instead of A0, B0, z0, and v shows that

we may assume A0 = A and B0 � z0 = B � z. (7.1)

Let u 2 V A be in a component of A+B that does not contain z. Because of
n � 3 and z0v 2 ED, the subdigraph D[v, z, z0] is In-free. So by Lemma 7.7 we
find a vertex y with v, z, z0 2 N�(y) and u 2 N+(y). The digraphs (A + y) + B

and (A + y) + B0 are isomorphic and have less components than A + B. As
A0 + y ✓ D+(v) and B0 ✓ D�(v), we find x 2 V D with A + y ✓ D+(x)
and B ✓ D�(x) by induction on the number of components, which finishes the
proof.

Now we are able to prove the main result of this section:

Proposition 7.9. Let D be a countable connected C-homogeneous digraph such
that D+ is the countable generic In-free digraph for some n � 3. Then D is
homogeneous.

Proof. Let A and B be two finite isomorphic induced subdigraphs of D and let
' : A ! B be an isomorphism. If A is conntected, then ' extends to an auto-
morphism of D by C-homogeneity. So let us assume that A is not connected.
Let A1 ✓ A be maximal In-free with vertices from at least two distinct compo-
nents of A and let A2 ✓ A�A1 be maximal In-free such that for some x 2 V D

there is an isomorphic copy of D[A1, A2] in D[N(x)] such that the image of A1

lies in D+(x) and the image of A2 lies in D�(x). For B1 := A1' ✓ B and
B2 := A2' ✓ B, the corresponding statements hold. According to Lemma 7.8,
we find two vertices xA and xB with A1 ✓ D+(xA) and A2 ✓ D�(xA) and with
B1 ✓ D+(xB) and B2 ✓ D�(xB). Then xA has no neighbour in A� (A1 + A2)
by the maximalities of A1 and A2 and, analogously, xB has no neighbour in
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B� (B1 +B2). Hence, ' extends to an isomorphism '0 from A +xA to B +xB

and these two subdigraphs of D have less components than A and B. By induc-
tion on the number of components, '0 extends to an automorphism of D and
so does '.

7.1.2 Generic H-free digraphs as D+

In the following, let D be a countable connected C-homogeneous digraph such
that D+ is the countable generic H-free digraph for some set H of finite tourna-
ments on at least three vertices. (If we exclude the tournament on two vertices,
then D+ is an edgeless digraph. These will be investigated in Section 7.2.) In
this section, we investigate the largest class of homogeneous digraphs: the class
of the countable generic H-free digraphs contains uncountably many elements,
as Henson [21] proved, whereas all the other classes contain only countably many
elements.

Lemma 7.10. There is a set H0 of finite tournaments on at least three vertices
such that D� is the generic H0-free digraph.

Proof. With a similar argument as in the proof of Lemma 7.4, the assertion
follows from Theorem 3.11.

For the remainder of this section, let H0 be the finite set of tournaments we
obtain from Lemma 7.10.

Our next aim is to show that every finite induced H-free subdigraph of D

lies in D+(x) for some x 2 V D.

Lemma 7.11. For every two disjoint finite induced H-free tournaments A and
B in D, there exists a vertex x with A + B ✓ D+(x).

Proof. If |V A| = 1 = |V B|, then the assertion follows directly from Lemma 7.3,
because D+ embeds every orientation of C4. So we may assume |V A| � 2 and
|V A| � |V B|. Let a 2 V A such that a has a successor in A� := A � a. By
induction on |V A|+ |V B|, we find a vertex v with A�+ B ✓ D+(v). Since D+

is generic H-free, there is a vertex w 2 N+(v) that has precisely one successor a0

in A� and one successor b in B. If a and w are not adjacent, then A + B + w

is connected and H-free. Hence, the out-neighbourhood of some vertex of D

contains an isomorphic copy of A+B +w and, by C-homogeneity, there exists a
vertex x with A + B + w ✓ D+(x). So we assume in the following that w and a

are adjacent. Note that the only triangle in A + B + w is the transitive triangle
D[a, a0, w]. Hence, if H does not contain the transitive triangle, then A+B +w

is H-free and connected and we find a vertex x with A+B +w ✓ D+(x). So we
assume for the remainder of this proof that H contains the transitive triangle.
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First, we consider the case |V A| = 2 and |V B| = 1. If wa 2 ED, then
A + B ✓ D+(w) and w is a vertex we are searching for. If aw 2 ED, let
w0 2 N+(w) with w0a0, w0b 2 ED, which exists as D+(w) is generic H-free. If
aw0 2 ED, then D[w,w0, a0] is a transitive triangle that lies in D+(a), which
is impossible by the choice of H. Hence, either w0a 2 ED or a and w0 are not
adjacent, and the assertion follows as before, just with w instead of w0.

The next case that we look at is |V A| = 2 = |V B|. Let b0 be the second vertex
in B. As D+(v) is genericH-free, we find a vertex c 2 N+(v) with cb0 2 ED but
that is adjacent to neither a0 nor b. If a and c are adjacent, then D[a, a0, c, b0, b]
is connected and H-free, so we find x 2 V D with A+B + c ✓ D+(x). Thus, let
us assume that a and c are not adjacent. Then let d 2 N+(v) with da0, dc 2 ED

and b, b0 /2 N(d), which exists as D+(v) is generic H-free. If a and d are not
adjacent, then D[a, a0, d, c, b0, b] is connected and H-free, so we find x 2 V D

with A + B + c + d ✓ D+(x) as before. Hence, we may assume that a and d

are adjacent. Considering the edge between b and b0 and the edge between a

and d, we find by induction a vertex v0 with a, b0, d 2 N+(v0). The connected
subdigraphs D[a0, d, v0, b0, b] and D[a0, a, v0, b0, b] are isomorphic, so we find by
C-homogeneity and automorphism ↵ of D that fixes a0, v0, b0, and b and maps d

to a. Then A+B = (A�+B + d)↵ ✓ D+(v↵) proves the assertion in this case.
The only remaining case is |V A| � 3. Let â be a vertex in N+(v) such that

there exists an isomorphism from A�+B + â to A+B that fixes A�+B. This
vertex exists as A+B is H-free and hence has an isomorphic copy in the generic
H-free digraph D+(v). As D+(v) is homogeneous, we then may assume that this
copy conincides with A + B on A� + B. Note that we may have chosen w such
that w and â are not adjacent. Let c 2 V A� be a vertex that is not adjacent
to w. If a and â are adjacent, let F = D[â, a, w, b] and let F = D[â, c, a, w, b]
otherwise. Then F is connected contains no triangle, so it is H-free and we find
a vertex x with F ✓ D+(x). Then there is an isomorphism from A�+B +x+ â

to A + B + x that fixes A� + B + x. This isomorphism extends to an auto-
morphism ↵ of D by C-homogeneity. Then A + B = (A� + B + â)↵ ✓ D+(v↵)
shows the remaining case of the lemma.

Lemma 7.12. For every finite induced H-free subdigraph A of D, there exists
a vertex x with A ✓ D+(x).

Proof. If A is connected, then we find an isomorphic copy of A in some D+(y),
as D+ is generic H-free. So C-homogeneity implies the assertion. Next, let
us assume that A has precisely two components A1 and A2. If both these
components are tournaments, then Lemma 7.11 implies the assertion. So we
may assume that A1 has two non-adjacent vertices a1 and a2. Furthermore,
we may assume that A�1 := A1 � a1 is connected. By induction, there exists a
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vertex v 2 V D with A�1 + A2 ✓ D+(v). As D+(v) is generic H-free, we find
a vertex w 2 N+(v) with precisely one neighbour in A2 and such that a2 is its
only neighbour in A�1 . As a1 and a2 are not adjacent, the digraph A + w is
connected and H-free. So we find a vertex x of D with A ✓ A + w ✓ D+(x).

Let us now assume that A consists of more than two components A1, . . . , An

with n � 3. Let a 2 V A1. By induction, we find a vertex v 2 V D with
A� a ✓ D+(v). As D+(v) is generic H-free, there is a vertex w 2 N+(v) that
has no neighbour in A1�a and precisely one neighbour in each Ai for 2  i  n.
Then A + w is H-free and has at most two components. By the previous cases,
we find a vertex x with A ✓ A + w ✓ D+(x) as claimed.

Note that we also obtain with the same arguments as in the proofs of
Lemma 7.11 and 7.12 that for every finite induced H0-free subdigraph A of D

we find some x 2 V D with A ✓ D�(x).

Lemma 7.13. Let A and A0 be finite induced H-free subdigraphs of D and let
B and B0 be finite induced H0-free subdigraphs of D such that an isomorphism
' : A0+B0 ! A+B with A0' = A and B0' = B exists. If A is maximal H-free
in A + B and if D has a vertex v with A0 ✓ D+(v) and B0 ✓ D�(v), then there
exists a vertex x 2 V D with A ✓ D+(x) and B ✓ D�(x).

Proof. If A + B is connected, then the assertion is a direct consequence of C-
homogeneity and, if |V B| = 0, then the assertion follows from Lemma 7.12. So
let us assume that A + B is not connected and that B has some vertex z. Let
z0 = z'. As in the proof of Lemma 7.8,

we may assume A0 = A and B0 � z0 = B � z. (7.2)

By maximality of A in A + B being H-free, we conclude z /2 N+(v) and that
A contains from each component of A + B at least one vertex. Let a 2 V A be
in a component of A + B that does not contain z. Note that we may assume
z /2 N�(v), as otherwise v is a vertex we are searching for. Hence, z and v are
not adjacent. So D[a, v, z, z0] is H0-free and we find y 2 V D with D[a, v, z, z0] ✓
D�(y) due to the corresponding statement of Lemma 7.12 for H0 instead of H.
Because of vy 2 ED, we know that A0 + y is H-free. Note that there exists an
isomorphism from (A + y) + B to (A0 + y) + B0 extending ' and that A0 + y ✓
D+(v) and B0 ✓ D�(v). By induction on the number of components of A + B,
we find a vertex x 2 V D with A + y ✓ D+(x) and B ✓ D�(x). This shows the
assertion.

Now we are ready to prove the main result of this section:
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Proposition 7.14. Let D be a countable connected C-homogeneous digraph
such that D+ is the countable generic H-free digraph for some set H of finite
tournaments. Then D is homogeneous.

Proof. Let A and B be two isomorphic finite induced subdigraphs of D and let
' : A ! B be an isomorphism. Let A+ be a maximal inducedH-free subdigraph
of A. Note that A+ contains at least one vertex from each component of A. Let
A� ✓ A�A+ be maximal H0-free such that for some vertex v of D there exists
an embedding  : A+ +A� ! D[N(v)] with A+ ✓ D+(v) and A� ✓ D�(v).
According to Lemma 7.13, there is a vertex x 2 V D with A+ ✓ D+(x) and
A� ✓ D�(x). By the maximimal choices of A+ and A�, we conclude that
x is not adjacent to any vertex of A outside A+ + A�. Let B+ = A+' and
B� = A�'. By the same argument as above, there is also a vertex y with
B+ ✓ D+(y) and B� ✓ D�(y) such that no other vertex of B is adjacent
to y. So ' extends to an isomorphism '0 from A + x to B + y. Since A + x

is connected, we can extend '0, and thus also ', to an automorphism of D by
C-homogeneity.

7.1.3 Generic n-partite or semi-generic !-partite digraph

as D+

Within this section, let us assume that D is a countable connected C-homoge-
neous digraph such that D+ is either a countable generic n-partite digraph for
some n 2 N1 with n � 2 or the countable semi-generic !-partite digraph.

Lemma 7.15. We have D+ ⇠= D�.

Proof. First, let us assume that D+ is either generic n-partite for some n �
3 or semi-generic !-partite. Since for every k < n every finite complete k-
partite digraph (with the property (3.3) if D+ is semi-generic !-partite) lies
in D�(y) \ D+(x) for some edge xy 2 ED, we conclude from Theorem 3.11
that D� is either a countable generic H-free digraph for some set H of finite
tournaments or a countable generic m-partite digraph for some m � n � 1 or
the countable semi-generic !-partite digraph. The first digraph is excluded by
Section 7.1.2.

If D+ is generic n-partite, then we can also exclude the countable semi-
generic !-partite digraph for D�, since D� contains every finite complete k-
partite digraph. For xy 2 ED, we find some (k + 1)-partite digraph in D�(y):
the digraph A+x where A is an arbitrary complete k-partite digraph in D+(x)\
D�(y). Hence, we have m � n and by symmetry we also have n � m, so
D+ ⇠= D�.
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If D+ is semi-generic !-partite, then we find for every k < ! some complete
k-partite digraph in D�, so D� is either generic or semi-generi !-partite. We
exclude the first possibility by our previous situation. Thus, we have also D+ ⇠=
D� in this case.

Now we consider the remaining situation, that is, that D+ is the countable
generic 2-partite digraph. Then, for every edge xy 2 ED, the digraph D�(y)
contains the complete 2-partite digraph with x on one side and with infinitely
many successors of x on the other side. Due to Theorem 3.11, we conclude that
the only possibilities for D� are P, P(3), T [I!] for some homogeneous tourna-
ment T 6= I1, the generic H-free digraphs, which are excluded by Section 7.1.2,
or the (semi-)generic n-partite digraph, which must be the generic 2-partite di-
graph due to our previous situations. If D� is either P or P(3), then D� has a
vertex with three successors in D� that induce an edge with an isolated vertex.
Since this digraph does not lie in the countable generic 2-partite digraph, D�

is neither P nor P(3).
If D� ⇠= T [I!] for an infinite homogeneous tournament T , then D+ contains

an arbitrarily large tournament, which cannot lie in any 2-partite digraph. Let
us suppose D� ⇠= C3[I!]. Let x 2 V D and D[v1, v2, v3] be a directed triangle
in D�(x). Considering D+(vi), we know that vi has successors in precisely one
set of the 2-partition of D+(x). Hence for two vi, these sets coincide. Applying
C-homogeneity to fix x and rotate D[v1, v2, v3] by an automorphism of D, we
conclude that these sets coincide for all vi and, applying C-homogeneity once
more, we know that the same holds for all directed triangles in D�(x). Thus,
all vertices in N�(x) have their successors in N+(x) in the same partition set of
D+(x), which contradicts C-homogeneity, as we can fix x and map one vertex
of N+(x) \ N+(v1) onto one of its successors in D+(x) by an automorphism
of D since D is C-homogeneous. So we have D� 6⇠= C3[I1]. Hence, we have
shown the assertion in this case, too.

Now we are able to prove the main result of this section:

Proposition 7.16. Let D be a countable connected C-homogeneous digraph
such that D+ is either the countable generic n-partite digraph for some n 2
N1 with n � 2 or the countable semi-generic !-partite digraph. Then D is
homogeneous.

Proof. Let x 2 V D and a, b 2 N+(x) with ab 2 ED. As D� ⇠= D+ holds by
Lemma 7.15, we have

N�(b) \N(x) ✓ N(a). (7.3)

Note that all partition sets of D�(b) except for the one containing x have ele-
ments in N+(x). A direct consequence is the following:
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For every maximal tournament in D+(x) that contains b and has
no edge directed away from b, this tournament has vertices of each
partition set of D�(b) except for the one containing x.

(7.4)

Let us show that also

N+(b) \N(x) ✓ N(a) (7.5)

holds. Let us suppose that (7.5) does not hold. Then we find y 2 N+(b) that
is adjacent to neither a nor x. As an induced directed cycle of length 4 embeds
into D+, C-homogeneity implies the existence of a vertex c 2 N+(y) \ N�(a)
such that b and c are not adjacent and, furthermore, we find a vertex z 2 V D

with D[a, b, y, c] ✓ D+(z) by C-homogeneity. The structure of D�(a) implies
that x is adjacent to either c or z. First, let us assume that x and z are adjacent.
Since D[a, x, y] does not embed into D+(z), we have xz 2 ED and, as D[a, b, z]
is a triangle in D+(x), we have n � 3 if D+ is generic n-partite. Let {vi | i 2 I}
be a maximal set in N+(z) such that X := {a, b, vi | i 2 I} induces a tournament
and such that D[a, b, c, y] ✓ D+(vi) for all i 2 I. By its maximality and due to
the structure of D+, the set X contains vertices from each maximal independent
set in N+(z). Due an analogue of (7.4) for z instead of x, we know that X meets
every maximal independent set of N�(b) but the one that contains z. So x must
be non-adjacent to some vi. As D[vi, c, x] ✓ D�(a), we conclude that x and c

are adjacent. So if we replace z by vi if necessary, we may assume that x and c

are adjacent but x and z are not.
Because D[x, y, z], a digraph on three vertices with precisely one edge, cannot

lie in D�(c), we have xc /2 ED. So cx 2 ED and D[x, b, y, c] is an induced
directed cycle. As C4 embeds into D+, we find z0 2 V D with D[x, b, y, c] ✓
D+(z0) by C-homogeneity. Considering D�(b), we conclude that z and z0 are
adjacent. The corresponding edge is not z0z, as D[x, y, z] cannot lie in D+(z0).
Hence, we have zz0 2 ED. Because D[a, y, z0] lies in D+(z), we know that a

and z0 are adjacent and, as D[a, x, y] cannot lie in D+(z0), the corresponding
edge must be az0. Since D+(z) contains the triangle D[b, y, z0], we have n � 3
if D+ is generic n-partite. Similarly as above, we choose a maximal set {wi |
i 2 I} in N+(z0) such that the set X = {b, y, wi | i 2 I} induces a tournament
and such that D[b, y, c, x] ✓ D+(wi) for all i 2 I. By its maximality, the
set X contains vertices from each maximal independent set in N+(z0). Then
an analogue of (7.4) for z0 instead of x implies that X meets every maximal
independent set of N�(b) but the one that contains z0. So a must be non-
adjacent to some wi and z is adjacent to every wj , in particular to wi. But
zwi 2 ED is impossible, as D[a,wi, y] does not embed into D+(z), and wiz 2
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ED is impossible, as D[x, y, z] does not embed into D+(wi). This contradiction
proves (7.5).

Now we have shown N(b) \ N(x) ✓ N(a). For an induced directed cycle
x1x2 . . . xm (with m  5) in N+(x) with xm�1 = a and x1 = b = xm, we
use C-homogeneity to find an automorphism that fixes x and rotates the cycle
backwards so that we can conclude inductively

N(xm) \N(x) ✓ N(xm�1) \N(x) ✓ . . . ✓ N(x2) \N(x) ✓ N(x1) \N(x).

Because of x1 = xm, all inclusions are equalities of the involved sets. In partic-
ular, we have N(a) \N(x) = N(b) \N(x). Note that any two vertices in N+(x)
lie on an induced directed cycle of length at most 4. Hence, we can apply the
above argument and obtain

N(u) \N(x) = N(v) \N(x) for all u, v 2 N+(x). (7.6)

By symmetry and as D+ ⇠= D� due to Lemma 7.15, we have

N(u) \N(x) = N(v) \N(x) for all u, v 2 N�(x). (7.7)

Let us show for A := N(a) \N(x) the following:

A is an independent set. (7.8)

Let us suppose that there are two vertices u, v 2 A with uv 2 ED. Note that b is
adajcent to u and v by (7.6). We find w 2 N+(u)\N+(v). The analogue of (7.6)
for u instead of x gives us N(v) \N(u) = N(w) \N(u), which shows that w is
not adjacent to x. If av 2 ED, then we obtain a contradiction to an analogue
of (7.7) as x lies in N(a)\N(v) but not in N(u)\N(v). Thus, we have va 2 ED

and we conclude vb 2 ED analogously. Due to the structure of D+(v) we know
that w has to be adjacent to either a or b. First, let us assume that a and w are
adjacent. If aw 2 ED, then we conclude x 2 N(a) \ N(w) = N(v) \ N(w) by
an analogue of (7.7), which contradicts v 2 A, and if wa 2 ED, then x is not
adjacent to both end vertices of vw, which is impossible in D�(a). We obtain
analogous contradictions if w and b are adjacent. Hence, we have shown (7.8).

Let us show
V D = A [N(x). (7.9)

First, let y 2 N(x) and let u be a neighbour of y. If u lies outside N(x), then
we find a vertex v with D[x, y, u] ✓ D�(v) due to C-homogeneity and as D�

contains an isomorphic copy of D[x, y, u]. So we conclude u 2 A due to (7.6).
Now let y 2 A and let u be a neighbour of y. If u is adjacent to a, then
u 2 A [ N(x). So let us assume that a and u are not adjacent. Then we find
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by C-homogeneity a vertex v with D[a, y, u] ✓ D�(v). As v is adjacent to a, it
lies in N(x) [ A and as it is adjacent to y, it cannot lie in A due to (7.8). So
v lies in N(x) and by the first case we conclude that u lies in A [N(x). This
shows (7.9).

Our last step, before we show the homogeneity of D, is to show that

D is complete m-partite for some m 2 N1. (7.10)

Let I be the set of maximal independent sets in N+(x). Let A0 = A[ {x} and,
for every I 2 I, let I 0 be a maximal independent set in D that contains I. Due
to (7.6), every vertex of A0 is adjacent to all vertices of N+(x). As D[x, a, a0]
with a0 2 A embeds into D�(x), we find by C-homogeneity a vertex v with
D[x, a, a0] ✓ D�(v). So every vertex of A0 is adjacent to some vertex of N�(x)
and hence by (7.7) to every vertex of N�(x). So by (7.9), every vertex of A0 is
adjacent to every vertex outside A0. As D is vertex-transitive, the same holds
for every maximal independent vertex set of D. Thus, (7.10) holds.

To show that D is homogeneous, let F and H be two isomorphic induced
subdigraphs of D. If they are connected, then C-homogeneity implies that every
isomorphism from F to H extends to an automorphism of D. So we may assume
that they are not connected. As D is complete m-partite, we conclude that V F

is an independent set and the same is true for V H. Then we find uF and uH

with V F ✓ N(uF ) and V H ✓ N(uH). Note that due to the structure of D+(x),
we find subdigraphs F 0 and H 0 of D+(x) that are isomorphic to F + uF and
H + uH , respectively. By C-homogeneity, we find an automorphism 'F of D

that maps F + uF to F 0 and an automorphism 'H that maps H + uH to H 0.
Then F + x'�1

F and H + x'�1
H are connected and every isomorphism from F

to H extends to an isomorphism from F +x'�1
F to H +x'�1

H , so C-homogeneity
implies the assertion.

7.1.4 The digraphs T ^ as D+

In this section, we investigate countable connected C-homogeneous digraphs D

with D+ ⇠= T^ for some T 2 {I1, C3, Q, T1}. If T is either I1 or C3, then we
obtain from Lemma 7.1 that D is locally finite and due to Lemmas 6.2 and 6.3
we obtain that no such C-homogeneous digraph exists. Hence, it su�ces to
consider only the cases T ⇠= Q and T ⇠= T1 in the proof of Proposition 7.17.

Proposition 7.17. No countable connected C-homogeneous digraph D satisfies
D+ ⇠= T^ for any T 2 {I1, C3, Q, T1}.

Proof. Let us suppose that some countable connected C-homogeneous digraph
D with D+ ⇠= T^ exists for some T 2 {Q, T1}. Note that it was already proven
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in [15] that no such digraph exists if T 2 {I1, C3}, as we have already mentioned
earlier. Due to Theorem 3.11 and the previous sections, the only possibilities
for D� are In[T0], T0[In], S(3), T^0 , P, or P(3), where n 2 N1 and T0 is some
homogeneous tournament. Because the latter two digraphs contain the complete
bipartite digraph K1,3, but T^ contains no three independent vertices, we know
that D� is one of the first four digraphs. Since the first three digraphs in that
list do not contain the digraph D0 depicted in Figure 7.1, we have the following:

if D0 embeds into D�, then D� ⇠= T^0 for some infinite homogeneous
tournament T0.

(7.11)

Figure 7.1: The digraph D0

Let xy 2 ED. Note that D+(x) \D+(y) ⇠= T . The first statement that we
shall show is the following:

There is a unique pair of vertices v, v̊ in D+(y) that are not adjacent
and each of which is not adjacent to x.

(7.12)

For each z 2 N+(y), let z̊ denote the unique vertex in D+(y) that is not adjacent
to z. For every z 2 N+(x)\N+(y), either z̊ 2 N�(x) or z̊ is not adjacent to x,
since D+(x) \ D+(y) is a tournament. Let us suppose that z̊ is not adjacent
to x. By C-homogeneity, the same holds for every ů with u 2 N+(x) \N+(y).
Let u1, u2, u3 2 N+(x) \ N+(y) with uiuj 2 ED for i < j  3 and with
uiz 2 ED for all i  3. These vertices exist as every vertex of Q and T1

contains the directed triangle in its in-neighbourhood, so the same holds for z

in D+(x) \ D+(y). The digraph D[x, y, u1, z̊, ů3] is isomorphic to D0 and lies
in D�(u2). Due to (7.11), we have D� ⇠= T^0 for some infinite homogeneous
tournament T0. Hence, D�(u2) contains a unique vertex that is not adjacent
to x which contradicts the fact that z̊ and ů3 are not adjacent to x even though
they lie in N�(u2). This contradiction shows z̊x 2 ED. By C-homogeneity, we
conclude that for any w 2 N+(y) that is not adjacent to x also the vertex ẘ

is not adjacent to x. Indeed, if not, then we have ẘx 2 ED by the previous
situation. Hence, some automorphism of D fixes x and y and maps z̊ to ẘ and
we obtain xw 2 ED, contrary to the choice of w. Since D+ contains an induced
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2-arc, there is a vertex in N+(y) that is not adjacent to x, which shows the
existence of a pair of vertices as described in (7.12). It remains to show that
this pair is unique.

Let us suppose that N+(y)\N(x) contains two vertices v, w with vw 2 ED.
Among the vertices v, v̊, w, and ẘ, we find two adjacent ones, say v and w

with vw 2 ED such that there are two vertices u1, u2 2 N+(x) \ N+(y) with
u1, u2 2 N�(v) \ N�(w) and with u1u2 2 ED. The digraph D[x, y, u1, v̊, ẘ]
is isomorphic to D0 and lies in D�(u2). Due to (7.11), we have D� ⇠= T^0 for
some infinite homogeneous tournament T0. Note that T^0 does not contain a
subdigraph on three vertices with precisely one edge. But D[̊v, ẘ, x] is such a
digraph, which lies in D�(u2) ⇠= T^0 . This contradiction shows the uniqueness
of the vertex pair in (7.12), as every maximal independent vertex set in D+(y)
has precisely two vertices.

Let N = N+(x) \ N+(y). In the following, let v and v̊ be the vertices
of (7.12). Our next step is to show

N ✓ N+(v) or N ✓ N�(v). (7.13)

Let us suppose that we find vertices a 2 N+(v) \ N and b 2 N�(v) \ N .
Note that a and b are adjacent, since both lie in the tournament D+(x)\D+(y).
Since T contains a transitive triangle, let c 2 N such that D[a, b, c] is a transitive
triangle. Then either c 2 N+(v) or c 2 N�(v). If c 2 N+(v), then we find an
automorphism of D that fixes x and y and maps the edge between a and b to
the edge between a and c by C-homogeneity. If c 2 N�(v), then we find an
automorphism of D that fixes x and y and maps the edge between a and b to the
edge between b and c. Any of these automorphisms can neither fix v nor map
it to v̊ even though its image must lie in {v, v̊} by (7.12). This contradiction
shows (7.13).

By symmetry, we may assume N ✓ N+(v) and hence N ✓ N�(̊v). Since
D is C-homogeneous, we find an automorphism ↵ of D that fixes x and y and
maps v to v̊. Since ↵ fixes x and y, we have N↵ = N and hence

N↵ = N ✓ N+(v) = (N+(̊v))↵.

Thus, we have N ✓ N+(̊v). This is a contradiction to N ✓ N�(̊v), which shows
the assertion.

7.1.5 The digraph S(3) as D+

In this section, we show that no countable connected C-homogeneous digraphs
D has the property D+ ⇠= S(3). Our strategy in the proof is to exclude all
countable homogeneous digraphs for D�.
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Proposition 7.18. No countable connected C-homogeneous digraph D satisfies
D+ ⇠= S(3).

Proof. Let us suppose that some countable connected C-homogeneous digraph
D with D+ ⇠= S(3) exists. Since D+ ⇠= S(3), we have D+(x) \D+(y) ⇠= Q for
every edge xy 2 ED. Let v 2 N+(x) \ N+(y). As D+ contains a transitive
triangle, C-homogeneity implies the existence of some z 2 V D with D[x, y, v] ✓
D+(z). In D+(z) we find a vertex u with u 2 N+(y) \ N+(v) that is not
adjacent to x. By C-homogeneity, we can map xyu onto any other induced
2-arc xya and obtain

N�(a) \N+(x) \N+(y) 6= ; for every a 2 N+(y) \N(x). (7.14)

As D+(x) \ D+(y) ⇠= Q is a proper subdigraph of D+(y) ⇠= S(3), we find a
predecessor w of v in N+(y) that lies outside N+(x) and has only successors in
N+(x)\N+(y). The vertices x and w are adjacent due to (7.14). As w /2 N+(x),
we have wx 2 ED. Thus, D�(v) contains the directed triangle D[x, y, w].

Note that v has some predecessor w0 in N+(x) \N+(y). This vertex must
be adjacent to w as each two predecessors of v are adjacent by the structure
of S(3). As N�(w) contains no vertex of D+(x)\D+(y), we have w0 2 N+(w).
Note that we also have D[x, y, w,w0] ✓ D�(v).

Since D� contains a copy of D[x, y, w,w0] and a copy of Q, Theorem 3.11
implies that the only possibilities for D� are either P(3), In[T1], or T1[In]
for some n 2 N1 by the previous sections. We cannot have D� ⇠= P(3), since
P(3) contains a vertex with three independent successors, but D+ contains no
independent set of three vertices. So we have D� ⇠= In[T1] or D� ⇠= T1[In].
But then D� contains a vertex with a directed triangle in its out-neighbourhood.
This is impossible, since S(3) contains no directed triangle. As no possibility is
left for D�, we have shown the assertion.

7.1.6 The digraph P(3) as D+

In this section, we show that no countable connected C-homogeneous digraph
D has the property D+ ⇠= P(3).

Proposition 7.19. No countable connected C-homogeneous digraph D with
D+ ⇠= P(3) exists.

Proof. Let us suppose that there is a countable connected C-homogeneous di-
graph D with D+ ⇠= P(3). Since the in-neighbourhood of any vertex contains
every finite partial order, we have D� ⇠= P or D� ⇠= P(3). Furthermore, we
have D�(y) \D�(x) ⇠= P for every edge xy 2 ED. As D+ contains a directed
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triangle, C-homogeneity implies the existence of a vertex a 2 N+(y) such that
D[x, y, a] is a directed triangle. Let

a? := {b 2 N+(y) | a not adjacent to b},
a! := N+(a) \N+(y), and

a := N�(a) \N+(y).

So we have H(a) := (a?, a!, a ) ⇠= H. Note that D+(x) has an edge with
both its incident vertices in the same set a?, a!, or a , as D+(x) \ D+(y)
contains a tournament on four vertices. If either a? or a contains an edge uv

of D+(x), then we find an edge u0v0 in D�(u)\D�(v) with u0, v0 2 a! due to the
structure of P(3). If either u0 or v0 does not lie in N+(x), then xy together with
this vertex induce either a 2-arc or a directed triangle in D�(u) \D�(v) ⇠= P,
which is impossible. So we may assume that there are two adjacent vertices b

and c of N+(x) in a!. Then D[a, x, y] is a directed triangle in D�(b) \D�(c),
which is impossible.

7.1.7 Generic partial order P as D+

Within this section, let D be a countable connected C-homogeneous digraph
with D+ ⇠= P. Before we are able to prove that D is homogeneous in this
situation, we will prove several lemmas. Our first one determines D�.

Lemma 7.20. We have D� ⇠= P.

Proof. Since, for every edge xy 2 ED, the digraph D+(x) \ D�(y) contains
every finite partial order, the assertion follows from Theorem 3.11 together with
the previous sections.

Our general strategy to prove that D is homogeneous is similar to those
of the Sections 7.1.1 and 7.1.2. In particular, one step is to show that every
finite partial order in D lies in D+(x) for some x 2 V D (Lemma 7.22). As in
the other two cases, we prove it by induction. In this situation, the base case
(Lemma 7.21) turns out to be the most complicated part of the proof.

Lemma 7.21. Any two vertices in D have a common predecessor.

Proof. If D contains no induced 2-arc, then any induced path is an alternat-
ing walk and lies in the out-neighbourhood of some vertex by C-homogeneity.
Hence, any two vertices have a common predecessor.

Thus, we assume that D contains induced 2-arcs. Our first aim is to show
that

the end vertices of any induced 2-arc have a common predecessor or
a common successor.

(7.15)
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In order to prove (7.15) we investigate for xy 2 ED the three sets:

x? := {z 2 N+(y) | x not adjacent to z},
x! := N+(y) \N+(x), and

x := N+(y) \N�(x).

If ba 2 ED for some a 2 x! and some b 2 x?, then xyb is an induced 2-arc in
D�(a). As D� ⇠= P by Lemma 7.20 and P contains no induced 2-arc, we have
shown:

no vertex in x? has successors in x!. (7.16)

If ba 2 ED for some a 2 x! and some b 2 x , then the directed triangle
D[x, y, b] lies in D�(a) ⇠=, which is not possible. Thus, we have

no vertex in x has successors in x!. (7.17)

Let us suppose that no a 2 x! and b 2 x? are adjacent. In D+(y), we find
a common predecessor c and a common successor c0 of a and b. Since neither
of them can lie in x? or in x! by assumption, both lie in x . Any predecessor
of c in D+(y) is also a predecessor of a and b and thus must lie in x . By
C-homogeneity, we find an automorphism ↵ of D that fixes x and y and maps c

to c0. This is impossible, as c0 = c↵ has predecessors in D+(y) that lie outside
x = (x )↵. Thus, we have shown that some vertex of x! has a neighbour in
x?. By C-homogeneity and due to (7.16), we have

every vertex in x? has a predecessor in x! and every vertex in x!

has a successor in x?.
(7.18)

If any vertex a in x? has a predecessor in x , then the end vertices of the
induced 2-arc xya have a common predecessor. Thus, we have shown:

if (7.15) does not hold, then no vertex of x? has a predecessor in x . (7.19)

Let us assume that we have ab 2 ED for all a 2 x! and all b 2 x?. Because
of D+ ⇠= P, we find a vertex z 2 N+(y) that is adjacent to neither a nor b.
Hence, z lies neither in x? nor in x!. Thus, we have z 2 x . Let u be a
common successor of z and b in D+(y). We have u /2 x! by (7.16) because of
bu 2 ED. By (7.19), the edge zu implies that either (7.15) holds or u /2 x?.
So we may assume u 2 x . Then (7.19) implies (7.15) as b 2 x? has the
predecessor u 2 x . Due to (7.16), we have shown

if (7.15) does not hold, then for every vertex in x? there is some
vertex in x! such that these two vertices are not adjacent.

(7.20)
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Since every two vertices in N+(y) have a common predecessor, the existence
of a vertex z1 in x and a vertex z2 in x! that are not adjacent implies that the
end vertices of the induced 2-arc z1xz2 have a common predecessor. Together
with (7.17), this implies that

if (7.15) does not hold, then every vertex of x! is a predecessor of
every vertex of x .

(7.21)

Let ab 2 ED with a 2 x! and b 2 x?. This edge exists due to (7.18).
By (7.20), we may assume that there is some vertex c 2 x! with cb /2 ED.
Then (7.16) implies that c and b are not adjacent.

If a and c are adjacent, then ca /2 ED because we have cb /2 ED and D+(y)
contains no induced 2-arc. So let us assume ac 2 ED. In D+(y), we find a
vertex c0 2 N�(c) that is adjacent to neither a nor b. We have c0 /2 x? due
to (7.16) because of c 2 x!. By (7.21), either (7.15) holds or c0 /2 x . Thus,
we may assume c0 2 x!. Taking c0 instead of c, we may assume that a and c

are not adjacent. Thus, the end vertices of D[c, x, a, b] lie in D+(y) and hence
have a common predecessor. By a symmetric argument, we obtain that

if (7.15) does not hold, then the end vertices of any induced path
isomorphic to either D[c, x, a, b] or the digraphs obtained from
D[c, x, a, b] by reversing the directions of all its edges have a common
predecessor.

(7.22)

Let ↵ be an automorphism of D that fixes x and y and interchanges a to c.
For b0 := b↵ we have b 6= b0 2 (x?)↵ = x?. Since ab0 /2 ED and D+(y) ⇠= P,
we have bb0 /2 ED and, symmetrically, we have b0b /2 ED. Hence, b and b0

are not adjacent. Let u 2 N+(y) with a, b, c 2 N�(u) and such that u and b0

are not adjacent. If u 2 x?, then (7.22) applied to D[x, c, u, b] implies (7.15),
since x and b are the end vertices of the induced 2-arc xyb. Due to (7.16),
the vertex u does not lie in x!. Hence, we may assume u 2 x . Let v be a
predecessor of b0 in D+(y) that has no neighbour in {a, b, c, u}. Since v and
u are not adjacent, (7.21) implies either (7.15) or v /2 x!. By (7.19) and as
vb0 2 ED, either (7.15) holds or v /2 x . Thus, we may assume v 2 x?. Then
(7.22) applied to D[x, c, b0, v] shows that the end vertices of the induced 2-arc
xyv have a common predecessor. This shows (7.15).

Due to (7.15), every two vertices of distance 2 have a common successor
or a common predecessor. If they have a common successor, then these three
vertices induce a connected finite partial order and, by C-homogeneity, we find
a common predecessor of all three vertices. Hence, we have shown

any two vertices of distance 2 have a common predecessor. (7.23)
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To show the lemma, it thus su�ces to show

diam(D) = 2. (7.24)

We consider all possible induced paths P of length 3, not necessarily directed,
one by one and show that the end vertices of such a path have distance 2. If
P is an alternating walk, then it is a partial order and, for every x 2 V D, the
subdigraph D+(x) contains an isomorphic copy of P . By C-homogeneity, we
find a vertex z with P ✓ D+(z) and the claim follows directly.

Let a1, a2, a3, a4 be the vertices of P . Let us assume that a1a2, a2a3,
and a4a3 are the edges on P . Since D[a2, a3, a4] is a connected partial order, we
find a vertex x with a2, a3, a4 2 N+(x). If a1 and x are adjacent, then we have
d(a1, a4) = 2. If a1 and x are not adjacent, then D[a1, a2, x, a4] is a connected
partial order that lies in D+(z) for some z 2 V D by C-homogeneity. Thus, also
in this case, a1 and a4 have a common neighbour. Similar orientations like in
this case (e.g., with edges a2a1, a2a3, and a3a4) follow by symmetric arguments.

The only remaining case is that P is an induced 3-arc. Then we find a
common predecessor of the first and the third vertex on P and obtain – either
directly or by the previous case – that the end vertices of P have distance 2.
This shows (7.24) and, as previously mentioned, the lemma.

Lemma 7.22. For every finite partial order A in D, there exists some x 2 V D

with A ✓ D+(x).

Proof. If A is connected, then the assertion is a direct consequence of C-homo-
geneity, as for every x 2 V D the subdigraph D+(x) contains an isomorphic
copy of A. So let us assume that A is not connected. If |V A| = 2, then the
assertion follows from Lemma 7.21. So we may assume |V A| � 3. If V A is an
independent set, let a be an arbitrary vertex of A. If A has an edge, let a 2 V A

such that a has a successor in A but no predecessor. By induction on |A|, we
find x 2 V D with A � a ✓ N+(x). If xa 2 ED, then x is the vertex we are
searching for. So let us assume either that ax 2 ED or that a and x are not
adjacent. In each case, A + x is a partial order and it has less components
than A. Thus, the assertion holds by induction on the number of components
of A.

Lemma 7.23. Let A,A0, B,B0 be finite induced partial orders in D such that
an isomorphism ' : A0 + B0 ! A + B with A0' = A and B0' = B exists. If A

is a maximal partial order in A + B and if D has a vertex v with A0 ✓ D+(v)
and B0 ✓ D�(v), then there exists x 2 V D with A ✓ D+(x) and B ✓ D�(x).

Proof. If A + B is connected or if B is empty, then the assertion follows either
by C-homogeneity or by Lemma 7.22. So let us assume that A + B has at least
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two components and that B is not empty. By induction and similar to the proof
of Lemma 7.8, we may assume that there are z 2 V B and z0 2 V B0 such that
A = A0 and B � z = B0 � z0. Furthermore, we may assume that z does not
lie in N�(v), because the assertion follows directly in that case. Since A is a
maximal partial order in A + B, we know that A contains vertices from each
component of A+B. Let a1, . . . , an 2 V A such that {a1, . . . , an, z} has precisely
one vertex from each component of A + B. By Lemma 7.22, we find a vertex
y with {a1, . . . , an, z, z0} ✓ N+(y). The digraphs A + B + y and A0 + B0 + y

are connected and isomorphic to each other. By C-homogeneity, there is an
automorphism ↵ of D that fixes y and all vertices of A and B � z and maps z

to z0. Hence, v↵ is a vertex we are searching for.

Proposition 7.24. Let D be a countable connected C-homogeneous digraph
with D+ ⇠= P. Then D is homogeneous.

Proof. Let A and B be isomorphic finite induced subdigraphs of D and ' : A !
B be an isomorphism. Let A1 be a maximal partial order of A and A2 be a
maximal partial order of A \ A1 such that for some vertex x 2 V D there is an
embedding ⌧ from A1 + A2 to D+(x) + D�(x) such that A1⌧ ✓ D+(x) and
A2⌧ ✓ D�(x). Note that A1 contains vertices from each component of A by
its maximality. Let B1 = A1' and B2 = A2'. Due to Lemma 7.23, we find a
vertex y with A1 ✓ D+(y) and A2 ✓ D�(y) and a vertex z with B1 ✓ D+(z)
and B2 ✓ D�(z). By maximalities of A1 and A2, we know that no vertex
of A \ (A1 + A2) is adjacent to y and, similarly, no vertex of B \ (B1 + B2)
is adjacent to z. The isomorphism ' extends canonically to an isomorphism
'0 : A + y ! B + z. Since A + y and B + z are connected, we can extend '0,
and hence also ', to an automorphism ↵ of D by C-homogeneity.

7.1.8 The digraphs T [In] as D+

In this section, let D be a countable connected C-homogeneous digraph with
D+ ⇠= T [In] for some countable homogeneous tournament T 6= I1 and some
n 2 N1. Our first aim in this section is to determine D�.

Lemma 7.25. If n � 2, then D� ⇠= T 0[Im] for some countable homogeneous
tournament T 0 6= I1 and some m 2 N1.

Proof. Let xz 2 ED. Note that V D� is not an independent set, since z has a
predecessor in D+(x). As n � 2, there are two non-adjacent vertices y1, y2 2
N+(x) \ N�(z). Since the digraph D[x, y1, y2] ✓ D�(z) cannot be embedded
into Ik[T 0] for any countable homogeneous tournament T 0 6= I1 and any k 2 N1,
Theorem 3.11 together with the previous sections imply the assertion.
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Lemma 7.26. If D� ⇠= T 0[Im] for some countable homogeneous tournament
T 0 6= I1 and some m 2 N1, then D+ ⇠= D�.

Proof. To show m = n, let x 2 V D. As T 6= I1, any vertex in D+(x) has n

independent predecessors in D+(x). Hence, we conclude m � n. By a symmetric
argument we also have n � m. To show D+ ⇠= D� it thus su�ces to show
T = T 0.

Note that T = C3 implies T 0 = C3 and vice versa because in any countable
infinite homogeneous tournament, we have arbitrarily large finite tournaments
in the out- and in the in-neighbourhood of every vertex.

Let us now show T = T 0 in the case T = T1. Let x 2 V D and let F be
a finite tournament in D+(x). As T1 is homogeneous and embeds every finite
tournament, we find a vertex y 2 N+(x) with F ✓ D�(y). Thus, T 0 contains
every finite tournament. So we have T 0 = T1 = T .

Next, we assume T = Q. Let us suppose T 6= T 0. Then we obtain from the
previous cases T 0 = S(2). Let xy 2 ED. As x has a predecessor in D�(y), let
a 2 N�(x) \N�(y). Since D�(x) contains a directed triangle and is homoge-
neous, we find b, c 2 N�(x) with ab, bc, ca 2 ED. Since D+(a) ⇠= Q[In], we have
by 2 ED. Similarly, we conclude cy 2 ED. The digraph D[x, a, b, c] cannot be
embedded into S(2)[Im] even though it lies in D�(y). This contradiction shows
T = T 0 if T = Q and finishes the proof of the lemma.

We remark that we will see in Section 7.1.9, that the assumption D� ⇠=
T 0[Im] in Lemma 7.26 is not only satisfied if n � 2 (due to Lemma 7.25) but
also if n = 1 (due to Lemma 7.36).

If either n � 2 or D+ ⇠= T ⇠= D�, then the next lemma will exclude the
possibility T = S(2):

Lemma 7.27. If D+ ⇠= D�, then T 6= S(2).

Proof. Let us suppose T = S(2). Let x 2 V D and let a, b, c 2 N+(x) with
ab, bc, ca 2 ED. Since D[x, a, b] can be embedded into D+, we find a vertex
y 2 V D with D[x, a, b] ✓ D+(y) by C-homogeneity. Since D�(a) ⇠= S(2)[In]
and c and y do not both lie either in D�(x) or in D+(x), these two vertices must
be adjacent. Because D[x, a, b, c] does not embed into D+, this edge cannot be
yc, so it is cy. In D�(b) we find a vertex z with z 2 N+(a) \N+(x) \N�(y).

Since D is C-homogeneous, we find an automorphism ↵ of D that fixes x

and y and maps ca to zb. Since b lies in N+(a) \ N�(c), its image b↵ lies in
N+(b) \N�(z). Considering D+(x), we know that b↵ cannot lie in N+(a) as
D+(x)\D+(a) contains no directed triangle D[b, b↵, z] but b↵ must be adjacent
to a. So we have b↵a 2 ED. But then D[a, b, b↵, x] is a digraph which lies in
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D+(y) even though it cannot be embedded into S(2)[In]. This contradiction
shows the assertion.

The following lemma shows that we can restrict ourselves to the situation
n = 1 in the remainder of this section: all the other C-homogeneous digraphs
that satisfy the assumptions of this section and that have the property n � 2
arise from those with n = 1 in a canonical way.

Lemma 7.28. If D+ ⇠= D�, then there is a countable connected C-homogeneous
digraph D0 with D0+ ⇠= T ⇠= D0� and with D0[In] ⇠= D.

Proof. Let x 2 V D. Let us first show that

N�(a) = N�(b) for each two non-adjacent vertices a, b 2 N+(x). (7.25)

Let y 2 N�(a). First, let us assume that x and y are adjacent. If y 2 N+(x),
then it is an immediate consequence of D+(x) ⇠= T [In] that y lies in N�(b). So
let us assume yx 2 ED. If D contains no directed triangle, then it contains
a transitive triangle and, by C-homogeneity, we find a vertex z 2 V D with
D[x, y, a] ✓ D�(z). Then D+(x) shows bz 2 ED and D�(z) shows yb 2 ED.
If T contains a directed triangle, let z 2 N�(a) such that D[x, y, z] is a directed
triangle. Let a? be the set of vertices in D that are not adjacent to a. Due to
the structure of D+(y), we observe N+(y) \ a? ✓ N+(x) \ a? and conclude

N+(y) \ a? ✓ N+(x) \ a? ✓ N+(z) \ a? ✓ N+(y) \ a?.

So all inclusions are equalities, which shows yb 2 ED.
Now we assume that x and y are not adjacent. Then we find z 2 N�(a) with

x, y 2 N+(z). So we have due to the previous situation that z lies in N�(b) and
hence that y lies in N�(b). This shows (7.25).

Let us define a relation ⇠ on V D via

u ⇠ v :() N�(u) = N�(v) for all u, v 2 V D. (7.26)

Then ⇠ is obviously an Aut(D)-invariant equivalence relation with no two adja-
cent vertices in the same equivalence class. Let A,B be two equivalence classes
and let a1, a2 2 A and b1, b2 2 B with a1b1 2 ED. By definition, we know
a1b2 2 ED. Let c 2 N�(a1) \ N�(b1). By definition of ⇠, we conclude
ca2, cb1 2 ED. So we have D[a1, a2, b1, b2] ✓ D+(c). Due to the structure
of D+(c) and as a1 and a2 are not adjacent, a2 is a predecessor of b1 and of b2.
Thus, we have shown that

each two equivalence classes induce either a complete or an empty
bipartite digraph.

(7.27)
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Thus, D⇠ is a digraph. Note that (7.27) implies that D⇠ inherits C-homogeneity
from D. By (7.25), we conclude D ⇠= D⇠[In] and D+ ⇠= T .

Now we are able to complete the investigation for D if D+ ⇠= C3[In] ⇠= D�.

Lemma 7.29. If D+ ⇠= C3[In] ⇠= D�, then D ⇠= C^3 [In].

Proof. By Lemma 7.28, it su�ces to show D ⇠= C^3 if n = 1. Note that D is
locally finite, if n = 1. So we obtain the assertion from [15, Lemma 4.5].

In the following we only have to look closer at the cases T = T1 and
T = Q. So we assume for the remainder of this section that T is one of those
two tournaments. In both cases we obtain (among others) digraphs that are
similar to those that we obtain in the case of T = C3: the digraphs T^[In].
The situation in which they occur (in the case n = 1) is that every edge lies on
precisely two induced 2-arcs, once as the first edge and once as the last edge:

Lemma 7.30. If n = 1, if D+ ⇠= D�, and if every edge of D is on precisely
one induced 2-arc the first edge and on precisely one induced 2-arc the last edge,
then D ⇠= T^.

Proof. Let x 2 V D. We first show that

there exists a unique vertex x? such that every induced 2-arc that
starts at x ends at x?.

(7.28)

Suppose (7.28) does not hold. Then we find two distinct 2 arcs xyz and xuv in D.
By assumption, we have y 6= u. Since y and u lie in the tournament D+(x), they
are adjacent. So we may assume yu 2 ED. Because there is a unique induced
2-arc whose second edge is uv, we know that y and v are adjacent. As x and v

are not adjacent, v cannot lie in D�(y), so we have v 2 N+(y). But then the
edge xy lies on the two induced 2-arcs xyz and xyv. This contradiction to the
assumption shows (7.28).

Next, we show
(x?)? = x. (7.29)

Let xyx? be an induced 2-arc. Let a 2 N+(y) \N�(x?). Since xya cannot be
an induced 2-arc by assumption, a and x are adjacent. This edge must be xa

because of D+(a) ⇠= T . So there exists b 2 V D with x, a 2 N+(b) Since xax?

is an induced 2-arc, the edge ax? cannot lie on a second induced 2-arc bax?.
Hence, b and x? are adjacent. Note that x? does not lie in N+(b) because of
D+(b) ⇠= T and x 2 N+(b). So x?b 2 ED and x?bx is an induced 2-arc that
shows (7.29).
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Let us show that

diam(D) = 2 and x? is the only vertex in D that is not adjacent
to x.

(7.30)

Since D contains induced 2-arcs, its diameter is at least 2. Let xux? and x?vx

be induced 2-arcs. Any neighbour of x? except for u and v must be adjacent to
either u or v because of D+ ⇠= T ⇠= D�, so its distance to x is at most 2. Because
of D+ ⇠= T ⇠= D�, any two vertices a, b with d(a, b) = 2 must be the end vertices
of an induced 2-arc. Hence, (7.28) and (7.29) show that every neighbour of x?

must be adjacent to x. This shows (7.30).
Now we are able to show D ⇠= T^. Due to (7.30), we know that D is

the union of D1 := D+(x) + x and D2 := D�(x) + x?. Furthermore, we have
D�(x) = D+(x?) because x and x? have no common successor and no common
predecessor. Let us define

' : D1 ! D2, y 7! y?.

Since D1 and D2 are tournaments, y? does not lie in D1 for any y 2 V D1, so '
is well-defined. Similarly, ' is surjective. Due to (7.28) and (7.29), we also have
that ' is injective. Let uv 2 ED1. Then vu? 2 ED and u?v? 2 ED as D� is
a tournament. This shows that ' is an isomorphism. Let a 2 D1 and b 2 D2.
If ab 2 ED, then ba? 2 ED and, if ba 2 ED, then a?b 2 ED. Thus, we have
shown D ⇠= T^.

Now we determine D in the case T = T1 if D+ ⇠= D�.

Lemma 7.31. If D+ ⇠= T1[In] ⇠= D�, then either D ⇠= (T1)^[In] or D ⇠=
T 0[In] for some countable homogeneous tournament T 0.

Proof. Let us assume that n = 1 and that D is not a homogeneous tournament.
As any induced subdigraph of a tournament is connected, C-homogeneity implies
that D is no tournament at all.

Since D+ and D� are tournaments, we find between each two vertices x

and y of distance 2 an induced 2-arc xyz in D. Our aim is to apply Lemma 7.30.
Therefore, we prove that

there is no z0 6= z in V D such that xyz0 is an induced 2-arc. (7.31)

Let us suppose that we find a vertex z0 6= z such that xyz0 is an induced 2-arc.
Since D+(y) ⇠= T1, the vertices z and z0 are adjacent, say zz0 2 ED. Let
a 2 N+(y) \ N+(x). Because D�(a) is a tournament, neither z nor z0 lies
in N�(a). Since D+(y) is a tournament, a is adjacent to z and to z0. Thus, z

and z0 lie in N+(a). In D+(y) ⇠= T1, we find a vertex b with ba, bz, z0b 2 ED.
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Considering D�(a), we know that b and x are adjacent, but neither bx nor xb

is an edge of D since neither D+(b) can contain x and z nor D�(b) can contain
x and z0. This contradiction shows (7.31).

By an analogous proof as above, there is precisely one induced 2-arc whose
second edge is xy. Thus, the assertion follows from Lemma 7.30.

It remains to determine D in the case T = Q.

Lemma 7.32. If D+ ⇠= Q[In] ⇠= D�, then D is isomorphic to one of the
following digraphs:

(i) Q^[In];

(ii) S(3)[In]; or

(iii) T 0[In] for some countable homogeneous tournament T 0.

Proof. As in the proof of Lemma 7.31, we assume n = 1 and that D is not a
(homogeneous) tournament. If for every edge xy there is precisely one induced
2-arc whose first edge is xy and precisely one induced 2-arc whose second edge
is xy, then Lemma 7.30 implies D ⇠= Q^. By symmetry, let us assume that xy

lies on two induced 2-arcs xyz and xyz0.
Considering D+(y), the vertices z and z0 are adjacent. We may assume

zz0 2 ED. Let z00 2 N+(y) \ N+(x). Note that D�(z00) ⇠= Q implies that
neither z nor z0 lies in N�(z00). But as z, z0, z00 2 N+(y), the vertex z00 is
adjacent to z and to z0. Hence, we have z00z 2 ED and z00z0 2 ED. By C-
homogeneity, we find an automorphism ↵ of D that fixes y and z0 and maps z00

to z. Since x 2 N�(z00) but x /2 N(z0), we conclude x0 := x↵ 6= x. Note that
x and x0 must be adjacent as both vertices lie in D�(y) but x0x /2 ED because
not both of the two non-adjacent vertices x and z can lie in D+(x0). Thus, we
have xx0 2 ED and xx0zz0 is an induced 3-arc. Thus, we have shown that

the end vertices of any induced 2-arc are also end vertices of an
induced 3-arc.

(7.32)

Let us show the following:

D contains either an induced directed cycle or an induced directed
double ray.

(7.33)

First, let us assume that there is an integer m such that D contains an induced
m-arc but no induced (m + 1)-arc. Let m be smallest possible. Due to (7.32),
we have m � 3. Let a0 . . . am be an induced m-arc and am+1 2 V D such that
a1 . . . am+1 is also an induced m-arc. To see that such a vertex am+1 exists,
take an automorphism ↵ of D that maps a0 . . . am�1 to a1 . . . am, which exists
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by C-homogeneity, and set am+1 := am↵. By the choice of m, we know that
a0 . . . am+1 is not an induced (m + 1)-arc. If a0 = am+1, then a0 . . . am is an
induced directed cycle. So a0 and am+1 are distinct but adjacent. As m � 2,
the vertices a0 and am are not adjacent. Hence, a0 cannot lie in the tournament
D�(am+1). Thus, we have am+1a0 2 ED and the vertices a0, . . . , am+1 form
an induced directed cycle.

If no such m exists, then D contains an induced n-arc for every n 2 N, as
it contains an induced 3-arc by (7.32). Hence, D contains an induced directed
double ray: by C-homogeneity, we can enlarge every n-arc a1 . . . an+1 to an
(n + 2)-arc a0 . . . an+2 in a similar way we enlarged the m-arc in the previous
case. Continuing in this way we obtain an induced directed double ray, which
shows (7.33).

Next, we show that

D contains no induced 4-arc. (7.34)

Let us suppose that D contains an induced 4-arc a0 . . . a4. By (7.32) and C-
homogeneity, we find a vertex b such that a0ba3 in an induced 2-arc. Since
D�(b) does not contain two non-adjacent vertices, we have a4b /2 ED. So either
a0ba4 is an induced 2-arc or a0ba3a4 is an induced 3-arc and we find by (7.32) a
vertex c such that a0ca4 is an induced 2-arc. For simplicity, set c := b if a0ba4

is an induced 2-arc. Considering D+(a0) we know that a1 and c are adjacent.
As an edge ca1 is a contradiction to D+(c) ⇠= Q, we have a1c 2 ED and we
conclude as before that a2 and c are adjacent. But an edge a2c implies that
D�(c) contains the two non-adjacent vertices a0 and a2 and an edge ca2 implies
that D+(c) contains the two non-adjacent vertices a2 and a4. This contradiction
shows (7.34).

A direct consequence of (7.34) is that

D contains neither an induced directed double ray nor an induced
directed cycle of length at least 6.

(7.35)

The next step is to show that

D contains no directed triangle. (7.36)

Let xy 2 ED. For every a 2 N�(y), we define

a! = {v 2 N+(y) | av 2 ED},
a = {v 2 N+(y) | va 2 ED}, and

a? = {v 2 N+(y) | a not adjacent to v}.
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Let a1 2 a!, a2 2 a and a3 2 a?. These three vertices form a transitive
triangle as they lie in D+(y) ⇠= Q. Since D+(a2) is a tournament and a 2
N+(a2), we have a3a2 2 ED and, since D�(a1) is a tournament and a 2
N�(a1), we have a1a3 2 ED. As D[a1, a2, a3] is transitive, we conclude a1a2 2
ED. So we have a! [ a? ✓ N�(a2) and a [ a? ✓ N+(a1).

Let us suppose that D contains some directed triangle. Let z, z0 2 x? with
zz0 2 ED, let u 2 x!, and let v 2 x . As D contains a directed triangle, we
find a vertex w such that D[w, y, u] is such a triangle. As we have w! [ w? ✓
N�(w0) for every w0 2 w and as u 2 w , we conclude N+(y)\N+(u) ✓ w .
In particular, we have x? ✓ N+(y) \ N+(u) ✓ w . In particular, we have
z0w 2 ED. By C-homogeneity, we find an automorphism ↵ of D that fixes y

and z and maps v to z0. Then we have x↵ 6= x, as v↵ = z0 2 x? but v /2 x?.
Since w and x↵ lie in D�(y), they are adjacent to x. But neither of them
lies in N+(x), because both lie in N+(z0) and D� is a tournament. Note that
z 2 x? \ (x↵)?. Thus, we have x? 6✓ (x↵) and hence we do not find any
automorphism of D that fixes x and y and maps w to x↵. This contradiction
to C-homogeneity shows (7.36).

We know by (7.33)–(7.36) that the only induced directed cycles in D have
length either 4 or 5. Next, we show that

D contains a directed cycle of length 4. (7.37)

If D contains no induced directed cycle of length 4, then D contains only induced
directed cycles of length 5. Let a1 . . . a5a1 be such a cycle. Due to (7.32), there
is an induced 2-arc a1ua4 in D. Since a1ua4a5a1 is not an induced directed
cycle of length 4, the vertices u and a5 must be adjacent. But an edge ua5

implies that a1ua5a1 is a directed triangle and an edge a5u implies that ua4a5u

is a directed triangle. These contradictions to (7.36) show (7.37).
Let us show that

for every directed cycle C of length 4 every vertex of D outside C

has a predecessor u and a successor w on C with uw 2 ED.
(7.38)

First, let v be a vertex outside C that has a neighbour on C. If v has a
predecessor on C, then there are at most two predecessors of v on C, since
D�(v) is a tournament. Let u be that predecessor of v on C whose successor
w on C does not lie in N�(v). Since v and w lie in N+(u), they are adjacent
and by the choice of u we have vw 2 ED. If v has a successor on C, then
an analogous argument shows the assertion for v. Since D+ ⇠= Q ⇠= D�, any
neighbour of v that does not lie on C must be adjacent to some neighbour of v

on C – either to a predecessor or a successor. Thus, every vertex of D \ C is
adjacent to some vertex of C and we have shown (7.38).
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A consequence of (7.38) is the following:

the vertices that are not adjacent to a given vertex induce a tourna-
ment.

(7.39)

Let C = x1x2x3x4x1 be a directed cycle of length 4, which exists by (7.37),
and let u and v be two vertices that are not adjacent to x1. By (7.38) we know
that each of u and v has a predecessor on C, which cannot be x4 since D+(x4)
is a tournament. Furthermore, each of u and v has a successor on C, which
cannot be x2 since D�(x2) is a tournament. If u and v are not adjacent, then
we may assume that x3u, ux4 2 ED and x2v, vx3 2 ED as D+ and D� are
tournaments. Note that neither vx4 nor x2u lies in ED as u and v are not
adjacent. Thus, ux4x1x2v is an induced 4-arc. This contradiction to (7.34)
proves (7.39).

We are now able to show D ⇠= S(3). To show this, it su�ces to show that
D is homogeneous, because the only homogeneous digraph with D+ ⇠= Q that
has two distinct induced 2-arcs xyz and xyz0 is S(3).

Let A and B two isomorphic finite induced subdigraphs of D and ' : A ! B

be an isomorphism. If A is connected, then ' extends to an automorphism
of D by C-homogeneity. So let us assume that A has at least two components.
Then (7.39) shows that A has precisely two components A1 and A2 both of which
are tournaments. Furthermore, each component can be embedded into Q since
D contains no directed triangle by (7.36). Let a1 2 V A1 such that A1 � a1 ✓
D+(a1) and let a2 2 V A2 such that A2�a2 ✓ D�(a2). Let C be a directed cycle
of length 4. This exists by (7.37). By C-homogeneity, we may assume a1 2 V C.
Due to (7.38), we know that D contains either an induced 2-arc from a1 to a2

or an induced 2-arc from a2 to a1. Indeed, if auvw is the cycle C, then a2 has
a predecessor on C by (7.38) which cannot be w since D+(w) does not contain
two non-adjacent vertices. Similarly, u is not a successor of a2. Hence, either
a1ua2 or a2wa1 is the induced 2-arc we are searching for. Since a1 and a2 lie
on an induced 2-arc, C-homogeneity implies that we may also assume a2 2 V C.
So we find a vertex a 2 V C \N+(a1)\N�(a2). Note that a /2 V A. Then every
vertex a01 2 A1 \ {a1} must be adjacent to a since a and a01 lie in D+(a1) ⇠= Q.
If a is a predecessor of a01, then D+(a) contains the two non-adjacent vertices a2

and a01, which is impossible. Hence, a is a successor of a01. Similarly, we obtain
that a is a predecessor of every vertex a02 2 V A2. So we have A1 ✓ D�(a)
and A2 ✓ D+(a). Similarly, we find a vertex b 2 V D with A1' ✓ D�(b) and
A2' ✓ D+(b). Then ' extends to an isomorphism from A + a to B + b and
hence by C-homogeneity to an automorphism of D. So we obtain that D is
homogeneous and hence isomorphic to S(3).
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Let us summarize the results of this section:

Proposition 7.33. Let D be a countable connected C-homogeneous digraph with
D+ ⇠= T [In] for some countable homogeneous tournament T and some n 2 N1.
If either n � 2 or if D+ ⇠= T ⇠= D�, then D is isomorphic to one of the following
digraphs:

(i) T^[In] if T 2 {C3, Q, T1}; or

(ii) S[In], where either S = S(3) or S is some countable homogeneous tourna-
ment.

Proof. Note that D+ ⇠= D� also holds if n � 2 due to Lemmas 7.25 and 7.26.
Then the assertion directly follows from Lemmas 7.27, 7.29, 7.30, 7.31, and 7.32.

We will see in Section 7.1.9 (Lemma 7.36) that D+ ⇠= T implies D� 6⇠= Im[T 0]
for any m 2 N1 with m � 2 and any countable homogeneous tournament T 0 6=
I1. Thus, we have D� ⇠= T 0[Im] for some countable homogeneous tournament
T 0 6= I1 and some m 2 N1. So Lemma 7.26 implies D+ ⇠= D� and hence
Proposition 7.33 covers this situation.

7.1.9 D+ ⇠= In[T ] with T 6= I1

In this section, let D be a countable connected C-homogeneous digraph with
D+ ⇠= In[T ] for some countable homogeneous tournament T 6= I1 and some
n 2 N1 with n � 2. A direct consequence of the previous sections together
with the fact that T contains some edge is the following lemma:

Lemma 7.34. We have D� ⇠= Im[T 0] for some m 2 N1 and some countable
homogeneous tournament T 0 6= I1.

Our next lemma says that T and T 0 are infinite tournaments. Note that we
do not know so far whether m > 1 or not. We will see this in Lemma 7.36.

Lemma 7.35. We have T 6= C3 6= T 0.

Proof. Seeking for a contradiction, let us suppose T = C3. Let xy 2 ED and let
a, b 2 N+(x) with ya, ab, by 2 ED. Let z be a common predecessor of x and y.
Considering D�(y), the vertices z and b lie in the same component, which is a
tournament. Thus, they are adjacent. As an edge zb gives us a transitive triangle
D[x, y, b] in D+(z) and as this is not possible, we have bz 2 ED. Hence, the
directed triangle D[a, b, y] ✓ D+(x) contains one successor and one predecessor
of z. So if the third vertex is either a successor or a predecessor of z, then we can
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find an automorphism of D that fixes x and z and rotates the directed triangle
D[a, b, y]. More precisely, the automorphism maps a to either b or y and hence
it must leave the component D[a, b, y] of D+(x) invariant. Applying the same
automorphism once more, we obtain that the whole triangle D[a, b, y] lies either
in D+(z) or in D�(z). As neither of these two cases can occur, the third vertex
of D[a, b, y] is not adjacent to z.

Thus, in the directed triangle D[a, b, y] ✓ D+(x), we find a predecessor
of z, a successor of z and a vertex not adjacent to z. By C-homogeneity, we
find the same in each directed triangle in D+(x). Indeed, if u is a vertex in
another directed triangle in D+(x), then we have D[u, x, z] ⇠= D[v, x, z] for some
v 2 {a, b, y}. Thus, x together with n � 2 independent successors lies in D+(z),
which is impossible. This shows T 6= C3. So T is an infinite tournament and
D+(x) \D�(y) contains a transitive triangle. Thus, we also have T 0 6= C3.

Now we can describe the structure of the neighbourhood of any vertex:

Lemma 7.36. For every x 2 V D, the digraph D+(x) + D�(x) is a disjoint
union of isomorphic homogeneous tournaments. Each of its components consists
of one component of D+(x) and one component of D�(x).

In particular, we have m = n.

Proof. For every u 2 N�(x), there is a unique component of D+(x) that con-
tains successors of u because of D+(u) ⇠= In[T ]. We denote this component
by Au.

The first step is to show

Au = Av for all adjacent vertices u, v 2 N�(x). (7.40)

We may assume uv 2 ED. Since T is infinite by Lemma 7.35, it contains a
transitive triangle. Hence, there is a vertex y 2 N+(x)\N+(v) in D+(u). This
vertex y already shows us Au = Av.

By C-homogeneity, there is for every component C of D+(x) some vertex
v 2 D�(x) with C = Av. Thus, (7.40) implies n  m. Symmetrically, we obtain
m  n. Hence, we have n = m.

Let us show

N(v) \N+(x) ✓ Av for every v 2 N�(x). (7.41)

Since D+(v) \D+(x) is a tournament, we have N+(v) \N+(x) ✓ Av. Let us
suppose N(v) \N+(x) 6✓ Av. Then we find a vertex y 2 N+(x) \N�(v) that
lies outside Av. Let Cv be the component of D�(x) that contains v. Note that
y has no predecessor in Cv as y /2 Av and due to (7.40). If v is the unique
successor of y in Cv, then we can find an automorphism of D that fixes x and y
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and maps some predecessor v� of v in Cv to some successor v+ of v in Cv.
Note that neither v� nor v+ is adjacent to y as we already mentioned. This
automorphism fixes Cv setwise, so it must fix v, the unique neighbour of y

in Cv. But we have (v�v)↵ = v+v /2 ED even though v�v 2 ED. This shows
that y has a second successor u 6= v in Cv. As u and v are adjacent, we have
Au = Av by (7.40). Hence, we may assume uv 2 ED. By C-homogeneity, we
find an automorphism ↵ of D that maps yu to vx. Then v has a predecessor
x↵ in N+(x) that is adjacent to v↵ 2 Av. As Av contains some predecessor
of v, C-homogeneity implies that it contains every predecessor of v in N+(x) in
contradiction to y /2 Av. Indeed, we find an automorphism that fixes x and v

and maps x↵ to y and this automorphism does not fix Av setwise even though
it fixes x and v. This shows (7.41).

Next, we show

Av = N(v) \N+(x) for every v 2 N�(x). (7.42)

If Av contains some vertex y that is not adjacent to v, then, by C-homogeneity,
some automorphism of D maps y to some vertex z in N+(x) \ Av and fixes x

and v. Note that z exists because of n � 2. But then this automorphism does
not fix Av setwise even though it fixes x and v. This contradiction shows (7.42).

By symmetric arguments, there is for every u 2 N+(x) a component Bu

of D�(x) with Bu = N(u) \N�(x) and for each two vertices u, v in the same
component of D+(x), the components Bu and Bv coincide. Thus, D+(x) +
D�(x) is a disjoint union of isomorphic tournaments and each component of
D+(x) + D�(x) consists of precisely one component of D+(x) and one compo-
nent of D�(x). That every component of D+(x) + D�(x) is homogeneous is a
direct consequence of C-homogeneity.

Note that with Lemma 7.36, we have completed the analysis of Section 7.1.8.
Furthermore, we have all lemmas we need to finish the situation if D+ is isomor-
phic to In[T ] for some n 2 N1 with n � 2 and some countable homogeneous
tournament T 6= I1. (Note that the case n = 1 was already completed in
Section 7.1.8.)

Proposition 7.37. If D is a countable connected C-homogeneous digraph with
D+ ⇠= In[T ] for some countable homogeneous tournament T 6= I1 and some
n 2 N1 with n � 2, then D ⇠= X�(T 0) for some countable infinite homogeneous
tournament T 0 and for some countable cardinal � � 2.

Proof. For x 2 V D, let Dx := D+(x)+D�(x). Due to Lemma 7.36, the digraph
Dx is a disjoint union of isomorphic infinite tournaments. First, we show that

for every x 2 V D, no two components of Dx lie in the same com-
ponent of D � x.

(7.43)
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Let us suppose that we find a path in D�x between vertices in distinct compo-
nents of Dx. Let P be such a path of minimal length and let u and v be its end
vertices. If ux 2 ED, let a and b two vertices in N+(u) such that a 2 N�(x)
and b 2 N+(x). If xu 2 ED, we choose a and b in N�(u) such that a 2 N�(x)
and b 2 N+(x). These vertices exist as D+(u) and D�(u) are disjoint unions
of homogeneous tournaments. If a or b has a neighbour c on P other than u,
this neighbour must be the neighbour of u on P by the minimality of P . But
then a, b, c, and x lie in the same component of Du, which is a tournament.
So c is already adjacent to x, which contradicts the minimality of P . Hence,
the paths vPua and vPub are isomorphic and, by C-homogeneity, we can find
an automorphism ↵ of D that maps the first onto the second path by fixing P

pointwise and mapping a to b. Since a lies in N�(x) and b lies in N+(x), we
have x 6= x↵. But as x↵ is adjacent to u and to b, it lies in the same component
of Du as x. So x and x↵ are adjacent and x↵ lies in the same component of Dx

as a and b. Since x↵ is a neighbour of v = v↵, also v lies in the same component
of Dx as x↵ and thus the vertices u and v are adjacent. This contradiction to
the choice of u and v shows (7.43).

For every x 2 V D, each component of Dx is an infinite tournament and hence
contains a ray. Rays from distinct components of Dx cannot be equivalent as
they lie in distainct components of D � x due to (7.43). Hence, D has at least
two ends. Thus, the assertion follows from Corollary 5.10 and Theorem 5.20,
the classification result of connected C-homogeneous digraphs with more than
one end.

7.1.10 Another partial result

By summarizing the propositions of the previous sections together with Cher-
lin’s classification of the homogeneous digraphs, Theorem 3.11, we obtain the
following theorem:

Theorem 7.38. Let D be a countable connected C-homogeneous digraph. Then
one of the following cases holds:

(i) D is homogeneous;

(ii) D ⇠= T^[In] for some n 2 N1 and some tournament T 2 {C3, Q, T1};

(iii) D ⇠= S(3)[In] for some n 2 N1;

(iv) D ⇠= X�(T ) for some countable infinite homogeneous tournament T and
for some countable cardinal � � 2; or

(v) D+ ⇠= In and D� ⇠= Im for some m,n 2 N1.
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7.2 The case: D+ ⇠= In and D� ⇠= Im

Throughout this section, let D be a countable connected C-homogeneous di-
graph with D+ ⇠= In for some n 2 N1. By the previous sections, we also have
D� ⇠= In0 for some n0 2 N1.

Due to Lemma 6.7 and Chapter 5, we may assume d+ > 1 and d� > 1 and
we may assume for the remainder of this section that D contains at most one
end.

Due to Lemmas 6.8 and 6.11, the reachability relation of every locally finite
C-homogeneous digraph with at most one end and whose out-neighbourhood is
independent is not universal. If we consider such digraphs of arbitrary degree,
this does no longer hold. For example, the countable generic 2-partite digraph is
a C-homogeneous digraph with independent out-neighbourhood and with pre-
cisely one end and its reachability relation is universal. In the following, we
distinguish the two cases whether the reachability relation A of D is universal
or not.

7.2.1 Non-universal reachability relation

Within this section, let D be a countable connected C-homogeneous digraph
with D+ ⇠= In for some n 2 N1, with D� ⇠= In0 for some n0 2 N1, with at
most one end. We assume that A is not universal and, due to Lemma 6.7,
that n, n0 � 2. Hence, we obtain by Proposition 2.1 that �(D) is bipartite.
That is the reason, why we turn our attention towards the classification of the
C-homogeneous bipartite graphs. Remember that we are interested in the C-
homogeneous bipartite graphs due to Lemma 5.14: It tells us that G(�(D))
belongs to one of the five classes described in Theorem 3.5. In the following,
we will treat these five possibilities one by one. Let us start with the case
G(�(D)) ⇠= C2m for some m � 2, where we notice that D must be locally finite
as every vertex lies in at most two reachability digraphs:

Lemma 7.39. If G(�(D)) ⇠= C2m for some m � 2, then D is locally finite.

Thus, if G(�(D)) is an even cycle, then we obtain this part of the classi-
fication due to Chapter 6. In the following, we assume G(�(D)) 6⇠= C2m for
any m 2 N. Since locally finite C-homogeneous digraphs have already been
classified, we may assume in the following that either d+ = ! or d� = !. By
reversing the directions of each edge if necessary, we may assume d+ = !.

For a reachability digraph � of D, two vertices or a set of vertices of � lie
on the same side of � if their out-degree, and hence also their in-degree, in �
is the same.
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Lemma 7.40. For each two reachability digraphs �1 and �2 of D we have
either �1 \�2 = ; or |V (�1 \�2)| � 2.

Proof. Let us suppose that the intersection of two distinct reachability digraphs
�1 and �2 consists of precisely one vertex. Since every vertex lies in precisely
two reachability digraphs and since D is vertex-transitive, each two distinct
reachability digraphs either have trivial intersection or share precisely one ver-
tex.

We distinguish the cases whether C3 embeds into D or not. First, we assume
that D contains no directed triangle. Let xy 2 ED and � = hA(xy)i. If
G(�) 6⇠= CPk, let P be any path of minimal length from any successor u of y

to x avoiding y. Such a path exists as the one-ended digraph D cannot contain
any cut-vertex. If G(�) ⇠= CPk, let P be any path of minimal length from
any successor u of y to x that avoids y and the unique neighbour ȳ of y in
the bipartite complement of �. As k = d+ = !, both of the two reachability
digraphs hA(yu)i and � contain rays that avoid y and ȳ and hence y and ȳ

separate neither these rays nor u from x. Thus, we also know in this situation
that P exists.

By the minimality of P , the only successor of y on P is u. If y has a
predecessor x0 on P , then xyu and x0yu are induced 2-arcs, so we find an
automorphism of D that maps one onto the other and we obtain a contradiction
to the minimality of P . Thus, y has no neighbour on P except for u and x.
At most |V P | vertices of � that lie on the same side as y can have successors
on P , since any two such vertices with a common successor on P would lie
in two common reachability digraphs. Since N+(x) contains infinitely many
vertices, all of which lie on the same side of � as y, we find one such vertex z

that has no successor on P . If G(�) is either complete bipartite or the bipartite
complement of a perfect matching, then every predecessor of z on P is also a
predecessor of y by the assumption that in the case G(�) ⇠= CPk the path P

does not contain ȳ. Hence, P contains predecessors of z only if G(�) is the
generic bipartite graph or a tree Tk,`. Note that any predecessor of z on P is a
predecessor in � of z. Thus, in these two cases we may have chosen z among
the infinitely many vertices of N+(x) that have no predecessor on P . Let v be
the neighbour of u on P . Then both vertices y and z have only one neighbour
on vPx, the vertex x. By C-homogeneity, we find an automorphism ↵ of D that
fixes vPx and interchanges y and z. Let w = u↵.

If vu 2 ED, then v and y lie on the same side of hA(yu)i and on this side lies
also y↵ = z as (vu)↵ = vw. But then y and z lie in two common reachability
digraphs which contradicts the assumption. Hence, we have uv 2 ED and
wv 2 ED. The two 2-arcs xyu and xzw induce a digraph that consists only of
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these two 2-arcs: as z and u are not adjacent, neither are y = z↵ and w = u↵.
Note that no successor of y can have w or z as a predecessor because otherwise
either w or z lies in the two reachability digraphs hA(yu)i and either hA(wv)i or
�, which is impossible by assumption. By the same assumption and similar as
above, only finitely many successors of u have successors on the 1-arc zw. Since
d+ = !, we find a vertex u0 2 N+(y) that is adjacent to neither w nor z. Note
that u0 and x are not adjacent since D contains no triangle. Hence, we find by
C-homogeneity an automorphism � of D that fixes D[x, y, z, w] pointwise and
maps u to u0. So u0 and w have a common successor v� and thus u and u0

lie on the same side of hA(uv)i and of hA(yu)i. This contradiction shows the
assertion in the situation that C3 does not embed into D.

Now we consider the case that D contains a directed triangle. For every
edge xy those successors of y that are predecessors of x lie in two common
reachability digraphs. As the intersection of two distinct reachability digraphs
contains at most one vertex, we obtain that

every edge lies on precisely one directed triangle. (7.44)

We distinguish whether G(�(D)) is a semi-regular tree or not. First, we consider
the case G(�(D)) ⇠= Tk,` for some k, ` 2 N1 with k, ` � 2. Let x 2 V D and let
P be a shortest path in G�x between any two successors y and z of x. Since P

must contain some edge that does not lie in hA(xy)i and since any two distinct
reachability digraphs intersect in at most one vertex, P contains some vertex
outside hA(xy)i. Thus and by the assumption on the intersection of any two
distinct reachability digraphs, P has at least three edges. Let z2, z1, z be the
last three vertices of P . Let a be a third successor of x. This vertex exists as
d+ = !. By minimality of P , it contains no neighbour of a as otherwise we find a
shorter path between a and either y or z, since neither a and y nor a and z have
a common predecessor, as they lie in only one common reachability digraph.
Hence, the connected subdigraphs zxyPz2 and axyPz2 are isomorphic and we
find an automorphism ↵ of D that fixes xyPz2 and interchanges a and z, as D

is C-homogeneous. So we obtain that D0 := D[z, z1, z2, z1↵, a] consists of four
edges and, with z01 := z1↵, we have zz1 2 ED if and only if az01 2 ED and the
same for z1z2 and z01z2. Since the intersection of any two reachability digraphs
contains at most one vertex, the path D0 is not an alternating walk. Thus, D0

consists of two induced 2-arcs. If these are z2z1z and z2z01a, then z1 and z01
lie in the intersection of the two reachability digraphs hA(xz)i and hA(z2z1)i.
Thus, these 2-arcs must be zz1z2 and az01z2. If x and z1 are adjacent, then the
edge between them must be z1x since N+(x) is independent. But then, we have
z01x 2 ED, too, and D[x, z1, z2, z01] is a cycle in hA(xz)i, which is impossible.
Similarly, x and z01 are not adjacent. Hence, the digraph D[x, z, z1, a, z01] consists
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of only the two induced 2-arcs xzz1 and xaz01 and we can proceed as in the case
that C3 does not embed into D to obtain a contradiction with the additional
requirement that u0 is not adjacent to x, which is possible as only one successor
of z is adjacent to x by (7.44) and d+ = !.

It remains to consider the case that G(�(D)) is not a semi-regular tree. Due
to the structure of G(�(D)), both sides of each reachability digraph have the
same cardinality. As d+ = !, we also have d� = !. Let x 2 V D and y and z

be two vertices in N+(x). Let u and v be the unique successors of y and z,
respectively, that lie on a common directed triangle with x, see (7.44). Since
each edge lies on a unique (directed) triangle, every common successor w 6= x

of u and v is adjacent to neither y nor z. As d� = ! and due to (7.44), we
find a 2 N�(v) that is adjacent to neither w nor x. An edge au implies that u

and v lie in two common reachability digraphs and an edge ua leads to a cycle
D[a, u,w, v] witnessing that A is universal. As both situations are impossible,
a and u are not adjacent. Furthermore, az cannot be an edge because then
D[a, v, y, x, z] is a cycle witnessing that A is universal. As this is not the case,
we have az /2 ED. Let us suppose that za is an edge of D. Then by C-
homogeneity, we find an automorphism ↵ of D that fixes w and maps zu to av

and v to u. Note that b := a↵ 6= z since za 2 ED but ba = (az)↵ /2 ED. As
bu 2 ED, the digraph D[a, b, u, z] is a cycle witnessing that A is universal. This
contradiction shows that z and a are not adjacent. So we find an automorphism
� of D that fixes z, u,w, v and maps y to a, as D is C-homogeneous. Thus,
x� 6= x is a common predecessor of a and z. So a lies in hA(xy)i on the same
side as z. Thus, a and y lie in two common reachability digraphs in contradiction
to the assumption.

Now we are able to complete the investigation if G(�(D)) is a semiregular
tree:

Lemma 7.41. If G(�(D)) ⇠= Tk,` for some k, ` 2 N1 with k, ` � 2, then D

either is locally finite or has more than one end.

Proof. Let us assume that D is not locally finite. By reversing the direction of
each edge, we may assume k = d+ = !. Let us suppose that D has at most one
end. First, we show that

the intersection of two distinct reachability digraphs lies on the same
side of each of them.

(7.45)

Let us suppose that this is not the case. As D is vertex-transitive, each
two reachability digraphs with non-trivial intersection are a counterexample
to (7.45). Let �1 and �2 be two distinct reachability digraphs with non-trivial
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intersection. By Lemma 7.40, their intersection contains at least two vertices.
Since V (�1 \ �2) does not lie on the same side of �1, we find two vertices
x, y 2 V (�1 \�2) of odd distance in �1 such that x has no successors in �1.
Let z be the predecessor of x on the unique x–y path P in �1. Since d+ = !,
we find a successor x0 of z that does not lie on P . Then the digraph x0zPy is
isomorphic to P and, by C-homogeneity, we find an automorphism of D that
fixes zPy and maps x to x0. So we conclude that x0 lies also in the same two
reachability digraphs as y. Hence, the two vertices x and x0 of distance 2 lie on
the same side of �1 and of �2. Inductively, all vertices of �1 that lie on the
same side of �1 as x, also lie in �2. In particular, this holds for some successor
y0 of y. Hence, �1 and �2 share all vertices of D. For an edge ab 2 E�2 the
a–b path in �1 is an alternating walk. Thus, Q together with the edge ab is
a cycle witnessing that A is universal. This contradiction to the assumptions
shows (7.45).

For the remainder of the proof, we fix two reachability digraphs �1 and �2

with non-trivial intersection such that the vertices in �1\�2 have no successor
in �1.

With the same argument as in the proof of (7.45), just taking a path P of
even length, we obtain that

every vertex on the same side of �1 as V (�1 \�2) lies in �2.
The analogous property for �2 holds as soon as ` � 3.

(7.46)

For the remainder of the proof, let x 2 V �1 \ V �2. Next, we show that

no vertex of N+(x) separates in �2 any other two vertices of N+(x). (7.47)

To show this, we suppose that y1 2 N+(x) separates in �2 the two vertices
y2, y3 2 N+(x). By C-homogeneity and as N+(x) is independent, we find an
automorphism of D that fixes x and y3 and switches y1 and y2. This auto-
morphism fixes �2 setwise and we obtain that y2 = y1↵ separates in �2 the
vertices y1 = y2↵ and y3 = y3↵ which is clearly impossible. This contradiction
shows (7.47).

Let us show that

D contains some directed triangle. (7.48)

Let us suppose that D contains no directed triangle. Let y 2 N+(x) and let
z1, z2 2 N+(y) such that z1 is the neighbour of y in that component of �2 � y

that contains all other successors of x. Then the two 2-arcs xyz1 and xyz2 are
induced and we obtain an automorphism ↵ of D that fixes x and y and maps z1

to z2, as D is C-homogeneous. Thus, ↵ does not fix the unique component of



114 CHAPTER 7. THE REMAINING CASE

�2 � y that contains all successors of x. This is impossible and hence we have
shown (7.48).

Let y 2 N+(x) and let z 2 N+(y) such that z lies in the unique component
of �2 � y that contains all successors of x but y, see (7.47). By the same
argument as in the proof of (7.47) we obtain that

either z is the only successor of y such that D[x, y, z] is a directed
triangle or z is the only successors of y such that D[x, y, z] is an
induced 2-arc.

(7.49)

If D[x, y, z] is a directed triangle, then every edge of D lies on a unique di-
rected triangle due to (7.49). So the number of directed triangles that contain a
given vertex is d+ and it is also d�. Hence, we obtain d� = d+ = !. If D[x, y, z]
is an induced 2-arc, then the edge xy lies on infinitely many directed triangles
as D+ = ! and by (7.49). Thus, x must have infinitely many predecessors and
we obtain d� = d+ = ! in this case, too. Hence, we have ` � 3 and the second
part of (7.46) holds. Thus, there are two reachability digraphs distinct from �2

that cover the vertices of �2. So the vertices of �2 � �1 lie in a reachability
digraph �0 6= �1. Since C3 embeds into D, we have

�1 ��2 = �0 \�1 = �0 ��2.

As D is connected, we conclude that �0,�1, and �2 are the only reachability
digraphs of D.

The next step is to show that D[x, y, z] is not an induced 2-arc:

D[x, y, z] ⇠= C3. (7.50)

If (7.50) does not hold, then xyz is an induced 2-arc and, by (7.49), unique with
the property that xy is its first edge. Let x0 2 V D such that yzx0 is the unique
induced 2-arc with yz as its first edge. Then we have x0 2 V (�0 \�1) and x

and x0 lie on the same side of �1. Note that xy already determines the vertex x0.
So the stabilizer of the edge xy must fix x0. Let u be the first vertex on the
unique x–x0 path in �1 that is neither x nor y. Let v be another neighbour of x,
if u is a neighbour of x, and let v be another neighbour of y otherwise. Then
we find an automorphism of D that fixes the edge xy and maps u to v which is
clearly impossible as this automorphism does not fix x0. This shows (7.50).

Let us now show that D[x, y, z] cannot be a directed cycle, either, which will
be our desired contradiction. To simplify notations, let x0 = z, x1 = x, x2 = y.
Let Fi, Gi be the component of �i � xixi+1 that contains xi, xi+1, respectively
(we consider the indices modulo 3). Let u 2 F1 \ V (�1 \�2). Then we find a
second vertex v in F1 \ V (�1 \�2) that has distance d�1(x2, u) to each of x2
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and u because of d+ 6= 2 6= d�, where d�1 denotes the distance in �1. Let
w 2 F1 be the unique vertex in F1 that has the same distance to each of x2, u, v.
By C-homogeneity, we find an automorphism that fixes the unique w–u path
in �1 and maps the unique w–x2 path in �1 onto the unique w–v path in �1

and vice versa. As in the proof of (7.47), we obtain that x2 does not separate u

and v in �2. So u and v must lie in the same component C of �2 � x2. Thus,
all vertices a of F1 \ V (�1 \ �2) with d�1(a, x2) = d�1(x2, u) lie in C. Let
us suppose C ✓ F2. Since there are infinitely many components of �2 � x2

in F2, we find one neighbour b1 of x2 in C and one neighbour b2 in another
component of F2 \ V (�2 � x2). Both digraphs x1x2b1 and x1x2b2 are induced
2-arcs as neither b1 nor b2 is x0 and due to (7.49). By C-homogeneity, we find
an automorphism ↵ of D that fixes x1x2 and maps b1 to b2. Thus, ↵ cannot
fix C setwise even though it fixes F1 \ V (�1 \�2) setwise. This contradiction
shows C ✓ G2. Thus, we have

F1 \ V (�1 \�2) ✓ G2 \ V (�1 \�2).

By a symmetric argument, we obtain

F1 \ V (�1 \�2) = G2 \ V (�1 \�2).

Analogously, we obtain

Fi \ V (�i \�i+1) = Gi+1 \ V (�i \�i+1)

for all i and hence also

Gi \ V (�i \�i+1) = Fi+1 \ V (�i \�i+1).

Let D[a, b, c] be a directed triangle with a 2 F1 \ V (�0 \ �1) that is disjoint
from D[x, y, z]. Then we have

b 2 F1 \ V (�1 \�2) = G2 \ V (�1 \�2)

and hence
c 2 G2 \ V (�2 \�0) = F0 \ V (�2 \�0)

and
a 2 F0 \ V (�0 \�1) = G1 \ V (�0 \�1).

So ab is an edge in �1 between vertices of distinct components of ��x1x2, which
is impossible. This contradiction shows that D has more than one end.

Due to the previous two chapters, we assume in the following G(�(D)) 6⇠=
Tk,` for any k, ` 2 N1, in addition to G(�(D)) 6⇠= C2m for any m 2 N.
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Lemma 7.42. For each two distinct reachability digraphs �1 and �2 of D, the
set V (�1 \�2) lies on the same side of �1.

Proof. We may assume that �1 and �2 have non-trivial intersection. Due to
Lemma 7.40, we have |V (�1 \�2)| � 2. Let us suppose that V (�1 \�2) does
not lie on the same side of �1. Since �1 \�2 contains no edge, G(�(D)) is no
complete bipartite graph.

If G(�(D)) is the countable generic bipartite graph, then any two of its
vertices have distance at most 3 in �(D). Since V (�1 \�2) does not lie on the
same side of �1, we find x, y 2 V (�1 \�2) with d�1(x, y) = 3. So any two ver-
tices of distance three in �1 lie in the intersection of two reachability digraphs
by C-homogeneity, as we can extend them to an induced alternating path of
length 3 within �1. This implies that all the vertices of �1 lie in �2, which is
impossible as we already saw in the proof of Lemma 7.41. Thus, G(�(D)) is
not the countable generic bipartite graph.

So for the remainder of the proof, we may assume that G(�(D)) ⇠= CPk for
some k 2 N1 with k � 4. Since it su�ces to consider the case d+ = !, we may
assume k = !. As �1 \�2 contains two vertices of distinct sides of �1 but
no edge, it consists of precisely two vertices that are adjacent in the bipartite
complement of �1. For the end vertices of any 2-arc x1x2x3, not necessarily
induced, there is no x02 2 V D such that x1x02x3 is also a 2-arc since otherwise
x2 and x02 lie in two common reachability digraphs and on the same side of each
of them, which is impossible. In particular, every edge y1y2 lies on at most one
directed triangle, since two directed triangle both of which contain y1y2 have
di↵erent 2-arcs from y2 to y1.

Let xy 2 E�1 with y 2 V �2. If C3 embeds into D, let a be the unique
vertex on a directed triangle with xy. Otherwise, let a be any successor of y.
In both cases, let a0 (let v) be the unique neighbour of a (of y, respectively) in
the bipartite complement of �2. So we have v 2 V (�1 \�2). Since k = ! and
each two distinct reachability digraphs have only two common vertices, we find a
common successor u of x and v that is adjacent to neither a nor a0. Similar to the
existence of u, we find a vertex b 2 N+(y) with b 6= a such that b and its unique
neighbour b0 in the bipartite complement of �2 are adjacent to neither x nor u.

Note that �1 contains rays avoiding y and v and that the reachability di-
graph containing a and a0 that is distinct from �2 contains rays avoiding a

and a0. As D has at most one end, we find a path from each successor of a

and each predecessor of a0 to x such that the path avoids a, a0, b, b0, y, and v.
Let P be any such path of minimal length and let c be its first vertex. Note
that if C3 embeds into D then P is the trivial path consisting only of x. By its
minimality, P contains no successor of b and no predecessor of b0. Indeed, if P
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has such a vertex, then this is not c, since neither a and b nor a0 and b0 lie in two
common reachability digraphs and since c /2 V �2. By C-homogeneity, we find
an automorphism of D that fixes xy and maps b to a and b0 to a0. This would
contradict the minimality of P . Note that, if P contains either a predecessor
of b or a successor of b0, then this is also a predecessor of a or a successor of a0,
respectively, and the analogue holds if P contains either a predecessor of a or
a successor of a0. Thus, if ac 2 ED, we find an automorphism of D that fixes
P and yxuv and maps a0 to b0. Then yac and ybc = (yac)↵ are 2-arcs with the
same end vertices, which cannot exist as we already mentioned. In the situation
ca0 2 ED, we obtain a similar contradiction by an automorphism that fixes P

and yxuv and maps a to b, where we find the two 2-arcs ca0v and cb0v.

Now we are able to finish the situation for the cases that G(�(D)) is either
complete bipartite, or the bipartite complement of a perfect matching, or the
countable generic bipartite graph.

Lemma 7.43. If D has at most one end and is not locally finite, then it is
isomorphic to one of the following digraphs:

(i) Cm[I!] for some m 2 N1 with m � 3;

(ii) Y!; or

(iii) Rm for some m 2 N1 with m � 3.

Proof. Let us assume that D has at most one end and is not locally finite. Since
V (�1 \�2) lies on the same side of �1 by Lemma 7.42, we may assume that
the vertices in �1\�2 have their predecessors in �1 and their successors in �2.
Let {A,B} be the natural bipartition of V �1 such that V (�1\�2) ✓ B. Since
any two vertices in B have a common predecessor in A, we conclude B ✓ V �2

by C-homogeneity. Indeed, we can map any two vertices in V (�1 \�2) with a
common predecessor onto any two vertices in B with a common predecessor, so
any two vertices in B lie in two common reachability digraphs of D and hence
B ✓ V �2. Thus, we have B = V (�1 \ �2). By an analogous argument, we
obtain that every vertex on the same side of �2 as B lies in B.

Let ⇠ be a relation on V D defined by

x ⇠ y :() x and y lie on the same side of two reachability
digraphs.

(7.51)

As we have just shown, ⇠ is an equivalence relation on V D, which is Aut(D)-
invariant. Since each equivalence class is an independent set and since the
reachability digraphs are bipartite, we conclude that D⇠ is a digraph. Since
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every vertex of D lies in precisely two reachability digraphs, every vertex of D⇠

has precisely one successor and one predecessor. Furthermore, D⇠ is connected.
Thus, we have D⇠

⇠= Cm for some m 2 N1 with m � 3. If G(�(D)) ⇠= Kk,` for
some k, ` 2 N, then we obtain k = ` because B is one side of �1 and one of �2.
It is a direct consequence that D ⇠= Cm[I!] as D is not locally finite. Similarly, if
G(�(D)) is the countable generic bipartite graph, then we directly obtain D ⇠=
Rm. It remains to consider the case G(�(D)) ⇠= CPk. If m � 4, then we find
two distinct types of induced 2-arcs xyz: one whose end vertices are not adjacent
to the same vertex y0 with y0 ⇠ y and one whose end vertices do not have this
property. Even though D is C-homogeneous, we cannot map the first onto the
second of these induced 2-arcs by automorphisms of D. Thus, we have m = 3.
Let D be the tripartite complement of D. Since the bipartite complement of
each reachability digraph is a perfect matching, D is a disjoint union of directed
cycles. Let us suppose that the length of one of these cycles is more than 3.
Then it has length at least 6 and there are two ⇠-equivalent vertices in D that
have distance 3 on that cycle. Since these two ⇠-equivalent vertices have a
common predecessor, the same is true for any two ⇠-equivalent vertices by C-
homogeneity. So each two ⇠-equivalent vertices lie on a common directed cycle
in D and have distance 3 on that cycle. Hence, D consists of precisely one cycle
of length at most 9 and D is locally finite in contradiction to the assumption.
Thus, D is the disjoint union of directed triangles, which shows D ⇠= Y!.

Let us summarize the results of this section. The following proposition
follows directly from Proposition 2.1 together with Lemmas 5.14, 7.39, 7.41,
and 7.43.

Proposition 7.44. Let D be a countable connected C-homogeneous digraph
with D+ ⇠= In for some n 2 N1 whose reachability relation is not universal. If
D has at most one end and is not locally finite, then it is isomorphic to one of
the following digraphs:

(i) Cm[I!] for some m 2 N1 with m � 3;

(ii) Y!; or

(iii) Rm for some m 2 N1 with m � 3.

7.2.2 Universal reachability relation

Within this section, let D be a countable connected C-homogeneous digraph
with D+ ⇠= In for some n 2 N1, with D� ⇠= In0 for some n0 2 N1 and with at
most one end. We assume n, n0 � 2 and that A is universal. Due to Lemma 2.2,
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some cycle in D witnesses that A is universal. By Lemma 2.3, we may assume
that this is an induced cycle.

Lemma 7.45. If D contains an induced cycle of odd length witnessing that A
is universal, then it contains an induced cycle of length 4 witnessing that A is
universal.

Proof. Let C be an induced odd cycle witnessing that A is universal. Then C

contains a unique induced 2-arc xyz. The digraphs C�x and C�y are isomor-
phic induced alternating paths. By C-homogeneity, we find an automorphism ↵

of D that maps C�x onto C�y. Since N�(z) is independent and x↵ 2 N�(z),
the digraph D[x, y, z, x↵] is an induced cycle of length 4 witnessing that A is
universal.

In the following, we fix an induced cycle C of minimal length witnessing that
A is universal. Due to Lemma 7.45, this cycle has even length.

Lemma 7.46. There is an isomorphic copy of C4 in D.

Proof. Let xyz be a 2-arc on C. Since C has even length, C � y has a non-
trivial automorphism: one that maps x to z and vice versa. As C is induced,
we can extend this automorphism of C � y to an automorphism ↵ of D by C-
homogeneity and obtain that D[x, y, z, y↵] is a directed cycle of length 4. Note
that any directed cycle of length 4 is induced since D+ and D� are edgeless.

Let xy 2 ED, let X := N�(x) \ N+(y), and let Y := N+(y) \ N�(x).
Obviously, X and Y are disjoint. In the following, we investigate the subdigraph
� := D[X [ Y ] of D.

Lemma 7.47. The subdigraph � is a non-empty homogeneous 2-partite digraph.

Proof. Let A and A0 be finite subdigraphs of D[X] and let B and B0 be fi-
nite subdigraphs of D[Y ]. Because V (B + B0) \ N�(x) = ; and because
D+(x) is edgeless, x is adjacent to no vertex of B + B0. Similarly, because
V (A + A0) \N+(y) = ; and because D�(y) is edgeless, y is adjacent to no ver-
tex of A + A0. Hence, any isomorphism ' from A + B to A0 + B0 extends to an
isomorphism from A + B + x + y to A0 + B0 + x + y, that fixes x and y, and
thus by C-homogeneity it extends to an automorphism ↵ of D with X↵ = X

and Y ↵ = Y . In particular, the restriction of ↵ to � is an automorphism of �
that extends ' and fixes both of X and Y setwise. Thus, � is homogeneous
2-partite. As C4 embeds into D, the subdigraph � is not empty.

Having shown that � is homogeneous 2-partite, we can apply the classifica-
tion of the countable such digraphs, Theorem 3.6. So we can investigate the



120 CHAPTER 7. THE REMAINING CASE

possible digraphs � one by one, similar to the di↵erent possibilities for D+. We
start with the situation that � is homogeneous bipartite and show that this
cannot occur:

Lemma 7.48. The subdigraph � is not homogeneous bipartite.

Proof. Let us suppose that � is homogeneous bipartite. Since D contains some
directed cycle of length 4 by Lemma 7.46, we conclude that the edges of � are
directed from Y to X. We consider all possibilities of Theorem 3.1 one by one.
Note that due to Lemma 7.47 the digraph � is not empty. So there are only
four remaining possibilities for �.

If G(�) is complete bipartite, then xy cannot be the inner edge of any induced
3-arc. As Aut(D) acts transitively on the 1-arcs, we conclude that D contains
no induced 3-arc at all. Since every induced cycle of even length at least 6 that
witnesses that A is universalcontains an induced 3-arc, C has length 4. But
as xy is the inner edge of some 3-arc in a cycle isomorphic to C, the digraph
� must contain some edges that are directed from X to Y . This contradiction
shows that G(�) is not complete bipartite.

If G(�) is a perfect matching, then we know that every induced 2-arc lies
on a unique induced directed cycle of length 4. Due to the previous case, we
may assume |X| � 2. So every edge lies on at least two directed cycles of
length 4. Let xyuv and xyab be two distinct directed cycles of length 4 and
let yuwz be another directed cycle of length 4 containing yu. Then neither v

nor u is adjacent to any of a, b, w, z since G(�) is a perfect matching and the
same holds for the subdigraph defined by the edge yu instead of xy. Note that
|C| > 4, since |C| = 4 implies the existence of some edge from X to Y . Thus, the
digraph D[y, z, b, x] cannot be a cycle of length 4 witnessing that A is universal.
Hence, we have zb /2 ED. If bz 2 ED, then a is not adjacent to z since neither
zy lie in D�(a) nor bz lies in D+(a). Thus, yab lies on two distinct induced
directed cycles of length 4, once together with z and once together with x.
This is impossible as we already mentioned. Thus, b and z are not adjacent.
Hence, C-homogeneity implies the existence of an automorphism ↵ of D that
fixes x, y, z and interchanges b and v. Since every induced 2-arc lies on a unique
induced directed cycle of length 4, we conclude a↵ = u and u↵ = a. As u = a↵

and z = z↵ are not adjacent, a and z are not adjacent, too. Since w and v are
not adjacent, the same is true for b and w↵. If either bw 2 ED or wb 2 ED,
then either D[x, b, w, u, v] or D[z, w, b, a, w↵] is a cycle of length 5 witnessing
that A is universal. By Lemma 7.45, we conclude |C| = 4, a contradiction.
Thus, we know that b and w are not adjacent. So due to C-homogeneity, D

has an automorphism � that fixes x, y, z, w and maps v to b. Since � fixes
y, z, w, it must also fix u, the unique vertex that forms with the 2-arc wzy an
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induced directed cycle of length 4. But we have (uv)� = ub /2 ED as previously
mentioned, even though uv is an edge of D. This contradiction shows that G(�)
is not a perfect matching.

If G(�) is the complement of a perfect matching, then we may assume |X| �
3 as otherwise G(�) is also a perfect matching, which we treated before. Let
z, u, v 2 X and let z0 be the unique vertex in Y that is not adjacent to z.
Considering the edge ux instead of xy, we obtain a unique vertex z00 2 N+(x) \
N�(u) that is not adjacent to z0. Let us show that z00 is adjacent to neither
z nor v. By the structure of � applied to the edge ux instead of xy, we find
a vertex u� 2 N�(u) \ N+(x) that is a common successor of y and z00. Since
u� 2 Y abd u� 6= z0, we have u�z 2 ED. Hence, xz00u�z is a directed cycle of
length 4 and we conclude that z is not adjacent to z00 since N+(z) and N�(z) are
independent sets. If u�v 2 ED, then the same argument applies for v and z00

and hence they are not adjacent. As � is bipartite, we do not have vu� 2 ED.
So let us assume that u� and v are not adjacent. Let us suppose that v and z00

are adjacent. Since D+(v) is edgeless, we do not have vz00 2 ED, so we have
z00v 2 ED. Then D[z00, v, z0, u, u�] is a cycle of length 5 witnessing that A is
universal. As above, we conclude |C| = 4 by Lemma 7.45 and the minimality
of C, which is impossible as � is bipartite. Thus, v and z00 are also not adjacent
if u� and v are not adjacent. We have shown that z00 is adjacent to neither v

nor z. Hence, C-homogeneity implies the existence of an automorphism ↵ of D

that fixes u, x, y, z00 and maps z to v. Since ↵ fixes u, x, z00, it must also fix the
uniquely determined vertex in N�(u) \N+(x) that is not adjacent to z00, which
is z0. But then ↵ must also fix z, the unique vertex in X = N�(x)\N+(y) that
is not adjacent to z0, in contradiction to the definition of ↵. This shows that
G(�) is not the complement of a perfect matching.

It remains to consider the case that G(�) is the generic bipartite graph. As
mentioned earlier, we have |C| 6= 4 as otherwise � must contain edges from
X to Y . Let abcd be the induced 3-arc in C. Then C � b is an induced
alternating path and hence embeds into �. Let P be an isomorphic copy of
C � b in �. As D is C-homogeneous, we find an automorphism ↵ of D with
(C� b)↵ = P . Since both end vertices of P have successors on P , they lie in Y .
As G(�) is generic bipartite, the end vertices of P have a common successor z

in X. Then D[a↵, b↵, c↵, z] is a cycle of length 4 witnessing that A is universal.
This contradiction to the minimality of C shows that � is not homogeneous
bipartite.

Since � is not homogeneous bipartite, we find an edge uv 2 E� with u 2 X

and v 2 Y . So D[x, y, u, v] is a cycle witnessing that A is universal and the
minimality of C implies |C| = 4. In the remainder of this section, we will
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concentrate on arguments that involve the diameter of D. First, we show that
D is homogeneous if its diameter is 2:

Lemma 7.49. If diam(D) = 2, then D is homogeneous.

Proof. First, let us show that

for every finite independent vertex set A, there are u, v 2 V D with
A ✓ N+(u) and A ✓ N�(v).

(7.52)

We show (7.52) by induction: If |A| = 2, then we find a vertex w with A ✓ N(w)
because of diam(D) = 2. Regardless which edges between w and the elements
of A lie in D, we can use C-homogeneity and the cycle C, into which every
induced path of length 2 embeds, to conclude that some induced 2-arc has the
two elements of A as end vertices. By the same reasons, we find some vertex u

with A ✓ N+(u) and some vertex v with A ✓ N�(v).
Now, let us assume |A| > 2. First, we show the existence of some vertex

with A in its out-neighbourhood. By induction, we find some u 2 V D and
a 2 A with A \ {a} ✓ N+(u). Let a0 2 N+(u) \ A. By induction, we find
z 2 V D with a, a0 2 N+(z) and such that all but at most two elements of A lie
in N+(z). For all b 2 A \ N(z), the first case |A| = 2 gives us some zb 2 V D

with b, z 2 N�(zb). Since N+(z) is independent, zb is adjacent neither to a nor
to a0. Then the digraphs

D1 := D[A \ {a} [ {zb | b 2 A \N(z)} [ {z, a0}]

and
D2 := D[A [ {zb | b 2 A \N(z)} [ {z}]

are isomorphic by an isomorphism ' that maps a0 to a and fixes all other vertices.
By construction, D1 and D2 are connected, so ' extends to an automorphism
↵ of D. Since (A \ {a}) [ {a0} ✓ N+(u), we conclude A ✓ N+(u↵). By an
analogous argument, we find some v 2 V D with A ✓ N�(v). Thus, we have
shown (7.52).

Next, we show the following:

Let A,B,A0, B0 be finite independent vertex sets of D such that some
isomorphism ' : D[A0[B0] ! D[A[B] with A0' = A and B0' = B

exists. If A is maximal independent in A[B and if D has a vertex v

with A0 ✓ D+(v) and B0 ✓ D�(v), then there exists some u 2 V D

with A ✓ D+(u) and B ✓ D�(u).

(7.53)

If D[A [B] is connected, then the assertion follows directly by C-homogeneity.
Since the case B = ; is done by (7.52), we may assume B 6= ;. By induction



7.2. D+ ⇠= IN AND D� ⇠= IM 123

on |B| we find some vertex v0 2 V D with A ✓ N+(v0) and B \ {b} ✓ N�(v0)
for some b 2 B. Applying C-homogeneity, we may assume A0 = A and
B0 \ {b0} = B \ {b}. Since A is maximal independent in D[A [ B], we know
that b has a neighbour c in A[B. This neighbour is also a neighbour of b0 with
b 2 N+(c) if and only if b0 2 N+(c). So b and b0 are not adjacent as both lie
either in N+(c) or in N�(c). Let Z be a vertex set containing precisely one ver-
tex from each component of D[A[B] that does not contain b. Then Z [ {b, b0}
is an independent set and we find a vertex z with Z [{b, b0} ✓ N+(z) by (7.52).
Then the digraphs D[A[B[{z}] and D[A [ (B \ {b}) [ {b0, z}] are isomorphic
by an isomorphism  that maps b to b0 and fixes all other vertices. Since both
digraphs are connected,  extends to an automorphism ↵ of D. Then we have
A ✓ N+(v↵) and B ✓ N�(v↵), which shows (7.53).

To show that D is homogeneous, let F and H be finite isomorphic induced
subdigraphs of D and let ' : F ! H be an isomorphism. Let A ✓ V F be a
maximal independent subset and let B ✓ V F \ A be maximal independent,
too. By (7.53), we find a vertex u with A ✓ N+(u) and B ✓ N�(u). We
have N(u) \ V F = A [ B by maximalities of A and B. Analogously, we find
v with A' ✓ N+(v) and B' ✓ N�(v). Then F + u and H + v are connected
and isomorphic via an isomorphism '0 that extends '. By C-homogeneity, '0

extends to an automorphism of D. This shows that D is homogeneous.

The previous lemma enables us to prove that D is homogeneous if � is not
the generic orientation of the countable generic bipartite graph:

Lemma 7.50. If � is either the generic 2-partite digraph or CP 0k for some
k 2 N1, then D is homogeneous.

Proof. Up to isomorphism and/or reversing the direction of every edge, the only
paths abcd of length 3 in a digraph are of the form:

(a) ab, bc, cd 2 ED;

(b) ab, bc, dc 2 ED;

(c) ba, bc, dc 2 ED.

If we can show that in each of these three cases the end vertices a and d have
distance at most 2, then we have diam(D) = 2 and the assertion follows from
Lemma 7.49. If in any of these three cases a is adjacent to c or b is adjacent
to d, we can conclude d(a, d)  2 directly. So we may assume that this is not
the case. In case (a), we may assume bc = xy as Aut(D) acts transitively on the
1-arcs of D. Since a and c are not adjacent, we have a 2 X and, since b and d

are not adjacent, we have d 2 Y . As G(�) is a complete bipartite graph in both
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possibilities for �, we obtain d(a, d) = 1. In cases (b) and (c), we may assume
c = x, b 2 X, and a 2 Y by C-homogeneity. Then either d 2 N�(x) \N+(y) =
X and d(a, d) = 1 or d 2 N�(x)\N+(y) and d(a, d) = 2 because of a, d 2 N(y).
This proves diam(D) = 2 and hence that D is homogeneous.

In the following, we assume due to Lemmas 7.48 and 7.50 and by Theorem 3.1
that � is the generic orientation of the countable generic bipartite graph.

Lemma 7.51. We have diam(D)  3.

Proof. Seeking for a contradiction, let us suppose diam(D) � 4. Let P =
x0 . . . x4 be a shortest (not necessarily directed) path between two vertices x0

and x4 with d(x0, x4) = 4. Then P embeds into �, as every finite 2-partite
digraph embeds into �. Hence, we find an automorphism ↵ of D that maps P

into �. Then either x0↵ and x4↵ lie in X or they lie in Y . In both cases,
they have a common neighbour, either x or y. Thus, x0 and x4 have a common
neighbour. This contradiction to d(x0, x4) = 4 shows diam(D)  3.

Since we already investigated the case diam(D) = 2, the only remaining
situation is diam(D) = 3. We shall prove that in this situation D and � are
isomorphic.

Lemma 7.52. If diam(D) 6= 2, then D is the generic orientation of the count-
able generic bipartite graph.

Proof. By Lemma 7.49 and Lemma 7.51, we may assume diam(D) = 3. Let
Di(x) be the set of those vertices of D whose distance to x is i. The first
observation in this proof is that

there are non-adjacent vertices a 2 D1(x) and b 2 D2(x). (7.54)

Indeed, if all vertices a 2 D1(x) and b 2 D2(x) are adjacent, then every vertex
in V D = {x}[D1(x)[D2(x)[D3(x) has distance at most 2 to a and we obtain
diam(D) = 2, a contradiction to our assumption.

Let us show that

the end vertices of any induced path of length 3 have distance 3. (7.55)

Let P1 be a path of length 3 whose end vertices have distance 3 and let P2 be
another induced path of length 3. By using C-homogeneity and the cycle C,
we can modify P1 and obtain a path P3 with the same end vertices like P1 and
such that P2 and P3 are isomorphic. Hence, (7.55) holds.

Next, we show that

D contains no triangle. (7.56)
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Let us suppose that D contains some triangle. Since N+(x) and N�(x) are
independent sets, this triangle is a directed triangle. Let a 2 Y , b 2 X, x, and
d 2 N�(x)\N+(y). Then D[a, b, x, d] is an induced path of length 3 as N+(y)
and N�(x) are independent vertex sets. Due to (7.55), we have d(a, d) = 3, but
y is a common neighbour of a and d. This contradiction shows (7.56).

A direct consequence of (7.56) is that D1(x) is an independent set. Let us
show that

D2(x) is an independent set. (7.57)

If this is not the case, then two vertices a, b 2 D2(x) are adjacent. Let c be
a common neighbour of b and x. By (7.56), we know that a and c are not
adjacent. Hence D[a, b, c, x] is an induced path of length 3. So its end vertices
have distance 3 by (7.55) in contradiction to the choice of a.

We have almost proved that D is 2-partite. The only edges that might be
an obstacle for this are those with both its incident vertices in D3(x). So let us
exclude such edges:

D3(x) is an independent set. (7.58)

Let us suppose that some edge ab has both its incident vertices in D3(x). Let
P be a path of length 3 from x to a. Due to (7.56), Pab is induced and its
end vertices have distance 3. As � is the generic orientation of the countable
generic bipartite graph, we also find an isomorphic copy P 0 of P in �. By
C-homogeneity, we find an automorphism ↵ of D that maps P to P 0. Since
the end vertices of P 0 lie either both in X or both in Y , they have a common
neighbour, either x or y, respectively, and thus they have distance 2. Therefore,
the distance between the end vertices of P = P 0↵�1 must be 2, too. This
contradiction to the choice of b shows (7.58).

As mentioned earlier, we obtain from (7.56), (7.57), and (7.58) that D is a
2-partite digraph with partition sets U := {x}[D2(x) and W := D1(x)[D3(x).
Let A,B, and C be finite subsets of U . Then we find a finite set F ✓ V D such
that

H := D[A [B [ C [ F ]

is connected. As H ✓ D is 2-partite and � is the gerneric orientation of the
countable generic bipartite graph, we find an isomorphic copy of H in �. By
C-homogeneity, there is an automorphism ↵ of D with H↵ ✓ � such that either
(A[B [C)↵ ✓ X or (A[B [C)↵ ✓ Y . As � is the generic orientation of the
countable generic bipartite graph, there is a vertex v either in Y or in X with
A↵ ✓ N+(v) and B↵ ✓ N�(v) and C↵ \N(v) = ;. Then v↵�1 is a vertex we
are searching for. An analogous argument shows the existence of such a vertex
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if A,B, and C are finite subsets of W . Hence, we have shown that D is the
generic orientation of the countable generic bipartite graph.

Let us summarize the results of this section:

Proposition 7.53. Let D be a countable connected C-homogeneous digraph
whose reachability relation is universal. If D+ ⇠= In for some n 2 N1, then
D is either homogeneous or the generic orientation of the countable generic
bipartite graph.

7.2.3 The last partial result

By summarizing the propositions with Section 7.2, we obtain the following the-
orem:

Theorem 7.54. Let D be a countable connected C-homogeneous digraph such
that D+ ⇠= In for some n 2 N1. If D has at most one end and is not locally
finite, then it is isomorphic to one of the following digraphs:

(i) a homogeneous digraph;

(ii) Cm[I!] for some m 2 N1 with m � 3;

(iii) Y!;

(iv) Rm for some m 2 N1 with m � 3; or

(v) the generic orientation of the countable generic bipartite graph.

This finishes the proof of Theorem 1.1.
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