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Abstract. We look at group actions on graphs and other metric spaces, e. g.,

at group actions on geodesic hyperbolic spaces. We classify the types of auto-
morphisms on these spaces and prove several results about the density of the

hyperbolic limit set of the group in the whole limit set of the group.

1. Introduction

In many situations, groups acting on some topological space offer the alternative
between the existence of a free subgroup Z ∗Z and the existence of a fixed point in
the space under the action of the group. For example, if the space is a connected
locally finite graph, then such results can be found in [10, 14, 22, 28, 29]. For the
case of proper geodesic hyperbolic spaces we refer to [1, 4, 8, 9, 29] for these results.

The investigation for locally finite graphs was started by Halin [10]. He distin-
guished automorphisms into two type: Type I are those that fix some finite set of
vertices and Type II are all other automorphisms. He proved that the latter are
the translations of the graph. The proofs in [10] do not need the assumption of
local finiteness and in further investigations of group actions on graphs Jung [14]
noticed that. However, just omitting it does not reflect what is really happening
there as we shall see in the following example.

Consider the complete graph on the vertex set Z. We look at two different auto-
morphisms. The first just maps each vertex i to i + 1. The second automorphism
does the same except for i = −1, 0: it fixes 0 and maps −1 to 1. In the sense
of Halin’s types, the first is of Type II, while the second is of Type I. But the
automorphisms do not differ much. Indeed, both automorphisms leave a bounded
vertex set invariant, not just a finite one. With this in mind, we are able to prove
the following results, where X is any graph, G a group of automorphisms of X,
and X̂ the completion of X with all ends all of whose rays eventually leave every
bounded ball (see Theorem 3.1). (We refer to Section 2 for definitions.)

• Every automorphism of X is either elliptic, hyperbolic, or parabolic (Theo-
rem 2.3);
• a group G of automorphisms fixes either a bounded subset of G or a unique limit

point of G in its boundary ∂X, or X has precisely two limit points of G, or
G contains two hyperbolic elements that freely generate a free subgroup (Theo-
rem 2.8);
• the hyperbolic limit set of G is dense in the limit set of G (Theorem 2.7);
• the hyperbolic limit set of G is bilaterally dense in the limit set of G if and

only if either X has precisely two limit points of G or G contains two hyperbolic
elements without a common fixed point (Theorem 2.9);
• if the limit set of G is infinite, then it is a perfect set (Theorem 2.10).
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Unfortunately, the results do not hold if we take all vertex ends: we shall discuss
a graph that violates the third and fourth result if ∂X are all vertex ends (see
Example 2). Another possibility (Theorem 3.3) is to take metric ends instead of
vertex ends. We are able to prove this almost simultaneously, as we are building up
a general topological setting (contractive G-completions), in which we prove our re-
sults. This topological setting will extend Woess’s contractive G-compactifications
[29] to spaces that need not be proper. And both mentioned completions of infinite
graphs will be examples of these contractive G-completions.

A further class of metric spaces that are contractive G-completions are geodesic
hyperbolic spaces, see Section 4. So the above mentioned results also hold for them
with X̂ being the geodesic hyperbolic space with its hyperbolic boundary. We note
that the first two facts are already known by the experts, i. e. the corresponding
proofs for proper hyperbolic spaces in [4] carry over to geodesic hyperbolic spaces
that need not be proper. Note that all mentioned results are known to be true for
proper geodesic hyperbolic spaces, cp. [24, 29].

We note that, for certain classes of groups, Karlsson and Noskov [16] consid-
ered group actions on generalisations of contractive G-compactifications. We also
note that our notion of contractive G-completions has similarities with convergence
groups as defined by Gehring and Martin [6] and that were also investigated by
Tukia [26] but differ from them just as Woess’s contractive G-compactifications do.

2. Contractive G-completions

Let X be a metric space, let X̂ ⊇ X be a regular Hausdorff space, and let G be a
group of automorphisms (i.e. self-isometries) on X. If X is proper and X̂ compact,

Woess [29] called X̂ a G-compactification if the following axioms (C1) and (C2)
hold.

(C1) The identity X → X̂ is a homeomorphism and X is open and dense in X̂.

(C2) Every element of G extends to a homeomorphism of X̂.

Unfortunately, if we do not have the additional assumptions that X is proper
and X̂ compact and also no further axioms, then we run into some problems as we
shall illustrate in the following.

One fact in the case of G-compactifications is that for any sequence (gi)i∈N in G
and any x ∈ X such that the set {xgi | i ∈ N} is unbounded it has an accumulation
point in ∂X. This is false in general as the following example shows.

Let G be a free group with free generating set S := {si | i ∈ N} and let X be the
Cayley graph of G with respect to S. So X is an ℵ0-regular tree. We consider the
natural action of G on X . Let X̂ be the completion of X with its ends. (We refer
to Section 3 for the definition of an end.) Let o be the vertex corresponding to 1G .
Then the sequence (osii)i∈N is unbounded but has no accumulation point in ∂X ,
since o separates any two of its vertices. We do not want to forbid such situations
but we have to deal with them. So we have to require that, if this happens, we still
have some structure in G and X̂. In our example, we may take the automorphism s1
which gives us all we need in these situations: a sequence (si1)i∈N of automorphisms
such that each of the two sequences (osi1)i∈N and (os−i1 )i∈N converges. This is why
we introduce the following new axiom.

(C3) Let (gi)i∈N be a sequence in G and x ∈ X with d(x, xgi) → ∞ for i→∞.
Then either the set {xgi | i ∈ N} has an accumulation point in ∂X or
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〈gi | i ∈ N〉 contains an automorphism γ such that each of the two sequences
(xγi)i∈N and (xγ−i)i∈N converges to some point in ∂X.

Note that (C3) immediately implies that, if {xgi | i ∈ N} converges for some
x ∈ X and some g ∈ G, then {xg−i | i ∈ N} has an accumulation point in ∂X.

If we want to show that the hyperbolic limit set of G is dense in the limit set
of G, this new axiom is still not enough:1 if we have a sequence (gi)i∈N such that for
some x ∈ X the sequence (xgi)i∈N converges, we would like the set {xg−1i | i ∈ N}
to have an accumulation point – just as it is true in the case gi = gi for all i ∈ N
and some g ∈ G as seen above. Once more, this need not be true as we shall
demonstrate on our earlier example X . Consider the sequence (si1s

−1
i )i∈N in G.

Then the vertex set {osi1s−1i | i ∈ N} ⊆ V (X ) converges the end containing the ray

o, os1, os
2
1, . . ., the direction of s1. But the set {osis−11 | i ∈ N} has no accumulation

point, since o separates any two of its vertices. Of course, we can use (C3) to obtain
some g ∈ 〈si1s−1i | i ∈ N〉 such that (ogi)i∈N and (og−i)i∈N converges. But this is
not much help, if we want to find a hyperbolic limit point close to some previously
chosen limit point η, as both new limit points can lie abritrarily far away from η.
So in our example, (C3) might give us s21s

−1
2 ∈ G, but neither of its directions is

(close to) the direction of s1. Therefore, we introduce the following axiom.

(C4) Let (gi)i∈N be a sequence in G and x ∈ X such that the set {xgi | i ∈ N}
converges to some boundary point η but the set {xg−1i | i ∈ N} has no
accumulation point in ∂X. Then there is a sequence (hj)j∈N in 〈gi | i ∈ N〉
such that each of the sets {xhij | i ∈ N} and {xh−ij | i ∈ N} converges to
distinct boundary points ηj , µj ∈ ∂X, respectively. In addition, the sequence
(ηj)j∈N converges to η.

We call X̂ a G-completion if the axioms (C1)–(C4) hold. A completion X̂ of X
is projective if for all sequences (xi)i∈N, (yi)i∈N in X such that (xi)i∈N converges
to η ∈ ∂X and such that d(xi, yi) ≤M for some M <∞ also the sequence (yi)i∈N
converges to η. A G-completion X̂ of X is contractive if it is projective and if for
all sequences (gi)i∈N in G with

xgn → η ∈ ∂X and xg−1n → µ ∈ ∂X

for some x ∈ X the sequence (ygn)n∈N converges uniformly to η outside every

neighbourhood of µ in X̂, that is, that for any open neighbourhoods U of η and V
of µ, there is an n0 ∈ N such that ygn ∈ U for all y ∈ X̂ r V and all n ≥ n0.

Lemma 2.1. Let X̂ be a projective G-completion. No bounded sequence in X
converges to any η ∈ ∂X.

Proof. Let us suppose that we find an η ∈ ∂X and a bounded sequence (xi)i∈N
that converges to η. Then any constant sequence (x)i∈N in X converges to η due

to projectivity. But this contradicts the fact that X̂ is Hausdorff. �

In a slight abuse of notation, we write for U, V ⊆ X̂:

d(U, V ) := inf{d(u, v) | u ∈ U ∩X, v ∈ V ∩X}

1Readers not familiar with the definitions of (hyperbolic) limit points and directions of group
elements may skip the following motivation till the next axiom (C4) without losing much; they

might return here later, after they read the necessary definitions just before Lemma 2.6.
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Lemma 2.2. Let X̂ be a projective G-completion and let η and µ be distinct el-
ements of ∂X. For every open neighbourhood U of η with µ /∈ U , there exists an
open neighbourhood V of µ with d(U, V ) > 0 and U ∩ V = ∅.

Furthermore, for any x ∈ X r U we may choose V so that x /∈ V .

Proof. As X̂ is regular, we find an open neighbourhood V ′ ⊆ X r (U ∪ {x}) of µ
and an open neighbourhood U ′ of U ∪ {x} that are disjoint. Projectivity gives us
that any sequence within a fixed distance M > 0 to U ∩X converges to a boundary
point in U and hence not to µ. So V = V ′ r BM (U) is open, still has µ as an
accumulation point, and satisfies the other assertions. �

We call an automorphism g ∈ G on X

• elliptic if it fixes a bounded non-empty subset of X;
• hyperbolic if it is not elliptic and if it fixes precisely two boundary points η, µ ∈
∂X;

• parabolic if it is not elliptic and if it fixes precisely one boundary point η ∈ ∂X.

Theorem 2.3. Let X̂ be a contractive G-completion of a metric space X. Then
each g ∈ G is either elliptic, hyperbolic, or parabolic.

Furthermore, if g is hyperbolic and fixes the two boundary points η and µ, then
xgn → η and xg−n → µ for all x ∈ X or vice versa, and if g is parabolic, then
for every x ∈ X the set {xgn | n ∈ Z} has precisely one accumulation point, the
boundary point fixed by g.

Remark 2.4. Note that in general for a parabolic element g the analogous con-
vergence property as for hyperbolic elements need not be true, that is, at the end
of Section 3 we shall give an example of a contractive G-completion X that has a
boundary point η such that xgn 6→ η for all x ∈ X. Due to projectivity, this implies
ygn 6→ η for every y ∈ X.

Proof of Theorem 2.3. Let g ∈ G and x ∈ X. Let us assume that g is not elliptic.
Then the set {d(xgn, xgm) | m,n ∈ Z} is unbounded and hence, the same is true
for {d(x, xgn) | n ∈ N}. So we conclude by (C3) that A := {xgn | n ∈ N} has an
accumulation point η ∈ ∂X and B := {xg−n | n ∈ N} has an accumulation point
µ ∈ ∂X.

Let (gni)i∈N be a subsequence of (gi)i∈N such that xgni → η for i → ∞.Since

the elements of G are homeomorphisms on X̂, we know by projectivity of X̂ that

ηg = (limxgni)g = lim(xg)gni = η.

So we have ηg = η and, analogously, we also have µg = µ.
Let ∂A, ∂B be the sets of accumulation points of A, B in ∂X, respectively. Then

the sets ∂A and ∂B are non-empty closed subsets of ∂X. First, we show

(1) |∂A| = 1 = |∂B|.
Let us suppose that there is a second accumulation point η′ of A. We have η′g = η′,
too. The sequence (xg−ni)i∈N is unbounded because of d(x, xgn) = d(xg−n, x). If
(xg−ni)i∈N has no accumulation point in ∂X, then there is a z ∈ Z such that

(xgkz)k∈N and (xg−kz)k∈N converge in X̂ by (C3). But then we have |∂A| =

1 = |∂B|, as X̂ is projective and as {d(xgz, xgz+i) | 0 ≤ i ≤ z} is bounded.
So (xg−ni)i∈N converges to µ, a contradiction. Hence, (xg−ni)i∈N has an ac-
cumulation point in ∂X, say µ. Let us take an infinite subsequence of (ni)i∈N
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such that (xg−ni)i∈N converges for this subsequence to µ. We may assume that
(ni)i∈N itself is this subsequence. If η 6= µ, let U and V be open neighbour-
hoods of η and µ, respectively, with x /∈ U ∪ V and U ∩ V = ∅. Let Z be an
open neighbourhood of η′ with η /∈ Z. Set W := U r Z. Due to contractivity,
there exists m ∈ N with (X r V )gnm ⊆ W and we conclude xg`nm ∈ W for all
` ∈ N inductively. Due to projectivity, every accumulation point of A lies in W as
{d(xgnm , xgi+nm) | 0 ≤ i ≤ nm} is bounded. This contradicts the choice of W . If
η = µ, let U = V be an open neighbourhood of η with η′ /∈ U and let (yi)i∈N be

a sequence in X r U that converges to η′. As X̂ is contractive, there is an m ∈ N
with yig

nm ∈ U for all i ∈ N. But then we have η′ = η′gnm ∈ U , a contradiction.
This shows that η is the unique element of ∂A. Analogously, we obtain that µ is
the unique element of ∂B, which shows (1).

Next, we show

(2) if νg = ν for some ν ∈ ∂X, then either ν = η or ν = µ.

Let us suppose that there is ν ∈ ∂Xr{η, µ} with νg = ν. As X̂ is regular, we may
take open neighbourhoods U and V of η and µ, respectively, with U ∩ V = ∅ such
that ν /∈ U ∪ V . Let (xi)i∈N be a sequence in X converging to ν. As ν /∈ U ∪ V ,
only finitely many xi lie in U ∪ V . In particular, we may have chosen (xi)i∈N in
X r (U ∪ V ). By contractivity, we find an n ∈ N with xig

n ∈ U for all i ∈ N.
Hence, we have ν = νgn ∈ U , a contradiction that shows (2).

Thus, there are at most two boundary points, η and µ, of X fixed by g and g is
either parabolic or hyperbolic. If g is parabolic, then we just showed that the set
{xgn | n ∈ Z} has precisely one accumulation point, as we showed earlier |∂A| = 1,
and the same is true for {ygn | n ∈ Z} for any y ∈ X by projectivity.

So let us assume that η and µ are distinct, that is, that g is hyperbolic. We
have to show the convergence property of hyperbolic automorphisms. Let us first
show that xgn and xg−n for n ∈ N converge to η and µ, respectively. Therefore, we
show that we can find a sequence (ni)i∈N such that xgni converges to η and xg−ni

converges to µ. Let us take an arbitrary sequence (ni)i∈N such that xgni converges
to η. Let us suppose that µ is no accumulation point of xg−ni . As d(x, xg−ni)
is unbounded, we know by (C3) that there is an n ∈ N such that (xgnk)k∈N and
(xg−nk)k∈N converge. So their limit points must be η and µ, respectively. By

projectivity, this holds also for g instead of gn. Now, let y ∈ X. As X̂ is projective
and d(x, y) = d(xgn, ygn) for all n ∈ N, also the sequence (ygi)i∈N converges to η
and the sequence (yg−i)i∈N converges to µ. This shows the additional statement
on hyperbolic automorphisms. �

Remark 2.5. Note that we have not used axiom (C4) in the proof of Theorem 2.3.

For a hyperbolic element g, let the boundary point to which the sequence
(xgn)n∈N for x ∈ X converges be the direction of g. Note that this definition
does not depend on the point x by projectivity. By g+ we denote the direction of g
and by g− the direction of g−1. For parabolic elements, we denote by g+ and g−

the unique fixed boundary point. For a contractive G-completion X̂ of X, let the
limit set L(G) of G be the set of accumulation points in ∂X of xG for any x ∈ X
and let the hyperbolic limit set H(G) of G be the set of directions of hyperbolic
elements. Again, these sets do not depend on the choice of x due to projectivity.
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Notice that due to Theorem 2.3, the automorphism γ mentioned in (C3) is either
hyperbolic or parabolic and in (C4) we find infinitely many hyperbolic automor-
phisms whose directions converge to η.

Lemma 2.6. Let X̂ be a contractive G-completion of a metric space X, let U and
V be non-empty open subsets of X̂ with d(U, V ) > 0, U ∩ V = ∅, and U ∪ V 6= X̂,

and let g ∈ G. If (X̂ r V )g ⊆ U , then g is hyperbolic with g+ ∈ U and g− ∈ V .

Proof. First, we notice that X̂ r U ⊆ V g and hence (X̂ r U)g−1 ⊆ V . As U and

V are disjoint, we obtain inductively that (X̂ r V )gn ⊆ U and (X̂ r U)g−n ⊆ V

for all n ≥ 1. Since X is dense in X̂ and U ∩ V 6= X̂, we find an x ∈ X r (U ∪ V ).
Let us show that the orbit of x under g is not bounded. Indeed, as xg−1 ∈ V and
xg ∈ U , we have d(x, xg2) ≥ d(U, V ) and thus

d(x, xgn) ≥ (n− 1)

2
d(U, V )

holds and shows that g is not elliptic. Hence, g is either parabolic or hyperbolic
according to Theorem 2.3. Due to (C3), the set {xgn | n ∈ N} has an accumulation
point, which lies in U , and {xg−n | n ∈ N} has an accumulation point, which lies
in V . According to Theorem 2.3, the automorphism g cannot be parabolic, so it
must be hyperbolic and we have g+ ∈ U and g− ∈ V . �

Theorem 2.7. Let X̂ be a contractive G-completion of a metric space X.

(i) If L(G) has at least two elements, then H(G) is dense in L(G).
(ii) The set L(G) has either none, one, two, or infinitely many elements.

(iii) The set H(G) has either none, two, or infinitely many elements.

Proof. To prove (i), let η, µ ∈ L(G) be distinct and let x ∈ X. Then there are
sequences (gi)i∈N and (hi)i∈N in G with xgi → η and xhi → µ. We show that in
any neighbourhood of η we find a direction of a hyperbolic element.

We may assume that (xg−1i )i∈N has at most one accumulation point: if it has

more than one, then we take a subsequence of (gi)i∈N such that (xg−1i )i∈N converges

in X̂. If (xg−1i )i∈N has no accumulation point, then we find with condition (C4) a
sequence (fj)j∈N of hyperbolic automorphisms such that f+j → η for j →∞. Thus,

we may assume that (xg−1i )i∈N converges to ν ∈ ∂X.
We distinguish several cases. First, let us assume that ν 6= η. Due to Lemma 2.2,

we find open neighbourhoods U, V of η, ν, respectively, with U ∩ V = ∅, with
d(U, V ) > 0, and with x /∈ V . As X̂ is contractive, there is an n ∈ N with (X̂ r
V )gi ⊆ U for all i ≥ n. According to Lemma 2.6, for all i ≥ n, the automorphism gi
is hyperbolic with g+i ∈ U and g−i ∈ V . So we have found directions of hyperbolic
automorphism arbitrarily close to η.

In the situation that (xh−1i )i∈N does not have µ as an accumulation point,
an analogous proof as above gives us a direction of a hyperbolic automorphism
f ∈ 〈hi | i ∈ N〉 in every neighbourhood of µ. If either f+ = η or f− = η, then η
itself is a direction of a hyperbolic element. Hence, we may assume that f+ 6= η
and we may also assume that f+ 6= ν by taking f−1 instead of f . Applying con-
tractivity, we obtain that f+gn ∈ U for all n ≥ n0 for some n0 ∈ N. As f+gn is
the direction of the hyperbolic automorphism gnfg

−1
n , we obtain the direction of a

hyperbolic automorphism in U , too.
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Let us now assume that (xg−1i )i∈N converges to η and that (xh−1i )i∈N converges
to µ. As η 6= µ, there are again open neighbourhoods U and V of η and µ,
respectively, with x /∈ U ∪ V , with d(U, V ) > 0, and with U ∩ V = ∅ due to
Lemma 2.2. By contractivity, we find an n ∈ N such that

(X̂ r U)gi ⊆ U and (X̂ r V )hi ⊆ V
for all i ≥ n. For f := hngn this implies

(X̂ r V )f ⊆ V gn ⊆ U.
By Lemma 2.6, the automorphism f is hyperbolic with f+ ∈ U and f− ∈ V . As we
may haven chosen U so that U lies in some previously chosen open neighbourhood
of η, we have shown (i).

For the proof of (ii) and (iii), let us assume that L(G) contains at least three

elements. As H(G) is dense in L(G) according to (i) and as X̂ is Hausdorff, there
are two hyperbolic automorphisms g and h that do not fix the same two boundary
points of X. Let η ∈ ∂X with ηg = η and ηh 6= η. Then due to contractivity,
the sequence (ηhn)n∈N converges to h+ but does not contain h+. Hence, the set
{ηhn | n ∈ N} is infinite. On the other hand, the boundary point ηhn is fixed by
h−nghn which is, as it is conjugated to a hyperbolic automorphism, also hyperbolic.
Hence H(G) and L(G) are infinite. Since every hyperbolic automorphism fixes two
boundary points, we also have |H(G)| 6= 1. �

A group G acts discontinuously on a metric space X, if there is a non-empty
open subset O ⊆ X with Og ∩O = ∅ for all non-trivial elements g of G.

Theorem 2.8. Let X̂ be a contractive G-completion of a metric space X. Then
one of the following cases holds:

(i) G fixes a bounded subset of X;
(ii) G fixes a unique element of L(G);
(iii) L(G) consists of precisely two elements;
(iv) G contains two hyperbolic elements that have no common fixed point and that

freely generate a free subgroup of G that contains aside from the identity only
hyperbolic elements and that acts discontinuously on X.

Proof. First, let us assume that G does not contain any hyperbolic automorphism.
Then Theorem 2.7 (i) implies that |L(G)| ≤ 1. If |L(G)| = 1, then the unique
element of L(G) has to be fixed by G which shows that (ii) is true in this situation.
Thus, we may assume that L(G) is empty. By (C3), the set xG must be bounded
for any x ∈ X. So (i) holds.

Let us now assume that G contains a hyperbolic automorphism. Then we have
|L(G)| ≥ 2. If |L(G)| = 2, then (ii) holds. So we may assume that |L(G)| 6= 2.
Thus, we have |H(G)| > 2, since H(G) is dense in L(G) due to Theorem 2.7 (i).
So G contains more than one hyperbolic element. We shall show that either (ii) or
(iv) holds.

Let us first consider the case that every two hyperbolic automorphisms have
a common fixed point. Then we shall show the existence of a boundary point
in L(G) that is fixed by all elements of G. Suppose that no such fixed point exists.
Let g ∈ G be hyperbolic. As G contains more than one hyperbolic element that
have in total more than two distinct directions, we know that {g+, g−} is not G-
invariant. For every h ∈ G, the automorphism h−1gh is hyperbolic. As every two
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hyperbolic automorphisms have a common fixed point, either g+h = (h−1gh)+ or
g−h = (h−1gh)− lies in {g+, g−}, in particular, we have {g+, g−}h∩ {g+, g−} 6= ∅.

Let us suppose that there are h1, h2 ∈ G with

{g+, g−}h1 ∩ {g+, g−} = {g+} and {g+, g−}h2 ∩ {g+, g−} = {g−}.

As gi := h−1i ghi for i = 1, 2 are hyperbolic, they have a common fixed point η. But
this fixed point is neither g+ nor g− by the choices of h1 and h2. Let U and V be
disjoint open neighbourhoods of g+ and g−, respectively, such that none of them
contains η. As X̂ is contractive, there is an n ∈ N such that (X̂ r V )gn ⊆ U and

(X̂ r U)g−n ⊆ V . Again, the automorphisms f1 := g−ng1g
n and f2 := gng2g

−n

are both hyperbolic and we have

{f+1 , f
−
1 } = {ηgn, g+gn} ⊆ U and {f+2 , f

−
2 } = {ηg−n, g−g−n} ⊆ V

which implies that f1 and f2 have no common fixed point even though they are
hyperbolic. This contradiction shows that there is a µ ∈ ∂X that lies in {g+, g−}f
for all f ∈ G. Let ν be the other element of {g+, g−}.

Since G fixes no element of L(G), there is an f ∈ G with µf 6= µ. Then we have
νf = µ and νf2 = µf 6= µ. As µ ∈ {µ, ν}f2, we conclude that µf2 = µ. Since f is a

homeomorphism on X̂ and νf = µf2, we have µf = ν. Because of |L(G)| 6= 2, there
is a hyperbolic automorphism f ′ in G with precisely one fixed point in {g+, g−},
as any two hyperbolic automorphisms have a common fixed point. If this fixed
point is ν, then we conclude µf ′ = µ as µ ∈ {µ, ν}f ′. By the choice of f ′, this
is not possible. So f ′ fixes µ. Hence, the automorphism f ′f maps µ to ν and ν
to νf ′f 6= νf = µ. So µ does not lie in {g+, g−}f ′f . This contradiction shows
that some element of L(G) is fixed by G in the situation that every two hyperbolic
automorphisms have a common fixed point. Since |H(G)| ≥ 2, this fixed boundary
point must be unique.

Let us consider the remaining case, that is, that there are two hyperbolic elements
g and h in G without common fixed point. We shall show that there is some
k ≥ 1 such that gk and hk satisfy the condition (iv). Let U1, V1, U2, and V2 be

open neighbourhoods in X̂ of g−, g+, h−, and h+, respectively, that have pairwise
positive distance from each other, such that their closures are disjoint and such
that

U1 ∩ U2 ∩ V1 ∩ V2 6= X̂.

We can find these neighbourhoods similarly as in the proof of Lemma 2.2. Let O
be a non-empty open subset of X that is disjoint from all four just defined subsets
of X̂. As X̂ is contractive, there is an n0 ≥ 1 with

(X̂ r U1)gn ⊆ V1 and (X̂ r V1)g−n ⊆ U1

as well as

(X̂ r U2)hn ⊆ V2 and (X̂ r V2)h−n ⊆ U2

for all n ≥ n0. Set f1 := gn0 and f2 := hn0 . We shall show that f1 and f2 freely
generate F := 〈f1, f2〉 and that this group acts discontinuously on X. But as this
proof is basically the well-known ping-pong argument, we omit it here and refer
to the corresponding proof by Woess [29, Proposition 1] for G-compactifications of
proper metric spaces. �
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The hyperbolic limit set is bilaterally dense in L(G) if H(G) is not empty and if
for any two disjoint non-empty open sets A,B ⊆ L(G) there is a hyperbolic element
g ∈ G with g+ ∈ A and g− ∈ B. Our next theorem says that H(G) is bilaterally
dense in L(G) if and only if either (iii) or (iv) of Theorem 2.8 hold.

Theorem 2.9. Let X̂ be a contractive G-completion of a metric space X. The
following statements are equivalent.

(i) The hyperbolic limit set of G is bilaterally dense in L(G).
(ii) Either |L(G)| = 2 or G contains two hyperbolic elements that have no common

fixed point.

Proof. Let us assume that (i) holds and that |L(G)| 6= 2. As H(G) 6= ∅ by the
definition of bilateral denseness, we know that L(G) andH(G) are infinite according

to Theorem 2.7 (ii) and (iii). As X̂ is Hausdorff, we may take four pairwise disjoint
open subsets V1, . . . , V4 of ∂X and conclude that there are two hyperbolic elements
g, h in G with g+ ∈ V1, g− ∈ V2, h+ ∈ V3, and h− ∈ V4. Obviously, these two
hyperbolic automorphisms have no common fixed point.

To show the converse, let us assume that (ii) holds. For every open neighbour-

hood Y in L(G) of any element η ∈ L(G), there is a neighbourhood Y ′ in X̂ with

Y ′∩L(G) ⊆ Y as X̂ is regular. Thus, we may take disjoint non-empty open subsets

A and B of X̂ with A′ := A ∩ L(G) 6= ∅ and B′ := B ∩ L(G) 6= ∅ and just have to
show that there is a hyperbolic element f in G with f+ ∈ A′ and f− ∈ B′.

If |L(G)| = 2, then each of the two sets A′ and B′ consists of precisely one
point and according to Theorem 2.7 (i) there is a hyperbolic element f in G with
f+ ∈ A′. This implies f− ∈ B′. Hence, we may assume that G contains two
hyperbolic elements without common fixed point.

Let η ∈ A′ and µ ∈ B′, let U be an open neighbourhood of η with U ⊆ A, and let
V be an open neighbourhood of µ with V ⊆ B such that d(U, V ) > 0, U ∩ V = ∅,
and U ∪ V 6= X̂. For the existence of U and V , we refer again to the proof of
Lemma 2.2. Let us show:

(3) there are hyperbolic elements g, h ∈ G with g+, g− ∈ U and h+, h− ∈ V .

As H(G) is dense in L(G), we find a hyperbolic automorphism a in G with a+ ∈ U .
Since there are two hyperbolic elements in G without common fixed point, we find a
hyperbolic automorphism b that fixes neither a+ nor a−. Applying contractivity to
open neighbourhoods U ′ and V ′ of a+ and a−, respectively, with U ′ ⊆ U we obtain
an n ∈ N with b+an ∈ U and b−an ∈ U . Let g = a−nban. Then g is hyperbolic as
it is conjugated to a hyperbolic automorphism and for every x ∈ X̂ r U we have

xgm = xa−nbman → b+an = g+ for m→∞

and

xg−m = xa−nb−man → b−an = g− for m→∞.
Thus, g+ and g− lie in U . Analogously, we find a hyperbolic element h of G with
h+, h− ∈ V , which shows (3).

By contractivity, there is some m ∈ N with xgm ∈ U and xg−m ∈ U for all
x ∈ X̂ r U as well as xhm ∈ V and xh−m ∈ V for all x ∈ X̂ r V . Let f = hmgm.
Then we conclude

xf = xhmgm ∈ V gm ⊆ U
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for all x ∈ X̂ r V and

xf−1 = xg−mh−m ∈ Uh−m ⊆ V

for all x ∈ X̂ rU . As d(U, V ) > 0, U ∩ V = ∅, and U ∪ V 6= X̂, Lemma 2.6 implies
that f is hyperbolic with f+ ∈ U and f− ∈ V as desired. �

Theorem 2.10. Let X̂ be a contractive G-completion of a metric space X and
such that L(G) is infinite. Then L(G) is a perfect set.

Furthermore, the following statements are equivalent.

(i) The set {(g+, g−) | g ∈ G, g is hyperbolic} is dense in L(G)× L(G).
(ii) The hyperbolic limit set of G is bilaterally dense in L(G).

(iii) There are two hyperbolic elements in G that have no common fixed point.

Proof. To show that L(G) is perfect, we have to show that L(G) contains no isolated
point. Let us suppose that η ∈ L(G) is isolated. AsH(G) is dense in L(G) according
to Theorem 2.7 (i), we find a hyperbolic element g ∈ G with g+ = η. Let µ ∈ L(G)
with µg 6= µ. This limit point exists as L(G) is infinite. Since g is hyperbolic and

X̂ is contractive, the sequence (µgi)i∈N converges to g+ but none of its elements
is g+. Hence, g+ cannot be isolated in L(G).

For the additional statement, we note that (ii) is oviously a direct consequence
of (i). The fact that L(G) is perfect implies the inverse direction and the equivalence
of (ii) and (iii) follows from Theorem 2.9 (ii) as |L(G)| 6= 2. �

3. Graphs with their ends

Contractive G-completions are natural generalizations of the contractive G-
compactifications defined by Woess [29]. Besides proper geodesic hyperbolic spaces2,
examples for those contractive G-compactifications are locally finite connected
graphs X with vertex ends as boundary (see [29]) that are the equivalence classes
of rays (i.e. one-way infinite paths) where two rays are equivalent if and only if
they lie eventually in the same component of X r S for any finite vertex set S.
A base for the topology on a graph with its vertex ends is given by sets that are
open in the distance metric of the graph and by vertex sets C that have a finite
neighbourhood (vertices in V (G) r C that are adjacent to some vertex of C) and
such that some ray lies in C. In this latter situation, the set C is a neighbourhood
of all vertex ends that have a ray in C.

For our theorems, we dropped the hypothesis on X being a proper metric space,
that is, we do not require the graphs to have finite degrees. Thus, the canonical
guess would be to ask if arbitrary connected graphs X with their vertex ends are
examples of G-completions. Unfortunately, this is not the case: the first obstacle is
that such a space is not projective and the second is that the uniform convergence
property of the contractivity does not hold for the space. We give an example for
these two obstacles.

Example 1. Let X be a graph such that every vertex is a cut vertex and lies in λ
blocks each of which is a copy of the complete graph on κ vertices, where κ and λ are
infinite cardinals. These graphs have a large symmetry group: its automorphisms

2We will look at geodesic hyperbolic spaces in Section 4.
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do not only act transitively on the graph. Indeed, the graphs are distance-transitive
graphs3, cp. [13, 21].

Considering the completion X̂ of X with its vertex ends, any two rays in distinct
blocks have bounded distance to each other but they lie in distinct vertex ends.
Thus, X̂ is not projective.

To see that also the second part of the definition of contractivity – the uniform
convergence property – does not hold, let Y be a block in X and C be a component
of X − y for a vertex y ∈ Y with C ∩ Y = ∅. Let (yi)i∈N be a sequence in Y such
that its elements are pairwise distinct and also all distinct from y and such that
Y r {yi | i ∈ N} is infinite. Let (Ci)i∈N be a sequence of components of X r {yi}
with Ci ∩ Y = ∅. Then there is an automorphism g of X with Cig = Ci+1 that
fixes C pointwise. Thus, we have xgi → η for i → ∞ and for every x ∈ C1, where
η is the end that contains all rays in Y , and also xg−i → η for i → ∞. There is a
neighbourhood U of η that intersects with C trivially. Hence, xgn has to converge
to η for every x ∈ C if the uniform convergence property holds, but g fixes C
pointwise, so we have xgn = x. This shows that also uniform convergence fails
for X and it finishes Example 1.

Let us modify Example 1 a bit so that we obtain a graph which also shows
that Theorems 2.7 and 2.9 do not hold for graphs with all their vertex ends as
completion.

Example 2. Let X be the graph from Example 1. For every x ∈ V (X), let Yx be
a complete graph on ℵ0 vertices, and let yx ∈ V (Yx). Let Z be obtained from the
disjoint union of X and all Yx by identifying each x with yx. Unfortunately, the
limit set L(G) with G := Aut(Z) depends on the choice of the vertex used for its
definition: taking a vertex from X leads to a limit set consisting of all vertex ends
that belong to X and taking any other vertex implies that L(G) is the set of all
vertex ends of Z. Since for contractive G-completions, the independence of L(G)
from the chosen vertex x was implied by projectivity, which is not given in our
situation, it would be natural to define L(G) to be the union of all accumulations
points of zG for all z ∈ V (Z).

To show that the concludions of Theorems 2.7 and 2.9 do not hold for X, it
obviously suffices to show it for the conclusion of Theorem 2.7. But this is easy
to see: every hyperbolic limit point can be separated by x ∈ V (X) from the end
in Yx, so H(G) cannot be dense in L(G).

But nevertheless, Theorem 2.3 and Theorem 2.8 are true for connected graphs
with their vertex ends as boundary considering finite vertex sets instead of bounded
ones for the definition of elliptic elements, see Halin [10] and Jung [14]. Although

the vertex ends fail to make X̂ a G-completion in general, there is on one side
a natural subclass of the ends and on the other side another notion of ends, the
metric ends as defined by Krön in [17] (see also Krön and Möller [19, 20]), which
our situation fits to.

We call a ray a local ray if there is a vertex set of finite diameter that contains
infinitely many vertices of the ray. As we have seen in Example 1, existence of two
distinct ends each of which contains a local ray is an obstruction for any completion

3A graph is called distance-transitive if, for each k ∈ N, its automorphisms act transitively on
those pairs of vertices that have distance k to each other.
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of a graph to be projective and any end that contains a local ray might be an
obstacle for the uniform convergence property in the definition of contractivity.
This motivates us to consider only those ends for the contractive G-completion
that do not contain any local ray. And indeed, we obtain the following result:

Theorem 3.1. Let X be a connected graph and X̂ the completion of X with all
those vertex ends of X that do not contain any local ray. Then X̂ is a contractive
Aut(X)-completion and the theorems of Section 2 hold for X̂.

The proof of Theorem 3.1 is similar to the one of Theorem 3.3 but uses finite
vertex sets instead of vertex sets of finite diameter for the definition of the ends.
Notice that Sprüssel [25, Theorem 2.2] showed that graphs with their ends form a
normal topological space. We omit the proof of Theorem 3.1 and prove the results
for connected graphs with their metric ends instead.

A ray in a graph X is a metric ray if it eventually lies outside every ball of finite
diameter. So a ray is a metric ray if and only if it is not a local ray. Two metric
rays are equivalent if they eventually lie in the same component of X r S for any
vertex set S of finite diameter. This is an equivalence relation and its equivalence
classes are the metric ends of X. A metric double ray is a double ray (i.e. a two-
way infinite path) such that no ball of finite diameter contains infinitely many of
its vertices. So any subray of a metric double ray is a metric ray. Let us define a
base for the topology on a graph with its metric ends: it consists of all those sets
that are open in the distance metric of the graph and of all those sets C of vertices
that have a neighbourhood of finite diameter and such that some metric ray lies
in C – in this situation the set C is a neighbourhood of all metric ends that have a
metric ray which lies in C. For more details on metric ends, we refer to [17, 19, 20].

To prove that a connected graphX with its metric ends is an Aut(X)-completion,
we need a result due to Krön and Möller [19], which is (for a connected graph) a
stronger version of Lemma 2.6.

Theorem 3.2. [19, Theorem 2.12] Let X be a connected graph and g ∈ Aut(X). If
there is a non-empty vertex set S of finite diameter, a component C of X r S and
an n ∈ N with (S ∪ C)gn ⊆ C, then there is a metric double ray L and an m ∈ N
such that gm acts as a non-trivial translation on L. �

Theorem 3.3. Let X be a connected graph and X̂ be X with its metric ends.
Then X̂ is a contractive Aut(X)-completion of X and the theorems of Section 2

hold for X̂.

Proof. First, we mention that X̂ is Hausdorff and regular, cp. [17, Theorem 4] and

that the canonical extensions of automorphisms of X are homeomorphisms of X̂,
cp. [17, Theorem 6]. Furthermore, X is open and dense in X̂. Thus, it remains to
prove (C3) and (C4) for G = Aut(X) and then that the G-completion is contractive.

We note that the condition for X̂ being projective is – as a direct consequence of
the definition of metric ends – valid even though we have not proved yet that X̂ is
a G-completion. But we may use the property during the remainder of the proof.

To prove (C3), let (gj)j∈N be a sequence in G with d(x, xgj) → ∞ for j → ∞.
Let Bi be the ball with centre x and radius i. Either there is for each i precisely one
component of X r Bi that contains all but finitely many vertices of {xgj | j ∈ N}
or there are two components C1, C2 of X r Bi and k, ` ∈ N with Bigk ⊆ C1
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and Big` ⊆ C2 as well as with d(Bigk, Bi) ≥ 2 and d(Big`, Bi) ≥ 2. In the first
case, those components Di that contain all but finitely many of the vertices of
{xgj | j ∈ N} define a unique metric end η as the radii of the balls Bi increase

strictly: take the unique element in
⋂
i∈NDi. As the sequence (xgj)j∈N eventually

lies in each of these components, the sequence must have η as an accumulation
point.

Thus, we may assume that there are two distinct components C1, C2 of X rBi
and k, ` ∈ N with Bigk ⊆ C1 and Big` ⊆ C2 and with d(Bigk, Bi) ≥ 2 and
d(Big`, Bi) ≥ 2. If either gk or g` satisfies the assumptions of Theorem 3.2, then
there is a vertex z on the metric double ray L of the conclusion of Theorem 3.2
such that the set {zgnj | n ∈ Z}, for either j = k or j = `, has the metric ends
to which every subray of L converges as accumulation points. By projectivity,
we conclude that each of the two sets {xgnj | n ∈ N} and {xg−nj | n ∈ N} has
an accumulation point in ∂X. So we assume that neither gk nor g` satisfies the
assumptions of Theorem 3.2. This implies that Big

2
k must lie in the same component

of XrBigk in which Bi lies. Analogously, Big
2
` lies together with Bi in a component

of X r Big`. Let us consider the automorphism g := g−1k g`. Let y ∈ C1 with

d(y,Bi) < d(Bi, Bigk). We have yg−1k ∈ C1g
−1
k ∩ C1 and the vertices yg−1k and x

must lie in the same component of X r Bigk. Hence, x and yg do not lie in the
same component of XrBig` and the same is true for x and xg. This implies for the
component C of XrBigk that contains x, that we have (Bigk∪C)g ⊆ C. According
to Theorem 3.2, there is a metric end that is a limit point of {xgj | j ∈ N} and the
same holds for {xg−j | j ∈ N}. This finishes the proof of (C3).

For the proof of (C4), let x ∈ X and let (gk)k∈N be a sequence in G with xgk → η
for k →∞ for some η ∈ ∂X such that {xg−1k | k ∈ N} has no accumulation point.
So there is an i0 such that for all i ≥ i0 and for the ball Bi of radius i and centre x
all but finitely many of the balls Bigk lie in the same component Ci of X rBi and
all but finitely many of the balls Big

−1
k lie outside Ci. If we find infinitely many

gk that satisfy the assumptions of Theorem 3.2, then the sets {xgnk | n ∈ N} and
{xg−nk | n ∈ N} have distinct limit points η1 and η2 in the set of metric ends and
we find a sequence in the limit points of the sets {xgnj | n ∈ N} that converges
to η since for all k with Bigk ⊆ Ci one of the two limit points η1 and η2 lies
in Ci, that is, contains a metric ray inside Ci. If we do not find these infinitely
many gk, then let k be such that Bigk lies in Ci and let ` be such that Big

−1
`

lies in a component of X r Bi distinct from Ci and such that d(Bi, Bigk) > 2
and d(Bi, Big

−1
` ) > 2. As in the proof of (C3), the automorphism g`gk satisfies the

assumptions of Theorem 3.2 and, as we can choose k among infinitely many natural
numbers, we obtain our sequence of limit points of the sets {x(g`gk)n | n ∈ N} that
converges to η similarly to the previous case. This shows (C4).

Let us now prove that X̂ is contractive. We have already seen that X̂ is projec-
tive. So let (gi)i∈N be a sequence in G with xgi → η and xg−1i → µ for i → ∞,
some x ∈ X and metric ends η and µ. Let U be a neighbourhood of η and V be a
neighbourhood of µ. We may assume that there are vertex sets SU and SV of finite
diameter such that U is a component of X r SU and V is a component of X r SV .
As xgn → η, there is by projectivity an n1 ∈ N such that SV gn lies in the same
component of X rSU as η and such that d(xgn, SU ) > d(x, SV ) + diam(SV ) for all
n ≥ n1. Then we have SV gn ⊆ U and in particular SV gn ∩ SU = ∅ for all n ≥ n1.
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Similarly, we find n2 ∈ N such that SUg
−1
n lies in the same component of X r SV

as η and such that d(xg−1n , SV ) > d(x, SU ) + diam(SU ) for all n ≥ n2. Again, we
have SUg

−1
n ⊆ V and SUg

−1
n ∩SV = ∅ for all n ≥ n2 and hence also SU ⊆ V gn. Let

n0 := max{n1, n2}, let n ≥ n0, and let y ∈ X̂ rV . As SU ⊆ V gn and SV separates
y and SUg

−1
n , the vertex ygn must lie outside the component of X r (SV gn) that

contains SU . Since it is cannot be separated from η by SU , we have ygn ∈ U . This
shows that (ygn)n∈N converges uniformly to η outside every neighbourhood of all

accumulation points of {xg−1i | i ∈ N} in X̂. �

In the case of locally finite graphs with their vertex ends as boundary, a parabolic
automorphism g has the additional property that the sequence (xgi)i∈N converges
to the unique fixed end for any vertex x. This is not true in the case of arbitrary
graphs with their metric ends as boundary: Krön and Möller [19, Example 3.16]
constructed a graph with precisely one metric end and an automorphism that fixes
no bounded vertex set but leaves a double ray invariant that is neither bounded nor
a metric double ray. This implies that for any vertex x on that double ray, its orbit is
unbounded but there is a vertex set of finite diameter that contains infinitely many
of the vertices in its orbit. This shows that, for contractive G-compactifications,
an analogous convergence property as for hyperbolic automorphisms does not hold
in the case of parabolic automorphisms.

4. Hyperbolic spaces

In this section, we consider hyperbolic spaces that are not necessarily proper4 but
geodesic, that is for every two points x, y there is an isometric image of [0, d(x, y)]
joining x and y. We shall show that the geodesic hyperbolic spaces with their
hyperbolic boundary are contractive G-completions and hence, that the theorems
of Section 2 are true for them. To obtain an overview which basic properties of
geodesic hyperbolic spaces are known, we refer to [2, 27] and for an introduction to
proper geodesic hyperbolic spaces, we refer to [1, 4, 5, 8, 9, 15]. Since we deal with
spaces that are not necessarily proper, we will cite from the first list and mainly
from [2]. Let us briefly recall the main definitions for hyperbolic spaces.

Let X be a metric space. The Gromov-product (x, y)o of x, y ∈ X with respect
to the base-point o ∈ X is defined as follows:

(x, y)o := 1
2 (d(o, x) + d(o, y)− d(x, y)) .

For δ ≥ 0, the space X is δ-hyperbolic if for given base-point o ∈ X we have

(x, y)o ≥ min{(x, z)o, (y, z)o} − δ
for all x, y, z ∈ X. A space is hyperbolic if it is δ-hyperbolic for some δ ≥ 0.

It is easy to show that the definition of being hyperbolic does not depend on o,
that is, if the space is δ-hyperbolic with respect to o ∈ X, then for o′ ∈ X there
exists δ′ ≥ 0 such that X is δ′-hyperbolic with respect to o′.

To define the completion X̂ of a geodesic hyperbolic space X, we define a further
metric on X. For this, let ε > 0 with ε′ = exp(εδ)− 1 <

√
2− 1. For x, y ∈ X, let

%ε(x, y) =

{
exp(−ε(x, y)o) if x 6= y,

0 otherwise.

4A metric space is proper if all closed balls of finite diameter are compact.
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Then

dε(x, y) = inf{
n−1∑
i=1

%ε(xi, xi+1) | xi ∈ X, x1 = x, xn = y}

for all x, y ∈ X defines a metric on X with

(4) (1− 2ε′)%ε(x, y) ≤ dε(x, y) ≤ %ε(x, y)

for all x, y ∈ X, see e.g. [2, Theorem 2.2.7]. Let X̂ be the completion of the metric

space (X, dε) and let ∂X = X̂ rX be the hyperbolic boundary of X. A subset S

of X separates two sets U, V ⊆ X̂ geodesically if every geodesic between a point
of U and a point of V intersects non-trivially with S.

Let A and B be two subsets of a metric space Y . We say that A lies δ-close to B
for some δ ≥ 0 if d(a,B) ≤ δ for all a ∈ A. A triangle xyz in a geodesic metric
space Y is a union of three geodesics – called sides of the triangle –, one between
every two of the vertices x, y, and z of the triangle. A triangle is δ-thin if any of its
sides lies δ-close to the union of its other two sides. Due to [2, Proposition 2.1.3],
every triangle in a geodesic δ-hyperbolic space is 4δ-thin.

A useful property of the Gromov-product in geodesic hyperbolic spaces is the
following:

Lemma 4.1. Let X be a geodesic δ-hyperbolic space and let x, y, z ∈ X. Then we
have for all geodesics π between y and z:

d(x, π)− 8δ ≤ (y, z)x ≤ d(x, π).

For a proof of Lemma 4.1 we refer to any introductory text on hyperbolic spaces,
e. g. [8].

We call a map ϕ : Y → Z between metric spaces quasi-isometric if there are
γ ≥ 1 and c ≥ 0 such that

1

γ
dY (y, y′)− c ≤ dZ(ϕ(y), ϕ(y′)) ≤ γdY (y, y′) + c

for all y, y′ ∈ Y . A quasi-geodesic is the image of a quasi-isometric map ϕ : [0, r]→
Z with r ∈ R≥0 and an infinite quasi-geodesic is the image of a quasi-isometric map
ϕ : R≥0 → Z.

Equipped with these definitions we are able to prove that the hyperbolic com-
pletions of geodesic hyperbolic spaces are contractive G-completions. The following
lemma is similar to [4, Lemme 2.2].

Lemma 4.2. Let X be a geodesic δ-hyperbolic space and let g ∈ Aut(X) with
d(x, xg2) ≥ d(x, xg) + 8δ + γ for some γ > 0 and x ∈ X. Then there are two
distinct boundary points η, µ of X with (xgn)n∈N → η and (xg−n)n∈N → µ.

Furthermore, the map Z→ {xgz | z ∈ Z}, z 7→ xgz is quasi-isometric.

Proof. Let us first show that the inequalities

(5) mγ − γ ≤ d(x, xgm) ≤ md(x, xg)

hold for all m ∈ N. The second inequality is obvious by triangle-inequality, so we
just have to prove the first one. Let m ∈ N. Using the quadruple conditions for
hyperbolic spaces (cp. Section 2.4.1 and Proposition 2.1.3 in [2]) for the points x,
xg, xg2, and xgm, we obtain

d(x, xg2) + d(xg, xgm) ≤ max{d(x, xg) + d(xg2, xgm), d(x, xgm) + d(xg, xg2)}+ 8δ.
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Hence, we have

max{d(x, xgm−2), d(x, xgm)} ≥ d(x, xg2) + d(x, xgm−1)− d(x, xg)− 8δ(6)

≥ d(x, xgm−1) + γ.

An easy induction using d(x, xg2) ≥ d(x, xg) + 8δ + γ and (6) shows

d(x, xgn+1) ≥ d(x, xgn) + γ

for all n ∈ N and hence, we have d(x, xgm) ≥ (m− 1)γ.
Due to (5), the map Z → X, z 7→ xgz is quasi-isometric. So we conclude with

Theorem 4.4.1 and Proposition 5.2.10 of [2] that {xgn | n ∈ N} and {xg−n | n ∈ N}
converge to distinct boundary points. �

Lemma 4.3. Let X be a geodesic δ-hyperbolic space and let x ∈ X. Let g, h ∈
Aut(X) such that d(x, xg2) ≤ d(x, xg) + 8δ and d(x, xh2) ≤ d(x, xh) + 8δ and such
that neither g nor h satisfies the conclusions of Lemma 4.2. If there is a ball B
with centre x and radius R such that any geodesic between x and xgh intersects
non-trivially with Bg and if we have d(B′, B′g) > 8δ and d(B′g,B′gh) > 8δ for the
ball B′ with centre x and radius R+ 16δ, then

d(x, x(gh)2) > d(x, xgh) + 8δ.

Proof. We consider the following points in X: x, xg, xh, xgh2, xg2h, and x(gh)2.
If we can show that xgh lies 16δ-close to any geodesic between x and x(gh)2, then
this geodesic must intersect non-trivially with B′gh and we obtain

d(x, x(gh)2) ≥ 2d(x, xgh)− 2(R+ 16δ) > d(x, xgh) + 8δ.

Let us consider a geodesic between xg and xgh2. If it intersects non-trivially
with B′gh, then we conclude

d(xg, xgh2) ≥ d(xg, xgh) + d(xgh, xgh2)− 2(R+ 16δ) + 8δ > d(xg, xgh) + 8δ

and we apply Lemma 4.2 to obtain a contradiction to our assumptions. Hence,
no such geodesic intersects non-trivially with B′gh. Similarly, if we consider any
geodesic between x and xg2, then we obtain that it does not intersect non-trivially
with B′g. So the same holds for any geodesic between xh and xg2h with the ball
B′gh.

Since triangles are 4δ-thin, we obtain that [xh, xgh2] lies 16δ-close to

[xgh2, xg] ∪ [xg, x] ∪ [x, x(gh)2] ∪ [x(gh)2, xg2h] ∪ [xg2h, xh]

where the brackets denote any geodesic between the two points. As [xh, xgh2]
intersects non-trivially with Bgh by assumption, one of the other five geodesics
intersects non-trivially with B′gh. We have already shown that this is neither
[xgh2, xg] nor [xg2h, xh]. The geodesics [xg, x] and [x(gh)2, xg2h] do not inter-
sect non-trivially with Bgh, too, since Bg separates x and xgh geodesically and
since d(B′g,B′gh) > 8δ, and the same is true for Bg2h with x(gh)2 and xgh. So
[x, x(gh)2] intersects non-trivially with B′gh and the assertion follows as described
above. �

Now we are able to deduce the following.

Proposition 4.4. Let X be a geodesic hyperbolic space and X̂ the completion of X
with the hyperbolic boundary. Then X̂ is a contractive Aut(X)-completion of X.
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Proof. Let X be δ-hyperbolic. By its definition, X̂ is a completion of X and from [2,

Section 2.2.3] we deduce that automorphisms ofX extend to homeomorphisms of X̂.

As (X̂, dε) is a metric space, it is regular. Let (gi)i∈N be a sequence in Aut(X) such
that d(x, xgi) is unbounded for some x ∈ X. We will show (C3). Let us consider
closed balls Bi with centre x and radius i. Either, for all i, all but finitely many xgj
are not geodesically separated by Bi or there are a ball Bi and k, ` ∈ N such that
Bi separates xgk and xg` geodesically and d(Bigk, Bi) > 8δ and d(Big`, Bi) > 8δ.
In the first case, we obtain (xgk, xg`) → ∞ for k, ` → ∞ because of Lemma 4.1,
so the sequence converges to some boundary point. In the second case, either one
of g−1k and g` or due to Lemma 4.3 the automorphism g−1k g` has the desired limit
points by Lemma 4.2. This shows (C3).

For the proof of (C4) let (gi)i∈N be a sequence in G such that for some x ∈ X
and η ∈ ∂X we have xgi → η for i → ∞ and such that {xg−1i | i ∈ N} has no
accumulation point in ∂X. Notice that the convergence of the sequence (xgi)i∈N
implies d(x, xgi) → ∞ for i → ∞. Analogously as in the proof of (C3), we find
k, ` ∈ N such that one of the automorphisms gk, g`, and gkg` satisfies the assumption
of Lemma 4.2 and hence fulfills the conclusions of that lemma. Furthermore, we find
for each k, ` ∈ N further integers k′, `′ ∈ N both larger than k and ` such that among
gk′ , g`′ and gk′g`′ we find another automorphism that satisfies the conclusions of
Lemma 4.2. So we find an infinite sequence (fi)i∈N of such automorphisms: fi is
either some gm or some gmgn and for i→∞ also the indices m and n grow. Using
this sequence, we shall construct another sequence (hi)i∈N of automorphisms such
that each of the two sets {xhni | n ∈ N} and {xh−ni | n ∈ N} has a limit point
ηi and µi, respectively, such that these two limit points are distinct and such that
ηi → η for i→∞. The first two properties are also true for each fi and we will use
that for the proof of the properties for the hi.

Let us consider the open balls B1/n(η). For fn, there is a constant ∆n due to

[2, Theorem 1.3.2] such that any geodesic between xf−mn and xfmn lies ∆n-close to
{xf jn | |j| ≤ m}. As xgi → η for i → ∞, we find in such that the ∆n-ball B with
centre xgin lies completely in B1/n(η). Let hn = g−1in fngin . Since hn is conjugated
to fn, the conclusions of Lemma 4.2 also hold for hn. Let us consider the two sets
Q1 := {xf jn | j ∈ N} and Q2 := {xf−jn | j ∈ N} and, for i = 1, 2, quasi-geodesics Ri
that contain all elements of Qi and a geodesic between any xf jn and xf j+1

n . The
ball B separates any q1 ∈ R1 from any q2 ∈ R2 geodesically by its choice. Thus,
one of the two quasi-geodesics, say Ri, has distance at least d(x,B)/2 to x. As Ri is
quasi-geodesic, it has a limit point ηn ∈ ∂X. Using 4δ-thin triangles z`(xgin)q` for
sequences (z`)`∈N in B1/n(η) and (q`)`∈N in Ri converging to η and ηn, respectively,
we obtain by Lemma 4.1

(z`, q`) ≥ d(x, π`)− 8δ = d(x,B)/2− 12δ,

where π` is a geodesic between z` and q`. So due to (4), we know that the sequence
(ηk)k∈N converges to η. Notice that we might have to change some hi in the sequence
(hi)i∈N to h−1i to obtain precisely the statement of (C4).

For the projectivity property, let (xi)i∈N be a sequence in X that converges to
some η ∈ ∂X and let (yi)i∈N be another sequence in X such that there is an M ≥ 0
with d(xi, yi) ≤ M for all i ∈ N. As (xi)i∈N converges to a boundary point, we
have d(o, xi) → ∞ and thus also d(o, yi) → ∞. This implies (xi, yi) → ∞, so

dε(xi, yi)→ 0. Hence, X̂ is a projective G-completion.
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To show contractivity, let (gi)i∈N be a sequence in Aut(X) such that for the base
point x ∈ X of the Gromov-product, the sequence (xgi)i∈N converges to η ∈ ∂X
and (xg−1i )i∈N converges to µ ∈ ∂X. Let U and V be open neighbourhoods of η
and µ, respectively. Then there are θ > 0 and n0 ∈ N such that

{xgm | m ≥ n0} ∪ {η} ⊆ Bθ/3(xgn) and Bθ(xgn) ⊆ U
as well as

{xg−m | m ≥ n0} ∪ {µ} ⊆ Bθ/3(xg−n) and Bθ(xg−n) ⊆ V

for all n ≥ n0. Let y ∈ X r B2θ/3(xg−1n0
). Then we have dε(y, µ) ≥ θ/3 and

exp(−ε(xg−1n , y)) ≥ dε(xg−1n , y) ≥ θ/3. We conclude

(xgn, ygn) = 1
2 (d(x, xgn) + d(x, ygn)− d(xgn, ygn))

= 1
2 (d(x, xgn) + d(x, ygn)− d(x, y))

= d(x, xgn)− (xg−1n , y).

As d(x, xgn)→∞ for n→∞, we find n1 ∈ N such that we have

dε(xgn, ygn) ≤ %ε(xgn, ygn)

= exp(−εd(x, xgn) + ε(xg−1n , y))

≤ exp(−εd(x, xgn)− log(θ/3))

< θ/3.

for all n ≥ n1. So ygn lies in Bθ/3(xgn) ⊆ U . Let ν ∈ ∂X r V . Then we can find a
sequence (yi)i∈N in X rB2θ/3(xg−n) that converges to ν. Since yign ∈ Bθ/3(xgn),
we conclude that νgn lies in Bθ(xgn). This shows contractivity and hence, we have

shown that X̂ is a contractive Aut(X)-completion. �

We directly obtain:

Corollary 4.5. Let X be a geodesic hyperbolic space and X̂ the completion of X
with its hyperbolic boundary. Then the theorems of Section 2 hold for X̂. �

5. Concluding remarks

Apart from the general investigation of groups acting on locally finite graphs or
on proper geodesic hyperbolic spaces, there are several more detailed investigations
most of which take either Theorem 2.8 (ii) or Theorem 2.8 (iv) as starting point
and investigate these situations in more detail: Möller [23] showed that locally
finite graphs with infinitely many ends for which a group of automorphisms acts
transitively on the graph but fixes an end are quasi-isometric to trees. The same
result was obtained in [11] for arbitrary graphs with infinitely many ends. Caprace
et al. [3] showed an analogous result for locally finite hyperbolic graphs where the
fixed end is replaced by a fixed hyperbolic boundary point (the planar situation
was settled earlier in [7]).

In [18], Krön and Möller started with the situation of Theorem 2.8 (iv) and
showed that if a group acts on a connected graph such that no vertex end is fixed
by the group, then the group has a free subgroup containing (except for the trivial
element) only hyperbolic automorphisms and the directions of these hyperbolic
automorphisms are dense in the set of all limit points of the group. In the same
paper, they also mentioned that an analogous proof holds for metric ends instead
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of vertex ends. The analogous statement also holds for proper geodesic hyperbolic
spaces, see [12].
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