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Abstract. We prove that every locally finite, quasi-transitive graph with a thick end whose cycle space

is generated by cycles of bounded length contains the full-grid as an asymptotic minor and as a diverging

minor. This in particular includes all locally finite Cayley graphs of finitely presented groups, and

partially solves problems of Georgakopoulos and Papasoglu and of Georgakopoulos and Hamann.

Additionally, we show that every (not necessarily quasi-transitive) graph of finite maximum degree

which has a thick end and whose cycle space is generated by cycles of bounded length contains the

half-grid as an asymptotic minor and as a diverging minor.

1. Introduction

Fat minors are a coarse or metric variant of graph minors. They first appeared in works of Chepoi,
Dragan, Newman, Rabinovich and Vaxes [7] and of Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot
and Scott [5]. They play an important role in many (open) problems at the intersection of structural
graph theory and coarse geometry – an area which can be described as ‘coarse graph theory’.

A model of a graph X in a graph G is a collection of connected branch sets and branch paths in G such
that after contracting each branch set to a vertex, and each branch path to an edge, we obtain a copy
of X. A model of X is K-fat (in G), for some K ∈ N, if its branch sets and paths are pairwise at least K
apart, except that we do not require this for incident branch set-path pairs (see also Section 2.6 for the
definition). We say that X is a (K-fat) minor of G if G contains a (K-fat) model of X. The graph X is an
asymptotic minor of G if X is a K-fat minor of G for every K ∈ N. An important advantage of asymptotic
minors over the usual minors is that they are preserved under quasi-isometries, and in particular, it does
not depend on the choice of a finite generating set whether a Cayley graph of a finitely generated group
contains a fixed graph as an asymptotic minor [21].

Recently, Georgakopoulos and Papasoglu [21] gave an overview of the area of ‘coarse graph theory’,
where they presented results and open problems regarding the interplay of geometry and graphs, many
of which concern fat minors. These problems have already attracted quite some attention; some (partial)
solutions can be found in [1,2,7,8,16,17,27]. Our main contribution is a partial resolution of a problem of
Georgakopoulos and Papasoglu about asymptotic grid minors in quasi-transitive graphs [21, Problem 7.3].
To state this problem, we first need some definitions.

An end of a graph G is an equivalence class of rays where two rays in G are equivalent if there are
infinitely many pairwise disjoint paths between them in G. An end is thick if it has infinitely many
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pairwise disjoint rays. The full-grid is the graph on Z × Z in which two vertices (m,n) and (m′, n′) are
adjacent if and only if |m−m′|+ |n− n′| = 1, and the half-grid1 is its induced subgraph on N× Z.

One of the cornerstones of infinite graph theory is Halin’s Grid Theorem [22, Satz 4′], which asserts
that every graph with a thick end contains the half-grid as a minor. Following this approach, Heuer [25]
characterised the graphs containing the full-grid as a minor. These graphs form a proper subclass of the
graphs with a thick end: while it is clearly true that every graph with a full-grid minor has a thick end,
the converse is false in general, as the half-grid itself already witnesses. However, as it turned out, if we
only consider graphs which are quasi-transitive, i.e. graphs whose vertex set has only finitely many orbits
under its automorphism group, then these two graph classes coincide. Indeed, Georgakopoulos and the
second author [20] showed that every locally finite, quasi-transitive graph with a thick end contains the
full-grid as a minor.

Georgakopoulos and Papasoglu [21] asked whether this result can be generalised to the coarse setting
in the following sense.

Problem 1.1. [21, Problem 7.3] Let G be a locally finite Cayley graph of a one-ended finitely generated
group. Must the half-grid be an asymptotic minor of G? Must the full-grid be an asymptotic minor of G?

Note that every Cayley graph of a group is (quasi-)transitive. Moreover, the unique end of a one-ended,
quasi-transitive graph is always thick [6, 28].

Our main theorem partially answers both questions in the affirmative, under the additional assumption
that G is a locally finite Cayley graph of a finitely presented group. In fact, we show the following result.

Theorem 1. Let G be a locally finite, quasi-transitive graph whose cycle space is generated by cycles of
bounded length. If G has a thick end, then the full-grid is an asymptotic minor of G.

(We refer the reader to Section 2.3 for the definitions concerning the cycle space.)

Note that Theorem 1 includes all locally finite Cayley graphs of finitely presented groups. Examples
such as inaccessible graphs and groups [13,14] or Diestel-Leader graphs [12,15] indicate that the geometry
of arbitrary locally finite, quasi-transitive (or Cayley) graphs may be far more involved. This is why
generalising Theorem 1 to locally finite Cayley graphs of arbitrary finitely generated groups or even to all
locally finite, quasi-transitive graphs may be much harder, and will require a different approach to that
presented in this paper (see the sketch of the proof in Section 3 for details).

For the proof of Theorem 1 we construct, for every such graph G, a single model of the full-grid (see
Theorem 3.4), which can be turned into a K-fat model of the full-grid, for every K ∈ N, by deleting some
of its branch sets and paths. Moreover, it can be turned into a model of the full-grid that diverges: for
any two diverging sequences of vertices and/or edges of the full-grid also their branch sets/paths diverge
in G (see Section 2.7 for the definition).

Theorem 2. Let G be a locally finite, quasi-transitive graph whose cycle space is generated by cycles of
bounded length. If G has a thick end, then the full-grid is a diverging minor of G.

This partially solves a question of Georgakopoulos and the second author [20, Problem 4.1].

1Note that usually the grid on N2 is referred to as the half-grid. However, for us it will be more convenient to work with

the grid on N× Z. It is easy to see that our results about the half-grid also hold for the grid on N2.
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Krön and Möller [26, Theorem 5.5] proved that a locally finite, quasi-transitive connected graph has
no thick end if and only if it is quasi-isometric to a tree. Thus, instead of assuming that the graph G in
Theorems 1 and 2 has a thick end, we may assume that G is not quasi-isometric to a tree (see Section 7.2
for details).

As a first step in the proof of Theorem 1, we find the half-grid as an asymptotic minor. For this, we
do not need the transitivity assumption on G. Indeed, we prove the following theorem.

Theorem 3. Let G be a graph of finite maximum degree whose cycle space is generated by cycles of
bounded length. If G has a thick end, then the half-grid is an asymptotic minor of G.

Note that every graph satisfying the premise of Theorems 1 and 2 has finite maximum degree as it is
locally finite and quasi-transitive.

Similar as in the proof of Theorem 1, we again construct a single model of the half-grid (see Theo-
rem 3.3), which can be turned into a K-fat model of the half-grid, for every K ∈ N, and into a diverging
model of the half-grid.

Theorem 4. Let G be a graph of finite maximum degree whose cycle space is generated by cycles of
bounded length. If G has a thick end, then the half-grid is a diverging minor of G.

This partially solves a question of Georgakopoulos and the second author [20, Problem 4.2].

This paper is structured as follows. In Section 2 we recall some important definitions. Section 3 consists
of three parts. We first introduce some new definitions in Sections 3.1 and 3.2. We then give a sketch of the
proofs of Theorems 1 to 4 in Sections 3.3 and 3.4, where we also state Theorems 3.3 and 3.4, our stronger
results on half-grid and full-grid minors, which we already briefly mentioned above. In Sections 3.5 and 3.6
we derive Theorems 1 to 4 from Theorems 3.3 and 3.4. Section 4 contains some preparatory work about
diverging and quasi-geodesic rays. We then prove Theorems 3.3 and 3.4 in Sections 5 and 6, respectively.
We finish in Section 7 by discussing some related problems.

2. Preliminaries

Our notions mainly follow [9]. In what follows, we recap some important definitions which we need
later.

Given sets U ′ ⊆ U of vertices of a graph G, a component C of G−U attaches to U ′ if C has a neighbour
in U ′. The boundary ∂GX of a subgraph X of G is the set NG(V (G−X)) of vertices of X that send in G

an edge outside of X. For example, the boundary ∂GC of a component C of G− U is NG(U) ∩ V (C).
A graph G is quasi-transitive if the automorphism group of G acts on V (G) with only finitely many

orbits, that is if V (G) can be partitioned into finitely many sets U0, . . . , Un such that for all i ∈ {0, . . . , n}
and u, v ∈ Ui there exists an automorphism φ of G such that φ(u) = v. The stabilizer of a subgraph X

of G consists of precisely those automorphisms of G that map X to itself.

2.1. Paths, rays and combs. For two sets A,B of vertices of G, an A–B path meets A precisely in its
first vertex and B precisely in its last vertex. For a subgraph H of G, an H-path is a non-trivial path
which meets H precisely in its endvertices.

A ray is a one-way infinite path, and a double ray is a two-way infinite path. A tail of a (double) ray R

is any subray S ⊆ R. If R = r0r1 . . . is a ray, then we denote by riRrj for i, j ∈ N the subpath ri . . . rj
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of R, and by riR or R≥i the tail riri+1 . . . of R. Further, we denote by Rri or R≤i the subpath r0 . . . ri

of R. We use these notions analogously for double rays; in particular, if R = . . . r−1r0r1 . . . is a double
ray, then Rri and R≤i denote the tail riri−1 . . . of R.

A comb is a union of a ray R with infinitely many pairwise disjoint finite paths which have precisely
their first vertex on R; we call the last vertices of these paths the teeth of the comb and refer to R as its
spine. The following observation about combs in infinite graphs is well-known and follows immediately
from the Star-Comb Lemma; see e.g. [9, Lemma 8.2.2] for a proof.

Lemma 2.1. Let U be an infinite set of vertices in a locally finite, connected graph G. Then G contains
a comb with all teeth in U .

Moreover, every infinite, connected graph has a vertex of infinite degree or contains a ray.

2.2. (Hexagonal) grids. The full-grid , denoted by FG, is the graph on Z2 in which two vertices (m,n)

and (m′, n′) are adjacent if and only if |m−m′|+ |n− n′| = 1. The hexagonal full-grid is obtained from
FG by deleting every other rung, as shown in Figure 2.1. The (hexagonal) half-grid , denoted by HG, is
the induced subgraph of the (hexagonal) full-grid on vertex set N× Z.

We call the double rays Ri of the (hexagonal) full- and half-grid its vertical double rays and the edges eij
its horizontal edges (see Figure 2.1).

. . .. . .

R−3 R−2 R−1 R0 R1 R2 R3

e−1j

e1j

e1(j−1)

e1(j+1)

e2j

e−2j

e−3j

e3j

Figure 2.1. The hexagonal full-grid with vertical double rays Ri and horizontal
edges eij .

2.3. Cycle space. Let G be a graph. The edge space of G is the vector space over the 2-element field F2 of
all functions E(G) → F2: its elements correspond to the subsets of E(G) and vector addition corresponds
to symmetric difference. The cycle space of G is the subspace of the edge space of G spanned by all the
cycles in G – more precisely, by their edge sets; for simplicity, we will not distinguish between the edge
sets in the cycle space and the subgraphs they induce in G.

We say that the cycle space of G is generated by cycles of bounded length if there is some n ∈ N such
that the cycles in G of length at most n generate the cycle space of G.

2.4. Ends. An end ε of a graph G is an equivalence class of rays in G where two rays are equivalent if
they are joined by infinitely many disjoint paths in G or, equivalently, if for every finite set U ⊆ V (G)

both rays have tails in the same component of G−U . A (double) ε-ray is a (double) ray whose tails are all



ASYMPTOTIC HALF-GRID AND FULL-GRID MINORS 5

contained in ε. An end is thick if, for every n ∈ N, there are n pairwise disjoint ε-rays. Halin [22, Satz 1]
showed that this is the case if and only if there are infinitely many pairwise disjoint ε-rays.

A finite set U ⊆ V (G) distinguishes two ends ε, ε′ of G if no component of G − U contains rays from
both ε and ε′. A graph G is accessible if there exists some n ∈ N such that every two distinct ends of G
can be distinguished by a set of at most n vertices of G.

Theorem 2.2. [23, Corollary 3.2] Every locally finite, quasi-transitive graph whose cycle space is gener-
ated by cycles of bounded length is accessible.

2.5. Distance and balls. Let G be a graph. We write dG(v, u) for the distance of the two vertices v

and u in G. For two sets U and U ′ of vertices of G, we write dG(U,U
′) for the minimum distance of

two elements of U and U ′, respectively. If one of U or U ′ is just a singleton, then we omit the braces,
writing dG(v, U

′) := dG({v}, U ′) for v ∈ V (G). If X is a subgraph of G, then we abbreviate dG(U, V (X))

as dG(U,X).
Given a set U of vertices of G, the ball (in G) around U of radius r ∈ N, denoted by BG(U, r), is the

set of all vertices in G of distance at most r from U in G. If U = {v} for some v ∈ V (G), then we omit the
braces, writing BG(v, r) for the ball (in G) around v of radius r. Additionally, we abbreviate the induced
subgraph on BG(U, r) of G with G[U, r] := G[BG(U, r)]. If X is a subgraph of G, then we abbreviate
BG(V (X), r) and G[V (X), r] as BG(X, r) and G[X, r], respectively.

A subgraph X of G is c-quasi-geodesic2 (in G) for some c ∈ N if for every two vertices u, v ∈ V (X) we
have dX(u, v) ≤ c · dG(u, v). We call X quasi-geodesic if it is c-quasi-geodesic for some c ∈ N and geodesic
if it is 1-quasi-geodesic.

Two rays R,S in G diverge if for every n ∈ N they have tails R′ ⊆ R, S′ ⊆ S satisfying dG(R
′, S′) > n.

A double ray R in G diverges if every two disjoint tails of R diverge.

2.6. Fat and diverging minors. Let G,X be graphs. A model (V, E) of X in G is a collection V
of disjoint sets Vx ⊆ V (G) for vertices x of X such that each G[Vx] is connected, and a collection E
of internally disjoint Vx0

–Vx1
paths Ee for edges e = x0x1 of X which are disjoint from every Vx with

x ̸= x0, x1. The Vx are its branch sets and the Ee are its branch paths. A model (V, E) of X in G is
K-fat for K ∈ N if dG(Y, Z) ≥ K for every two distinct Y,Z ∈ V ∪ E unless Y = Ee and Z = Vx for
some vertex x ∈ V (X) incident to e ∈ E(X), or vice versa. The graph X is a (K-fat) minor of G,
denoted by X ≺ G (X ≺K G), if G contains a (K-fat) model of X. Moreover, X is an asymptotic minor
of G, denoted by X ≺∞ G, if X is a K-fat minor of G for all K ∈ N. Let ε be an end of G. If X is a
one-ended graph, then we write X ≺ε

K G if G contains a K-fat model (V, E) of X such that every ray in⋃
x∈V (X) G[Vx] ∪

⋃
e∈E(X) Ee is an ε-ray. Similarly, we write X ≺ε

∞ G if X ≺ε
K G for all K ∈ N.

A model (V, E) of X in G diverges if for every two sequences (xn)n∈N and (yn)n∈N of vertices and/or
edges of X such that dX(xn, yn) → ∞, we have dG(Un,Wn) → ∞ where Un := Vxn

if xn ∈ V (X) and
Un := V (Exn) if xn ∈ E(X) and analogously Wn := Vyn or Wn := V (Eyn).

2.7. Fat and diverging subdivisions. A subdivision of a graph X is a graph which arises from X by
replacing every edge in X by a new path between its endvertices such that no new path has an inner

2Note that in general metric spaces one also allows for an additive error; this property is there called ‘(c, b)-quasi-geodesic’.

So here a subgraph is c-quasi-geodesic if and only if it is (c, 0)-quasi-geodesic. It is easily verifiable that these two notions

of quasi-geodesic, with or without an additive error, are equivalent for graphs.
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vertex in V (X) or on any other new path. The original vertices of X are the branch vertices of the
subdivision and the new paths are its branch paths. Let G be a graph and let H ⊆ G be a subdivision
of X with branch vertices vx for x ∈ V (X) and branch paths Ee for e ∈ E(X). Then H is K-fat (in G)
if there are sets Vx ⊆ V (H) with vx ∈ Vx for x ∈ V (X) and paths E′

e ⊆ Ee for e ∈ E(X) such that
((Vx)x∈V (X), (E

′
e)e∈E(X)) is a K-fat model of X. The subdivision H of X diverges (in G) if the model

(({vx})x∈V (X), (Ee)e∈E(X)) of X in G diverges.

3. Further definitions and a sketch of the proof

In this section we first introduce ultra fat minors and escaping subdivisions of certain graphs (see
Sections 3.1 and 3.2). We then give in Sections 3.3 and 3.4 a sketch of the proofs of Theorems 1 to 4.
There, we also state two stronger theorems, Theorems 3.3 and 3.4, from which we then derive Theorems 1
to 4 in Sections 3.5 and 3.6.

3.1. Ultra fat minors. We say that a model ((Vi)i∈N, (Eij)i ̸=j∈N) of Kℵ0 in a graph G is ultra fat if

• dG(Vi, Vj) ≥ min{i, j} for all i ̸= j ∈ N,
• dG(Eij , Ekℓ) ≥ min{i, j, k, ℓ} for all i, j, k, ℓ ∈ N with {i, j} ≠ {k, ℓ}, and
• dG(Vi, Ekℓ) ≥ min{i, k, ℓ} for all i, k, ℓ ∈ N with i /∈ {k, ℓ}.

Further, we say that Kℵ0
is an ultra fat minor of G, and write Kℵ0

≺UF G, if G contains an ultra
fat model of Kℵ0

. The idea is that an ultra fat model of Kℵ0
in a graph G witnesses that G con-

tains Kℵ0 as an asymptotic minor. Indeed, if ((Vi)i∈N, (Eij)i̸=j∈N) is an ultra fat model of Kℵ0 in G, then
((Vi)i∈N≥K

, (Eij)i ̸=j∈N≥K
) is a K-fat model of Kℵ0 in G. In particular, we have the following observation.

Observation 3.1. If a graph G contains Kℵ0 as an ultra fat minor, then it contains every countable
graph as an asymptotic minor. Moreover, if Kℵ0

≺ε
UF G for some end ε of G, then also X ≺ε

∞ G for
every one-ended, countable graph X. □

Moreover, the following observation is immediate from the definitions.

Observation 3.2. If a graph G contains Kℵ0
as an ultra fat minor, then it contains every countable

graph as a diverging minor, and in particular, it contains every countable graph of maximum degree at
most 3 as a diverging subdivision. Moreover, if Kℵ0 ≺ε

UF G for some end ε of G, then we may choose the
diverging minor / subdivision so that all its rays lie in ε. □

3.2. Escaping subdivisions. We call the double rays in a subdivision of the hexagonal half- or full-grid
corresponding to the vertical double rays Ri of the hexagonal half- or full-grid its vertical (double) rays,
and the branch paths corresponding to the horizontal edges eij its horizontal paths, and we usually denote
the former by Si and the latter by Pij . Whenever we introduce a subdivision of the hexagonal half- or
full-grid with vertical double rays Si without specifying the vertex sets of the Si, we tacitly assume that
Si = . . . si−1s

i
0s

i
1 . . . and that their tails Si

≥0 are the image of the ‘upper’ half of the vertical double ray Ri

of the hexagonal half- or full-grid.
Let G be a graph and let H ⊆ G be a subdivision of the hexagonal half-grid with vertical double

rays Si and horizontal paths Pij . We say that H is escaping if there are 0 := M0 < M1 < . . . ∈ N such
that Mi > Mi−1 + 2i for all i ≥ 1 and

(i) Si ⊆ G[S0,Mi]−BG(S
0,Mi−1 + 2i) for all i ∈ N≥1, and
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(ii) P1j ⊆ G[S0,M1] and Pij ⊆ G[S0,Mi]−BG(S
0,Mi−2 + i) for all i ∈ N≥2 and j ∈ Z.

A subdivision H ⊆ G of the hexagonal full-grid with vertical double rays Si and horizontal paths Pij

is escaping if the Si and Pij with i ≥ 0 form an escaping subdivision of the hexagonal half-grid as well
as the Si and Pij with i ≤ 0, and if there is some M ∈ N such that the Si with i > 0 are contained in a
different component of G−BG(S

0,M) than the Si with i < 0.

3.3. Sketch of the proofs of Theorems 3 and 4. We will prove Theorems 3 and 4 simultaneously by
showing the following stronger result.

Theorem 3.3. Let ε be a thick end of a graph G with finite maximum degree whose cycle space is generated
by cycles of bounded length. Then either Kℵ0 ≺ε

UF G or G contains an escaping subdivision H of the
hexagonal half-grid whose rays all lie in ε.

By Observations 3.1 and 3.2, an ultra fat model of Kℵ0 contains a diverging and a K-fat model of the
half-grid for every K ∈ N. So to derive Theorems 3 and 4 from Theorem 3.3 it suffices to show that an
escaping subdivision of the hexagonal half-grid also contains a diverging and a K-fat subdivision of the
hexagonal half-grid (see Sections 3.5 and 3.6).

For the proof of Theorem 3.3, we first show that G contains for every thick end ε a diverging double
ε-ray R (see Theorem 4.1), and we then set S0 := R. Second, we show that G contains double rays
S1, S2, . . . such that the Si are contained in increasingly distant ‘thickened cylinders’ around R of the
form G[R,Mi]−BG(R,Mi−1+2i) for some M0 < M1 < . . . ∈ N, as required by (i) for the vertical double
rays of an escaping subdivision of the hexagonal half-grid. Finally, we connect the Si by infinitely many
paths so that infinitely many of them either form the vertical double rays of an escaping subdivision of
the hexagonal half-grid or they form the branch sets of an ultra fat model of Kℵ0 (see Lemma 5.4).

Let us describe the second step in more detail. We will choose the Si recursively, starting from
the diverging double ε-ray R = . . . r−1r0r1 . . . (=: S0). For this, we first show that C[∂GC, ⌊κ−2

2 ⌋] =
C ∩ G[R,L + ⌊κ

2 ⌋] is connected for every L ∈ N and every component C of G − BG(R,L), where κ ∈ N
is such that the cycle space of G is generated by cycles of length ≤ κ (see Lemma 5.1). Note that this
is the only part in in the proofs of Theorems 1 to 4 where we use the assumption on the cycle space;
nevertheless, the assumption is crucial here, and the rest of the proof relies on this lemma.3

We then show that for every L ∈ N some component C of G−BG(R,L) is ‘long’, i.e. it has a neighbour
in BG(R≥j , L) and in BG(R≤−j , L) for all j ∈ N (see Lemma 5.3). Combining that C is long and
C[∂GC, ⌊κ−2

2 ⌋] is connected then allows us to find a double ray in C[∂GC, ⌊κ−2
2 ⌋], which thus also lies

in G[R,L + ⌊κ
2 ⌋] − BG(R,L). Hence, we may proceed recursively by increasing the radius L of the ball

around R by a summand of ⌊κ
2 ⌋+ 2i in each step.

3.4. Sketch of the proof of Theorems 1 and 2. Similar as before, we prove Theorems 1 and 2
simultaneously, by showing the following stronger result.

Theorem 3.4. Let ε be a thick end of a locally finite, quasi-transitive graph G whose cycle space is
generated by cycles of bounded length. Then either Kℵ0 ≺ε

UF G or G contains an escaping subdivision of
the hexagonal full-grid whose rays all lie in ε.

3This is not entirely true. We in fact prove stronger versions of Theorems 1 to 4 (see Section 3.6 below), which find the

desired minors in a prescribed end. For this, in the case of Theorems 1 and 2, we need the assumption on the cycle space

once more, to ensure that the graph is accessible.



8 S. ALBRECHTSEN AND M. HAMANN

Similar as above, Observations 3.1 and 3.2 together with results from Section 3.5 below will show that
it suffices to prove Theorem 3.4 in order to obtain Theorems 1 and 2 (see Section 3.6).

The proof of Theorem 3.4 builds on Theorem 3.3. From the proof of Theorem 3.3 it follows that we
have more control over where the escaping subdivision of the hexagonal half-grid lies (see Theorem 3.3’,
the detailed version of Theorem 3.3, in Section 5). For this, let ε be a thick end of G, and let R be a
diverging double ε-ray. Given a ‘thick’ component C of G−BG(R,K) for some K ∈ N, that is one which
includes a long component of G−BG(R,L) for every L ≥ K, we in fact obtain an escaping subdivision H

of the hexagonal half-grid whose first vertical double ray is R and which is ‘mostly’ contained in C (unless
Theorem 3.3’ yields an ultra fat model of Kℵ0

, in which case we are immediately done). Now suppose that
for some large enough L ∈ N there is another thick component D of G − BG(R,L). Then Theorem 3.3
yields another escaping subdivision H ′ of the hexagonal half-grid whose first vertical double ray is R and
which is ‘mostly’ contained in D (or an ultra fat model of Kℵ0). Gluing H and H ′ together along their
common first vertical double ray R then yields the desired subdivision of the hexagonal full-grid (see
Lemma 6.2).

It thus suffices to prove that G contains a diverging double ε-ray R such that, for some large enough
K ∈ N, there are two distinct thick components of G − BG(R,K). This step is mainly divided into two
lemmas (see Lemmas 6.8 and 6.9). We first show that if R′ is a double ε-ray which is not only diverging
but even quasi-geodesic, then it is enough that for some large enough K ∈ N there are distinct components
C ̸= D of G−BG(R

′,K) such that C is thick but D is only ‘half-thick’ (see Lemma 6.8) because then we
can use the quasi-transitivity of G to find another quasi-geodesic double ε-ray R such that G−BG(R,K)

has two distinct thick components (see Lemma 6.8). Here, a component of G−BG(R,K) is half-thick if
it includes for every L ≥ K a component of G− BG(R,L) which is ‘half-long’, i.e. which has neighbours
in BG(R≥n, L) or in BG(R≤−n, L) for all n ∈ N.

Next, we show that such a double ray R′ exists. For this, we first prove that G contains three ε-rays
R1, R2, R3 that intersect pairwise in a single common vertex such that R1 ∪ R2 ∪ R3 is quasi-geodesic
(see Theorem 4.5). Applying (the detailed version Theorem 3.3’ of) Theorem 3.3 to the quasi-geodesic,
and hence diverging, double ray R1 ∪R2 then yields an escaping subdivision H of the hexagonal half-grid
whose first vertical double ray is R1 ∪ R2. Now for every K ∈ N, by the definition of escaping, H will
lie ‘mostly’ in one component CK of G − BG(R,K), which then needs to be thick. We then analyse
where R3 lies in relation to H. If, for some large enough L ∈ N, R3 has a tail in a component DL ̸= CL

of G − BG(R1 ∪ R2, L), then we are done since DL needs to be half-thick as R3 diverges from R1 ∪ R2

but lies in the same end as R1 and R2.
Otherwise, again since R3 diverges from R1∪R2, it has a tail in CK for all K ∈ N. We then distinguish

two cases. First assume that R3 is far away from H. Then, since R3 has a tail in each CK , we can
connect R3 and H by infinitely many paths. These paths together with R3 then yield infinitely many
H-paths that ‘jump over’ H. We then use these paths together with H to find an ultra fat model of Kℵ0 .
Otherwise, R3 lies close to H. Then either R3 separates H into an ‘upper half’ containing (a tail of) R1

and a ‘lower half’ containing (a tail of) R2, and then R1 ∪ R3 (or symmetrically R2 ∪ R3) is the desired
double ray R′, or there are infinitely many H-paths that ‘jump over’ R3, which then again yield an ultra
fat model of Kℵ0 (see Lemma 6.9).
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3.5. Obtaining fat and diverging minors from escaping subdivisions. In this section we describe
how one can turn an escaping subdivision H of the hexagonal half-grid (full-grid) into a K-fat or diverging
minor of the hexagonal half-grid (full-grid).

Lemma 3.5. Let G be a locally finite graph, and let H ⊆ G be an escaping subdivision of the hexagonal
half-grid (full-grid) whose vertical double ray S0 diverges. Then the following assertions hold for all K ∈ N:

(i) H contains a subdivision of the hexagonal half-grid (full-grid) which is K-fat in G, and
(ii) H contains a subdivision of the hexagonal half-grid (full-grid) which diverges in G.

In fact, the subdivisions which we obtain from Lemma 3.5 (i) and (ii) will have the property that their
sets of vertical double rays are a subset of the vertical double rays of H.

Since we will have to delete some of the branch paths from H in the proof of Lemma 3.5, we need the
following auxiliary result.

Proposition 3.6. Let H be a subdivision of the hexagonal half-grid (full-grid) with vertical double rays Si

and horizontal paths Pij. Let H ′ be obtained from H by deleting some of the Pij. If H ′ still contains, for
every i ∈ N \ {0} (i ∈ Z \ {0}), infinitely many Pij with j ∈ N and infinitely many Pij with j ∈ Z≤0,
then H ′ contains a subdivision H ′′ of the hexagonal half-grid (full-grid) whose vertical double rays are
the Si and whose set of horizontal paths is a subset of the Pij.

Proof. To obtain the desired graph H ′′, one may recursively select paths Pij ⊆ H ′ with sufficiently large |j|
to represent the edges fk in the order indicated in Figure 3.1 (and similarly for the hexagonal full-grid in
the order f1, f2, f

′
2, f3, f

′
3, f4, f

′
4, f5, f6, f7, f

′
7, . . .). □

. . .. . .

R0 R1 R2 R3 R4 R5R−4 R−3 R−2 R−1

f15

f6

f1

f5

f14

f13

f4

f3

f12

f11

f2

f10

f9

f8

f7f ′
2

f ′
4

f ′
3

f ′
7

f ′
8

f ′
9

f ′
10

f ′
11

f ′
12

f ′
13

Figure 3.1. The hexagonal half-grid (full-grid) with an enumeration of its horizontal
edges as needed for the proof of Proposition 3.6.

For the proof of Lemma 3.5 we need the following two auxiliary results, which assert that escaping
subdivisions have some additional properties.

Lemma 3.7. Let R = . . . r−1r0r1 . . . be a diverging double ray in a locally finite graph G, let L ∈ N, and
let S be a ray in G[R,L]. Suppose there are infinitely many pairwise disjoint R≥0–S paths Pi in G[R,L].
Then S has a tail T such that T ⊆ G[R≥0, L], and all but finitely many Pi are contained in G[R≥0, L].
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Proof. Since R diverges, there is some n ∈ N such that R≥n and R≤−n have distance at least 2L + 2

from each other; in particular, G[R≥n, L], and G[R≤−n, L] are disjoint and not joined by an edge. Hence,
they are separated in G[R,L] by BG(r−n+1Rrn−1, L). Since BG(r−n+1Rrn−1, L) is finite as G is locally
finite, it follows that S is eventually contained in either G[R≥n, L] or G[R≤−n, L] and that at most finitely
many Pi meet BG(r−n+1Rrn−1, L). As the Pi are disjoint and start in R≥0, and hence infinitely many Pi

start in R≥n, it follows that S has a tail T such that T ⊆ G[R≥n, L] ⊆ G[R≥0, L] and that all but finitely
many Pi lie in G[R≥0, L]. □

Corollary 3.8. Let G be a locally finite graph and let H be an escaping subdivision of the hexagonal
half-grid with vertical double rays Si and horizonal paths Pij such that S0 diverges. Then

(i) for all i, k ∈ N there is ℓ ∈ N such that Si
≥ℓ ⊆ G[S0

≥k,Mi] and Si
≤−ℓ ⊆ G[S0

≤−k,Mi], and
(ii) for all i, k ∈ N there is ℓ ∈ N such that Pij ⊆ G[S0

≥k,Mi] and Pi(−j) ⊆ G[S0
≤−k,Mi] for all j ≥ ℓ.

Proof. Let i, k ∈ N be given. Set R := S0, where we enumerate R = . . . r−1r0r1 . . . so that r0 = s0k.
Applying Lemma 3.7 to R, L := Mi and S := Si

≥0 and the paths Pj := Pij for j ≥ 0 yields some m ∈ N
such that Si

≥m and all Pij with j ≥ m are contained in G[R≥0,Mi] = G[S0
≥k,Mi]. Similarly, we find some

n ∈ N such that Si
≤−n and all Pij with j ≤ −n are contained in G[S0

≤−k,Mi]. Then ℓ := max{m,n} is as
desired. □

The next lemma finds a diverging subdivision in an escaping subdivision of the hexagonal half- or
full-grid.

Lemma 3.9. Let H be an escaping subdivision of the hexagonal half-grid (full-grid) in a locally finite
graph G with vertical double rays Si and horizontal paths Pij such that S0 diverges. Then there exists an
escaping subdivision H ′ ⊆ H of the hexagonal half-grid (full-grid) whose vertical double rays are the Si

and whose horizontal paths P ′
ij are a subcollection of the Pij such that H ′ diverges and such that for every

two non-incident edges of the hexagonal half-grid (full-grid) their images in H ′ are at least K apart in G

if they are contained in H ′
K :=

⋃
i≥K Si ∪

⋃
i>K,j∈Z P

′
ij.

Proof. We only give the proof for the hexagonal full-grid; the construction for the hexagonal half-grid is
analogous. For the sake of this proof, we denote the horizontal edges eij of the hexagonal full-grid by fi(2j)

if i ∈ 2Z + 1, and by fi(2j−1) if i ∈ 2Z, and we enumerate the Pij accordingly. Let xi−1
j , xi

j denote the
endvertices of Pij on Si−1 and Si, respectively. We will recursively select the branch paths Qij of the
edges fij amongst the Pkℓ such that

(1) dG(Qij , Qkℓ) ≥ max{|i|, |j|, |k|, |ℓ|} for all i, j, k, ℓ ∈ Z such that {i, j} ≠ {k, ℓ},
(2) dG(Qij , S

kykj−1 ∪ ykj+1S
k) ≥ max{|i|, |j|, |k|} for all i, j, k ∈ Z, and

(3) dG(S
iyij−1, y

k
j S

k) ≥ max{|i|, |k|, |j|} for all i, j, k ∈ Z,

where yi−1
j and yij denote the endvertices of Qij on Si−1 and Si, respectively. Let H ′ denote the graph

obtained from the union of the Si and the Qij . Clearly, H ′ is still an escaping subdivision of the hexagonal
full-grid (whose horizontal paths P ′

ij are essentially the Qij , except that they are again enumerated
as usual). It follows from (1)–(3) and (i) of escaping subdivisions that H ′

K has the desired property.
Moreover, H ′ diverges. Indeed, the distances in G between the images Un,Wn in H ′ of vertices and/or
edges an, bn of the hexagonal full-grid which form diverging sequences (an)n∈N, (bn)n∈N in H grow by
(1)–(3) unless the Un,Wn are of the form Qij , y

k
j−1S

kykj or Qij , y
k
j S

kykj+1 or yij−1S
iyij , y

k
j−1S

kykj . But
their distances grow because of (i) and (ii) of escaping subdivisions; we omit the details.
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We now describe how we choose the paths Qij . First, we set Qi0 := Pi0 for all i ∈ 2N + 1 and
Qi0 := P(i−1)0 for i ∈ 2Z<0 + 1. Now let n ∈ N be given, and assume that we have already chosen
paths Qij for all |j| < n. Assume further, without loss of generality, that n is even. We now describe how
we choose the paths Qin, where i ∈ 2Z + 1 since n is even. The choice of the paths Qi(−n) can be done
analogously after the choice of the Qin.

. . .. . .

S0 S1 S2 S3 S4 S5 S6S−6 S−5 S−4 S−3 S−2 S−1

Q10 Q30Q(−1)0

Q12

Q2(−1)

Q21

Q01

Q0(−1)

Q41

Q4(−1)

Q32

y02

y00

y01

y0−1

y22 y32

y32S
3y22S

2

Figure 3.2. Depicted in blue and green are the subgraphs X32 and Y32 that are used to
choose Q32. The paths Qij that are chosen before Q32 are shown in grey.

So let i ∈ 2N+ 1 be given, and assume that we have already chosen paths Qkn for all k ∈ 2N+ 1 with
k < i. We will now select a path Pij to be Qin; again, the choice of the Q(−i)n can be done analogously
after the choice of the Qin.

By (i) and (ii), we have dG(Pij , Pkℓ), dG(S
i, Pkℓ) ≥ max{i, |k|} for all k /∈ {i− 1, i, i+ 1} and j, ℓ ∈ Z.

Hence, no matter which Pij we choose to be Qin, we will have that dG(Qin, Qkℓ) ≥ max{i, n, |k|, |ℓ|} and
dG(y

i−1
n Si−1, Qkℓ), dG(y

i
nS

i, Qkℓ) ≥ max{i, n, |k|} for all k with |k| ≥ kin := max{i + 2, n} and |ℓ| ≤ n.
So when choosing Qin, we only need to consider those finitely many Qkℓ with |k| < kin and |ℓ| ≤ n. Since
Xin :=

⋃
|k|<kin,|ℓ|<n Qkℓ ∪

⋃
0<k<i Qkn is finite and G is locally finite, all but finitely many Pij have the

property that xi−1
j Si−1 ∪ Pij ∪ xi

jS
i has distance at least max{i, n} from Xin (see Figure 3.2).

Moreover, by (i) and (ii), we have dG(Pij , S
k), dG(S

i, Sk) ≥ max{i, |k|} for all k ̸= i. Hence, no
matter which Pij we choose to be Qin, we will have that dG(Qin, S

k), dG(y
i
nS

i, Sk), dG(y
i−1
n Si−1, Sk) ≥

max{i, n, |k|} for all k with |k| ≥ max{i + 1, n} and |ℓ| ≤ n. So when choosing Qin, we only need to
consider those finitely many Sk with |k| < max{i + 1, n}. By Corollary 3.8 (i) and (ii) and because
S0 diverges, all but finitely many of the Pij have the property that xi−1

n Si−1 ∪ Pij ∪ xi
jS

i has distance
at least max{i, n} from Yin :=

⋃
|k|<kin

Skyk(n−1). Hence, we can pick a path Pij whose endvertices
on Si and Si−1 appear on Si−1 and Si after the endvertices of Q(i−1)(n−1) and Q(i+1)(n−1), respectively,
such that xi−1

j Si−1 ∪ Pij ∪ xi
jS

i has distance at least max{i, n} from Xin ∪ Yin, and we set Qin := Pij .
Clearly, Qin is as desired. □

We are now ready to prove Lemma 3.5.
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Proof of Lemma 3.5. (ii): By Lemma 3.9 every escaping subdivision H of the hexagonal half- or full-
grid whose vertical double ray S0 diverges contains a diverging subdivision H ′ of the hexagonal half- or
full-grid, respectively, as a subgraph.

(i): Assume first that H is an escaping subdivision of the hexagonal half-grid, and let H ′ ⊆ H be
obtained from H by applying Lemma 3.9. Further, let H̃ be obtained from H ′ by deleting all horizontal
paths that are not of the form P ′

ij for i ∈ 2Z and j ∈ 3Z or i ∈ 2Z + 1 and j ∈ 3Z + 1. Then also
the subgraph H̃K of H̃ consisting of all Si with i ≥ K and all P ′

ij ⊆ H̃ with i > K is a subdivision of
the hexagonal half-grid, and we claim that it is K-fat. Indeed, to turn H̃K into a K-fat model of the
hexagonal half-grid we may choose the following sets Vx as branch sets, for every x ∈ V (H̃K) of degree 3.
Let x ∈ V (Si) and let Ee and Ef be the branch paths of H ′

K :=
⋃

i≥K Si ∪
⋃

i>K,j∈Z P
′
ij ⊆ H ′ starting

at x that are contained in Si. We then choose as Vx the union over Ee and Ef . By construction and since
the images in H ′

K of any two non-incident edges of the hexagonal half-grid have distance at least K in G,
it follows that the model is K-fat.

Second, assume that H is an escaping subdivision of the hexagonal full-grid, let H ′ ⊆ H be obtained
from H by applying Lemma 3.9, and let H̃ ⊆ H ′ be defined as above. Then the graph H̃K+1 defined
as above is K-fat for every K ∈ N by the argument above. Similarly, it follows by (the symmetry of)
the construction of H ′ in the proof of Lemma 3.9 that also the subgraph H̃−K−1 consisting of all Si

with i ≤ −K − 1 and all P ′
ij ⊆ H̃ with i ≤ −K − 1 is K-fat for all K ∈ N. Since G is locally finite,

we then find infinitely many S−K−1–SK+1 paths Wj in H̃ which are pairwise at least K apart. By the
assumptions on H̃ and since H̃ is escaping, gluing the Wi with H̃K+1 and H̃−K−1 together yields (after
possibly applying Proposition 3.6) a subdivision H ′′ of the hexagonal full-grid. By construction, H ′′ is
K-fat. □

3.6. Proof of the main results given Theorems 3.3 and 3.4. In this section we derive Theorems 1
to 4 from Theorems 3.3 and 3.4; in fact, we show the following more detailed versions.

Theorem 1’. Let G be a locally finite, quasi-transitive graph whose cycle space is generated by cycles of
bounded length. Then FG ≺ε

∞ G for every thick end ε of G.

Proof of Theorem 1 and Theorem 1’ given Theorem 3.4. By Observation 3.1 and Lemma 3.5 (i), Theo-
rem 3.4 yields Theorem 1’ and hence also Theorem 1, where we note that the subdivision obtained from
Lemma 3.5 (i) has all its rays in the same end as the full-grid obtained from Theorem 3.4. □

Theorem 2’. Let ε be a thick end of a locally finite, quasi-transitive graph G whose cycle space is generated
by cycles of bounded length. Then G contains a diverging subdivision of the hexagonal full-grid whose rays
all lie in ε.

Proof of Theorem 2 and Theorem 2’ given Theorem 3.4. By Observation 3.2 and Lemma 3.5 (ii), Theo-
rem 3.4 yields Theorem 2’, where we note that the subdivision obtained from Lemma 3.5 (ii) has all its
rays in the same end as the full-grid obtained from Theorem 3.4. For Theorem 2, note that every diverging
subdivision of the hexagonal full-grid can be contracted into a diverging minor of the full-grid. □

Theorem 3’. Let G be graph of finite maximum degree whose cycle space is generated by cycles of bounded
length. Then HG ≺ε

∞ G for every thick end ε of G.
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Proof of Theorem 3 and Theorem 3’ given Theorem 3.3. By Observation 3.1 and Lemma 3.5 (i), Theo-
rem 3.3 yields Theorem 3’, and hence also Theorem 3, where we note that the subdivision obtained from
Lemma 3.5 (i) has all its rays in the same end as the half-grid obtained from Theorem 3.3. □

Theorem 4’. Let ε be a thick end of a graph G of finite maximum degree whose cycle space is generated
by cycles of bounded length. Then G contains a diverging subdivision of the hexagonal half-grid whose rays
all lie in ε.

Proof of Theorem 4 and Theorem 4’ given Theorem 3.3. By Observation 3.2 and Lemma 3.5 (ii), Theo-
rem 3.3 yields Theorem 4’, where we note that the subdivision obtained from Lemma 3.5 (ii) has all its
rays in the same end as the half-grid obtained from Theorem 3.3. For Theorem 4’, note that a diverging
subdivision of the hexagonal half-grid can easily be contracted into a diverging minor of the half-grid. □

4. Diverging double rays and quasi-geodesic 3-stars of rays in thick ends

In this section we prove two theorems about double rays and 3-stars of rays in thick ends, which we
need for the proofs of Theorems 1 to 4.

4.1. Diverging double rays. Georgakopoulos and Papasoglu [21, Theorem 8.16] showed that every
connected graph of finite maximum degree which has an infinite set of pairwise disjoint rays has a diverging
double ray (whose tails may lie in two distinct ends). For the proofs of Theorems 3 and 4 we will need
the following variant of that theorem, which lets us find the diverging double ray in any thick end we like.

Theorem 4.1. Let G be a graph of finite maximum degree, and let ε be a thick end of G. Then G has a
diverging double ε-ray.

The proof of Theorem 4.1 uses the same idea as the one of [21, Theorem 8.16] by Georgakopoulos and
Papasoglu, in that Lemma 4.3 and Lemma 4.4 below are variants of [21, Corollary 8.15 and Lemma 8.17].
However, our proof is more involved, as we need to take care that the tails of the double ray lie in the
prescribed end.

Essentially, we will deduce Theorem 4.1 from the following coarse Menger’s theorem for two paths,
which was proven independently by the first author, Huynh, Jacobs, Knappe and Wollan [3, Theorem 1]
and by Georgakopoulos and Papasoglu [21, Theorem 8.1]; the version we state here is from the latter
authors. A metric graph is a pair (G, ℓ) of a graph G and an assignment of edge-lengths ℓ : E(G) → R>0.

Theorem 4.2. Let G be a metric graph, and let X,Y ⊆ V (G). For every K > 0, there is either

(i) a set B ⊆ V (G) of diameter ≤ K such that G−B contains no path joining X to Y , or
(ii) two X–Y paths at distance at least d := K/272 from each other.

It follows by a compactness argument that we may replace in Theorem 4.2 the set Y by an end ε and
the two paths in (ii) by ε-rays.

Lemma 4.3. Let (G, ℓ) be a metric graph such that B(G,ℓ)(v, n) is finite for all v ∈ V (G) and n ∈ N.
Let A be a finite set of vertices in G, and let ε be an end of G. For every K > 0, there is either

(i) a set B ⊆ V (G) of diameter ≤ K such that G−B contains no ε-ray starting at A, or
(ii) two ε-rays starting at A at distance at least d := K/272 from each other.
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Proof. In the following, we abbreviate d(G,ℓ) and B(G,ℓ) with dG and BG, respectively.
By the assumption on ℓ and since A is finite, the balls BG(A,n), for n ∈ N, are finite. Hence, there

exists, for every n ∈ N a unique component Cn of G − BG(A,n) such that every ε-ray has a tail in Cn.
Their neighbourhoods NG(Cn) ⊆ BG(A,n) are finite; so we may set kn := |NG(Cn)| and enumerate
NG(Cn) =: {vn1 , . . . , vnkn

}.
We apply Theorem 4.2 to the sets X := A and Y := NG(Cn) in G. If, for some n ∈ N, Theorem 4.2

yields a set B ⊆ V (G) of diameter ≤ K that separates A and NG(Cn), then by the definition of Cn this B
is as in (i). Hence, we may assume that for every n ∈ N, we find two A–NG(Cn) paths Pn, Qn that are at
least d := K/272 apart in G.

For all m ≤ n ∈ N, we define a km-tuple

tmn = ((tnm1 , t̃nm1 , snm1 ), . . . , (tnmkm
, t̃nmkm

, snmkm
)) ∈ Tm := ({0, . . . , d}2 × {−4, . . . , 4})km

of triples as follows. We let tnmi be the distance dG(Pn, v
m
i ) between Pn and vmi if it is less than d;

otherwise we set tnmi := d. Analogously, we let t̃nmi be the distance dG(Qn, v
m
i ) between Qn and vmi if

it is less than d; otherwise we set t̃nmi := d. Further, if tnmi ̸= 0 and t̃nmi ̸= 0, then we set snmi := 0.
Otherwise, it follows that precisely one of Pn and Qn meets vmi , and we then let snmi encode whether vmi

meets Pn (snmi ∈ {1, 2, 3, 4}) or Qn (snmi ∈ {−4,−3,−2,−1}) and whether its predecessor and successor
on Pn or Qn both lie in Cm (|snmi | = 1), both lie in G−Cm (|snmi | = 2), or its predecessor lies in Cm and
its successor lies in G− Cm (|snmi | = 3) or vice versa (|snmi | = 4).

Since all Tm are finite, there exist infinite index sets N ⊇ I0 ⊇ I1 ⊇ . . . such that, for all m ∈ N, all tmn
with n ∈ Im are equal. We pick, for every m ∈ N, some im ∈ Im. Now set

P̃im := Pim ∩ (G[Cm−1, 1]− Cm) and Q̃im := Qim ∩ (G[Cm−1, 1]− Cm),

and let P :=
⋃

m∈N P̃im and Q :=
⋃

m∈N Q̃im . We claim that P and Q are at least d apart in G and that
they both contain an ε-ray that starts in A. It then follows that these rays are as in (ii).

First, we show that P and Q are at least d apart in G. For this, recall that dG(Pn, Qn) ≥ d for all
n ∈ N by the choice of Pn, Qn. Now let m ≤ n ∈ N be given. We show that dG(P̃im , Q̃in) ≥ d; the other
case is symmetric. Clearly, if m = n, then dG(P̃im , Q̃in) ≥ d holds by the choice of Pim , Qin , so we may
assume that m < n. Set ℓ := dG(P̃im , Q̃in), and let W = w0 . . . wℓ be a shortest P̃im–Q̃in path. Then W

meets NG(Cm) in a vertex vmj because Q̃in ⊆ G[Cn−1, 1] ⊆ G[Cm, 1] and P̃im ⊆ G − Cm as m < n. It
follows that

ℓ = dG(w0, v
m
j ) + dG(v

m
j , wℓ) ≥ dG(P̃im , vmj ) + dG(v

m
j , Q̃in) ≥ dG(Pim , vmj ) + dG(v

m
j , Qin) ≥ timm

j + t̃inmj

= tinmj + t̃inmj = min{dG(Pin , v
m
j ), d}+min{dG(vmj , Qin), d} ≥ min{dG(Pin , Qin), d} = d.

where we used timm
j = tinmj since im, in ∈ Im. Hence, dG(P,Q) ≥ d as desired.

So to conclude the proof, it remains to show that P and Q both contain an ε-ray that starts at A. We
show the claim for P ; the other case is symmetric. By definition, it is clear that P meets A in a unique
vertex a, which is the endvertex of Pi1 in A; in particular, a has degree 1 in P . Hence, it suffices to show
that all other vertices in P have degree 2 in P , as then P contains a ray that starts in a, and which then
has to lie in ε since P − Cm =

⋃
n≤m P̃in is finite for all m ∈ N. By definition of P , every vertex of P

that is not contained in some NG(Cm) is contained in precisely one P̃im , and has thus degree 2 in P . So
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let some vmj ∈ V (P ) ∩ NG(Cm) be given. Then simm
j ∈ {1, 2, 3, 4}, and it follows that vmj has degree 2

in G because simm
j = s

im+1m
j by the choice of im, im+1. □

The remainder of the proof of Theorem 4.1 is now analogous to the one of [21, Theorem 8.16]. More
precisely, we have the following auxiliary lemma.

Lemma 4.4. Let G be a graph of finite maximum degree, and let ε be a thick end of G. Then there
is a finite set A of vertices in G and an assignment of edge-lengths ℓ : E(G) → R>0 with the following
properties:

(i) no ball of radius 1 in the corresponding metric dℓ separates A from ε,
(ii) lime∈E(G) ℓ(e) = 0, and
(iii) every ball of finite radius in dℓ is finite.

Proof. The proof is analogous to [21, Lemma 8.17] with just one exception: we choose the sequence
(Rn)n∈N of pairwise disjoint rays so that every Rn is an ε-ray, which is possible because ε is thick.

Note that (iii) follows easily from the proof, since the Sn are ‘thickened rings’ BG(o, rn) \BG(o, rn−1)

around a vertex o ∈ V (G) and because
∑

i∈N 1/n is infinite. □

Proof of Theorem 4.1. The proof is analogous to [21, Theorem 8.16] with just one exception: instead of
[21, Corollary 8.15 & Lemma 8.17] we apply Lemmas 4.3 and 4.4. □

4.2. Quasi-geodesic 3-stars of rays. By Theorem 4.1 every graph G of finite maximum degree contains
for every thick end ε a diverging double ε-ray. For the proofs of Theorems 1 and 2, we need the following
result, which strengthens Theorem 4.1 in the special case where G is quasi-transitive and accessible.

Theorem 4.5. Let ε be a thick end of a locally finite, accessible, quasi-transitive graph G. Then there
exists c ∈ N≥1 and ε-rays R1, R2, R3 in G such that R1 ∩ R2 = R1 ∩ R3 = R2 ∩ R3 = {v} for some
v ∈ V (G) and such that R1 ∪R2 ∪R3 is c-quasi-geodesic in G.

For the proof of Theorem 4.5, we first need the following auxiliary lemma.

Lemma 4.6. Let G be a locally finite, accessible, quasi-transitive graph that contains a thick end ε. Then
there exists a connected, one-ended, quasi-geodesic subgraph H of G such that every ray in H is an ε-ray
in G and such that the stabilizer of H acts quasi-transitively on H.

Proof. By a result of Diestel, Jacobs, Knappe and Kurkofka [10, Lemma 7.12] and in particular its proof
[11, Appendix A], there exists a connected, induced, one-ended subgraph H of G whose rays all lie in ε

such that every component of G − H has finite neighbourhood in H, such that there are only finitely
many orbits of such components under the stabilizer Γ of H in the automorphism group of G and such
that Γ acts quasi-transitively on H. It remains to prove that H is quasi-geodesic. Since there are only
finitely many orbits of components of G − H under Γ, each such component has finite neighbourhood
in H and because H is connected, there exists c ∈ N≥1 such that for every component C of G−H every
two vertices in NG(C) have distance at most c in H.

We claim that H is c-quasi-geodesic. Indeed, let x, y ∈ V (H) be given, and let P be a shortest x–y
path in G. Further, let Q0, . . . , Qm be the maximal non-trivial subpaths of P that are internally disjoint
from H. Then every Qi is internally contained in some component C of G − H and starts and ends
in NG(C). By the choice of c, there exists a path Q′

i in H of length at most c which has the same
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endvertices as Qi. It follows that the union W over P ∩ H and the Q′
m is connected, contained in H,

contains x, y, and hence contains an x–y path. Since all Qi are non-trivial and have thus length at least 1,
it follows that dH(x, y) ≤ |E(W )| ≤ |E(P ∩H)|+ c(m+ 1) ≤ c · |E(P )| = c · dG(x, y) as desired. □

We also need the following result of the first author, Diestel, Elm, Fluck, Jacobs, Knappe and Wollan [2].

Lemma 4.7 ([2, Lemma 4.3]). Let X be a c-quasi-geodesic subgraph of some graph G for some c ∈ N≥1.
If P is a shortest v–X path in G for some vertex v ∈ V (G), then X ∪ P is (2c+ 1)-quasi-geodesic in G.

We can now prove Theorem 4.5.

Proof of Theorem 4.5. Let us first assume that G is one-ended. In this case, we apply two compactness
arguments. First, a standard compactness argument (see e.g. [29, Proposition 5.2]) implies the existence
of a geodesic double ray R in the locally finite and quasi-transitive graph G.

To make the second compactness argument, we first show that G[R,K] ̸= G for all K ∈ N. Since G is lo-
cally finite, the set BG(r1Rr2K+1,K) is finite. As R is geodesic, the sets BG(R≤0,K) and BG(R≥2K+2,K)

are disjoint and not joint by an edge. Hence, every BG(R≤0,K)–BG(R≥2K+2,K) path meets either
BG(r1Rr2K+1,K) or G−G[R,K]. But since both R≤0 and R≥2K+1 lie in the unique end of G, there are in-
finitely many disjoint such paths, of which at most finitely many can meet the finite set BG(r1Rr2K+1,K).
Hence, G−G[R,K] is non-empty.

Thus, there exists vertices in G of arbitrary distance from R. Let xi be a vertex at distance i from R,
let rji be a vertex of R with dG(xi, rji) = dG(xi, R), and let Pi = pi0 . . . p

i
i be a shortest xi–rji path. Then

R ∪ Pi is 3-quasi-geodesic by Lemma 4.7. Since G is quasi-transitive, there is an infinite index set I ⊆ N
such that all rji lie in the same orbit. Let s ∈ V (G) be another vertex in that orbit. For all i ∈ I, let φi be
an automorphism of G that maps rji to s. Then, since G is locally finite, there exists an infinite index set
I1 ⊆ I such that φi(rji−1Rrji+1 ∪ pi0Ppi1) coincides for all i ∈ I1, amongst which we again find an infinite
index set I2 ⊆ I1 such that φi(rji−2Rrji+2 ∪ pi0Ppi2) coincides for all i ∈ I2 and so on. This results in
three internally disjoint, geodesic rays starting in s whose union is 3-quasi-geodesic. Obviously, all three
rays must lie in the unique end ε of G, so they are as desired.

Let us now assume that G has more than one end. Since G is accessible, there exists by Lemma 4.6
a connected, one-ended, c-quasi-geodesic, quasi-transitive subgraph H of G for some c ∈ N≥1 such that
every ray in H is an ε-ray in G. By the first case, we find the desired three rays R1, R2, R3 in H

whose union is 3-quasi-geodesic. Since H is a c-quasi-geodesic subgraph of G, the rays R1, R2, R3 form a
3c-quasi-geodesic subgraph of G. □

5. Half-grid minors

In this section we prove Theorem 3.3; in fact, we show a more detailed version, which we need in the
next section for the proof of Theorem 3.4.

Let R = . . . r−1r0r1 . . . be a double ray in a graph G, and let K ∈ N. A component C of G−BG(R,K)

is long if C has a neighbour in BG(R≥i,K) and in BG(R≤−i,K) for all i ∈ N. Further, C is thick if, for
every L ≥ K, some long component of G−BG(R,L) is contained in C.

Theorem 3.3’. Let R be a diverging double ray in a thick end ε of a locally finite graph G whose cycle
space is generated by cycles of bounded length. Then either Kℵ0

≺ε
UF G or G contains an escaping

subdivision H of the hexagonal half-grid whose first vertical ray is R.
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In particular, if Kℵ0 ̸≺ε
UF G and C is a thick component of G − BG(R,L) for some L ∈ N, then we

may choose the vertical double rays Si of H so that Si ⊆ C for all i ≥ 1.

Proof of Theorem 3.3 given Theorem 3.3’. By Theorem 4.1, there exists a diverging double ε-ray R in G.
Apply Theorem 3.3 to R. □

In the remainder of this section we prove Theorem 3.3’; see Section 3.3 for a sketch of the proof.

Lemma 5.1. Let G be a graph whose cycle space is generated by cycles of length at most κ ∈ N, and
let Y be a connected subgraph of G. Then for every component C of G− Y that attaches to Y , the graph
C[∂GC, ⌊κ−2

2 ⌋] is connected.

Note that if G is connected, then every component of G− Y attaches to Y .

Proof. Clearly, it suffices to show for every two vertices v0, v1 ∈ ∂GC that there exists a v0–v1 path
in C[∂GC, ⌊κ−2

2 ⌋]. So let v0, v1 ∈ ∂GC be given, and let u0 and u1 be vertices of Y which are adjacent
to v0 and v1, respectively. Since Y is connected, there exists a u1–u0 path Q in Y . Let P be a v0–v1 path
in C. Then D := v0Pv1u1Qu0v0 is a cycle in G. By assumption on the cycle space of G, we can write D

as a finite sum of cycles D1, . . . , Dn in G of length at most κ, i.e.

D =
∑

Di∈D
Di

where D := {D1, . . . , Dn}. Let D′ ⊆ {D1, . . . , Dn} consist of those Di that do not lie completely in C,
i.e. that contain a vertex of G−C. Note that Di∩C ⊆ C[∂GC, ⌊κ−2

2 ⌋] for all Di ∈ D′ since Di has length
at most κ and meets G− C. Let

H :=
⋃

Di∈D′

Di ∩ C ⊆ C

[
∂GC,

⌊
κ− 2

2

⌋]
⊆ C

be the subgraph of C consisting of all vertices and edges in C that lie on cycles from D′. Note that
v0, v1 ∈ V (H) since v0u0, v1u1 ∈ E(D). We claim that v0 and v1 lie in the same component of H, which
clearly yields the claim. So suppose for a contradiction that v0 and v1 lie in distinct components H0, H1

of H. Then the set F of edges in G between H0 and G − H0 is a cut in G that separates H0 and H1;
in particular, F is finite since G is locally finite and because H0 ⊆ H is finite as

⋃
Di∈D′ Di ⊇ H0 is a

finite union of finite cycles. Obviously, F must contain an edge f from P ⊆ C. Then f cannot lie in∑
Di∈D′ Di ⊆

⋃
Di∈D′ Di, since f ∈ E(C) but f /∈ E(H). Hence, as f ∈ E(P ) ⊆ E(D), it lies in

H ′ := D +
∑

Di∈D′

Di =
∑

Di∈D
Di +

∑
Di∈D′

Di =
∑

Di∈D\D′

Di ⊆ C,

where for the last inclusion we used that Di ⊆ C for all Di ∈ D \ D′ by the choice of D′. In particular,
the same argument also yields that E(P ) ∩ F ⊆ E(H ′).

As H ′ is a finite sum of cycles in G, it is an element of the cycle space of G. Thus, H ′ meets the finite
cut F in an even number of edges. As P is a finite path from v0 ∈ V (H0) to v1 ∈ V (H1) ⊆ V (G −H0),
it meets the finite cut F in an odd number of edges. Combining these two facts with E(P ) ∩ F ⊆ E(H ′)

yields that H ′ contains an edge f ′ ̸= f from F which does not lie on P . Since H ′ ⊆ C, the edge f ′ must
lie in C. But since f ′ is not an edge of P = D ∩ C, it is not an edge of D either. Hence, f ′ is an edge
of

∑
Di∈D′ Di, and thus an edge of

⋃
Di∈D′ Di. Since f ′ is also an edge of C, it lies in H, which is a

contradiction to the choice of F . □
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Lemma 5.2. Let R = . . . r−1r0r1 . . . be a diverging double ray in an end ε of a locally finite graph G.
Then for every K,n ∈ N some component of G−BG(R,K) attaches to BG(R≤−n,K) and BG(R≥n,K).

Proof. Since R diverges, there exists some m ∈ N such that R≤−m and R≥m are at least 2K + 2 apart
in G. Set N := max{n,m}. As G is locally finite, the set BG(r−NRrN ,K) is finite. Hence, as R≤−N

and R≥N are both ε-rays and thus equivalent, there exists an R≤−N–R≥N path P = p0 . . . pℓ in G that
avoids BG(r−NRrN ,K). Since p0 ∈ V (R≤−N ) and pℓ ∈ V (R≥N ), there is a first vertex pi of P that is
contained in BG(R≥N ,K), and a last vertex pj with j ≤ i that is still contained in BG(R≤−N ,K).

We claim that i ≥ j + 2, which then implies that P ′ := pj+1Ppi−1 is non-empty. As P avoids
BG(r−NRrN ,K) and by the choice of pi and pj , it then follows that P ′ is contained in a component of
G−BG(R,K), which then attaches to BG(R≤−N ,K) and BG(R≥N ,K) via pjpj+1 and pi−1pi, respectively,
and which is thus as desired.

So suppose for a contradiction that i− j ≤ 1. Then dG(pj , pi) ≤ i− j ≤ 1, and thus

dG(R≤−N , R≥N ) ≤ dG(R≤−N , pj) + dG(pj , pi) + dG(pi, R≥N ) ≤ K + 1 +K = 2K + 1,

which is a contradiction since dG(R≤−N , R≥N ) ≥ 2K + 2 by the choice of N . □

Lemma 5.3. Let R be a diverging double ray in a thick end of a locally finite graph G whose cycle space
is generated by cycles of bounded length. Then for every K ∈ N some component of G−BG(R,K) is long.

Proof. Let κ ∈ N such that the cycle space of G is generated by cycles of length at most κ. Suppose for
a contradiction that no component of G− BG(R,K) is long. Since R diverges, there exists some N ∈ N
such that dG(R≤−N , R≥N ) ≥ 2K + κ + 2. As G is locally finite, BG(r−NRrN ,K) is finite. Hence, the
set C of components of G− BG(R,K) which attach to BG(r−NRrN ,K) is finite. Since no C ∈ C is long
by assumption and because C is finite, there exists some m ∈ N such that NG(C) ⊆ BG(R≥−m,K) or
NG(C) ⊆ BG(R≤m,K) for all C ∈ C.

By Lemma 5.2, some component C of G−BG(R,K) attaches to BG(R≤−m−1,K) and BG(R≥m+1,K);
in particular, C /∈ C by the choice of m. Let U−, U+ ⊆ ∂GC be the set of vertices in C that send an
edge to BG(R≤−N ,K) or to BG(R≥N ,K), respectively. Then U− ∪ U+ = ∂GC because C /∈ C. Since
C[∂GC, ⌊κ−2

2 ⌋] is connected by Lemma 5.1, this implies that BC(U
−, ⌊κ−2

2 ⌋) and BC(U
+, ⌊κ−2

2 ⌋) either
intersect non-emptily or there is an edge between them. Hence, there are vertices u− ∈ U− and u+ ∈ U+

of distance at most ⌊κ−2
2 ⌋+ 1 + ⌊κ−2

2 ⌋ from each other. Thus,

dG(R−N , RN ) ≤ dG(R−N , u−) + dG(u
−, u+) + dG(u

+, RN )

≤ (K + 1) +

(⌊
κ− 2

2

⌋
+ 1 +

⌊
κ− 2

2

⌋)
+ (K + 1)

≤ 2K + κ+ 1

which is a contradiction since dG(R−N , RN ) ≥ 2K + κ+ 2 by the choice of N . □

Lemma 5.4. Let ε be an end of a locally finite graph G. Suppose there are M0 < M1 < . . . ∈ N and
double ε-rays S0, S1, . . . such that S0 diverges, such that Si ⊆ G[S0,Mi]−BG(S

0,Mi−1) for all i ∈ N≥1

and such that there are infinitely many disjoint S0
≥0–S

i
≥0 paths and infinitely many disjoint S0

≤0–S
i
≤0 paths

in G[S0,Mi]. Then either Kℵ0
≺ε

UF G, or there are 0 = i0 < i1 < . . . ∈ N and an escaping subdivision H

of the hexagonal half-grid whose vertical double rays are the Sij .



ASYMPTOTIC HALF-GRID AND FULL-GRID MINORS 19

Proof. By passing to a subsequence of the Si if necessary, we may assume that Mi > Mi−1 + 2i and that

(a) Si ⊆ G[S0,Mi]−BG(S
0,Mi−1 + 2i) for all i ∈ N.

Set T ′
0 := S0

≥0 and T ′′
0 := S0

≤0. By assumption and Lemma 3.7, every Si has disjoint tails T ′
i and T ′′

i

that are contained in G[T ′
0,Mi] and in G[T ′′

0 ,Mi], respectively. For each vertex t in T ′
i we choose a shortest

t–T ′
0 path in G, which then has length ≤ Mi and lies in G[T ′

0,Mi]. Then infinitely many of these paths
are T ′

i–T ′
0 paths (i.e. they only have their first vertex on T ′

i ), of which infinitely many are pairwise disjoint
since they have length ≤ Mi and because G is locally finite; let us denote these paths by Qij .

For every Qij let kij ̸= i be maximal such that dG(Qij , T
′
kij

) < kij ; if no such kij exists, we set kij := 0.
Note that kij < i since dG(Qij , T

′
k) ≥ dG(Qij , S

k) ≥ k for all k > i by (a) and because Qij ⊆ G[T ′
0,Mi]

for all i, j ∈ N. We now obtain T ′
i–T ′

kij
paths Q′

ij by concatenating a suitable (initial) subpath of Qij with
a shortest Qij–T ′

kij
path. In particular, since G is locally finite, we may assume that the Q′

ij for every
(arbitrary but fixed) i ∈ N≥1 are pairwise disjoint. By the choice of the kij it follows that

(b) dG(Q
′
ij , T

′
k) ≥ k for all k, j ∈ N and i ∈ N≥1 with k /∈ {i, kij}.

Moreover, since Qij is a shortest path between its first vertex and T ′
0, it follows that once Qij meets

G[T ′
0,Mkij−1 + i] it will stay in there. By the definition of Q′

ij and kij and by (a), this implies that

(c) Q′
ij ⊆ G[T ′

0,Mi]−BG(T
′
0,Mkij−1 + i) for all i ∈ N≥1 and j ∈ N.

Let X be the auxiliary graph on the vertex set {T ′
i | i ∈ N} where T ′

i and T ′
i′ are connected by an edge

in X for i′ < i if and only if infinitely many of the Q′
ij have one endvertex on T ′

i′ . Clearly, every T ′
i is

adjacent to at least one T ′
i′ with i′ < i, and hence X is connected. Thus, since X is infinite, it either has

a vertex of infinite degree or it contains a ray by Lemma 2.1.
Let us first assume that there is some ℓ ∈ N and an infinite subset I = {i0, i1, . . . } ⊆ N with i0 < i1 < . . .

such that T ′
ℓ is adjacent in X to all T ′

i with i ∈ I. Then the T ′
i for i ∈ I form the branch sets Vn := V (T ′

in
)

of an ultra fat model of Kℵ0 in G. Indeed, we have dG(Vn, Vm) ≥ min{n,m} by (a), so it remains to find
suitable branch paths. Given any enumeration of N2, we may choose the branch paths Pnm between Vn

and Vm recursively. Since G is locally finite, and because at step (n,m) we have only chosen finitely
many branch paths Pn′m′ , there exist paths Q′

inj
, Q′

imj′ that both end in T ′
ℓ such that the path Pnm

consisting of Q′
inj

, Q′
imj′ and a suitable subpath of T ′

ℓ is at least min{n,m} apart from all earlier chosen
branch paths Pn′m′ . Then by construction and (a) and (b) it follows that also dG(Pnm, Vk) ≥ k for all
k /∈ {n,m}, and hence the model of Kℵ0

is ultra fat. Moreover, since its branch sets are the vertex sets
of the ε-rays T ′

in
, we find Kℵ0

≺ε
UF G.

Hence, we may assume that there are 0 = i0 < i1 < . . . ∈ N such that every T ′
in

is adjacent in X

to T ′
in−1

. Then there are, for every n ∈ N, infinitely many Q′
inj

that end in T ′
in−1

. We reindex these Q′
inj

by N≥1 × N, and the Sin by N.
We now apply the same argument to the tails T ′′

i of the (reindexed) Si. This either yields Kℵ0
≺ε

UF G,
or we find indices 0 = i0 < i1 < . . . ∈ N such that, for every n ∈ N, there are pairwise disjoint T ′′

in−1
–T ′′

in

paths Q′′
inj

that satisfy (b) and (c) with T ′′
k instead of T ′

k. Now the Sin form the vertical double rays of
an escaping subdivision of the hexagonal half-grid. Indeed, we can choose for every n ∈ N infinitely many
T ′
in−1

–T ′
in

paths P ′
inj

in
⋃

in−1<k≤in
(T ′

k ∪
⋃

j∈N Q′
kj). We also set P ′

in(−j) := Q′′
inj

for all j ∈ N. Then
combining (c) of the Q′

inj
and the Q′′

inj
with Lemma 3.7 yields that

(c’) P ′
inj

⊆ G[S0,Mi]−BG(S
0,Min−1 + i)
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for every i ∈ N≥1 and all but finitely j ∈ N. Since G is locally finite, we now obtain a subdivision of the
hexagonal half-grid with vertical double rays the Sin by recursively selecting paths Pnj amongst the P ′

ink

to represent the horizontal edges enj (compare Proposition 3.6). □

We are now ready to prove Theorem 3.3’.

Proof of Theorem 3.3’. Let κ ∈ N such that the cycle space of G is generated by cycles of length at
most κ. Let Nn, for n ∈ N, be such that dG(R≥Nn

, R≤−Nn
) > n, which exists since R diverges.

By Lemma 5.4, it suffices to show that there are M0 < M1 < . . . ∈ N and diverging double ε-rays
R := S0, S1, . . . such that Si ⊆ G[S0,Mi] − BG(S

0,Mi−1) for all i ∈ N≥1 and such that there are
infinitely many disjoint S0

≥0–S
i
≥0 paths and infinitely many disjoint S0

≤0–S
i
≤0 paths in G[S0,Mi]. We will

prove the assertion with M0 := 0 and Mi := M0 + ⌊κ/2⌋ for all i > 0.
Let i > 0 be given. By Lemma 5.3, there exists a long component Ci of G−BG(R,Mi−1). For the ‘in

particular’ part we note that if we are given some L ∈ N and a thick component C of G−BG(R,L), then
we may set M0 := L instead of M0 := 0 and choose as Ci always a long component of G−BG(R,Mi−1)

which is contained in C.
Set U+ := ∂GCi ∩ BG(R≥0,Mi−1 + 1) and U− := ∂GCi ∩ BG(R≤0,Mi−1 + 1). Since G is locally

finite and Ci is long, U+ and U− are infinite. As Ci[∂GCi, ⌊κ−2
2 ⌋] is connected by Lemma 5.1, apply-

ing the Star-Comb Lemma (cf. Lemma 2.1) in Ci[∂GCi, ⌊κ−2
2 ⌋] to U+ and U−, respectively, yields two

combs D+ and D−. By Lemma 3.7, their spines S+ and S− are eventually contained in G[R≥NMi
,Mi]

and G[R≤−NMi
,Mi], respectively, i.e. they have tails T+, T− such that T+ ⊆ G[R≥NMi

,Mi] and T− ⊆
G[R≤−NMi

,Mi]. In particular, T+, T− are disjoint by the choice of NMi , so we can link them by a path
in the connected Ci[∂GCi, ⌊κ−2

2 ⌋] to obtain a double ray Si ⊆ Ci[∂GCi, ⌊κ−2
2 ⌋]. Clearly, Si is as desired.

Indeed, the infinitely many S0
≥0–S

i
≥0 paths can be obtained by extending the paths in D+ from T+ to its

teeth by shortest paths to S0, and analogously for T−. □

6. Full-grid minors

In this section we prove Theorem 3.4, which we restate here for convenience.

Theorem 3.4. Let ε be a thick end of a locally finite, quasi-transitive graph G whose cycle space is
generated by cycles of bounded length. Then either Kℵ0

≺ε
UF G or G contains an escaping subdivision of

the hexagonal full-grid whose rays all lie in ε.

In fact, we will prove the following variant of Theorem 3.4, which implies Theorem 3.4:

Theorem 6.1. Let G be a locally finite, quasi-transitive graph whose cycle space is generated by cycles of
bounded length. If G has a thick end, then either Kℵ0

≺UF G or G contains an escaping subdivision of
the hexagonal full-grid.

We remark that instead of adding Theorem 6.1 as an intermediate step in the proof of Theorem 3.4 we
could have also formulated the three lemmas below which we use to construct either an ultra fat model
of Kℵ0

or an escaping subdivision of the hexagonal full-grid (Lemmas 6.2, 6.8 and 6.9) so that we may
choose a thick end ε, and the lemma then returns the desired structure ‘in’ ε. However, while this would
have been possible in Lemmas 6.2 and 6.9 without changing their proofs, this is not true for Lemma 6.8.
There, we would then have to use the fact that G is accessible, to reduce the problem to one-ended graphs.
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Proof of Theorem 3.4 given Theorem 6.1. By Theorem 2.2, G is accessible. Hence, by Lemma 4.6, there
exists a connected, one-ended, c-quasi-geodesic, quasi-transitive subgraph X of G for some c ∈ N such
that every ray in X is an ε-ray in G. Applying Theorem 6.1 to X yields either an ultra fat model
((Vi)i∈N, (Eij)i ̸=j∈N) of Kℵ0

in X or an escaping subdivision H of the hexagonal full-grid in X. Since X

is a c-quasi-geodesic subgraph of G, we find in the former case that ((Vi)i∈cN, (Eij)i̸=j∈cN) is an ultra fat
model of Kℵ0 in G. In fact, since every ray in X is an ε-ray in G, we have Kℵ0 ≺ε

UF G. Similarly, in the
latter case, H contains a subdivision of the hexagonal full-grid which is escaping in G. Indeed, we may
choose vertical double rays . . . , Si−1 , Si0 , Si1 , . . . of H such that i0 = 0 and Mij−1+2ij ≥ c(Mij−1

+2j) for
j > 0, and similarly Mij+1 +2|ij | ≥ c(Mij+1 +2|j|) for j < 0. Then adding suitable Sij–Sij+1 paths in H

yields a subdivision H ′ ⊆ H of the hexagonal full-grid which is escaping in G since X is a c-quasi-geodesic
subgraph of G. Moreover, all rays in H ′ are ε-rays. □

In the remainder of this section we prove Theorem 6.1. The formal proof of Theorem 6.1, which collects
the tools from this whole section, can be found at the end of the last subsection, Section 6.2.

We first give a brief overview of this section; a more detailed sketch of the proof of Theorem 6.1 can
be found in Section 3.4. Let G be a locally finite, quasi-transitive graph whose cycle space is generated
by cycles of bounded length and which has a thick end. Further, let R = . . . r−1r0r1 . . . be a double ray,
and let K ∈ N. Recall that a component C of G−BG(R,K) is long if C has a neighbour in BG(R≥i,K)

and in BG(R≤−i,K) for all i ∈ N. Further, C is thick if, for every L ≥ K, some long component of
G−BG(R,L) is contained in C.

In Lemma 6.2 below, we show that if G contains a diverging double ray R such that, for some L ∈ N,
G − BG(R,L) has at least two thick components, then either Kℵ0

≺UF G or G contains an escaping
subdivision of the hexagonal full-grid. Our remaining task then is to prove that G indeed contains such
a double ray R. Showing this will be the main effort of this proof, and it will be done in Section 6.2 (see
Lemmas 6.8 and 6.9). For this, in Section 6.1, we provide with Lemma 6.5 a sufficient condition for G to
contain Kℵ0

as an ultra fat minor, which enables us to find an ultra fat Kℵ0
minor in G if we cannot find

such a double ray R.

Lemma 6.2. Let R be a diverging double ray in a locally finite graph G whose cycle space is generated
by cycles of bounded length. Suppose that for some L ∈ N, there are at least two thick components of
G−BG(R,L). Then either Kℵ0

≺UF G, or G contains an escaping subdivision of the hexagonal full-grid.

Proof. Let C ̸= D be two distinct thick components of G−BG(R,L). Since we are done if Kℵ0
≺UF G, we

may assume that applying Theorem 3.3’ to R, K and C or D, respectively, yields escaping subdivisions HC

and HD, respectively, of the hexagonal half-grid. Let MC
0 < MC

1 < . . . and MD
0 < MD

1 < . . . witness
that HC and HD are escaping. Further, let SC

i , SD
i and PC

ij , P
D
ij be the vertical double rays and horizontal

paths of HC and HD, respectively. By the ‘in particular’ part of Theorem 3.3’, it follows that the SC
i and

the SD
i are contained in C and D, respectively; in particular, they are disjoint. Moreover, by property (ii)

of escaping subdivisions, we have that for M := max{MC
1 + 2,MD

1 + 2} the paths PC
ij and PD

ij with
i ≥ M are contained in C and D, respectively, and are hence disjoint from each other. Let H ′

C ⊆ HC be
a subdivision of the hexagonal half-grid with vertical double rays SC

0 and SC
i for i ≥ M , which we may

obtain by choosing as the new branch paths for the horizontal edges e1j infinitely many disjoint SC
0 –SC

M

paths QC
j in H ′

C . Let H ′
D be chosen analogously. Clearly, H ′

C and H ′
D are still escaping.
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Now since SC
0 = R = SD

0 , gluing H ′
C and H ′

D together along R yields a graph H ′ which is nearly as
desired except that the paths QC

j and QD
ℓ may intersect. But since G is locally finite, we can delete some

of the QC
j and QD

ℓ and apply Proposition 3.6 to obtain a subdivision H ⊆ H ′ of the hexagonal full-grid.
By construction, H is escaping. □

6.1. Half-grids with crosses. In this section we establish a sufficient condition which ensures that a
graph G contains Kℵ0

as an ultra fat minor. This condition essentially requires an escaping subdivision
H ⊆ G of the hexagonal half-grid, and infinitely many H-paths in G that ‘jump over’ the vertical double
rays in H. For this, we first need the following two auxiliary statements about Kℵ0 minors in half-grids
with certain additional edges.

Lemma 6.3. Let G be obtained from the half-grid by adding all edges of the form (i, 0)(i + 1, 1) and
(i, 1)(i + 1, 0) for i ∈ N. Then G contains a model (V, E) of Kℵ0 such that Vi, V (Eij) ⊆ N≥i × Z for all
i < j ∈ N and such that the Eij are pairwise disjoint.

Proof. One can easily construct the Kℵ0
minor recursively starting from K1 with branch set V1 := {(0, 0)}.

For this, assume that we have already defined a model of Kn with branch sets V1, . . . , Vn, branch paths Eij

and integers jn, ℓn ∈ N such that Vi, Eij ⊆ {i, . . . , ℓn} × {−jn, . . . , 0, . . . , jn} and such that either all Vi

meet {i, ℓn}×{−jn} or all Vi meet {0, ℓn}×{jn} and such that the Eij are pairwise disjoint. We can then
extend the branch sets V1, . . . , Vn and add a new branch set Vn+1 as well as new branch paths E(n+1)j as
depicted in Figure 6.1 such that V1, . . . , Vn+1 are the branch sets and the Eij are the branch paths of a
Kn+1 minor. □

K4

V1 V2 V3 V4

V5

K5

Figure 6.1. Sketch of a K5 minor in a half-grid with all (i, 0)(i+1, 1) and (i, 1)(i+1, 0)

edges. The branch paths Eij between V5 and the Vi are the thickened (i, 0)(i+1, 0) edges.

In particular, we have the following corollary:

Corollary 6.4. Let X be obtained from the half-grid by adding disjoint edges fn between (in, kn) and
(jn, ℓn), for every n ∈ N, such that in, jn < in′ , jn′ and |in − jn| ≥ 2 for all n < n′. Then X contains a
model (V, E) of Kℵ0

such that Vi, V (Eij) ⊆ N≥i × Z for all i < j ∈ N and such that the Eij are pairwise
disjoint.
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Proof. It is straight forward to check that the lines {in} × Z in X form the vertical double rays of a sub-
division X ′ of the graph G in the premise of Lemma 6.3 such that every branch path in X ′ corresponding
to an edge of G between {n}×Z and {n+1}×Z is contained in X[{in, . . . , in+1}×Z]. Hence, Lemma 6.3
immediately yields the assertion. □

Before we can state the main lemma of this subsection, we first need the following definition. Let H be
an escaping subdivision of the hexagonal half-grid in a graph G with vertical double rays Si and horizontal
paths Pij . An H-path Q in G with endvertices on Si and Sj for some i, j ∈ N is K-fat for some K ∈ N if

• dG(Q,Sk) ≥ min{k,K} for all k ̸= i, j ∈ N, and
• dG(Q,Pkℓ) ≥ min{k,K} for all k ∈ N and ℓ ∈ Z.

Lemma 6.5. Let H be an escaping subdivision of the hexagonal half-grid in a locally finite graph G with
vertical double rays Si. Suppose there are infinitely many pairwise disjoint H-paths Qm with endvertices on
Sim and Sjm for some im, jm ∈ N such that Qm is m-fat and such that im, jm < im′ , jm′ and |im−jm| ≥ 2

for all m < m′. Then H contains Kℵ0
as an ultra fat minor.

Proof. Since G is locally finite and the Qm are finite, we may assume that dG(Qm, Qm′) ≥ m for all
m < m′ ∈ N, by possibly deleting some of the Qm. Further, we may assume, for every Qm =: qm0 . . . qmnm

,
that Qm ∩ G[Sim , i′m] = qm0 . . . qmi′m and Qm ∩ G[Sjm , j′m] = qmnm−j′m

. . . qmnm
where i′m := min{⌊im/3⌋,m}

and j′m := min{⌊jm/3⌋,m}. In particular, if Qm has distance less than ⌊i′m/3⌋ to vertices u, v ∈ V (Sim),
then dG(u, v) < i′m, and similarly for jm. Indeed, let Q′

m be a subpath of Qm which is a BG(S
im , i′m)–

BG(S
jm , j′m) path. Then we can replace Qm by a path that consists of Q′

m and a shortest Sim–Q′
m path

and a shortest Q′
m–Sjm path. Note that to regain that dG(Qm, Pkℓ) ≥ min{k,m}, we might have to delete

some of the Pkℓ. But since the new Qm can only be too close to paths Pkℓ with k ∈ {im, im+1, jm, jm+1}
and because G is locally finite, we only need to delete at most finitely many Pkℓ for every k, so by
Proposition 3.6 this yields a subdivision H ′′ ⊆ H ′ of the hexagonal half-grid with the same vertical
double rays as H ′.

Then the graph H̃ obtained from the union of H ′′ and the Qm is a subdivision of a graph X as in
the premise of Corollary 6.4. Hence, G contains a model (V, E) of Kℵ0

such that Vi, V (Eij) ⊆ H̃i :=

H ′′
≥i ∪

⋃
m≥i Qm and such that the Eij are pairwise disjoint. By Lemma 3.9 and the assumptions on

the Qm, we may assume for every K ∈ N that the images of every two non-incident edges of X have
distance at least ⌊K/3⌋ in G if their images in H̃ are contained in H̃K . Since every vertex of Kℵ0 has
degree at least 2, we may assume that if some Vi ∈ V meets some branch paths of H̃ in an inner vertex,
then it in fact contains it. Similarly, every Eij ∈ E contains any branch path of H̃ as soon as it meets
an inner vertex of it. Hence, since the Vi, Eij are pairwise disjoint (except for incident branch set - path
pairs) and contained in H̃i, they have distance at least ⌊i/3⌋ to all Vk, Ekℓ with k ≥ i. It follows that
((Vi)i∈3N, (Eij)i ̸=j∈3N) is ultra fat. □

6.2. Finding two thick components. Let G be a locally finite, quasi-transitive graph whose cycle
space is generated by short cycles. In this subsection we show that if G has a thick end, then either
Kℵ0

≺UF G, or G contains a quasi-geodesic double ray such that, for some L ∈ N, there are at least
two thick components of G − BG(R,L). Together with Lemma 6.2, this then concludes the proof of
Theorem 6.1. The proof of this assertion is mainly divided into two lemmas, Lemmas 6.8 and 6.9 below;
see Section 3.4 for a sketch of the proof.
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To carry out the proofs of Lemmas 6.8 and 6.9, we need the following two auxiliary statements.

Lemma 6.6. Let R = . . . r−1r0r1 . . . be a quasi-geodesic double ray in a graph G of finite maximum
degree whose cycle space is generated by cycles of bounded length. For every K,N ∈ N there exist d =

d(K,N), ℓ = ℓ(K) ∈ N such that the following holds: If a component C of G−BG(R,K) has neighbours in
BG(R≤i,K) and BG(R≥i+N ,K) for some i ∈ Z, then there exist vertices x ∈ ∂GC ∩BG(ri−ℓRri,K + 1)

and y ∈ ∂GC ∩BG(ri+NRri+N+ℓ,K + 1) such that dC(x, y) ≤ d.

Proof. Let c, κ ∈ N such that R is c-quasi-geodesic and such that the cycle space of G is generated by
cycles of length at most κ. By assumption, the maximum degree ∆(G) of G is finite. We prove the
assertion with d := N ·∆(G)K+⌊κ

2 ⌋+1 + κ and ℓ := c(2K + κ+ 1).
Let U+, U∗, U− ⊆ BC(∂GC, ⌊κ−2

2 ⌋) be the set of vertices in C that have distance at most K+⌊κ
2 ⌋ in G

from R≥i+N , riRri+N and R≤i, respectively; and note that by the assumptions on C, the sets U+ and U−

are non-empty. By Lemma 5.1, C[∂GC, ⌊κ−2
2 ⌋] is connected. Hence, since U+, U− ⊆ BC(∂GC, ⌊κ−2

2 ⌋),
there is a U+–U− path P = p0 . . . pn in C[∂GC, ⌊κ−2

2 ⌋]. Clearly, since BC(∂GC, ⌊κ−2
2 ⌋) = U+ ∪U∗ ∪U−,

the choice of P guarantees that P̊ = p1 . . . pn−1 is contained in U∗, and hence P has length at most
|U∗| + 1 ≤ N · ∆(G)K+⌊κ

2 ⌋+1. Let j, j′ ∈ Z such that P starts in V (C) ∩ BG(rj ,K + ⌊κ
2 ⌋) and ends in

V (C)∩BG(rj′ ,K+⌊κ
2 ⌋), and let Q be a shortest BG(rj ,K+1)–P path and Q′ a shortest BG(rj′ ,K+1)–P

path. Then the concatenation of Q,P and Q′ yields a BG(rj ,K + 1)–BG(rj′ ,K + 1) path P ′ in G which
starts in a vertex x ∈ ∂GC ∩BG(rj ,K + 1) and ends in some y ∈ ∂GC ∩BG(rj′ ,K + 1). In particular, Q
and Q′ have length at most ⌊κ−2

2 ⌋, and hence P ′ has length at most d, which implies dC(x, y) ≤ d.
Moreover, j ≥ i + N and j′ ≤ i. It remains to show that j ≤ i + N + ℓ and j′ ≥ i − ℓ. Since P̊ lies
in U∗, there exists a p1–riRri+N path Q′′ of length at most K + ⌊κ

2 ⌋. Then Qp0p1Q
′′ is an rj–rk path

for some k ≤ i+N . As Qp0p1Q
′′ has length at most (K + ⌊κ

2 ⌋) + 1 + (K + ⌊κ
2 ⌋) ≤ 2K + κ+ 1 and R is

c-quasi-geodesic, it follows that |j− k| = dR(rj , rk) ≤ c(2K +κ+1) = ℓ, and hence j ≤ k+ ℓ ≤ i+N + ℓ.
The case j′ ≥ i− ℓ is analogous. □

Corollary 6.7. Let L ∈ N, and let R be a quasi-geodesic double ray in some locally finite graph G whose
cycle space is generated by cycles of bounded length. Then G − BG(R,L) has at most finitely many long
components.

In particular, if, for every K ≥ L, G−BG(R,K) has a long component CK , then G−BG(R,L) has a
thick component which contains infinitely many CK .

Proof. Applying Lemma 6.6 to R and K := L and N := 0 yields some ℓ ∈ N such that every long
component of G − BG(R,L) has a neighbour in BG(r0Rrℓ, L). Hence, since BG(r0Rrℓ, L) is finite as
r0Rrℓ is finite and G is locally finite, there are at most finitely many long components.

For the ‘in particular’-part note that since G is locally finite, every component of G−BG(R,L) which
contains a long component of G − BG(R,K) for some K ≥ L is long. Hence, the assertion follows from
the first part by the pigeonhole principle. □

We can now prove the two main lemmas of this section. Given a double ray R = . . . r−1r0r1 . . . in a
graph G, a component C of G−BG(R,L) is half-long if C has neighbours in BG(R≥i, L) or in BG(R≤−i,K)

for all i ∈ N, and C is half-thick if, for every M ≥ L, some half-long component of G − BG(R,M) is
contained in C.
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Lemma 6.8. Let c, L ∈ N and let R be a c-quasi-geodesic double ray in a locally finite, quasi-transitive
graph G whose cycle space is generated by cycles of bounded length. Assume that G−BG(R,L) has distinct
components C ̸= D such that C is thick and D is half-thick. Then G contains a c-quasi-geodesic double
ray S such that G−BG(S,L) has two thick components.

Proof. Let κ ∈ N such that the cycle space of G is generated by cycles of length at most κ. As we are done
if D is thick, we may assume that we can enumerate R =: . . . r−1r0r1 . . . so that NG(D) ⊆ BG(R≥0, L).
Since G is quasi-transitive, there is an infinite index set I0 ⊆ N such that all ri with i ∈ I0 lie in the
same Aut(G)-orbit. Let v be another vertex in that orbit. Then there exists a sequence (φi)i∈I0 of
automorphisms of G such that φi(ri) = v. Since G is locally finite, there is an infinite index set I1 ⊆ I0

such that φi(ri−1riri+1) coincides for all i ∈ I1 amongst which we again find some infinite set I2 ⊆ I1

such that φi(ri−2 . . . ri+2) coincides for all i ∈ I2 and so on. Now pick for every n ∈ N some in ∈ In, and
let I consist of these in. This leads to a c-quasi-geodesic double ray S that contains v and such that every
subpath of S of length 2ℓ ∈ N that contains v as central vertex is the image of rin−ℓRrin+ℓ under φin for
all in ∈ I with n ≥ ℓ. We enumerate S =: . . . s−1s0s1 . . . where s0 := v and s1 = φi1(ri1+1).

We claim that S is as desired. For this, we show that, for every K ≥ L, G − BG(S,K) has long
components C ′

K , D′
K such that every C ′

K–D′
K path in G meets BG(S,L). Then the assertion follows.

Indeed, by Corollary 6.7, G − BG(S,L) has a thick component E which contains infinitely many of the
C ′

K , D′
K . If infinitely many of the C ′

K , D′
K do not lie in E, then applying Corollary 6.7 again yields a

second thick component E′ ̸= E. Otherwise, at most finitely many of the C ′
K , D′

K are not contained in E,
which implies that E contains both C ′

K and D′
K for some K ≥ L. But since E is connected and avoids

BG(S,L), this contradicts that every C ′
K–D′

K path meets BG(S,L).
So let K ≥ L be given. It remains to show that G−BG(S,K) has long components C ′

K , D′
K such that

every C ′
K–D′

K path in G meets BG(S,L). Since C is thick and D is half-thick there exist components
CK ⊆ C and DK ⊆ D of G−BG(R,K) such that CK is long and DK is half-long.

Claim 1. There are long components C ′
K , D′

K of G − BG(S,K) and vertices x ∈ ∂GC
′
K and y ∈ ∂GD

′
K

such that φ−1
i (x) ∈ ∂GCK and φ−1

i (y) ∈ ∂GDK for infinitely many i ∈ I.

Proof. Let us first find a component D′
K . Since NG(D) ⊆ BG(R≥0, L) and K ≥ L, we also have

NG(DK) ⊆ BG(R≥0,K). Let m ∈ N such that NG(DK) ∩ BG(rm,K) ̸= ∅. For every n ∈ N, let
ℓ, dn be given by applying Lemma 6.6 to R, K and N := 2n (note that ℓ does not depend on N).

Then there exists, for every n ∈ N and i ≥ m+n, a BG(ri−n−ℓRri−n,K +1)–BG(ri+nRri+n+ℓ,K +1)

path Pin in DK of length at most dn with endvertices pin ∈ ∂GDK ∩ BG(ri−n−ℓRri−n,K + 1) and
qin ∈ ∂GDK ∩BG(ri+nRri+n+ℓ,K + 1).

By the choice of I, we have φi(ri−ℓRri+ℓ) = s−ℓSsℓ for all large enough i ∈ I, and hence these
automorphisms φi map BG(ri−ℓRri+ℓ,K + 1) to BG(s−ℓSsℓ,K + 1). As G is locally finite, the set
BG(s−ℓSsℓ,K + 1) is finite. Combining these facts with pi0, qi0 ∈ BG(ri−ℓRri+ℓ,K + 1) yields that there
are p0, q0 ∈ V (G) and an infinite index set J0 ⊆ I such that φi(pi0) = p0 and φi(qi0) = q0 for all i ∈ J0.
Using again that G is locally finite and Pi0 has length at most d0 for all i ∈ J0, we find a p0–q0 path
P0 ⊆ G and an infinite index set J ′

0 ⊆ J0 such that φi(Pi0) = P0 for all i ∈ J ′
0. By the same argument,

we find a subsets J ′
0 ⊇ J ′

1 ⊇ . . . such that, for all n ∈ N and i ∈ J ′
n, φi(Pin) = Pn for some path Pn ⊆ G

with endvertices pn, qn ∈ V (G). Pick for every n ∈ N some i ∈ J ′
n and let J consist of these i.
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We claim that there is a component D′
K of G − BG(S,K) which contains infinitely many of the Pn,

and which is hence long. For this, we first show that no Pn meets BG(S,K). So let n ∈ N be given, and
set d′n := n+ ℓ+ c(dn + 2K + 2). By the choice of Pn, we have Pn = φi(Pin) for all large enough i ∈ J .
Since also φi(BG(ri−d′

n
Rri+d′

n
,K)) = BG(s−d′

n
Ssd′

n
,K) for all large enough i ∈ J and since Pin avoids

BG(R,K), it follows that Pn avoids BG(s−d′
n
Ssd′

n
). Moreover, Pn is also disjoint from BG(S<−d′

n
,K)

and BG(S>d′
n
,K) since d′n = n+ ℓ+ c(dn +2K +2) and because S is c-quasi-geodesic and Pn has length

at most dn and starts in BG(s−n−ℓSs−n,K + 1) and ends in BG(snSsn+ℓ,K + 1).
So every Pn avoids BG(S,K) and is hence contained in a component of G−BG(S,K). By the choice of ℓ

via Lemma 6.6 and because Pn starts in BG(S≥n,K+1) and ends in BG(S≤−n,K+1), every component
that contains some Pn with n ≥ ℓ attaches to BG(s0Ssℓ,K). Since this set is finite as G is locally finite,
infinitely many Pn lie in the same component D′

K of G − BG(S,K), which then needs to be long. Now
since φ−1

i (Pn) = Pin ⊆ DK for all i ∈ I ′, where I ′ is an infinite subset of I, we may choose y ∈ ∂GD
′
K as

one endvertex of some Pn which is contained in D′
K .

The proof for C ′
K is now completely analogous except that we have to use I ′ instead of I in order to

ensure that φ−1
i (x) ∈ ∂GCK and φ−1

i (y) ∈ ∂GDK for (the same) infinitely many i ∈ I. ♢

Let C ′
K , D′

K and x ∈ ∂GC
′
K , y ∈ ∂GD

′
K be given by Claim 1. To finish the proof, we are left to show

that every C ′
K–D′

K path in G meets BG(S,L). For this, suppose for a contradiction that there is a C ′
K–D′

K

path that avoids BG(S,L). Then, since C ′
K ∋ x and D′

K ∋ y are connected, there also exists an x–y path Q

that avoids BG(S,L). Denote by m the length of Q, let ℓ ∈ N such that x, y ∈ BG(s−ℓSsℓ,K+1), and set
m′ := c(K+m+L+2)+ℓ. By the choice of S there is some i among the infinitely many i ∈ I that satisfy
φ−1
i (x) ∈ ∂GCK and φ−1

i (y) ∈ ∂GDK such that φi(ri−m′Rri+m′) = s−m′Ssm′ . Since Q avoids BG(S,L), it
follows that φ−1

i (Q) avoids BG(ri−m′Rri+m′ , L). But φ−1
i (Q) also avoids BG(R<i−m′ , L)∪BG(R>i+m′ , L):

Otherwise, since φ−1
i (Q) has length m and starts in BG(ri−ℓRri+ℓ,K+1), there would be a path of length

at most L +m + (K + 1) that joins a vertex from R<i−m′ ∪ R>i+m′ to a vertex from ri−ℓRri+ℓ. Since
m′− ℓ = c(L+m+K+2), this would contradict that R is c-quasi-geodesic. Hence, φ−1

i (Q) is an φ−1
i (x)–

φ−1
i (y) path which avoids BG(R,L). But since φ−1

i (x) ∈ ∂GCK ⊆ CL and φ−1
i (y) ∈ ∂GDK ⊆ DL, this

contradicts that CL and DL are distinct components of G−BG(R,L). □

Lemma 6.9. Let G be a locally finite, quasi-transitive graph with a thick end whose cycle space is generated
by cycles of bounded length. If G does not contain Kℵ0

as an ultra fat minor, then there exists L ∈ N and
a quasi-geodesic double ray R in G such that G− BG(R,L) has distinct components C ̸= D such that C
is thick and D is half-thick.

Proof. Let R1, R2, R3 be given by applying Theorem 4.5 to some thick end of the locally finite, quasi-
transitive graph G, which is accessible by Theorem 2.2. Then applying Theorem 3.3 to the quasi-geodesic,
and hence diverging, double ray R1 ∪R2 yields an escaping subdivision H of the hexagonal half-grid with
vertical double rays Si and horizontal paths Pij such that S0 = R1 ∪R2. Since H is escaping, there exist
M0 < M1 < . . . ∈ N such that Mi > Mi−1 + 2i for all i ≥ 1 and

(i) Si ⊆ G[S0,Mi]−BG(S
0,Mi−1 + 2i) for all i ∈ N≥1, and

(ii) P1j ⊆ G[S0,M1] and Pij ⊆ G[S0,Mi]−BG(S
0,Mi−2 + i) for all i ∈ N≥2 and j ∈ Z.

Let us also note that, since R1 ∪R2 ∪R3 is quasi-geodesic, we also have that

(iii) the set V (R3) ∩BG(S
0, L) is finite for all L ∈ N.
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Hence, by (ii) and (iii) and because G is locally finite, we may assume, by deleting at most finitely
many Pij for every i ∈ N and applying Proposition 3.6, that

(iv) dG(R3, Pij) > 2i for all i ∈ N and j ∈ Z.

Let H≥n ⊆ H, for n ∈ N, be the subgraph consisting of all Si, Pkj with i ≥ n and k > n. By (i)
and (ii), we have, for every L ∈ N≥1, that dG(H≥L, S

0) > L; let CL be the component of G−BG(S
0, L)

containing H≥L. Clearly, the CL are long and hence, since C1 ⊇ C2 ⊇ . . . , the CL are thick.
If there is some L ∈ N≥1 such that R3 ∩ CL = ∅, then we are done. Indeed, by (iii), there is, for every

L′ ≥ L, a component DL′ of G − BG(S
0, L′) that contains a tail of R3. Since R3 and R1 belong to the

same end, the components DL′ are half-long. As clearly DL′ ⊆ DL for all L′ ≥ L, we find that DL is
half-thick. Since also DL ̸= CL by assumption, R := R1 ∪R2, L, C := CL and D := DL are as desired.

Thus, we may assume that R3 ∩ CL ̸= ∅ for all L ∈ N≥1. We distinguish two cases.
Case 1: For all K ∈ N there is some NK ∈ N such that dG(R3, S

i) > K for all i ≥ NK . (See Figure 6.2.)
We will use R3 to find fat H-paths as in Lemma 6.5, which then implies that G contains Kℵ0

as an
ultra fat minor, concluding the first case of the proof.

Without loss of generality let NK ≥ K for all K ∈ N. By (i) and (iii), for every K ∈ N, the ray R3 has
a tail TK which avoids BG(S

0,MNK−1+K), and which thus satisfies dG(TK , Si) > K for all i ∈ N by (i).
By (ii) and (iv), we also find dG(Pij , TK) > K for all i ∈ N and j ∈ Z, and hence dG(H,TK) > K.

R1

R2

R3

S0 = R1 ∪R2 Si3m Si3m+1 Si3m+2

Q′
3m+1

Wm

H

Figure 6.2. Sketch of Case 1 in the proof of Lemma 6.9: the hexagonal half-grid H and
the ray R3, which has large distance from H but is connected to H by paths Q′

m. The
paths Wm consisting of Q′

3m, Q′
3m+2 and a suitable subpath of R3 are m-fat H-paths.

By (i), and because R3∩CL ̸= ∅ as well as H≥L ⊆ CL for all L ∈ N≥1, there exists, for every m ∈ N, an
Tm–

⋃
i≥Nm

BG(S
i,m) path Qm that ends in some BG(S

im ,m) for im ≥ m and avoids BG(S
0,MNm

+m).
We extend each Qm to an Tm–Sim path Q′

m by adding a shortest Sim–Qm path. Since dG(Qm, Si) > m

for all i ̸= im by the choice of Qm and again by (i), we find dG(Q
′
m, Si) > m for all i ̸= im. Moreover,

by (i), the paths Q′
m still avoid BG(S

0,MNm + m). Hence, by (ii), we have that, for every i ∈ N, the
paths Q′

m with m ≥ i have distance at least m from the paths Pij . Since G is locally finite, this implies
that we may assume, by deleting for every i ∈ N at most finitely many Pij and applying Proposition 3.6,
that dG(Pij , Q

′
m) > m for all m, i ∈ N and j ∈ Z. All in all, we find dG(H −Sim , Q′

m) > m for all m ∈ N.
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Since Q′
m avoids BG(S

0,MNm +m) but is itself eventually contained in some BG(S
0,m′) for m′ > m

as Q′
m is finite, we may assume, by passing to a subsequence of the Q′

m if necessary, that the Q′
m

are pairwise disjoint. Moreover, by (i) and again since Q′
m avoids BG(S

0,MNm
), we may assume that

i1 < i2 < . . . , by once again passing to a subsequence of the Q′
m if necessary.

Now since dG(H −Sim , Q′
m) > m and dG(H,Tm) > m, the paths Wm that consist of Q′

3m, Q′
3m+2 and

a suitable subpath of T3m are m-fat H-paths with endvertices on Si3m and Si3m+2 (see Figure 6.2). In
particular, since the Q′

m are pairwise disjoint, we may assume, by passing to a subsequence of the Wm,
that also the Wm are pairwise disjoint. Hence, the Wm are m-fat H-paths as in Lemma 6.5, which implies
that G contains Kℵ0 as an ultra fat minor. This concludes the first case of the proof.

Case 2: There exists some K such that dG(R3, S
i) < K for infinitely many i ∈ N. (See Figure 6.3.)

We first show that we may assume, by passing to a subgraph of H if necessary, that

(a) dG(R3, S
i) < i for all i ≥ K, and

(b) for all K ≤ j < i, if dG(r, Si) < i for some r ∈ V (R3), then dG(rR3, S
j) ≥ j.

Indeed, set ij := j for all j < K, and let iK ≥ K be minimal such that dG(R3, S
iK ) < K. By (i)

and (iii), R3 has a tail T that is disjoint from BG(S
0,MiK + iK). Since R3 − T is finite and because

of (i), we have dG(R3 − T, Si) > i for all large enough i ∈ N, and hence, as dG(R3, S
i) < K for infinitely

many i ∈ N, there is some iK+1 > iK such that dG(T, S
iK+1) < iK+1 and dG(R3 − T, Si) ≥ i for all

i ≥ iK+1. By continuing in this way, we obtain a sequence 0 := i0 < i1 < · · · ∈ N such that the rays Sij

satisfy (a) and (b). Now pick a subdivision H ′ ⊆ H of the hexagonal half-grid whose vertical double rays
are precisely the Sij . It is easy to see that H ′ still satisfies (i) to (iii). By deleting from H ′ at most finitely
many P ′

ij for every i ∈ N and applying Proposition 3.6, we also regain property (iv) for H ′. Hence, H ′ is
the desired subgraph of H, and we denote H ′ again by H.

R1

R2

R3

H ′′

H ′

S0 = R1 ∪R2 Si

W ′
L

s00

si0

Figure 6.3. Sketch of Case 2 in the proof of Lemma 6.9: the hexagonal half-grid H and
the ray R3, which has distance < i to every vertical double ray Si of H by (a). By (b),
once R3 comes close to some Si, it will never come close to some Sj with j < i again.
The paths W ′

L have distance at least L from R3 and ‘jump over’ R3.

Let Si =: . . . si−1s
i
0s

i
1 . . . such that dG(R3, s

i
0) < i and such that Si

≥0 is the ‘upper half’ and Si
≤0 is

the ‘lower half’ of Si (see Figure 6.3). Further, let H ′ be the ‘upper half’ of H with respect to this



ASYMPTOTIC HALF-GRID AND FULL-GRID MINORS 29

enumeration, that is, let H ′ be the subgraph of H that consists of the Si
≥0 and all paths Pij whose

endvertices lie on the Si
≥0. Let H ′′ be the ‘lower half’ of H defined analogously.

Now choose for all i, L ∈ N maximal tails T ′
iL, T

′′
iL of Si

≥0 and Si
≤0, respectively, such that

(c) dG(R3, T
′
iL) ≥ 2L and dG(R3, T

′′
iL) ≥ 2L.

Note that by (i) and (iii), the T ′
iL, T

′′
iL are non-empty. Note further that, by (ii) and (iii), for all i, L ∈ N

all but finitely many of the Pij avoid BG(R3, L). Hence, there are, for every L ∈ N, escaping subdivisions
H ′

L, H
′′
L ⊆ H≥L of the hexagonal ‘quarter-grid’ whose vertical rays are the T ′

iL or T ′′
iL, respectively, for

i ≥ L such that H ′
1 ⊇ H ′

2 ⊇ . . . as well as H ′′
1 ⊇ H ′′

2 ⊇ . . . , and such that H ′
L, H

′′
L avoid BG(R1 ∪R3, L).

Since H ′
L, H

′′
L avoid BG(R1 ∪R3, L), they are contained in components CL, DL of G−BG(R1 ∪R3, L),

respectively. Clearly, CL is long and DL is half-long. As C1 ⊇ C2 ⊇ . . . and D1 ⊇ D2 ⊇ . . . , this implies
that CL is thick and DL is half-thick. If there is some L ∈ N such that CL ̸= DL, then we are done as
then L, R := R1 ∪R3, C := CL and D := DL are as desired.

Hence, we may assume that CL = DL for all L ∈ N. We will now once again construct fat H-
paths as in the premise of Lemma 6.5, which then yields that G contains Kℵ0

as an ultra fat minor,
and which thus concludes the proof. Since CL = DL and H ′

L ⊆ CL, H ′′
L ⊆ DL for all L ≥ K,

there are (
⋃

i∈N BG(T
′
iL,min{i, L}))–(

⋃
i∈N BG(T

′′
iL,min{i, L})) paths WL that avoid BG(R1 ∪ R3, 3L).

We now modify WL as follows. Let i′L be such that WL starts in BG(T
′
i′LL,min{i′L, L}). If WL meets

BG(Pij ,min{i, L}) for some Pij ⊆ H ′
4L with i /∈ {i′L, i′L + 1}, then we let Pij be the last such path, and

we shorten WL so that it meets BG(Pij ,min{i, L}) precisely in its first vertex. Then we extend WL by a
shortest WL–Pij path and a suitable subpath of Pij so that WL ends in T ′

iL (or in T ′
(i−1)L if the shortest

WL–Pij path has distance < min{i, L} from T ′
(i−1)L). Otherwise, we extend WL by a shortest WL–T ′

i′LL

path. Analogously, we modify the end of WL. Let W ′
L be the path which we obtain in this way from WL

and let iL, jL ∈ N be such that W ′
L starts in T ′

iLL and ends in T ′′
jLL. Further, let w0

L, w
1
L be the endvertices

of W ′
L on T ′

iLL and T ′′
jLL, respectively. Then, for all L ∈ N,

(α) W ′
L starts at w0

L ∈ T ′
iLL and ends at w1

L ∈ T ′′
jLL,

(β) W ′
L avoids BG(R1 ∪R3, 2L), and

(γ) dG(W
′
L, T

′
kL ∪ T ′′

kL) ≥ min{k, L} for all k ̸= iL, jL ∈ N.

Since W ′
L avoids BG(R1 ∪ R3, 2L) but is eventually contained in BG(R1 ∪ R3, L

′) for some L′ > 2L

because W ′
L is finite, we may assume, by passing to a subsequence if necessary, that the W ′

L are pairwise
disjoint. Moreover, by Corollary 3.8 (i), every Si

≥0 is contained in BG(R1, L) for some large enough L ∈ N
and hence, by (β) and by once again passing to a subsequence, we may assume that

(δ) i1 < i2 < . . . .

Finally, by construction, W ′
L can have distance < min{i, L} to some Pij only if i ∈ {iL, iL+1, jL, jL+1}.

So since G is locally finite and because of (α) and (δ), we may assume, by deleting at most finitely
many Pij for every i ∈ N and applying Proposition 3.6, that

(ε) dG(W
′
L, Pij) > min{i, L} for all Pij with i /∈ {jL, jL + 1}.

We now distinguish two cases.
Case 2a: There is a sequence L1 < L2 < . . . ∈ N such that jL1 < jL2 < . . . .

Since also i1 < i2 < . . . by (δ), we may assume, by passing to a subsequence of the W ′
L, that iL, jL <

iL′ , jL′ for all L < L′ ∈ N. Then we obtain, similar as to (ε), that
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Si2L−1 Si2L Sj2L Si2L+1

S̃i2L
W ′

2L

Q2L

(a) Case 2a

R3

SN ′
Si2L Si2L+2

S̃i2L S̃i2L+2

W ′
2L

W ′
2L+2

W ′′
m

(b) Case 2b

Figure 6.4. The new double rays S̃iL in Case 2a and 2b (indicated in grey), which again
form the vertical double rays of an escaping subdivision H̃ of the hexagonal half-grid. In
Case 2a, subpaths Q2L of R3 are fat H̃-paths, while in Case 2b, the paths W ′′

m are fat
H̃-paths.

(ζ) dG(W
′
L, Pij) > min{i, L} also for all Pij with i ∈ {jL, jL + 1}.

Since every T̃i := Si \ (T ′
ii ∪ T ′′

ii) is finite, it follows that T̃i ⊆ G[R3, L
′] for some L′ ∈ N. So for every

i ∈ N we have by (β) and (γ) that dG(S
i,W ′

L) ≥ i for all large enough L. Conversely, since every W ′
L is

finite and by (i), there exist for every W ′
L at most finitely many Si such that dG(W

′
L, S

i) < i. Hence, we
may assume, by passing to a subsequence of the W ′

L, that every Si has distance < i to at most one W ′
L.

Indeed, we may pick some W ′
L1

that has distance < 1 to S1 (if such a W ′
L1

exists; otherwise we choose W ′
L1

arbitrarily) and delete all other W ′
L that have distance < 1 to S1. Then there are still infinitely many W ′

L

left, and also there are infinitely many Si left that do not have distance < i to W ′
L1

; so we may pick a
new path W ′

L for the next such Si, and so on. We enumerate these W ′
Li

again by W ′
i . In particular, it

follows that dG(W
′
L, S

iL′ ) ≥ iL′ and dG(W
′
L, S

jL′ ) ≥ jL′ for all L ̸= L′ ∈ N.
For every 2L ∈ N, we set S̃i2L := Sj2Lw1

2LW
′
2Lw

0
2LS

i2L (see Figure 6.4 (a)). Since every S̃i2L has
a tail in Si2L

≥0 and in Sj2L
≤0 and because of (ε) and (ζ), we can find in H infinitely many Si2L−1–S̃i2L

paths and infinitely many S̃i2L–Si2L+1 paths that make the S̃i2L and the Si2L+1 into an escaping sub-
division H̃ of the hexagonal half-grid. By (a) and (b), R3 contains for every 2L a subpath Q2L that
starts in BG(S

i2L−1 , i2L−1), ends in BG(S
i2L+1 , i2L+1) and is otherwise disjoint from all BG(S

iL′ , iL′) and
BG(S

jL′ , jL′) with L′ ̸= 2L ∈ N. Since dG(R3,W
′
2L′) ≥ 2L′ by (β), it follows that also dG(Q2L, S̃

i2L′ ) ≥
2L′ for all L′ ̸= L ∈ N. Moreover, by the definition of S̃i2L and because of (β) and (c), we also have
dG(Q2L, S̃

i2L) ≥ 2L. Hence, extending the Q2L by shortest paths to Si2L−1–Si2L+1 paths yields fat H̃-
paths as in Lemma 6.5. This implies that G contains Kℵ0

as an ultra fat minor, and hence concludes this
case of the proof.
Case 2b: There is some N ∈ N such that jL ≤ N for infinitely many L ∈ N.

By passing to a subsequence of the W ′
L, we may assume that jL = N ′ for some N ′ ∈ N and all L ∈ N.

We again modify H as follows. For every i ∈ N, let S̃i be obtained from Si by replacing the subpath
T̃i := Si \ (T ′

ii ∪ T ′′
ii) of Si by a path Qi that consists of a suitable subpath of R3 together with shortest
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T ′
ii–R3 and R3–T ′′

ii paths (see Figure 6.4 (b)). Then the S̃i are again double rays. By (i) and (b) and
because G is locally finite and the Qi are finite and pairwise disjoint, there are N ′ < iL1 < iL2 < . . . ∈ N
such that the S̃iLj again satisfy (i) with MiLj

updated to MiL(j+1)−1. Since every S̃i still has a tail in Si
≥0

and in Si
≤0 and because of (iv), we can find in H, for every j ∈ N, infinitely many S̃iLj –S̃iLj+1 paths that

make the S̃iLj into an escaping subdivision H̃ of the hexagonal half-grid. Since all W ′
Lj

end in SN ′
, we

can connect the W ′
L2j

pairwise by suitable subpaths of SN ′
, to obtain infinitely many pairwise disjoint

H̃-paths W ′′
m. Note that a path W ′′

m obtained from W ′
Li

and W ′
Lj

for i, j ∈ 2N is an H̃-path that starts
in S̃iLi and ends in S̃iLj . Moreover, by (β), (γ) and (ε) and because H̃ is escaping, W ′′

m is min{Li, Lj}-fat.
Hence, by (δ) and because we only used the paths W ′

Li
with i ∈ 2N to construct the W ′′

m, infinitely many
of the W ′′

m yield fat H̃-paths as in Lemma 6.5, which implies that G contains Kℵ0 as an ultra fat minor,
and which thus concludes the proof. □

We are now in a position to prove Theorem 6.1.

Proof of Theorem 6.1. The assertion follows immediately by first applying Lemma 6.9 and Lemma 6.8
and then Lemma 6.2. □

7. Further comments

Before we discuss other related topics to this paper, let us note that our main results give only partial
answers to the problems that we mentioned in the introduction, that is to [21, Problem 7.3] and [20,
Problems 4.1 and 4.2]. Hence, these problems are still open for arbitrary finitely generated groups that
need not be finitely presented and, more generally, for locally finite, quasi-transitive graphs without any
restrictions on their cycle spaces.

7.1. Coarse embeddings. Theorem 2’ asserts that we can find a diverging subdivision of the hexagonal
full-grid in every locally finite, quasi-transitive graph whose cycle space is generated by cycles of bounded
length and that has a thick end. The advantage of diverging subdivisions over arbitrary subdivisions is
that they preserve some of the geometry of the original graph. One might wish to strengthen Theorem 2’,
by asking for a subdivision of the hexagonal full-grid whose geometry is even closer related to the geometry
of G.

For two graphs G and H, a map f : V (H) → V (G) is a coarse embedding if there exist functions
ρ− : [0,∞) → [0,∞) and ρ+ : [0,∞) → [0,∞) such that ρ−(a) → ∞ for a → ∞ and

ρ−(dH(u, v)) ≤ dG(f(u), f(v)) ≤ ρ+(dH(u, v))

for all u, v ∈ V (H). It is easy to check that a coarse embedding of the hexagonal full-grid always yields
a diverging subdivision; however, conversely, a diverging subdivision is in general much weaker than a
coarse embedding. One may thus ask whether we can always find a coarse embedding of the hexagonal
full-grid in a locally finite, quasi-transitive graph with a thick end.

However, it was already discussed in [20] that for arbitrary locally finite, quasi-transitive graphs (with-
out any condition on their cycle spaces) we cannot ask for coarse embeddings of the hexagonal full-grid.
Indeed, coarse embeddings preserve the asymptotic dimension4, that is, if H has asymptotic dimension at
least n and H is coarsely embeddable into G, then the asymptotic dimension of G is at least n, too. Since
every locally finite Cayley graph of the lamplighter group has asymptotic dimension 1, see Gentimis [19],

4See e.g. [5] for a definition of the asymptotic dimension.
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and has a thick end, but the full-grid has asymptotic dimension 2, we cannot ask for coarse embeddings
of the hexagonal full-grid into all locally finite, quasi-transitive graphs with thick ends.

However, a special case of a theorem by Fujiwara and Whyte [18] states that every locally finite,
quasi-transitive graph with a thick end whose cycle space is generated by cycles of bounded length has
asymptotic dimension at least 2. Thus, the asymptotic dimension of the full-grid does not prevent it from
being coarsely embeddable into such graphs. This motivates the following problem.

Problem 7.1. Let G be a locally finite, quasi-transitive graph whose cycle space is generated by cycles of
bounded length and that has a thick end. Is the hexagonal full-grid coarsely embeddable into G?

Note that a positive answer to this question would also yield a positive answer to [20, Problem 4.5].

7.2. Quasi-isometries to trees. For two graphs G and H, a map f : V (H) → V (G) is a quasi-isometry
if there exist c ≥ 1 and d ≥ 0 such that

1

c
(dH(u, v))− d ≤ dG(f(u), f(v)) ≤ c(dH(u, v)) + d

for all u, v ∈ V (H) and

dH(f(V (G)), w) ≤ d

for all w ∈ V (H). Two graphs are quasi-isometric if there exists a quasi-isometry between them.
As we have discussed in the introduction, a result by Krön and Möller [26, Theorem 5.5] asserts that a

locally finite, quasi-transitive, connected graph is quasi-isometric to a tree if and only if it has no thick end.
Hence, we obtain the following corollary from Theorems 1 and 2, which yields two new characterisations
of quasi-transitive, locally finite, connected graphs that are quasi-isometric to trees for the special case
that the cycle space is generated by cycles of bounded length.

Corollary 7.2. Let G be a locally finite, quasi-transitive, connected graph whose cycle space is generated
by cycles of bounded length. Then the following are equivalent:

(i) G has a thick end.
(ii) G contains the full-grid as an asymptotic minor.
(iii) G contains the full-grid as a diverging minor.
(iv) G is not quasi-isometric to a tree. □

For further characterisations of quasi-transitive, locally finite, connected graphs that are quasi-isometric
to trees, we refer the reader to [4, 24,26,30].

7.3. Quasi-isometries to planar graphs. Finally, we would like to draw the reader’s attention to
another related problem, which is still open. As we discussed in the previous subsection, the (global)
geometry of locally finite, quasi-transitive graphs without a thick end is well understood as they are
quasi-isometric to forests. In that sense, our results, Theorems 1 and 2, can be seen as a step towards
understanding the (global) geometry of the remaining locally finite, quasi-transitive graphs – those with
a thick end. In the case where the cycle space of a locally finite, quasi-transitive graph G is generated
by cycles of bounded length, we showed that G contains the full-grid as an asymptotic minor. Since
asymptotic minors cannot hide in a ball of small radius, they will appear in the global structure of G.
However, even if G is one-ended, this does not mean that the geometry of G resembles that of the full-grid
or, more generally, of a one-ended, planar graph. The reason for this is simple: the global structure of G
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may be far more involved, and may contain the full-grid only as a substructure. Indeed, even in our proof,
we might have found the asymptotic full-grid inside an asymptotic minor of the infinite complete graph.
However, Georgakopoulos and Papasoglu conjectured that this is in fact the only thing that can happen.

Conjecture 7.3. [21, Conjecture 9.3] Let G be a locally finite, transitive graph. Then G either is quasi-
isometric to a planar graph or contains every finite graph as an asymptotic minor.

Note that this can be seen as a coarse version of Thomassen’s [28] result that every locally finite, one-ended,
transitive graph is either planar or can be contracted into the infinite complete graph.

MacManus [27] proved Conjecture 7.3 in the special case where G is a locally finite Cayley graph of
a finitely presented group. Recall that every Cayley graph of a finitely presented group is transitive and
has a cycle space which is generated by cycles of bounded length. So the assumption on the cycle space,
which was already crucial for our proofs of Theorems 1 to 4, reappears here.

We remark that MacManus’s proof uses deep group-theoretic results that have no counterpart for
quasi-transitive graphs. Hence, Conjecture 7.3 is still open for arbitrary locally finite, quasi-transitive
graphs whose cycle space is generated by cycles of bounded length.
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