ASYMPTOTIC HALF-GRID AND FULL-GRID MINORS

SANDRA ALBRECHTSEN AND MATTHIAS HAMANN*

AsTrACT. We prove that every locally finite, quasi-transitive graph with a thick end whose cycle space
is generated by cycles of bounded length contains the full-grid as an asymptotic minor and as a diverging
minor. This in particular includes all locally finite Cayley graphs of finitely presented groups, and
partially solves problems of Georgakopoulos and Papasoglu and of Georgakopoulos and Hamann.
Additionally, we show that every (not necessarily quasi-transitive) graph of finite maximum degree
which has a thick end and whose cycle space is generated by cycles of bounded length contains the

half-grid as an asymptotic minor and as a diverging minor.

1. INTRODUCTION

Fat minors are a coarse or metric variant of graph minors. They first appeared in works of Chepoi,
Dragan, Newman, Rabinovich and Vaxes [7] and of Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot
and Scott [5]. They play an important role in many (open) problems at the intersection of structural
graph theory and coarse geometry — an area which can be described as ‘coarse graph theory’.

A model of a graph X in a graph G is a collection of connected branch sets and branch paths in G such
that after contracting each branch set to a vertex, and each branch path to an edge, we obtain a copy
of X. A model of X is K-fat (in G), for some K € N; if its branch sets and paths are pairwise at least K
apart, except that we do not require this for incident branch set-path pairs (see also Section 2.6 for the
definition). We say that X is a (K -fat) minor of G if G contains a (K-fat) model of X. The graph X is an
asymptotic minor of G if X is a K-fat minor of G for every K € N. An important advantage of asymptotic
minors over the usual minors is that they are preserved under quasi-isometries, and in particular, it does
not depend on the choice of a finite generating set whether a Cayley graph of a finitely generated group
contains a fixed graph as an asymptotic minor [21].

Recently, Georgakopoulos and Papasoglu [21] gave an overview of the area of ‘coarse graph theory’,
where they presented results and open problems regarding the interplay of geometry and graphs, many
of which concern fat minors. These problems have already attracted quite some attention; some (partial)
solutions can be found in [1,2,7,8,16,17,27]. Our main contribution is a partial resolution of a problem of
Georgakopoulos and Papasoglu about asymptotic grid minors in quasi-transitive graphs [21, Problem 7.3].

To state this problem, we first need some definitions.

An end of a graph G is an equivalence class of rays where two rays in G are equivalent if there are

infinitely many pairwise disjoint paths between them in G. An end is thick if it has infinitely many
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pairwise disjoint rays. The full-grid is the graph on Z x Z in which two vertices (m,n) and (m’,n’) are
adjacent if and only if |[m — m/| + |n —n/| = 1, and the half-grid! is its induced subgraph on N x Z.

One of the cornerstones of infinite graph theory is Halin’s Grid Theorem [22, Satz 4'], which asserts
that every graph with a thick end contains the half-grid as a minor. Following this approach, Heuer [25]
characterised the graphs containing the full-grid as a minor. These graphs form a proper subclass of the
graphs with a thick end: while it is clearly true that every graph with a full-grid minor has a thick end,
the converse is false in general, as the half-grid itself already witnesses. However, as it turned out, if we
only consider graphs which are quasi-transitive, i.e. graphs whose vertex set has only finitely many orbits
under its automorphism group, then these two graph classes coincide. Indeed, Georgakopoulos and the
second author [20] showed that every locally finite, quasi-transitive graph with a thick end contains the
full-grid as a minor.

Georgakopoulos and Papasoglu [21] asked whether this result can be generalised to the coarse setting

in the following sense.

Problem 1.1. [21, Problem 7.3] Let G be a locally finite Cayley graph of a one-ended finitely generated
group. Must the half-grid be an asymptotic minor of G? Must the full-grid be an asymptotic minor of G ¢

Note that every Cayley graph of a group is (quasi-)transitive. Moreover, the unique end of a one-ended,

quasi-transitive graph is always thick [6, 28].

Our main theorem partially answers both questions in the affirmative, under the additional assumption

that G is a locally finite Cayley graph of a finitely presented group. In fact, we show the following result.

Theorem 1. Let G be a locally finite, quasi-transitive graph whose cycle space is generated by cycles of

bounded length. If G has a thick end, then the full-grid is an asymptotic minor of G.

(We refer the reader to Section 2.3 for the definitions concerning the cycle space.)

Note that Theorem 1 includes all locally finite Cayley graphs of finitely presented groups. Examples
such as inaccessible graphs and groups [13, 14] or Diestel-Leader graphs [12, 15] indicate that the geometry
of arbitrary locally finite, quasi-transitive (or Cayley) graphs may be far more involved. This is why
generalising Theorem 1 to locally finite Cayley graphs of arbitrary finitely generated groups or even to all
locally finite, quasi-transitive graphs may be much harder, and will require a different approach to that
presented in this paper (see the sketch of the proof in Section 3 for details).

For the proof of Theorem 1 we construct, for every such graph G, a single model of the full-grid (see
Theorem 3.4), which can be turned into a K-fat model of the full-grid, for every K € N, by deleting some
of its branch sets and paths. Moreover, it can be turned into a model of the full-grid that diverges: for
any two diverging sequences of vertices and/or edges of the full-grid also their branch sets/paths diverge
in G (see Section 2.7 for the definition).

Theorem 2. Let G be a locally finite, quasi-transitive graph whose cycle space is generated by cycles of
bounded length. If G has a thick end, then the full-grid is a diverging minor of G.

This partially solves a question of Georgakopoulos and the second author |20, Problem 4.1].

INote that usually the grid on N? is referred to as the half-grid. However, for us it will be more convenient to work with

the grid on N x Z. It is easy to see that our results about the half-grid also hold for the grid on N2.



ASYMPTOTIC HALF-GRID AND FULL-GRID MINORS 3

Kron and Moller [26, Theorem 5.5] proved that a locally finite, quasi-transitive connected graph has
no thick end if and only if it is quasi-isometric to a tree. Thus, instead of assuming that the graph G in
Theorems 1 and 2 has a thick end, we may assume that G is not quasi-isometric to a tree (see Section 7.2
for details).

As a first step in the proof of Theorem 1, we find the half-grid as an asymptotic minor. For this, we

do not need the transitivity assumption on G. Indeed, we prove the following theorem.

Theorem 3. Let G be a graph of finite mazximum degree whose cycle space is generated by cycles of

bounded length. If G has a thick end, then the half-grid is an asymptotic minor of G.

Note that every graph satisfying the premise of Theorems 1 and 2 has finite maximum degree as it is

locally finite and quasi-transitive.

Similar as in the proof of Theorem 1, we again construct a single model of the half-grid (see Theo-
rem 3.3), which can be turned into a K-fat model of the half-grid, for every K € N, and into a diverging
model of the half-grid.

Theorem 4. Let G be a graph of finite maximum degree whose cycle space is generated by cycles of
bounded length. If G has a thick end, then the half-grid is a diverging minor of G.

This partially solves a question of Georgakopoulos and the second author [20, Problem 4.2].

This paper is structured as follows. In Section 2 we recall some important definitions. Section 3 consists
of three parts. We first introduce some new definitions in Sections 3.1 and 3.2. We then give a sketch of the
proofs of Theorems 1 to 4 in Sections 3.3 and 3.4, where we also state Theorems 3.3 and 3.4, our stronger
results on half-grid and full-grid minors, which we already briefly mentioned above. In Sections 3.5 and 3.6
we derive Theorems 1 to 4 from Theorems 3.3 and 3.4. Section 4 contains some preparatory work about
diverging and quasi-geodesic rays. We then prove Theorems 3.3 and 3.4 in Sections 5 and 6, respectively.

We finish in Section 7 by discussing some related problems.

2. PRELIMINARIES

Our notions mainly follow [9]. In what follows, we recap some important definitions which we need
later.

Given sets U’ C U of vertices of a graph G, a component C of G —U attaches to U’ if C has a neighbour
in U’. The boundary 0cX of a subgraph X of G is the set Ng(V (G — X)) of vertices of X that send in G
an edge outside of X. For example, the boundary d¢C of a component C' of G — U is Ng(U) NV (C).

A graph G is quasi-transitive if the automorphism group of G acts on V(G) with only finitely many
orbits, that is if V/(G) can be partitioned into finitely many sets Uy, ..., U, such that for all ¢ € {0,...,n}
and u,v € U; there exists an automorphism ¢ of G such that ¢(u) = v. The stabilizer of a subgraph X

of G consists of precisely those automorphisms of G that map X to itself.

2.1. Paths, rays and combs. For two sets A, B of vertices of G, an A-B path meets A precisely in its
first vertex and B precisely in its last vertex. For a subgraph H of G, an H-path is a non-trivial path
which meets H precisely in its endvertices.

A ray is a one-way infinite path, and a double ray is a two-way infinite path. A tail of a (double) ray R
is any subray S C R. If R = ror; ... is a ray, then we denote by r;Rr; for ,j € N the subpath r;...r;
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of R, and by r;R or R>; the tail r;7;4; ... of R. Further, we denote by Rr; or R<; the subpath ry...7;
of R. We use these notions analogously for double rays; in particular, if R = ...r_jr¢r;... is a double
ray, then Rr; and R<; denote the tail 7;7;_; ... of R.

A comb is a union of a ray R with infinitely many pairwise disjoint finite paths which have precisely
their first vertex on R; we call the last vertices of these paths the teeth of the comb and refer to R as its
spine. The following observation about combs in infinite graphs is well-known and follows immediately

from the Star-Comb Lemma; see e.g. [9, Lemma 8.2.2] for a proof.

Lemma 2.1. Let U be an infinite set of vertices in a locally finite, connected graph G. Then G contains
a comb with all teeth in U.

Moreover, every infinite, connected graph has a verter of infinite degree or contains a ray.

2.2. (Hexagonal) grids. The full-grid, denoted by FG, is the graph on Z? in which two vertices (m,n)
and (m/,n’) are adjacent if and only if |m — m’| + |n — n’| = 1. The hezagonal full-grid is obtained from
FG by deleting every other rung, as shown in Figure 2.1. The (hezagonal) half-grid, denoted by HG, is
the induced subgraph of the (hexagonal) full-grid on vertex set N x Z.

We call the double rays R’ of the (hexagonal) full- and half-grid its vertical double rays and the edges e;;

its horizontal edges (see Figure 2.1).
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FIGURE 2.1. The hexagonal full-grid with vertical double rays R’ and horizontal

edges e;;.

2.3. Cycle space. Let G be a graph. The edge space of G is the vector space over the 2-element field Fy of
all functions E(G) — Fy: its elements correspond to the subsets of E(G) and vector addition corresponds
to symmetric difference. The cycle space of G is the subspace of the edge space of G spanned by all the
cycles in G — more precisely, by their edge sets; for simplicity, we will not distinguish between the edge
sets in the cycle space and the subgraphs they induce in G.

We say that the cycle space of G is generated by cycles of bounded length if there is some n € N such
that the cycles in G of length at most n generate the cycle space of G.

2.4. Ends. An end € of a graph G is an equivalence class of rays in G where two rays are equivalent if
they are joined by infinitely many disjoint paths in G or, equivalently, if for every finite set U C V(G)

both rays have tails in the same component of G—U. A (double) e-ray is a (double) ray whose tails are all
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contained in . An end is thick if, for every n € N, there are n pairwise disjoint e-rays. Halin [22, Satz 1]
showed that this is the case if and only if there are infinitely many pairwise disjoint e-rays.

A finite set U C V(G) distinguishes two ends e,&’ of G if no component of G — U contains rays from
both ¢ and €’. A graph G is accessible if there exists some n € N such that every two distinct ends of G

can be distinguished by a set of at most n vertices of G.

Theorem 2.2. [23, Corollary 3.2] FEvery locally finite, quasi-transitive graph whose cycle space is gener-

ated by cycles of bounded length is accessible.

2.5. Distance and balls. Let G be a graph. We write dg(v,u) for the distance of the two vertices v
and u in G. For two sets U and U’ of vertices of G, we write dg(U,U’) for the minimum distance of
two elements of U and U’, respectively. If one of U or U’ is just a singleton, then we omit the braces,
writing dg(v,U’) := dg({v},U’) for v € V(G). If X is a subgraph of G, then we abbreviate dg (U, V(X))
as dg(U, X).

Given a set U of vertices of G, the ball (in G) around U of radius r € N, denoted by Bq(U,r), is the
set of all vertices in G of distance at most r from U in G. If U = {v} for some v € V(G), then we omit the
braces, writing Bg (v, r) for the ball (in G) around v of radius r. Additionally, we abbreviate the induced
subgraph on Bg(U,r) of G with G[U,r] := G[Bg(U,r)]. If X is a subgraph of G, then we abbreviate
Be(V(X),r) and G[V(X),r] as Bg(X,r) and G[X,r|, respectively.

A subgraph X of G is c-quasi-geodesic? (in G') for some ¢ € N if for every two vertices u,v € V(X) we
have dx (u,v) < ¢-dg(u,v). We call X quasi-geodesic if it is c-quasi-geodesic for some ¢ € N and geodesic
if it is 1-quasi-geodesic.

Two rays R, S in G diverge if for every n € N they have tails R’ C R, S’ C S satisfying dg(R’, S’) > n.
A double ray R in G diverges if every two disjoint tails of R diverge.

2.6. Fat and diverging minors. Let G, X be graphs. A model (V,€) of X in G is a collection V
of disjoint sets V,, C V(G) for vertices x of X such that each G[V,] is connected, and a collection &
of internally disjoint V,,—Vy, paths E. for edges e = xpz; of X which are disjoint from every V, with
x # xg,x1. The V, are its branch sets and the E. are its branch paths. A model (V,&) of X in G is
K-fat for K € N if dg(Y,Z) > K for every two distinct Y, Z € VUE unless Y = E, and Z = V,, for
some vertex € V(X) incident to e € E(X), or vice versa. The graph X is a (K-fat) minor of G,
denoted by X < G (X <k G), if G contains a (K-fat) model of X. Moreover, X is an asymptotic minor
of G, denoted by X <, G, if X is a K-fat minor of G for all K € N. Let € be an end of G. If X is a
one-ended graph, then we write X <5, G if G contains a K-fat model (V, €) of X such that every ray in
Uzev(x) GlVal UUeep(x) Ee is an e-ray. Similarly, we write X <5, G'if X <§ G for all K € N.

A model (V,€) of X in G diverges if for every two sequences (z,,)nen and (yn)nen of vertices and/or
edges of X such that dx(z,,yn) — oo, we have dg(U,,W,,) — oo where U,, :==V, if z,, € V(X) and
U, :=V(E,,) if z, € E(X) and analogously W,, :=V,, or W, :=V(E,,).

2.7. Fat and diverging subdivisions. A subdivision of a graph X is a graph which arises from X by

replacing every edge in X by a new path between its endvertices such that no new path has an inner

2Note that in general metric spaces one also allows for an additive error; this property is there called ‘(¢, b)-quasi-geodesic’.
So here a subgraph is c-quasi-geodesic if and only if it is (¢, 0)-quasi-geodesic. It is easily verifiable that these two notions

of quasi-geodesic, with or without an additive error, are equivalent for graphs.
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vertex in V(X) or on any other new path. The original vertices of X are the branch vertices of the
subdivision and the new paths are its branch paths. Let G be a graph and let H C G be a subdivision
of X with branch vertices v, for z € V(X) and branch paths E. for e € E(X). Then H is K-fat (in G)
if there are sets V,, C V(H) with v, € V,, for x € V(X) and paths E! C E. for e € E(X) such that
(Va)zev(x), (Bl)ecr(x)) is a K-fat model of X. The subdivision H of X diverges (in G) if the model
(({va})zev(x)s (Be)eer(x)) of X in G diverges.

3. FURTHER DEFINITIONS AND A SKETCH OF THE PROOF

In this section we first introduce ultra fat minors and escaping subdivisions of certain graphs (see
Sections 3.1 and 3.2). We then give in Sections 3.3 and 3.4 a sketch of the proofs of Theorems 1 to 4.
There, we also state two stronger theorems, Theorems 3.3 and 3.4, from which we then derive Theorems 1

to 4 in Sections 3.5 and 3.6.

3.1. Ultra fat minors. We say that a model ((V;)ien, (Eij)izjen) of Ky, in a graph G is ultra fat if

o de(V;,V;) > min{i,j} for all i # j € N,

o dg(E;;, Exe) > min{s, j, k, £} for all 4,5, k,¢ € N with {3, j} # {k, ¢}, and

e dg(V;, Ere) > min{i, k, £} for all i,k,¢ € N with ¢ ¢ {k, (}.
Further, we say that Ky, is an ultra fat minor of G, and write Ky, <yr G, if G contains an ultra
fat model of Ky,. The idea is that an ultra fat model of Ky, in a graph G witnesses that G con-
tains Ky, as an asymptotic minor. Indeed, if ((V;)ien, (Eij)izjen) is an ultra fat model of Ky, in G, then

((Vi)ieNZKa (Eij)i;éjeNZK) is a K-fat model of Ky, in G. In particular, we have the following observation.

Observation 3.1. If a graph G contains Ky, as an ultra fat minor, then it contains every countable
graph as an asymptotic minor. Moreover, if Kny <ip G for some end ¢ of G, then also X <5, G for

every one-ended, countable graph X. [l
Moreover, the following observation is immediate from the definitions.

Observation 3.2. If a graph G contains Ky, as an ultra fat minor, then it contains every countable
graph as a diverging minor, and in particular, it contains every countable graph of mazximum degree at
most 3 as a diverging subdivision. Moreover, if Kx, <i;p G for some end € of G, then we may choose the

diverging minor / subdivision so that all its rays lie in . O

3.2. Escaping subdivisions. We call the double rays in a subdivision of the hexagonal half- or full-grid
corresponding to the vertical double rays R’ of the hexagonal half- or full-grid its vertical (double) rays,
and the branch paths corresponding to the horizontal edges e;; its horizontal paths, and we usually denote
the former by S’ and the latter by P;;. Whenever we introduce a subdivision of the hexagonal half- or
full-grid with vertical double rays S* without specifying the vertex sets of the S?, we tacitly assume that
St =...s";sisi ... and that their tails S%, are the image of the ‘upper’ half of the vertical double ray R’
of the hexagonal half- or full-grid. B

Let G be a graph and let H C G be a subdivision of the hexagonal half-grid with vertical double
rays S° and horizontal paths P;;. We say that H is escaping if there are 0 := My < M; < ... € N such
that M; > M;_1 + 2i for all ¢ > 1 and

(i) S* C G[S° M;] — Ba(S°, M;_1 + 2i) for all i € N>q, and
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(ii) P1; € G[SY M) and P;; C G[SY, M;] — Bg(SY, M;_2 +i) for all i € N>o and j € Z.

A subdivision H C G of the hexagonal full-grid with vertical double rays S and horizontal paths P;;
is escaping if the S* and P;; with ¢ > 0 form an escaping subdivision of the hexagonal half-grid as well
as the S* and P;; with 4 <0, and if there is some M € N such that the S with ¢ > 0 are contained in a
different component of G — Bg(S°, M) than the S* with i < 0.

3.3. Sketch of the proofs of Theorems 3 and 4. We will prove Theorems 3 and 4 simultaneously by

showing the following stronger result.

Theorem 3.3. Let e be a thick end of a graph G with finite maximum degree whose cycle space is generated
by cycles of bounded length. Then either Ky, <5 p G or G contains an escaping subdivision H of the

hexagonal half-grid whose rays all lie in e.

By Observations 3.1 and 3.2, an ultra fat model of Ky, contains a diverging and a K-fat model of the
half-grid for every K € N. So to derive Theorems 3 and 4 from Theorem 3.3 it suffices to show that an
escaping subdivision of the hexagonal half-grid also contains a diverging and a K-fat subdivision of the

hexagonal half-grid (see Sections 3.5 and 3.6).

For the proof of Theorem 3.3, we first show that G contains for every thick end ¢ a diverging double
e-ray R (see Theorem 4.1), and we then set S° := R. Second, we show that G contains double rays
S1,82, ... such that the S? are contained in increasingly distant ‘thickened cylinders’ around R of the
form G[R, M;] — Bg(R, M;_1 + 2i) for some My < My < ... € N, as required by (i) for the vertical double
rays of an escaping subdivision of the hexagonal half-grid. Finally, we connect the S by infinitely many
paths so that infinitely many of them either form the vertical double rays of an escaping subdivision of
the hexagonal half-grid or they form the branch sets of an ultra fat model of Ky, (see Lemma 5.4).

Let us describe the second step in more detail. We will choose the S recursively, starting from
the diverging double e-ray R = ...r_irory...(=: SY). For this, we first show that C[0cC, [“52]] =
CNGIR,L + | 5]] is connected for every L € N and every component C' of G — Bg(R, L), where x € N
is such that the cycle space of G is generated by cycles of length < x (see Lemma 5.1). Note that this
is the only part in in the proofs of Theorems 1 to 4 where we use the assumption on the cycle space;
nevertheless, the assumption is crucial here, and the rest of the proof relies on this lemma.?

We then show that for every L € N some component C of G — Bg(R, L) is ‘long’, i.e. it has a neighbour
in Bg(R>;,L) and in Bg(R<_j,L) for all j € N (see Lemma 5.3). Combining that C is long and
Cl0cC, [ 552]] is connected then allows us to find a double ray in C[0C, |“52]], which thus also lies
in G[R,L + |§]] — Bg(R, L). Hence, we may proceed recursively by increasing the radius L of the ball

around R by a summand of |5 | 4 2i in each step.

3.4. Sketch of the proof of Theorems 1 and 2. Similar as before, we prove Theorems 1 and 2

simultaneously, by showing the following stronger result.

Theorem 3.4. Let € be a thick end of a locally finite, quasi-transitive graph G whose cycle space is
generated by cycles of bounded length. Then either Ky, < G or G contains an escaping subdivision of
the hexagonal full-grid whose rays all lie in €.

3This is not entirely true. We in fact prove stronger versions of Theorems 1 to 4 (see Section 3.6 below), which find the

desired minors in a prescribed end. For this, in the case of Theorems 1 and 2, we need the assumption on the cycle space

once more, to ensure that the graph is accessible.
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Similar as above, Observations 3.1 and 3.2 together with results from Section 3.5 below will show that

it suffices to prove Theorem 3.4 in order to obtain Theorems 1 and 2 (see Section 3.6).

The proof of Theorem 3.4 builds on Theorem 3.3. From the proof of Theorem 3.3 it follows that we
have more control over where the escaping subdivision of the hexagonal half-grid lies (see Theorem 3.3,
the detailed version of Theorem 3.3, in Section 5). For this, let € be a thick end of G, and let R be a
diverging double e-ray. Given a ‘thick’ component C' of G — Bg(R, K) for some K € N, that is one which
includes a long component of G — Bg(R, L) for every L > K, we in fact obtain an escaping subdivision H
of the hexagonal half-grid whose first vertical double ray is R and which is ‘mostly’ contained in C' (unless
Theorem 3.3 yields an ultra fat model of Ky, , in which case we are immediately done). Now suppose that
for some large enough L € N there is another thick component D of G — Bg(R, L). Then Theorem 3.3
yields another escaping subdivision H’ of the hexagonal half-grid whose first vertical double ray is R and
which is ‘mostly’ contained in D (or an ultra fat model of Ky,). Gluing H and H’ together along their
common first vertical double ray R then yields the desired subdivision of the hexagonal full-grid (see
Lemma 6.2).

It thus suffices to prove that G contains a diverging double e-ray R such that, for some large enough
K € N, there are two distinct thick components of G — Bg(R, K). This step is mainly divided into two
lemmas (see Lemmas 6.8 and 6.9). We first show that if R’ is a double e-ray which is not only diverging
but even quasi-geodesic, then it is enough that for some large enough K € N there are distinct components
C # D of G— Bg(R', K) such that C is thick but D is only ‘half-thick’ (see Lemma 6.8) because then we
can use the quasi-transitivity of G to find another quasi-geodesic double e-ray R such that G — B¢ (R, K)
has two distinct thick components (see Lemma 6.8). Here, a component of G — Bg (R, K) is half-thick if
it includes for every L > K a component of G — Bg(R, L) which is ‘half-long’, i.e. which has neighbours
in BG(R>n, L) or in Bg(R<_p, L) for all n € N.

Next, we show that such a double ray R’ exists. For this, we first prove that G contains three e-rays
Ry, Ry, R3 that intersect pairwise in a single common vertex such that Ry U Re U R3 is quasi-geodesic
(see Theorem 4.5). Applying (the detailed version Theorem 3.3" of) Theorem 3.3 to the quasi-geodesic,
and hence diverging, double ray R; U Ry then yields an escaping subdivision H of the hexagonal half-grid
whose first vertical double ray is Ry U Ry. Now for every K € N, by the definition of escaping, H will
lie ‘mostly’ in one component Cx of G — Bg(R, K), which then needs to be thick. We then analyse
where R3 lies in relation to H. If, for some large enough L € N, R3 has a tail in a component Dy # Cp,
of G — Bg(R1 U Ry, L), then we are done since Dy, needs to be half-thick as R diverges from R; U Ro
but lies in the same end as R; and Rs.

Otherwise, again since R3 diverges from R; U Ry, it has a tail in Ck for all K € N. We then distinguish
two cases. First assume that R3 is far away from H. Then, since R3 has a tail in each Ck, we can
connect R3 and H by infinitely many paths. These paths together with Rs then yield infinitely many
H-paths that ‘jump over’ H. We then use these paths together with H to find an ultra fat model of Ky, .
Otherwise, R lies close to H. Then either Rz separates H into an ‘upper half’ containing (a tail of) R
and a ‘lower half’ containing (a tail of) Rs, and then R; U R3 (or symmetrically Ry U R3) is the desired
double ray R’, or there are infinitely many H-paths that ‘jump over’ R3, which then again yield an ultra
fat model of Ky, (see Lemma 6.9).
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3.5. Obtaining fat and diverging minors from escaping subdivisions. In this section we describe
how one can turn an escaping subdivision H of the hexagonal half-grid (full-grid) into a K-fat or diverging

minor of the hexagonal half-grid (full-grid).

Lemma 3.5. Let G be a locally finite graph, and let H C G be an escaping subdivision of the hexagonal
half-grid (full-grid) whose vertical double ray S° diverges. Then the following assertions hold for all K € N:

(i) H contains a subdivision of the hexagonal half-grid (full-grid) which is K-fat in G, and
(ii) H contains a subdivision of the hexagonal half-grid (full-grid) which diverges in G.

In fact, the subdivisions which we obtain from Lemma 3.5 (i) and (ii) will have the property that their

sets of vertical double rays are a subset of the vertical double rays of H.

Since we will have to delete some of the branch paths from H in the proof of Lemma 3.5, we need the

following auxiliary result.

Proposition 3.6. Let H be a subdivision of the hexzagonal half-grid (full-grid) with vertical double rays S°
and horizontal paths P;;. Let H' be obtained from H by deleting some of the Pyj. If H' still contains, for
every i € N\ {0} (@ € Z\ {0}), infinitely many P;; with j € N and infinitely many P;; with j € Z<o,
then H' contains a subdivision H" of the hexagonal half-grid (full-grid) whose vertical double rays are

the S* and whose set of horizontal paths is a subset of the P;j.

Proof. To obtain the desired graph H”, one may recursively select paths P;; C H' with sufficiently large |j|

to represent the edges fi in the order indicated in Figure 3.1 (and similarly for the hexagonal full-grid in

the order f17f27féaf3af?/,7f47fzi>f57fﬁaf77f’§7-~-)~ (]

fia

> * ——
fi2

| fs f1o |
f3 fs

| N fa ol
fa fo

fe fun

> * ——
fis

fis

RO R1 R? R3 R* RS

FIGURE 3.1. The hexagonal half-grid (full-grid) with an enumeration of its horizontal

edges as needed for the proof of Proposition 3.6.

For the proof of Lemma 3.5 we need the following two auxiliary results, which assert that escaping

subdivisions have some additional properties.

Lemma 3.7. Let R=...r_yrgr1 ... be a diverging double ray in a locally finite graph G, let L € N, and
let S be a ray in G[R, L]. Suppose there are infinitely many pairwise disjoint R>o—-S paths P; in G[R, L].
Then S has a tail T such that T C G[R>o, L], and all but finitely many P; are contained in G[R>o, L].
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Proof. Since R diverges, there is some n € N such that R>, and R<_, have distance at least 2L + 2
from each other; in particular, G[R>, L], and G[R<_,, L] are disjoint and not joined by an edge. Hence,
they are separated in G[R, L] by Bg(r—n4+1Rrn—1,L). Since Bg(r—n4+1Rrn—1,L) is finite as G is locally
finite, it follows that S is eventually contained in either G[R>,,, L] or G[R<_,, L] and that at most finitely
many P; meet Bg(r_,+1Rr,—1,L). As the P; are disjoint and start in R>g, and hence infinitely many P;
start in R>,, it follows that S has a tail T such that T C G[R>n, L] C G[R>0, L] and that all but finitely
many P; lie in G[R>o, L]. O

Corollary 3.8. Let G be a locally finite graph and let H be an escaping subdivision of the heragonal
half-grid with vertical double rays S° and horizonal paths P;; such that SO diverges. Then

(i) for alli,k € N there is £ € N such that S%, € G[S%,, M| and SL_, C G[SZ_,, M;], and

(i) for alli,k € N there is £ € N such that P;; C G[Sgk,Mi] and Py_;) C G[S%ik,Md forall j > ¢.

Proof. Let i,k € N be given. Set R := S° where we enumerate R = ...r_iror ... so that ry = sg.
Applying Lemma 3.7 to R, L := M; and S := S%, and the paths P; := P;; for j > 0 yields some m € N
such that %, and all P;; with j > m are contained in G|R>0, M;] = G[SY,,, M;]. Similarly, we find some
n € N such that Sig—n and all P;; with j < —n are contained in G[S%_k, MZ] Then ¢ := max{m,n} is as
desired. (]

The next lemma finds a diverging subdivision in an escaping subdivision of the hexagonal half- or
full-grid.

Lemma 3.9. Let H be an escaping subdivision of the hexagonal half-grid (full-grid) in a locally finite
graph G with vertical double rays S* and horizontal paths Pi; such that S° diverges. Then there exists an
escaping subdivision H' C H of the hexagonal half-grid (full-grid) whose vertical double rays are the S*
and whose horizontal paths Pi’j are a subcollection of the P;j such that H' diverges and such that for every
two non-incident edges of the hexagonal half-grid (full-grid) their images in H' are at least K apart in G
if they are contained in Hy := ;5 S* U Uis k. jez Fij-

Proof. We only give the proof for the hexagonal full-grid; the construction for the hexagonal half-grid is
analogous. For the sake of this proof, we denote the horizontal edges e;; of the hexagonal full-grid by f;(2))
if i € 2Z + 1, and by fi2j_1) if ¢ € 2Z, and we enumerate the P;; accordingly. Let mgfl,xév denote the
endvertices of P;; on S*~! and S?, respectively. We will recursively select the branch paths Q;; of the
edges f;; amongst the Py, such that

(1) da(Qij, Qre) > max{|i|, |J], |k, [¢|} for all 4, j, k, £ € Z such that {3, j} # {k,(},

(2) da(Qij, S*ys Uyl S*) > max{]il,|j], |k} for all 4, ], k € Z, and

(3) da(S'y!_y,yyS*) > max{|i], |k, |j|} for all i, 4,k € Z,

where y;fl

and y; denote the endvertices of Q;; on S*~! and S°, respectively. Let H' denote the graph
obtained from the union of the S* and the Q;;. Clearly, H' is still an escaping subdivision of the hexagonal
full-grid (whose horizontal paths Pi’j are essentially the Q);;, except that they are again enumerated
as usual). It follows from (1)—(3) and (i) of escaping subdivisions that Hj has the desired property.
Moreover, H' diverges. Indeed, the distances in G between the images U,,, W,, in H’ of vertices and/or
edges an,, b, of the hexagonal full-grid which form diverging sequences (an)nen, (bn)neny in H grow by
(1)~(3) unless the U,, W, are of the form Qi;,yf_S*y} or Qij,yiS*yl, or yi_ Syl yh S*ys. But

their distances grow because of (i) and (ii) of escaping subdivisions; we omit the details.
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We now describe how we choose the paths @;;. First, we set Qi := Pj for all ¢ € 2N + 1 and
Qio == P—1) for i € 2Z9 + 1. Now let n € N be given, and assume that we have already chosen
paths @;; for all |j| < n. Assume further, without loss of generality, that n is even. We now describe how
we choose the paths @i, where i € 2Z + 1 since n is even. The choice of the paths Q;_,) can be done

analogously after the choice of the Q;p.

yg *——
Q12
- b —
v3 y3 —
Q32
— o y?
Qo1 Qa1
~——
—e
0 Qo1
yo #—
(2\7\\” (_)\(1 (f,m
—e
21 Qua(—1)
~——
0
—e Y1
y y A\ 4 YRo(_1W¥ \ A\ 4 A 4 y

§—6 §5 g4 g3 g2 g-1 S0 St S? S3 St S5 S6

FIGURE 3.2. Depicted in blue and green are the subgraphs X35 and Y3, that are used to

choose @32. The paths @);; that are chosen before Q32 are shown in grey.

So let i € 2N + 1 be given, and assume that we have already chosen paths Qg for all k£ € 2N + 1 with
k <. We will now select a path P;; to be Qi,; again, the choice of the Q(_;), can be done analogously
after the choice of the Q.

By (i) and (ii), we have dg(P;j, Pge),dc(S?, Pie) > max{i, |k|} for all k ¢ {i — 1,i,i+ 1} and j,¢ € Z.
Hence, no matter which P;; we choose to be Q;,, we will have that dg(Qin, Qre) > max{i,n, |k|,|¢|} and
da(yi 1S Qre), da (v, S, Qre) > max{i, n, |k|} for all k with |k| > ki, := max{i + 2,n} and |¢| < n.
So when choosing Q;,,, we only need to consider those finitely many Qr, with |k| < k;;, and |[¢| < n. Since
Xin = U|k|<km,|e\<n Qre UUgpcpe; Qrn is finite and G is locally finite, all but finitely many P;; have the
property that x;-*lSi_l UP; U x;S” has distance at least max{i,n} from X;, (see Figure 3.2).

Moreover, by (i) and (ii), we have dg(P;j, S*),dc(S% S*) > max{i,|k|} for all k # i. Hence, no
matter which P;; we choose to be Q;y,, we will have that dg(Qin, S*), da(y:S?, S*), da(yi 191, S%) >
max{i,n,|k|} for all & with |k| > max{i + 1,n} and || < n. So when choosing Q;,, we only need to
consider those finitely many S* with |k| < max{i + 1,n}. By Corollary 3.8 (i) and (ii) and because
SO diverges, all but finitely many of the P;; have the property that z/, *S*~' U P;; U x;SZ has distance

at least max{i,n} from Y, := Uy <y, Skyfn_l). Hence, we can pick a path P;; whose endvertices

on S% and S*~! appear on S°~! and S? after the endvertices of Q(i—1)(n-1) and Qi1 1)(n—1), respectively,
such that x;'flSi_l UP; U xj»Si has distance at least max{i,n} from X, UY;,, and we set Q;, := P;;.

Clearly, Q;, is as desired. O

We are now ready to prove Lemma 3.5.
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Proof of Lemma 3.5. (ii): By Lemma 3.9 every escaping subdivision H of the hexagonal half- or full-
grid whose vertical double ray S° diverges contains a diverging subdivision H’ of the hexagonal half- or
full-grid, respectively, as a subgraph.

(i): Assume first that H is an escaping subdivision of the hexagonal half-grid, and let H' C H be
obtained from H by applying Lemma 3.9. Further, let H be obtained from H’ by deleting all horizontal
paths that are not of the form Pi’j for i € 2Z and j € 3Z or i € 2Z + 1 and j € 3Z + 1. Then also
the subgraph Hx of H consisting of all $¢ with ¢ > K and all R/j C H with ¢ > K is a subdivision of
the hexagonal half-grid, and we claim that it is K-fat. Indeed, to turn Hg into a K-fat model of the
hexagonal half-grid we may choose the following sets V. as branch sets, for every z € V(ﬁ k) of degree 3.
Let € V(S%) and let E. and Ey be the branch paths of Hj. := Uisx Sty Uik jez Pij © H' starting
at x that are contained in S*. We then choose as V,, the union over E, and E;. By construction and since
the images in Hj; of any two non-incident edges of the hexagonal half-grid have distance at least K in G,
it follows that the model is K-fat.

Second, assume that H is an escaping subdivision of the hexagonal full-grid, let H' C H be obtained
from H by applying Lemma 3.9, and let H C H’ be defined as above. Then the graph Hg; defined
as above is K-fat for every K € N by the argument above. Similarly, it follows by (the symmetry of)
the construction of H' in the proof of Lemma 3.9 that also the subgraph H_j_; consisting of all S*
with ¢ < —K — 1 and all Pi'j - H with i < —K — 1 is K-fat for all K € N. Since G is locally finite,
we then find infinitely many S—5~1-SK+1 paths W in H which are pairwise at least K apart. By the
assumptions on H and since H is escaping, gluing the W; with H Kx+1 and H_ 54 together yields (after
possibly applying Proposition 3.6) a subdivision H” of the hexagonal full-grid. By construction, H" is
K-fat. O

3.6. Proof of the main results given Theorems 3.3 and 3.4. In this section we derive Theorems 1

to 4 from Theorems 3.3 and 3.4; in fact, we show the following more detailed versions.

Theorem 1°. Let G be a locally finite, quasi-transitive graph whose cycle space is generated by cycles of
bounded length. Then FG <5, G for every thick end € of G.

Proof of Theorem 1 and Theorem 1’ given Theorem 3.4. By Observation 3.1 and Lemma 3.5 (i), Theo-
rem 3.4 yields Theorem 1" and hence also Theorem 1, where we note that the subdivision obtained from

Lemma 3.5 (i) has all its rays in the same end as the full-grid obtained from Theorem 3.4. g

Theorem 2°. Let e be a thick end of a locally finite, quasi-transitive graph G whose cycle space is generated
by cycles of bounded length. Then G contains a diverging subdivision of the hexagonal full-grid whose rays

all lie in €.

Proof of Theorem 2 and Theorem 2’ given Theorem 8.4. By Observation 3.2 and Lemma 3.5 (ii), Theo-
rem 3.4 yields Theorem 2’, where we note that the subdivision obtained from Lemma 3.5 (ii) has all its
rays in the same end as the full-grid obtained from Theorem 3.4. For Theorem 2, note that every diverging

subdivision of the hexagonal full-grid can be contracted into a diverging minor of the full-grid. O

Theorem 3°. Let G be graph of finite maximum degree whose cycle space is generated by cycles of bounded
length. Then HG <5, G for every thick end ¢ of G.
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Proof of Theorem 3 and Theorem 3’ given Theorem 3.53. By Observation 3.1 and Lemma 3.5 (i), Theo-
rem 3.3 yields Theorem 3’, and hence also Theorem 3, where we note that the subdivision obtained from

Lemma 3.5 (i) has all its rays in the same end as the half-grid obtained from Theorem 3.3. O

Theorem 4°. Let ¢ be a thick end of a graph G of finite mazimum degree whose cycle space is generated
by cycles of bounded length. Then G contains a diverging subdivision of the hexagonal half-grid whose rays

all lie in €.

Proof of Theorem / and Theorem 4 given Theorem 3.3. By Observation 3.2 and Lemma 3.5 (ii), Theo-
rem 3.3 yields Theorem 4’, where we note that the subdivision obtained from Lemma 3.5 (ii) has all its
rays in the same end as the half-grid obtained from Theorem 3.3. For Theorem 4’, note that a diverging

subdivision of the hexagonal half-grid can easily be contracted into a diverging minor of the half-grid. O

4. DIVERGING DOUBLE RAYS AND QUASI-GEODESIC 3-STARS OF RAYS IN THICK ENDS

In this section we prove two theorems about double rays and 3-stars of rays in thick ends, which we

need for the proofs of Theorems 1 to 4.

4.1. Diverging double rays. Georgakopoulos and Papasoglu [21, Theorem 8.16] showed that every
connected graph of finite maximum degree which has an infinite set of pairwise disjoint rays has a diverging
double ray (whose tails may lie in two distinct ends). For the proofs of Theorems 3 and 4 we will need

the following variant of that theorem, which lets us find the diverging double ray in any thick end we like.

Theorem 4.1. Let G be a graph of finite maximum degree, and let € be a thick end of G. Then G has a

diverging double e-ray.

The proof of Theorem 4.1 uses the same idea as the one of [21, Theorem 8.16] by Georgakopoulos and
Papasoglu, in that Lemma 4.3 and Lemma 4.4 below are variants of [21, Corollary 8.15 and Lemma 8.17].
However, our proof is more involved, as we need to take care that the tails of the double ray lie in the
prescribed end.

Essentially, we will deduce Theorem 4.1 from the following coarse Menger’s theorem for two paths,
which was proven independently by the first author, Huynh, Jacobs, Knappe and Wollan [3, Theorem 1]
and by Georgakopoulos and Papasoglu [21, Theorem 8.1]; the version we state here is from the latter

authors. A metric graph is a pair (G, ¢) of a graph G and an assignment of edge-lengths ¢: E(G) — Rxg.

Theorem 4.2. Let G be a metric graph, and let X, Y C V(G). For every K > 0, there is either

(i) a set B C V(G) of diameter < K such that G — B contains no path joining X toY, or
(ii) two X-Y paths at distance at least d := K /272 from each other.

It follows by a compactness argument that we may replace in Theorem 4.2 the set Y by an end ¢ and

the two paths in (ii) by e-rays.

Lemma 4.3. Let (G,{) be a metric graph such that B g (v,n) is finite for all v € V(G) and n € N.
Let A be a finite set of vertices in G, and let € be an end of G. For every K > 0, there is either

(i) a set B C V(QG) of diameter < K such that G — B contains no e-ray starting at A, or
(il) two e-rays starting at A at distance at least d := K /272 from each other.
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Proof. In the following, we abbreviate d(¢ ¢) and B ) with dg and Bg, respectively.

By the assumption on ¢ and since A is finite, the balls Bg(A,n), for n € N, are finite. Hence, there
exists, for every n € N a unique component C,, of G — Bg(A,n) such that every e-ray has a tail in C,,.
Their neighbourhoods Ng(C,) C Bg(A,n) are finite; so we may set k, := |Ng(C,)| and enumerate
Ng(Cp) = {of,...,v¢ }.

We apply Theorem 4.2 to the sets X := A and Y := Ng(C,,) in G. If, for some n € N, Theorem 4.2
yields a set B C V(G) of diameter < K that separates A and Ng(C),), then by the definition of C,, this B
is as in (i). Hence, we may assume that for every n € N, we find two A-Ng(C,,) paths P,, @, that are at
least d := K /272 apart in G.

For all m < n € N, we define a k,,-tuple

ty = (8™ 7™, (R B i) € T o= ({0, d}? x {4, 4]

n

of triples as follows. We let t?"™ be the distance dg(P,,v!™) between P, and v!" if it is less than dj
otherwise we set t?™ := d. Analogously, we let "™ be the distance dg(Q,,v™) between Q,, and v if
it is less than d; otherwise we set "™ := d. Further, if ™ % 0 and "™ # 0, then we set s'™ := 0.
Otherwise, it follows that precisely one of P, and @),, meets v}", and we then let s}™ encode whether v;"
meets P, (s € {1,2,3,4}) or Q,, (s} € {—4,—-3,—-2,—1}) and whether its predecessor and successor
on P, or @, both lie in C,, (|s?™| = 1), both lie in G — C,, (|s?™| = 2), or its predecessor lies in C,, and
its successor lies in G — C, (|s?™] = 3) or vice versa (|sP™| = 4).

Since all T}, are finite, there exist infinite index sets N D Iy D I; D ... such that, for all m € N, all ¢]*

with n € I,,, are equal. We pick, for every m € N, some i,, € I,,. Now set

Py, :=P;, N(G[Cpn-1,1] = Cn) and Qi := Qi, N(G[Crm_1,1] = Cp),

m

and let P :=J,,cn P, and Q := U,y @, We claim that P and @Q are at least d apart in G and that
they both contain an e-ray that starts in A. It then follows that these rays are as in (ii).

First, we show that P and @ are at least d apart in GG. For this, recall that dg(Pn,Qn) > d for all
n € N by the choice of P, @Q,,. Now let m < n € N be given. We show that dg(P;,, , Ql") > d; the other
case is symmetric. Clearly, if m = n, then dg(P;,, ,Q;,) > d holds by the choice of P;. ,Q;, , so we may
5, —Q;, path. Then W
meets Ng(Cp,) in a vertex v because Qi, € G[Ch_1,1] C G[Cp,1] and P;, € G — C,, as m < n. It
follows that

assume that m < n. Set £ := dg( i an) and let W = wq ...wy be a shortest P,

{ = dg(wo,v]") +dg(vi", we) > de(P;,, v vi") +dg(vj ™ Qi) > da(P,, v vi') +dg(vi", Qi,) > t;mm +f§"m
t’”m +tl"m = min{dg(P;,, vj ™), d} + min{dg (v vj ™ Qi,),d} > min{dg(P;,,Q;,),d} =d.

where we used t“”m = t;»"m SINce iy, in € I, Hence, dg(P, Q) > d as desired.

So to conclude the proof, it remains to show that P and @ both contain an e-ray that starts at A. We
show the claim for P; the other case is symmetric. By definition, it is clear that P meets A in a unique

vertex a, which is the endvertex of P;, in A; in particular, a has degree 1 in P. Hence, it suffices to show

1

that all other vertices in P have degree 2 in P, as then P contains a ray that starts in a, and which then
has to lie in & since P — Cp, = U, <, P

in

is finite for all m € N. By definition of P, every vertex of P

that is not contained in some Ng(C),) is contained in precisely one ]5%, and has thus degree 2 in P. So
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let some v* € V(P)N Ng(Cp,) be given. Then sémm € {1,2,3,4}, and it follows that v}" has degree 2

. i [ m
in G because s5"™ = 5,

; E by the choice of 4, Ty 41- O

The remainder of the proof of Theorem 4.1 is now analogous to the one of [21, Theorem 8.16]. More

precisely, we have the following auxiliary lemma.

Lemma 4.4. Let G be a graph of finite maximum degree, and let € be a thick end of G. Then there
is a finite set A of vertices in G and an assignment of edge-lengths £: E(G) — R with the following
properties:

(i) no ball of radius 1 in the corresponding metric dy separates A from e,

(i) limeepq)f(e) =0, and

(i) every ball of finite radius in dy is finite.

Proof. The proof is analogous to [21, Lemma 8.17] with just one exception: we choose the sequence
(Rp)nen of pairwise disjoint rays so that every R, is an e-ray, which is possible because ¢ is thick.
Note that (iii) follows easily from the proof, since the S™ are ‘thickened rings’ Bg(0,7,) \ Bg(0,7n—1)

around a vertex o € V(G) and because ), 1/n is infinite. O

Proof of Theorem /.1. The proof is analogous to [21, Theorem 8.16] with just one exception: instead of
[21, Corollary 8.15 & Lemma 8.17] we apply Lemmas 4.3 and 4.4. O

4.2. Quasi-geodesic 3-stars of rays. By Theorem 4.1 every graph G of finite maximum degree contains
for every thick end ¢ a diverging double e-ray. For the proofs of Theorems 1 and 2, we need the following

result, which strengthens Theorem 4.1 in the special case where G is quasi-transitive and accessible.

Theorem 4.5. Let € be a thick end of a locally finite, accessible, quasi-transitive graph G. Then there
exists ¢ € N>1 and e-rays Ri, R, R3 in G such that Ry N Re = Ry N Ry = Ry N Rz = {v} for some
v € V(G) and such that Ry U Re U R3 is c-quasi-geodesic in G.

For the proof of Theorem 4.5, we first need the following auxiliary lemma.

Lemma 4.6. Let G be a locally finite, accessible, quasi-transitive graph that contains a thick end €. Then
there exists a connected, one-ended, quasi-geodesic subgraph H of G such that every ray in H is an e-ray

in G and such that the stabilizer of H acts quasi-transitively on H.

Proof. By a result of Diestel, Jacobs, Knappe and Kurkofka [10, Lemma 7.12] and in particular its proof
[11, Appendix A], there exists a connected, induced, one-ended subgraph H of G whose rays all lie in
such that every component of G — H has finite neighbourhood in H, such that there are only finitely
many orbits of such components under the stabilizer I" of H in the automorphism group of G and such
that T' acts quasi-transitively on H. It remains to prove that H is quasi-geodesic. Since there are only
finitely many orbits of components of G — H under I', each such component has finite neighbourhood
in H and because H is connected, there exists ¢ € N> such that for every component C of G — H every
two vertices in Ng(C) have distance at most ¢ in H.

We claim that H is c-quasi-geodesic. Indeed, let x,y € V(H) be given, and let P be a shortest z—y
path in G. Further, let Qo, ..., Q,, be the maximal non-trivial subpaths of P that are internally disjoint
from H. Then every @); is internally contained in some component C' of G — H and starts and ends

in Ng(C). By the choice of ¢, there exists a path @} in H of length at most ¢ which has the same
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endvertices as @;. It follows that the union W over P N H and the @/ is connected, contained in H,
contains x, ¥y, and hence contains an z—y path. Since all Q); are non-trivial and have thus length at least 1,
it follows that dy(x,y) < |[E(W)| < |E(PNH)|+c¢(m+1) <c-|E(P)|=c-dg(z,y) as desired. O

We also need the following result of the first author, Diestel, Elm, Fluck, Jacobs, Knappe and Wollan [2].

Lemma 4.7 ([2, Lemma 4.3]). Let X be a c-quasi-geodesic subgraph of some graph G for some ¢ € N>1.
If P is a shortest v—X path in G for some vertex v € V(G), then X U P is (2¢ + 1)-quasi-geodesic in G.

We can now prove Theorem 4.5.

Proof of Theorem 4.5. Let us first assume that G is one-ended. In this case, we apply two compactness
arguments. First, a standard compactness argument (see e.g. [29, Proposition 5.2]) implies the existence
of a geodesic double ray R in the locally finite and quasi-transitive graph G.

To make the second compactness argument, we first show that G[R, K] # G for all K € N. Since G is lo-
cally finite, the set Bg(r1 Rrak 41, K) is finite. As R is geodesic, the sets Bg(R<o, K) and Bg(R>2k+2, K)
are disjoint and not joint by an edge. Hence, every Bg(R<o, K)-Bg(R>2k+2,K) path meets either
Ba(r1Rrak+1, K) or G—G[R, K]. But since both R<g and R>2x+1 lie in the unique end of G, there are in-
finitely many disjoint such paths, of which at most finitely many can meet the finite set Bg(ri Rrag 1, K).
Hence, G — G[R, K] is non-empty.

Thus, there exists vertices in G of arbitrary distance from R. Let x; be a vertex at distance i from R,
let 7;, be a vertex of R with dg(z;,7j,) = dg(w;, R), and let P; = pjy ... p! be a shortest z;—r;, path. Then
R U P; is 3-quasi-geodesic by Lemma 4.7. Since G is quasi-transitive, there is an infinite index set I C N
such that all r;, lie in the same orbit. Let s € V(G) be another vertex in that orbit. For all ¢ € I, let ¢; be
an automorphism of G that maps r;, to s. Then, since G is locally finite, there exists an infinite index set
I C I such that o;(rj,—1Rrj,+1 Up) Pp}) coincides for all i € I, amongst which we again find an infinite
index set Iy C I; such that ¢;(r;,—2Rrj,+2 U p{ Pph) coincides for all i € I and so on. This results in
three internally disjoint, geodesic rays starting in s whose union is 3-quasi-geodesic. Obviously, all three
rays must lie in the unique end ¢ of G, so they are as desired.

Let us now assume that G has more than one end. Since G is accessible, there exists by Lemma 4.6
a connected, one-ended, c-quasi-geodesic, quasi-transitive subgraph H of G for some ¢ € N>; such that
every ray in H is an e-ray in G. By the first case, we find the desired three rays R, Ro, R3 in H
whose union is 3-quasi-geodesic. Since H is a c-quasi-geodesic subgraph of G, the rays R, R, R3 form a

3c-quasi-geodesic subgraph of G. (]

5. HALF-GRID MINORS

In this section we prove Theorem 3.3; in fact, we show a more detailed version, which we need in the
next section for the proof of Theorem 3.4.

Let R=...r_17o71 ... be a double ray in a graph G, and let K € N. A component C of G — Bg(R, K)
is long if C has a neighbour in Bg(R>;, K) and in Bg(R<_;, K) for all i € N. Further, C' is thick if, for
every L > K, some long component of G — Bg(R, L) is contained in C.

Theorem 3.3°. Let R be a diverging double ray in a thick end € of a locally finite graph G whose cycle
space is generated by cycles of bounded length. Then either Ky, <z G or G contains an escaping

subdivision H of the hexagonal half-grid whose first vertical ray is R.
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In particular, if Kn, A5 p G and C is a thick component of G — Bg(R, L) for some L € N, then we
may choose the vertical double rays S* of H so that S* C C for all i > 1.

Proof of Theorem 3.3 given Theorem 3.3°. By Theorem 4.1, there exists a diverging double e-ray R in G.
Apply Theorem 3.3 to R. O

In the remainder of this section we prove Theorem 3.3’; see Section 3.3 for a sketch of the proof.

Lemma 5.1. Let G be a graph whose cycle space is generated by cycles of length at most k € N, and
let Y be a connected subgraph of G. Then for every component C of G —Y that attaches to 'Y, the graph
ClocC, | 552]] is connected.

Note that if G is connected, then every component of G — Y attaches to Y.

Proof. Clearly, it suffices to show for every two vertices vg,v; € 0gC that there exists a vg—v; path
in C[0cC, [%52]]. So let vy, v1 € dgC be given, and let ug and u; be vertices of ¥ which are adjacent
to vy and vy, respectively. Since Y is connected, there exists a u;—ug path @ in Y. Let P be a vg—v; path

in C. Then D := vy Pviu;Qugvg is a cycle in G. By assumption on the cycle space of G, we can write D

as a finite sum of cycles D1,..., D, in G of length at most &, i.e.
D= Z D;
D;eD

where D := {D;,...,D,}. Let D' C {Dy,...,D,} consist of those D; that do not lie completely in C,
i.e. that contain a vertex of G —C. Note that D; NC' C C[0¢C, | 252]] for all D; € D’ since D; has length

at most k and meets G — C. Let

H:= DinCC : ”_QH c

DiLgJD, nc c[acc { 5 C
be the subgraph of C consisting of all vertices and edges in C that lie on cycles from D’. Note that
vo,v1 € V(H) since voug,v1u; € E(D). We claim that vy and vy lie in the same component of H, which
clearly yields the claim. So suppose for a contradiction that vy and vy lie in distinct components Hy, H;
of H. Then the set F' of edges in G between Hy and G — Hy is a cut in G that separates Hy and Hj;
in particular, F' is finite since G is locally finite and because Hy C H is finite as UDiED’ D; O Hyis a
finite union of finite cycles. Obviously, F' must contain an edge f from P C C. Then f cannot lie in
>-p,ep Di ©Up,cpr Di, since f € E(C) but f ¢ E(H). Hence, as f € E(P) C E(D), it lies in

H:=D+ Y D= > Di+ Y Di= >» D;CC,
D;eD’ D;eD D;eD’ D;€D\D’
where for the last inclusion we used that D; C C for all D; € D\ D’ by the choice of D’. In particular,
the same argument also yields that E(P)NF C E(H').

As H’ is a finite sum of cycles in G, it is an element of the cycle space of G. Thus, H' meets the finite
cut F' in an even number of edges. As P is a finite path from vy € V(Hp) to v; € V(Hy) C V(G — Hy),
it meets the finite cut F' in an odd number of edges. Combining these two facts with E(P)NF C E(H')
yields that H' contains an edge f’ # f from F which does not lie on P. Since H' C C, the edge f’ must
lie in C. But since f’ is not an edge of P = DN C, it is not an edge of D either. Hence, f’ is an edge
of > p.cp Di, and thus an edge of Up cp Di. Since f’ is also an edge of C, it lies in H, which is a

contradiction to the choice of F. O
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Lemma 5.2. Let R = ...r_17r9r1... be a diverging double ray in an end € of a locally finite graph G.
Then for every K,n € N some component of G — Bg(R, K) attaches to Bg(R<_pn, K) and Bg(R>y, K).

Proof. Since R diverges, there exists some m € N such that R<_,, and R>,, are at least 2K 4 2 apart
in G. Set N := max{n,m}. As G is locally finite, the set Bg(r_nyRry, K) is finite. Hence, as R<_y
and R>y are both e-rays and thus equivalent, there exists an R<_ny—R>y path P = pgy...pe in G that
avoids Bg(r_nyRry, K). Since pg € V(R<_n) and p; € V(R>n), there is a first vertex p; of P that is
contained in Bg(R>n, K), and a last vertex p; with j <4 that is still contained in Bg(R<_n, K).

We claim that ¢ > j + 2, which then implies that P’ := p;;1Pp;—1 is non-empty. As P avoids
Bg(r—nyRry, K) and by the choice of p; and pj, it then follows that P’ is contained in a component of
G—Bg(R, K), which then attaches to Bg(R<_n, K) and Bg(R>n, K) via p;pj+1 and p;_1p;, respectively,
and which is thus as desired.

So suppose for a contradiction that ¢ — j < 1. Then dg(p;,p;) <i—j <1, and thus
do(R<_n,R>n) < da(R<_n,pj) +da(pj,pi) +da(pi, R>n) S K+ 1+ K =2K +1,
which is a contradiction since dg(R<_n, R>n) > 2K + 2 by the choice of N. O

Lemma 5.3. Let R be a diverging double ray in a thick end of a locally finite graph G whose cycle space
is generated by cycles of bounded length. Then for every K € N some component of G— Bg(R, K) is long.

Proof. Let k € N such that the cycle space of G is generated by cycles of length at most k. Suppose for
a contradiction that no component of G — Bg (R, K) is long. Since R diverges, there exists some N € N
such that dg(R<_n,R>n) > 2K + k + 2. As G is locally finite, Bg(r_nRry, K) is finite. Hence, the
set C of components of G — Bg(R, K) which attach to Bg(r—nRry, K) is finite. Since no C' € C is long
by assumption and because C is finite, there exists some m € N such that Ng(C) C Bg(R>_m, K) or
Ng(C) € Ba(R<m, K) for all C € C.

By Lemma 5.2, some component C of G— Bg(R, K) attaches to Bg(R<_m—1,K) and Bg(R>m+1, K);
in particular, C' ¢ C by the choice of m. Let U=, Ut C 9gC be the set of vertices in C' that send an
edge to Bg(R<_n, K) or to Bg(R>n, K), respectively. Then U~ UU* = 9¢C because C ¢ C. Since
ClocC, | 552]] is connected by Lemma 5.1, this implies that Bo (U™, [252]) and Be (U™, [252]) either
intersect non-emptily or there is an edge between them. Hence, there are vertices u™ € U~ and u™ € U™

of distance at most | 52| + 1 + [“52] from each other. Thus,

da(R-n,RN) <dg(R_n,u”) +da(u”,u") +da(u’, Ry)

S(K+1)+<V;2J 1+V;2D+(K+1)

<2K+k+1

which is a contradiction since dg(R_n, Ry) > 2K + k + 2 by the choice of N. O

Lemma 5.4. Let € be an end of a locally finite graph G. Suppose there are My < My < ... € N and
double e-rays S°, S, ... such that S° diverges, such that S* C G[S°, M;] — Bg(S°, M;_1) for all i € N>y
and such that there are infinitely many disjoint S2,-S%, paths and infinitely many disjoint S<,-S%, paths
in G[S°, M;]. Then either Ky, <{p G, or there ;LTG 07: 10 <11 < ...€ N and an escaping S;Lbdizjision H

of the hexagonal half-grid whose vertical double rays are the S% .
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Proof. By passing to a subsequence of the S? if necessary, we may assume that M; > M;_; + 2i and that
(a) SZ Q G[SO,MJ — BG(SO,Mi_l + 27,) for all i € N.

Set Ty := 5%, and Ty := S%,. By assumption and Lemma 3.7, every S* has disjoint tails 7} and T}’
that are contained in G[T{, M;] and in G[T, M;], respectively. For each vertex ¢ in T} we choose a shortest
t-T} path in G, which then has length < M; and lies in G[T}}, M;]. Then infinitely many of these paths
are T/-T{ paths (i.e. they only have their first vertex on T7), of which infinitely many are pairwise disjoint
since they have length < M; and because G is locally finite; let us denote these paths by Q;;.

For every Q;; let k;; # ¢ be maximal such that dg(Qsj, T{Cij) < kij;; if no such k;; exists, we set k;; := 0.
Note that k;; < i since dg(Qij,T}) > da(Qij, S*) > k for all k > i by (a) and because Q;; C G[T}, M;]
for all ¢, 7 € N. We now obtain 7;-T, lé, paths Q; by concatenating a suitable (initial) subpath of ;; with
a shortest QirT,;ij path. In particular, since G is locally finite, we may assume that the Q;j for every

(arbitrary but fixed) ¢ € N>; are pairwise disjoint. By the choice of the k;; it follows that
(b) da(Q);,T}) > k for all k,j € N and i € N>q with k ¢ {4, k;;}.

ij
Moreover, since @;; is a shortest path between its first vertex and T, it follows that once @);; meets
G[Ty, My,,—1 + 1] it will stay in there. By the definition of Q;j and k;; and by (a), this implies that

(c) Qi; € G[Ty, M;] — Ba(Ty, My,;—1 + i) for all i € N>q and j € N.

Let X be the auxiliary graph on the vertex set {I} | i € N} where T/ and T}, are connected by an edge
in X for i < i if and only if infinitely many of the Q;; have one endvertex on Tj,. Clearly, every T is
adjacent to at least one T}, with i’ < 4, and hence X is connected. Thus, since X is infinite, it either has
a vertex of infinite degree or it contains a ray by Lemma 2.1.

Let us first assume that there is some ¢ € N and an infinite subset I = {ig,41,... } € Nwithig <iy < ...
such that T} is adjacent in X to all T} with i € I. Then the T} for i € I form the branch sets V;, := V(T} )
of an ultra fat model of Ky, in G. Indeed, we have dg(V,,, V,,) > min{n, m} by (a), so it remains to find
suitable branch paths. Given any enumeration of N2, we may choose the branch paths P,,, between V,,
and V,, recursively. Since G is locally finite, and because at step (n,m) we have only chosen finitely

many branch paths P, , there exist paths Q;"j, Q;mj’ that both end in T} such that the path P,,,

!
inj?

branch paths P,/,,». Then by construction and (a) and (b) it follows that also dg(Ppnm, Vi) > k for all

consisting of @; ;, @} ; and a suitable subpath of 7y is at least min{n,m} apart from all earlier chosen
k ¢ {n,m}, and hence the model of Ky, is ultra fat. Moreover, since its branch sets are the vertex sets
of the e-rays T} , we find Ky, <5 G.

Hence, we may assume that there are 0 = ¢9 < ¢; < ... € N such that every Ti'n is adjacent in X
to T; .. Then there are, for every n € N, infinitely many @ ; that end in 7] . We reindex these Q; ;
by N>; x N, and the S by N.

We now apply the same argument to the tails 7}’ of the (reindexed) S*. This either yields Ky, <§ G,
T/

1 in

paths Qf ; that satisfy (b) and (c) with T} instead of Tj,. Now the S’ form the vertical double rays of

or we find indices 0 = iy < i; < ... € N such that, for every n € N, there are pairwise disjoint TZ»'T’H

an escaping subdivision of the hexagonal half-grid. Indeed, we can choose for every n € N infinitely many
TZ.'7L7177}’7L paths Pi’nj in Uz'n,1<k§in (T, U UjeN Q;Cj). We also set Pi’n(_j) = ;’J for all j € N. Then
combining (c) of the @} ; and the Q] ; with Lemma 3.7 yields that

inJ

(C’) P/ . Q G[SO7MZ] — BG(SO,MZ'”,1 + Z)

n]
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for every ¢ € N> and all but finitely j € N. Since G is locally finite, we now obtain a subdivision of the
hexagonal half-grid with vertical double rays the S by recursively selecting paths P,; amongst the P

to represent the horizontal edges e,; (compare Proposition 3.6). O
We are now ready to prove Theorem 3.3".

Proof of Theorem 3.3°. Let k € N such that the cycle space of G is generated by cycles of length at
most k. Let N, for n € N, be such that dg(R>n,,, R<—n, ) > n, which exists since R diverges.

By Lemma 5.4, it suffices to show that there are My < M; < ... € N and diverging double e-rays
R := 8% S' ... such that S* C G[S° M;] — Bg(S° M;_;) for all i € N>; and such that there are
infinitely many disjoint S,-S%, paths and infinitely many disjoint S2,-S% paths in G[S?, M;]. We will
prove the assertion with My := 0 and M; := My + |x/2] for all i > 0.

Let ¢ > 0 be given. By Lemma 5.3, there exists a long component C; of G — Bg(R, M;_1). For the ‘in
particular’ part we note that if we are given some L € N and a thick component C' of G — Bg(R, L), then
we may set My := L instead of My := 0 and choose as C; always a long component of G — Bg(R, M;_1)
which is contained in C.

Set Ut := 0¢C; N Bg(R>0,M;—1 + 1) and U~ := 9gC; N Bg(R<o, M;—1 + 1). Since G is locally
finite and C; is long, UT and U~ are infinite. As C;[05C;, L“T_QJ] is connected by Lemma 5.1, apply-
ing the Star-Comb Lemma (cf. Lemma 2.1) in C;[06C;, |252]] to UT and U™, respectively, yields two
combs DT and D~. By Lemma 3.7, their spines ST and S~ are eventually contained in G[R> NMi”Mi}
and G[R<_n,,,, M;], respectively, i.e. they have tails T+, T~ such that T+ C G[R>y,, , M;] and T~ C
G[RS—NMi , M;]. In particular, T, T~ are disjoint by the choice of Ny, so we can link them by a path
in the connected C;[0C;, | “52]] to obtain a double ray S* C C;[0¢C;, [252]]. Clearly, S° is as desired.
Indeed, the infinitely many SOZOfSiZO paths can be obtained by extending the paths in D* from T'F to its
teeth by shortest paths to S°, and analogously for T~ O

6. FULL-GRID MINORS

In this section we prove Theorem 3.4, which we restate here for convenience.

Theorem 3.4. Let € be a thick end of a locally finite, quasi-transitive graph G whose cycle space is
generated by cycles of bounded length. Then either Ky, < G or G contains an escaping subdivision of

the hexagonal full-grid whose rays all lie in €.
In fact, we will prove the following variant of Theorem 3.4, which implies Theorem 3.4:

Theorem 6.1. Let G be a locally finite, quasi-transitive graph whose cycle space is generated by cycles of
bounded length. If G has a thick end, then either Ky, <ur G or G contains an escaping subdivision of
the hexagonal full-grid.

We remark that instead of adding Theorem 6.1 as an intermediate step in the proof of Theorem 3.4 we
could have also formulated the three lemmas below which we use to construct either an ultra fat model
of Ky, or an escaping subdivision of the hexagonal full-grid (Lemmas 6.2, 6.8 and 6.9) so that we may
choose a thick end ¢, and the lemma then returns the desired structure ‘in’ e. However, while this would
have been possible in Lemmas 6.2 and 6.9 without changing their proofs, this is not true for Lemma 6.8.

There, we would then have to use the fact that G is accessible, to reduce the problem to one-ended graphs.
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Proof of Theorem 3.J given Theorem 6.1. By Theorem 2.2, G is accessible. Hence, by Lemma 4.6, there
exists a connected, one-ended, c-quasi-geodesic, quasi-transitive subgraph X of G for some ¢ € N such
that every ray in X is an e-ray in G. Applying Theorem 6.1 to X yields either an ultra fat model
((Vi)ien, (Eij)isjen) of Ky, in X or an escaping subdivision H of the hexagonal full-grid in X. Since X
is a c-quasi-geodesic subgraph of G, we find in the former case that ((V;)icen, (Eij)izjeen) is an ultra fat
model of Ky, in G. In fact, since every ray in X is an e-ray in G, we have Ky, <fr G. Similarly, in the
latter case, H contains a subdivision of the hexagonal full-grid which is escaping in G. Indeed, we may
choose vertical double rays ..., S-*, 8%, S% ... of H such that io = 0 and M;, _1+2i; > ¢(M;,_, +2j) for
j >0, and similarly M;, 1+ 2]i;| > ¢(M;,,, +2|j]) for j < 0. Then adding suitable S%-S%+! paths in H
yields a subdivision H' C H of the hexagonal full-grid which is escaping in G since X is a c-quasi-geodesic

subgraph of G. Moreover, all rays in H' are e-rays. O

In the remainder of this section we prove Theorem 6.1. The formal proof of Theorem 6.1, which collects
the tools from this whole section, can be found at the end of the last subsection, Section 6.2.

We first give a brief overview of this section; a more detailed sketch of the proof of Theorem 6.1 can
be found in Section 3.4. Let G be a locally finite, quasi-transitive graph whose cycle space is generated
by cycles of bounded length and which has a thick end. Further, let R =...r_1r¢ry ... be a double ray,
and let K € N. Recall that a component C of G — Bg(R, K) is long if C has a neighbour in Bg(R>;, K)
and in Bg(R<_;, K) for all ¢ € N. Further, C is thick if, for every L > K, some long component of
G — Bg(R, L) is contained in C.

In Lemma 6.2 below, we show that if G' contains a diverging double ray R such that, for some L € N,
G — Bg(R, L) has at least two thick components, then either Ky, <yr G or G contains an escaping
subdivision of the hexagonal full-grid. Our remaining task then is to prove that G indeed contains such
a double ray R. Showing this will be the main effort of this proof, and it will be done in Section 6.2 (see
Lemmas 6.8 and 6.9). For this, in Section 6.1, we provide with Lemma 6.5 a sufficient condition for G to
contain Ky, as an ultra fat minor, which enables us to find an ultra fat Ky, minor in G if we cannot find

such a double ray R.

Lemma 6.2. Let R be a diverging double ray in a locally finite graph G whose cycle space is generated
by cycles of bounded length. Suppose that for some L € N, there are at least two thick components of
G — Bg(R,L). Then either Ky, <yr G, or G contains an escaping subdivision of the hexagonal full-grid.

Proof. Let C # D be two distinct thick components of G— Bg (R, L). Since we are done if Ky, <uyr G, we
may assume that applying Theorem 3.3” to R, K and C or D, respectively, yields escaping subdivisions H¢
and Hp, respectively, of the hexagonal half-grid. Let MOC < MF < ... and MP < MP < ... witness
that H® and HP are escaping. Further, let Sic, SiD and Pg,
paths of Ho and Hp, respectively. By the ‘in particular’ part of Theorem 3.3", it follows that the S¢ and

Pi? be the vertical double rays and horizontal

the SP are contained in C and D, respectively; in particular, they are disjoint. Moreover, by property (ii)
of escaping subdivisions, we have that for M := max{M + 2, M + 2} the paths Pg and Pi? with
i > M are contained in C' and D, respectively, and are hence disjoint from each other. Let Hy, C Hc be
a subdivision of the hexagonal half-grid with vertical double rays S§ and S¢ for i > M, which we may
obtain by choosing as the new branch paths for the horizontal edges e;; infinitely many disjoint SOC fSAC/}

paths Q]C in H{,. Let H}, be chosen analogously. Clearly, H,. and H, are still escaping.
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Now since S = R = SP, gluing H/, and H}, together along R yields a graph H’ which is nearly as
desired except that the paths QJC and QP may intersect. But since G is locally finite, we can delete some
of the QJC and QED and apply Proposition 3.6 to obtain a subdivision H C H' of the hexagonal full-grid.

By construction, H is escaping. ([

6.1. Half-grids with crosses. In this section we establish a sufficient condition which ensures that a
graph G contains Ky, as an ultra fat minor. This condition essentially requires an escaping subdivision
H C G of the hexagonal half-grid, and infinitely many H-paths in G that ‘jump over’ the vertical double
rays in H. For this, we first need the following two auxiliary statements about Ky, minors in half-grids

with certain additional edges.

Lemma 6.3. Let G be obtained from the half-grid by adding all edges of the form (i,0)(i + 1,1) and
(1,1)(¢ +1,0) for i € N. Then G contains a model (V,E) of Ky, such that V;,V(E;;) C N>; x Z for all
i < j € N and such that the E;; are pairwise disjoint.

Proof. One can easily construct the Ky, minor recursively starting from K7 with branch set V3 := {(0,0)}.
For this, assume that we have already defined a model of K, with branch sets V1, ..., V;,, branch paths F;;
and integers jy, ¢, € N such that V;, E;; C {i,..., 4y} X {—jn,...,0,...,75,} and such that either all V;
meet {¢, 4, } x {—jn} or all V; meet {0,¢,} x {j,} and such that the E,; are pairwise disjoint. We can then
extend the branch sets V1,...,V,, and add a new branch set V,,;1 as well as new branch paths E, ), as
depicted in Figure 6.1 such that Vi,...,V;, 11 are the branch sets and the Ej;; are the branch paths of a
K41 minor. u

__i____________/

FIGURE 6.1. Sketch of a K5 minor in a half-grid with all (¢,0)(¢+1,1) and (¢,1)(¢+1,0)
edges. The branch paths F,; between V5 and the V; are the thickened (¢,0)(:+1,0) edges.

In particular, we have the following corollary:

Corollary 6.4. Let X be obtained from the half-grid by adding disjoint edges f, between (in,k,) and
(Jn, Ln), for every n € N, such that in, jn < in, jn and |in — jn| > 2 for alln <n’. Then X contains a
model (V,€) of Ky, such that V;,V(E;;) C N>; X Z for all i < j € N and such that the E;; are pairwise

disjoint.
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Proof. 1t is straight forward to check that the lines {i,,} x Z in X form the vertical double rays of a sub-
division X’ of the graph G in the premise of Lemma 6.3 such that every branch path in X’ corresponding
to an edge of G between {n} x Z and {n+1} x Z is contained in X [{in,...,in+1} X Z]. Hence, Lemma 6.3

immediately yields the assertion. O

Before we can state the main lemma of this subsection, we first need the following definition. Let H be
an escaping subdivision of the hexagonal half-grid in a graph G with vertical double rays S* and horizontal
paths P;;. An H-path @ in G with endvertices on S* and S7 for some i, j € N is K-fat for some K € N if

e dc(Q,S*) > min{k, K} for all k #i,j € N, and
e da(Q, Pre) > min{k, K} for all k € N and ¢ € Z.

Lemma 6.5. Let H be an escaping subdivision of the hexagonal half-grid in a locally finite graph G with
vertical double rays S*. Suppose there are infinitely many pairwise disjoint H-paths Q,, with endvertices on
Stm and ST for some i, jm € N such that Q, is m-fat and such that i, jm < ims, jm: and |im —jm| > 2

for allm < m’. Then H contains Ky, as an ultra fat minor.

Proof. Since G is locally finite and the @,, are finite, we may assume that dg(Qm,@m/) > m for all

m < m' € N, by possibly deleting some of the Q,,. Further, we may assume, for every Q,, =: ¢{"

G
that Q,,, N G[S™™,i" ] = q5* ... q;' and Qm N G[SIm 4! ] = Qo - -y, where i, == min{[in, /3], m}
and j/, := min{|j,/3],m}. In particular, if Q,, has distance less than |4/, /3] to vertices u,v € V(§%m),
then dg(u,v) < i, and similarly for j,,. Indeed, let Q’, be a subpath of Q,, which is a Bg(S' i, )-
Bg (877! ) path. Then we can replace Q,,, by a path that consists of Q’,, and a shortest S'"—Q’  path
and a shortest Q/,—S’™ path. Note that to regain that dg(Q.n, Pre) > min{k, m}, we might have to delete
some of the Pyy. But since the new @, can only be too close to paths Py, with k € {is,, i+ 1, Jm, Jm +1}
and because G is locally finite, we only need to delete at most finitely many Py, for every k, so by
Proposition 3.6 this yields a subdivision H” C H’ of the hexagonal half-grid with the same vertical
double rays as H'.

Then the graph H obtained from the union of H” and the Q,, is a subdivision of a graph X as in
the premise of Corollary 6.4. Hence, G contains a model (V,€) of Ky, such that Vi,V (E;;) C H; :=
2, U

the @,,, we may assume for every K € N that the images of every two non-incident edges of X have

mZiQm and such that the F;; are pairwise disjoint. By Lemma 3.9 and the assumptions on
distance at least | K /3] in G if their images in H are contained in Hy. Since every vertex of Ky, has
degree at least 2, we may assume that if some V; € V meets some branch paths of H in an inner vertex,
then it in fact contains it. Similarly, every F;; € £ contains any branch path of H as soon as it meets
an inner vertex of it. Hence, since the V;, E;; are pairwise disjoint (except for incident branch set - path
pairs) and contained in H;, they have distance at least |2/3] to all Vi, Exe with k > 4. It follows that
((Vi)iean, (Eij)izjean) is ultra fat. O

6.2. Finding two thick components. Let G be a locally finite, quasi-transitive graph whose cycle
space is generated by short cycles. In this subsection we show that if G has a thick end, then either
Ky, <ur G, or G contains a quasi-geodesic double ray such that, for some L € N, there are at least
two thick components of G — Bg(R,L). Together with Lemma 6.2, this then concludes the proof of
Theorem 6.1. The proof of this assertion is mainly divided into two lemmas, Lemmas 6.8 and 6.9 below;

see Section 3.4 for a sketch of the proof.



24 S. ALBRECHTSEN AND M. HAMANN

To carry out the proofs of Lemmas 6.8 and 6.9, we need the following two auxiliary statements.

Lemma 6.6. Let R = ...r_yrgr1... be a quasi-geodesic double ray in a graph G of finite mazximum
degree whose cycle space is generated by cycles of bounded length. For every K, N € N there exist d =
d(K,N),L = ¢K) € N such that the following holds: If a component C of G— Bg(R, K) has neighbours in
Ba(R<i, K) and Bg(R>i+n, K) for some i € Z, then there exist vertices x € 0gC N B (ri—¢Rr;, K + 1)
and y € 0¢C N Ba(rixnRriyNn+e, K + 1) such that do(x,y) < d.

Proof. Let ¢,k € N such that R is c-quasi-geodesic and such that the cycle space of G is generated by
cycles of length at most k. By assumption, the maximum degree A(G) of G is finite. We prove the
assertion with d := N - A(G)K+1241 4 k and € := c(2K + k + 1).

Let UT,U*, U~ C Be(dgC, | “52]) be the set of vertices in C' that have distance at most K + 4] in G
from R>;4n, r;Rritn and R<;, respectively; and note that by the assumptions on C, the sets UT and U~
are non-empty. By Lemma 5.1, C[0cC, | %52 ]] is connected. Hence, since UT,U~ C Be(9aC, [ 552]),
there is a UT—U~ path P = py...p, in C[0cC, |%52]]. Clearly, since Bc(0cC, [552]) =UTUU*UU™,
the choice of P guarantees that P = P1---Pn—1 is contained in U*, and hence P has length at most
U] +1 < N-AG)K+LEIFL Let 4,5’ € Z such that P starts in V(C) N Bg(r;, K + [%]) and ends in
V(C)NBg(rj, K+|%]), and let Q be a shortest Bg(r;, K +1)-P path and Q" a shortest Bg(rj, K +1)-P
path. Then the concatenation of @, P and Q' yields a Bg(rj, K +1)-Bg(r;/, K + 1) path P’ in G which
starts in a vertex € dgC N Bg(rj, K + 1) and ends in some y € 9cC N Bg(rj, K +1). In particular, @
and @’ have length at most [%’QJ, and hence P’ has length at most d, which implies d¢(z,y) < d.
Moreover, j > i+ N and j' < 4. It remains to show that j < i+ N + £ and j/ > i — £. Since P lies
in U*, there exists a p;—r;Rri;y path Q" of length at most K 4 |5]. Then Qpop1Q"” is an r;—r; path
for some k <i+ N. As Qpop1Q"” has length at most (K 4 [5]) +1+ (K + |5]) <2K +x+1and R is
c-quasi-geodesic, it follows that |j — k| = dr(rj,rx) < c(2K +k+1) = ¢, and hence j < k+{¢ <i+ N +L.

The case j' > i — £ is analogous. [

Corollary 6.7. Let L € N, and let R be a quasi-geodesic double ray in some locally finite graph G whose
cycle space is generated by cycles of bounded length. Then G — Bg(R, L) has at most finitely many long
components.

In particular, if, for every K > L, G — Bg(R, K) has a long component Ck, then G — Bg(R, L) has a

thick component which contains infinitely many Ck .

Proof. Applying Lemma 6.6 to R and K := L and N := 0 yields some ¢ € N such that every long
component of G — Bg(R, L) has a neighbour in Bg(roRre, L). Hence, since Bg(roRre, L) is finite as
roRry is finite and G is locally finite, there are at most finitely many long components.

For the ‘in particular’-part note that since G is locally finite, every component of G — Bg(R, L) which
contains a long component of G — Bg (R, K) for some K > L is long. Hence, the assertion follows from

the first part by the pigeonhole principle. O

We can now prove the two main lemmas of this section. Given a double ray R = ...r_j1rgr;... in a
graph G, a component C of G—Bg(R, L) is half-long if C has neighbours in Bg(R>;, L) or in Bg(R<_;, K)
for all i € N, and C is half-thick if, for every M > L, some half-long component of G — Bg(R, M) is

contained in C.
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Lemma 6.8. Let ¢, L € N and let R be a c-quasi-geodesic double ray in a locally finite, quasi-transitive
graph G whose cycle space is generated by cycles of bounded length. Assume that G—Bg(R, L) has distinct
components C # D such that C is thick and D is half-thick. Then G contains a c-quasi-geodesic double
ray S such that G — Bg(S, L) has two thick components.

Proof. Let k € N such that the cycle space of G is generated by cycles of length at most k. As we are done
if D is thick, we may assume that we can enumerate R =: ...r_17ror1 ... so that Ng(D) C Bg(R>o,L).
Since G is quasi-transitive, there is an infinite index set Iy C N such that all r; with ¢ € I lie in the
same Aut(G)-orbit. Let v be another vertex in that orbit. Then there exists a sequence (y;)icr, Of
automorphisms of G such that ¢;(r;) = v. Since G is locally finite, there is an infinite index set I; C Iy
such that ;(r;_17;7;41) coincides for all i € I} amongst which we again find some infinite set Iy C I
such that ¢;(r;—2...7;12) coincides for all ¢ € I and so on. Now pick for every n € N some i,, € I,,, and
let I consist of these i,,. This leads to a c-quasi-geodesic double ray S that contains v and such that every
subpath of S of length 2¢ € N that contains v as central vertex is the image of r;, _¢Rr; 1, under ¢;, for
all i, € I with n > ¢. We enumerate S =:...$_150s1 ... where sg := v and s1 = ¢;, (ri;+1)-

We claim that S is as desired. For this, we show that, for every K > L, G — Bg(S, K) has long
components Cp, D} such that every C D’ path in G meets Bg(S,L). Then the assertion follows.
Indeed, by Corollary 6.7, G — Bg(S, L) has a thick component E which contains infinitely many of the
CY, D . 1If infinitely many of the C', D% do not lie in E, then applying Corollary 6.7 again yields a
second thick component E’ # E. Otherwise, at most finitely many of the C, D’ are not contained in E,
which implies that E contains both C and D’y for some K > L. But since F is connected and avoids
Ba(S, L), this contradicts that every Cj—D’% path meets Bg(S, L).

So let K > L be given. It remains to show that G — B (S, K') has long components C', D such that
every Cl—D" path in G meets Bg(S,L). Since C is thick and D is half-thick there exist components
Ckx CC and Dg C D of G — Bg(R, K) such that Ck is long and Dy is half-long.

Claim 1. There are long components C, D} of G — Bg(S, K) and vertices z € 0¢C) and y € dgD’
such that ¢; ' (z) € 0Ok and ¢; ' (y) € dgDx for infinitely many i € I.

Proof. Let us first find a component D.. Since Ng(D) C Bg(R>o,L) and K > L, we also have
Ng(Dg) C Bg(R>0,K). Let m € N such that Ng(Dg) N Bg(rm, K) # 0. For every n € N, let
¢,d,, be given by applying Lemma 6.6 to R, K and N := 2n (note that £ does not depend on N).

Then there exists, for every n € Nand ¢ > m+n, a Bg(ri—n—¢Rri—n, K +1)-Bg(rixn Rriynie, K +1)
path P, in Dk of length at most d, with endvertices p;, € gDk N Bg(ri—n—e¢Rri—n, K + 1) and
Gin € 0Dk N Ba(TignRrignye, K +1).

By the choice of I, we have ¢;(r;—¢Rr;1¢) = s_¢Ss¢ for all large enough ¢ € I, and hence these
automorphisms ¢; map Bg(ri—¢Rriye, K + 1) to Bg(s—¢Sse, K + 1). As G is locally finite, the set
Bg(s—¢Sse¢, K + 1) is finite. Combining these facts with p;o, qi0 € Bg(ri—¢Rrive, K + 1) yields that there
are pg, go € V(G) and an infinite index set Jo C I such that ¢;(pi0) = po and ¢;(g:0) = qo for all i € Jp.
Using again that G is locally finite and P;y has length at most dy for all i € Jy, we find a pp—qy path
Py C G and an infinite index set J) C Jy such that ¢;(Pyg) = Py for all ¢ € Jj. By the same argument,
we find a subsets Jj 2 Jj D ... such that, for all n € N and i € J},, ¢;(P;,) = P, for some path P, C G
with endvertices p,,, ¢, € V(G). Pick for every n € N some i € J! and let J consist of these i.
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We claim that there is a component D% of G — Bg(S, K) which contains infinitely many of the P,,
and which is hence long. For this, we first show that no P,, meets Bg(S, K). So let n € N be given, and
set d), :=n+ €+ c(d,, + 2K + 2). By the choice of P,, we have P,, = ;(P;,) for all large enough i € J.
Since also ;(Bg(ri—a; Rriva, K)) = Bg(s—a, Ssa , K) for all large enough ¢ € J and since P;, avoids
Bg(R, K), it follows that P, avoids Bg(s_q4; Ssa ). Moreover, P, is also disjoint from Bg(S<_ar, K)
and Bg(Ssar , K) since d;, = n+ £+ c(d,, + 2K +2) and because S is c-quasi-geodesic and P,, has length
at most d,, and starts in Bg(S—n—¢Ss_n, K + 1) and ends in Bg(8,Ssnte, K + 1).

So every P, avoids B¢ (S, K) and is hence contained in a component of G— Bg(.S, K). By the choice of ¢
via Lemma 6.6 and because P, starts in Bg(S>n, K +1) and ends in Bg(S<_n, K + 1), every component
that contains some P, with n > ¢ attaches to Bg(s0Sse, K). Since this set is finite as G is locally finite,
infinitely many P, lie in the same component D% of G — Bg(S, K), which then needs to be long. Now
since %_1(Pn) = P,,, C Dk for all i € I, where I’ is an infinite subset of I, we may choose y € dg D) as
one endvertex of some P, which is contained in D’ .

The proof for C is now completely analogous except that we have to use I’ instead of I in order to

ensure that ;' (z) € 9gCk and ¢; ' (y) € dg D for (the same) infinitely many i € I. O

Let Ck, Dy and z € 0gCl, y € gD’ be given by Claim 1. To finish the proof, we are left to show
that every C—D’ path in G meets B (S, L). For this, suppose for a contradiction that there is a C'p—D/,
path that avoids B¢(.S, L). Then, since C' 3 z and D’ 5 y are connected, there also exists an z—y path @
that avoids Bg(S, L). Denote by m the length of @, let £ € N such that z,y € Bg(s—¢Sse, K+ 1), and set
m’ := ¢(K+m+ L+2)+¢. By the choice of S there is some i among the infinitely many ¢ € I that satisfy
Lpfl(as) € 0gCk and cp[l(y) € 0Dk such that @; (17— Rritm) = S—m/SSms. Since Q avoids Bg (S, L), it
follows that gai_l(Q) avoids Bg (ri—m/ Rritm, L). But <pi_1(Q) also avoids Bg(R<i—m/s L)UBg(R>itm, L):
Otherwise, since ¢; *(Q) has length m and starts in Bg(r;_¢Rri1¢, K +1), there would be a path of length
at most L +m + (K + 1) that joins a vertex from R<;_y U Rsiqipm to a vertex from r;_¢Rr;¢. Since
m' —{ = c¢(L+m+ K +2), this would contradict that R is c-quasi-geodesic. Hence, o; *(Q) is an ¢; ' (x)~
cpi_l(y) path which avoids Bg (R, L). But since gai_l(x) € 0cCk C Cr, and gpi_l(y) € gDk C Dy, this
contradicts that C and Dy, are distinct components of G — Bg(R, L). O

Lemma 6.9. Let G be a locally finite, quasi-transitive graph with a thick end whose cycle space is generated
by cycles of bounded length. If G does not contain Ky, as an ultra fat minor, then there exists L € N and
a quasi-geodesic double ray R in G such that G — Bg(R, L) has distinct components C # D such that C
is thick and D is half-thick.

Proof. Let Ry, Ry, R3 be given by applying Theorem 4.5 to some thick end of the locally finite, quasi-
transitive graph G, which is accessible by Theorem 2.2. Then applying Theorem 3.3 to the quasi-geodesic,
and hence diverging, double ray R; U Ry yields an escaping subdivision H of the hexagonal half-grid with
vertical double rays S? and horizontal paths P;; such that S% = Ry UR,. Since H is escaping, there exist
My < My < ... € N such that M; > M;_1 +2i for all 4 > 1 and

(i) S* C G[S°, M;] — Ba(S°, M;—1 + 2i) for all i € N>q, and

(ii) P1; € G[SY M;] and P;; C G[SY, M;] — Bg(SY, M;_2 +i) for all i € N>o and j € Z.
Let us also note that, since R; U Rs U Rj3 is quasi-geodesic, we also have that

(iii) the set V(R3) N Bg(SY, L) is finite for all L € N.
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Hence, by (ii) and (iii) and because G is locally finite, we may assume, by deleting at most finitely
many P;; for every ¢ € N and applying Proposition 3.6, that

(iv) dg(Rs, P;j) > 2i for all i € N and j € Z.

Let H>,, C H, for n € N, be the subgraph consisting of all S¢, P; with ¢ > n and k > n. By (i)
and (ii), we have, for every L € N>1, that dg(H>,S%) > L; let Cf, be the component of G — Bg(S°, L)
containing H>p. Clearly, the C';, are long and hence, since C; 2 C3 D ..., the Cp are thick.

If there is some L € N>; such that R3 N Cp = (), then we are done. Indeed, by (iii), there is, for every
L' > L, a component Dy, of G — Bg(S°, L') that contains a tail of R3. Since Rz and R; belong to the
same end, the components Dy, are half-long. As clearly Dy, C Dy, for all L’ > L, we find that Dy, is
half-thick. Since also Dy, # Cp, by assumption, R := Ry U Ry, L, C := Cp and D := Dy, are as desired.

Thus, we may assume that Rs N C, # 0 for all L € N>;. We distinguish two cases.
Case 1: For all K € N there is some Nx € N such that dg(Rs3,S?) > K for all i > Ng. (See Figure 6.2.)

We will use R3 to find fat H-paths as in Lemma 6.5, which then implies that G contains Ky, as an
ultra fat minor, concluding the first case of the proof.

Without loss of generality let N > K for all K € N. By (i) and (iii), for every K € N, the ray R3 has
a tail Tk which avoids Bg(S?, My, —1 + K), and which thus satisfies dg (T, S*) > K for all i € N by (i).
By (ii) and (iv), we also find dg(P;;, Tk) > K for all i € N and j € Z, and hence dg(H,Tk) > K.

"o IR
/ » / (OF /
R Vi H

S0 — RiURs Sizm Sizmt1  Gizm+2

FIGURE 6.2. Sketch of Case 1 in the proof of Lemma 6.9: the hexagonal half-grid H and
the ray Rs, which has large distance from H but is connected to H by paths Q/,. The
paths Wy, consisting of Q5,,, Q5,,,» and a suitable subpath of R3 are m-fat H-paths.

By (i), and because R3NCy, # ) as well as H>, C Cy, for all L € N>, there exists, for every m € N, an
Trn-Uisw,, Ba(S',m) path Q,, that ends in some Bg/(S*,m) for i,, > m and avoids Ba(S°, My, +m).
We extend each Qm to an T,,~S* path @/, by adding a shortest S*"—Q,, path. Since dg(Qm,S?) > m
for all i # i,, by the choice of Q,, and again by (i), we find dg(Q.,,S*) > m for all i # i,,. Moreover,
by (i), the paths @/, still avoid Bg(S°, My, + m). Hence, by (ii), we have that, for every i € N, the
paths @7, with m > i have distance at least m from the paths P,;. Since G is locally finite, this implies
that we may assume, by deleting for every ¢ € N at most finitely many P;; and applying Proposition 3.6,

that dg(Pij, Q),) > m for all m,i € N and j € Z. All in all, we find dg(H — S*,Q?,,) > m for all m € N.
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Since Q!,, avoids Bg(S°, My,, + m) but is itself eventually contained in some Bg(S%, m') for m’ > m
as @, is finite, we may assume, by passing to a subsequence of the Q! if necessary, that the @/,
are pairwise disjoint. Moreover, by (i) and again since Q!,, avoids Bg(SY, My, ), we may assume that
i1 < i2 < ..., by once again passing to a subsequence of the @, if necessary.

Now since dg(H — S*,Q!,) > m and d¢(H,T,,) > m, the paths W,, that consist of Q%,,, Q%,,,, and
a suitable subpath of T3, are m-fat H-paths with endvertices on S%m= and S%m+2 (see Figure 6.2). In
particular, since the @, are pairwise disjoint, we may assume, by passing to a subsequence of the W,,,
that also the W,,, are pairwise disjoint. Hence, the W,,, are m-fat H-paths as in Lemma 6.5, which implies

that G' contains Ky, as an ultra fat minor. This concludes the first case of the proof.

Case 2: There erists some K such that dg(Rs3,S%) < K for infinitely many i € N. (See Figure 6.3.)
We first show that we may assume, by passing to a subgraph of H if necessary, that

(a) dg(R3,S%) <ifor all i > K, and

(b) for all K < j <1, if dg(r,S*) < i for some r € V(R3), then dg(rRs3,S7) > j.
Indeed, set i; := j for all j < K, and let ix > K be minimal such that dg(Rs, S%) < K. By (i)
and (iii), Rz has a tail T that is disjoint from Bg(S°, M;,. + ix). Since Rz — T is finite and because
of (i), we have dg(R3 — T, S%) > i for all large enough i € N, and hence, as dg(R3, S?) < K for infinitely
many i € N, there is some ix 1 > ix such that dg(T,S**+1) < ix.1 and dg(R3 — T,S%) > i for all
i > ig41. By continuing in this way, we obtain a sequence 0 := iy < i; < --- € N such that the rays S%
satisfy (a) and (b). Now pick a subdivision H" C H of the hexagonal half-grid whose vertical double rays
are precisely the S%. It is easy to see that H’ still satisfies (i) to (iii). By deleting from H’ at most finitely
many P;; for every i € N and applying Proposition 3.6, we also regain property (iv) for H'. Hence, H' is
the desired subgraph of H, and we denote H' again by H.

A\ NVl
Ry \ - >/ R

i ] /<\f>
e V4 / / H"

S"=RiUR, St

FIGURE 6.3. Sketch of Case 2 in the proof of Lemma 6.9: the hexagonal half-grid H and
the ray R, which has distance < i to every vertical double ray S® of H by (a). By (b),
once R3 comes close to some S?, it will never come close to some S’ with j < i again.

The paths W have distance at least L from Rs and ‘jump over’ Rs.

Let S* =: ...s" 508} ... such that dg(Rs,s() < i and such that S, is the ‘upper half’ and S%, is
the ‘lower half’ of S* (see Figure 6.3). Further, let H’ be the ‘upper half’ of H with respect to this
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enumeration, that is, let H' be the subgraph of H that consists of the Sgo and all paths P;; whose
endvertices lie on the S’izo. Let H” be the ‘lower half’ of H defined analogously.

Now choose for all 4, L € N maximal tails 7/, , T/} of Séo and S’%O, respectively, such that
(¢) da(Rs,T};) > 2L and dg(Rs,T);) > 2L.

Note that by (i) and (iii), the T}, ,T/; are non-empty. Note further that, by (ii) and (iii), for all 4, L € N
all but finitely many of the P;; avoid Bg(R3,L). Hence, there are, for every L € N, escaping subdivisions
H} H{ C H>p, of the hexagonal ‘quarter-grid’ whose vertical rays are the T}, or T}, respectively, for
i > L such that H{ D H, D ... as well as H{ D HY D ..., and such that H}, H} avoid Bg(R1 U R3, L).

Since Hy, H} avoid Bg(R1U R3, L), they are contained in components Cr,, Dy, of G — Bg(R1 UR3, L),
respectively. Clearly, C, is long and Dy, is half-long. As C; D Cy D ... and Dy D D5 D ..., this implies
that Cp, is thick and Dy, is half-thick. If there is some L € N such that Cp # Dy, then we are done as
then L, R:= RiUR3, C :=Cp and D := Dy, are as desired.

Hence, we may assume that C;, = Dy for all L € N. We will now once again construct fat H-
paths as in the premise of Lemma 6.5, which then yields that G contains Ky, as an ultra fat minor,
and which thus concludes the proof. Since Cp, = Dy and H} C Cp, H}/ C Dy for all L > K,
there are (U,cy Ba(T;, min{i, L}))~(U;en Ba(Tjz, min{i, L})) paths Wy, that avoid Bg(R; U Rs,3L).
We now modify Wy, as follows. Let i} be such that W, starts in Bg(if’lf,LL,min{i’L,L}). If W, meets
Bg(P;j, min{i, L}) for some P;; C Hj, with ¢ ¢ {3}, + 1}, then we let P;; be the last such path, and
we shorten Wp, so that it meets Bg(P;;, min{s, L}) precisely in its first vertex. Then we extend Wy by a
shortest Wp—P;; path and a suitable subpath of P;; so that Wy, ends in T, (or in T(’Z.fl) ;, if the shortest
W—P;; path has distance < min{s, L} from T(’Fl)L). Otherwise, we extend W, by a shortest WL*T;'LL
path. Analogously, we modify the end of Wp. Let W] be the path which we obtain in this way from W,
and let iz, jr, € N be such that W}, starts in 7}, ; and ends in T}/ ;. Further, let w},w;, be the endvertices
of Wy on T}, | and T}, ;, respectively. Then, for all L € N,

(o) Wi starts at w) € T} | and ends at wj € 17 1,

(8) W] avoids Bg(R1 U R3,2L), and

(v) de(W, T}, UT};) > min{k, L} for all k # i, j. € N.
Since W, avoids Bg(R1 U R3,2L) but is eventually contained in Bg(R; U R3, L') for some L' > 2L
because W7 is finite, we may assume, by passing to a subsequence if necessary, that the W} are pairwise
disjoint. Moreover, by Corollary 3.8 (i), every Sizo is contained in Bg(Ry, L) for some large enough L € N

and hence, by (8) and by once again passing to a subsequence, we may assume that

(0) i1 <ia <....
Finally, by construction, W} can have distance < min{i, L} to some P;; only if ¢ € {ip,ir +1,j1,jr +1}.
So since G is locally finite and because of («) and (J), we may assume, by deleting at most finitely
many P;; for every ¢ € N and applying Proposition 3.6, that

(e) de(W7, P;j) > min{i, L} for all P;; with ¢ ¢ {jr,jr + 1}.

We now distinguish two cases.

Case 2a: There is a sequence Ly < Ly < ... € N such that jr, < jr, <....

Since also i1 < i2 < ... by (0), we may assume, by passing to a subsequence of the W, that iy, j <

irs,jr for all L < L’ € N. Then we obtain, similar as to (¢), that



30 S. ALBRECHTSEN AND M. HAMANN
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(a) Case 2a (b) Case 2b

FIGURE 6.4. The new double rays S’z in Case 2a and 2b (indicated in grey), which again
form the vertical double rays of an escaping subdivision H of the hexagonal half-grid. In
Case 2a, subpaths Qs of Rs are fat H-paths, while in Case 2b, the paths W) are fat
H-paths.

() da(W}, Py;) > min{i, L} also for all Py; with i € {jr, 5z +1}.

Since every Tj := S*\ (T}, UT}) is finite, it follows that T; C G[R3, L] for some L' € N. So for every
i € N we have by (3) and (v) that dg(S*, W} ) > i for all large enough L. Conversely, since every W} is
finite and by (i), there exist for every W} at most finitely many S such that dg(W7,,S%) < i. Hence, we
may assume, by passing to a subsequence of the W}, that every S* has distance < i to at most one W},.
Indeed, we may pick some W that has distance < 1 to S (if such a W} exists; otherwise we choose W7 |
arbitrarily) and delete all other W, that have distance < 1 to S*. Then there are still infinitely many W}
left, and also there are infinitely many S? left that do not have distance < i to W1 ; so we may pick a
new path W} for the next such S, and so on. We enumerate these Wj again by W/. In particular, it
follows that dg(W7j,S'") > i and dg(W},S7c") > jp for all L # L' € N.

For every 2L € N, we set St := Sl Wi wd, St (see Figure 6.4 (a)). Since every S%t has
a tail in S%2¢ and in SQQOL and because of (¢) and (¢), we can find in H infinitely many S§?2r-1-§2r
paths and ;nﬁnitely magy SizL_Gi2n+1 paths that make the S2¢ and the S%L+1 into an escaping sub-
division H of the hexagonal half-grid. By (a) and (b), Rs contains for every 2L a subpath Q. that
starts in Bg(S%5-1,i57,_1), ends in Bg(S™E+1 iay, 1 1) and is otherwise disjoint from all Bg(S2’,ir/) and
Bg(S9v',j1) with L' # 2L € N. Since dg(Rs, W};,) > 2L’ by (3), it follows that also dg(Qar, S%22) >
2L’ for all L' # L € N. Moreover, by the definition of S$¢ and because of (3) and (c), we also have
da(Qar,S™1) > 2L. Hence, extending the Qor, by shortest paths to S%2r-1-S%1+1 paths yields fat H-
paths as in Lemma 6.5. This implies that G' contains Ky, as an ultra fat minor, and hence concludes this
case of the proof.
Case 2b: There is some N € N such that j;, < N for infinitely many L € N.

By passing to a subsequence of the W;, we may assume that j;, = N’ for some N’ € N and all L € N.
We again modify H as follows. For every i € N, let S be obtained from S* by replacing the subpath
T; := S\ (T/; UT!) of S? by a path Q; that consists of a suitable subpath of Ry together with shortest
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T!~Rs and R3-T}! paths (see Figure 6.4 (b)). Then the S’ are again double rays. By (i) and (b) and
because G is locally finite and the @Q; are finite and pairwise disjoint, there are N’ <ir, <ip, <...€N

such that the S'%5 again satisfy (i) with M;, , updated to M; Since every S still has a tail in Sizo

LG+ —1
and in S and because of (iv), we can find in H, for every j (6 N), infinitely many S*%—S%i+1 paths that
make thg S'C5 into an escaping subdivision H of the hexagonal half-grid. Since all Wij end in SV, we
can connect the Wizj pairwise by suitable subpaths of SV /, to obtain infinitely many pairwise disjoint
H-paths W . Note that a path W} obtained from W} and Wij for 7,5 € 2N is an H-path that starts
in $°2i and ends in $"%5. Moreover, by (3), (7) and (£) and because H is escaping, W/, is min{L;, L, }-fat.
Hence, by (0) and because we only used the paths W with i € 2N to construct the Wy, infinitely many
of the W/ yield fat H-paths as in Lemma 6.5, which implies that G contains Ky, as an ultra fat minor,

and which thus concludes the proof. O
We are now in a position to prove Theorem 6.1.

Proof of Theorem 6.1. The assertion follows immediately by first applying Lemma 6.9 and Lemma 6.8
and then Lemma 6.2. O

7. FURTHER COMMENTS

Before we discuss other related topics to this paper, let us note that our main results give only partial
answers to the problems that we mentioned in the introduction, that is to [21, Problem 7.3] and |20,
Problems 4.1 and 4.2]. Hence, these problems are still open for arbitrary finitely generated groups that
need not be finitely presented and, more generally, for locally finite, quasi-transitive graphs without any

restrictions on their cycle spaces.

7.1. Coarse embeddings. Theorem 2’ asserts that we can find a diverging subdivision of the hexagonal
full-grid in every locally finite, quasi-transitive graph whose cycle space is generated by cycles of bounded
length and that has a thick end. The advantage of diverging subdivisions over arbitrary subdivisions is
that they preserve some of the geometry of the original graph. One might wish to strengthen Theorem 2’,
by asking for a subdivision of the hexagonal full-grid whose geometry is even closer related to the geometry
of G.

For two graphs G and H, a map f: V(H) — V(G) is a coarse embedding if there exist functions
p~:[0,00) = [0,00) and pT: [0,00) — [0,00) such that p~(a) = oo for a — oo and

p(du(u,v)) < d(f(u), f(v)) < p*(dn(u,v))

for all u,v € V(H). It is easy to check that a coarse embedding of the hexagonal full-grid always yields
a diverging subdivision; however, conversely, a diverging subdivision is in general much weaker than a
coarse embedding. One may thus ask whether we can always find a coarse embedding of the hexagonal
full-grid in a locally finite, quasi-transitive graph with a thick end.

However, it was already discussed in [20] that for arbitrary locally finite, quasi-transitive graphs (with-
out any condition on their cycle spaces) we cannot ask for coarse embeddings of the hexagonal full-grid.
Indeed, coarse embeddings preserve the asymptotic dimension?, that is, if H has asymptotic dimension at
least n and H is coarsely embeddable into G, then the asymptotic dimension of G is at least n, too. Since

every locally finite Cayley graph of the lamplighter group has asymptotic dimension 1, see Gentimis [19],

4See e.g. [5] for a definition of the asymptotic dimension.
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and has a thick end, but the full-grid has asymptotic dimension 2, we cannot ask for coarse embeddings
of the hexagonal full-grid into all locally finite, quasi-transitive graphs with thick ends.

However, a special case of a theorem by Fujiwara and Whyte [18] states that every locally finite,
quasi-transitive graph with a thick end whose cycle space is generated by cycles of bounded length has
asymptotic dimension at least 2. Thus, the asymptotic dimension of the full-grid does not prevent it from

being coarsely embeddable into such graphs. This motivates the following problem.

Problem 7.1. Let G be a locally finite, quasi-transitive graph whose cycle space is generated by cycles of
bounded length and that has a thick end. Is the hexagonal full-grid coarsely embeddable into G ?

Note that a positive answer to this question would also yield a positive answer to [20, Problem 4.5].

7.2. Quasi-isometries to trees. For two graphs G and H, amap f: V(H) — V(G) is a quasi-isometry
if there exist ¢ > 1 and d > 0 such that

(A, v) ~ d < da(f(w), §(2)) < edr(w,v)) +d

for all u,v € V(H) and
du(f(V(G)),w) <d

for all w € V(H). Two graphs are quasi-isometric if there exists a quasi-isometry between them.

As we have discussed in the introduction, a result by Kron and Méller [26, Theorem 5.5] asserts that a
locally finite, quasi-transitive, connected graph is quasi-isometric to a tree if and only if it has no thick end.
Hence, we obtain the following corollary from Theorems 1 and 2, which yields two new characterisations
of quasi-transitive, locally finite, connected graphs that are quasi-isometric to trees for the special case

that the cycle space is generated by cycles of bounded length.

Corollary 7.2. Let G be a locally finite, quasi-transitive, connected graph whose cycle space is generated

by cycles of bounded length. Then the following are equivalent:
(i) G has a thick end.

(ii) G contains the full-grid as an asymptotic minor.
(iii) G contains the full-grid as a diverging minor.
)

(iv) G is not quasi-isometric to a tree. O

For further characterisations of quasi-transitive, locally finite, connected graphs that are quasi-isometric

to trees, we refer the reader to [4,24,26,30].

7.3. Quasi-isometries to planar graphs. Finally, we would like to draw the reader’s attention to
another related problem, which is still open. As we discussed in the previous subsection, the (global)
geometry of locally finite, quasi-transitive graphs without a thick end is well understood as they are
quasi-isometric to forests. In that sense, our results, Theorems 1 and 2, can be seen as a step towards
understanding the (global) geometry of the remaining locally finite, quasi-transitive graphs — those with
a thick end. In the case where the cycle space of a locally finite, quasi-transitive graph G is generated
by cycles of bounded length, we showed that G contains the full-grid as an asymptotic minor. Since
asymptotic minors cannot hide in a ball of small radius, they will appear in the global structure of G.
However, even if G is one-ended, this does not mean that the geometry of G resembles that of the full-grid

or, more generally, of a one-ended, planar graph. The reason for this is simple: the global structure of G
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may be far more involved, and may contain the full-grid only as a substructure. Indeed, even in our proof,
we might have found the asymptotic full-grid inside an asymptotic minor of the infinite complete graph.

However, Georgakopoulos and Papasoglu conjectured that this is in fact the only thing that can happen.

Conjecture 7.3. [21, Conjecture 9.3] Let G be a locally finite, transitive graph. Then G either is quasi-

isometric to a planar graph or contains every finite graph as an asymptotic minor.

Note that this can be seen as a coarse version of Thomassen’s [28] result that every locally finite, one-ended,

transitive graph is either planar or can be contracted into the infinite complete graph.

MacManus [27] proved Conjecture 7.3 in the special case where G is a locally finite Cayley graph of
a finitely presented group. Recall that every Cayley graph of a finitely presented group is transitive and
has a cycle space which is generated by cycles of bounded length. So the assumption on the cycle space,
which was already crucial for our proofs of Theorems 1 to 4, reappears here.

We remark that MacManus’s proof uses deep group-theoretic results that have no counterpart for
quasi-transitive graphs. Hence, Conjecture 7.3 is still open for arbitrary locally finite, quasi-transitive

graphs whose cycle space is generated by cycles of bounded length.
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