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Abstract

In Part I of this series we described three algorithms that construct canon-
ical tree-decompositions of graphs which distinguish all their k-blocks and
tangles of order k. We now establish lower bounds on the number of parts
in these decompositions that contain such a block or tangle, and determine
conditions under which such parts contain nothing but a k-block.

Introduction

A k-block in a graph G, where k is any positive integer, is a maximal set X of
at least k vertices such that no two vertices x, x0 2 X can be separated in G
by fewer than k vertices other than x and x0. Thus, k-blocks for large k can
be thought of as highly connected pieces of a graph, but their connectivity is
measured not in the subgraph they induce but in the ambient graph.

Another concept of highly connected pieces of a graph, formally quite dif-
ferent from k-blocks, is the notion of a tangle proposed by Robertson and Sey-
mour [8]. Tangles are not defined directly in terms of vertices and edges, but
indirectly by assigning to every low-order separation of the graph one of its two
sides, the side in which ‘the tangle’ is assumed to sit. In order for this to make
sense, the assignments of sides have to satisfy some consistency constraints, in
line with our intuition that one tangle should not be able to sit in disjoint parts
of the graph at once.

In a fundamental paper on graph connectivity and tree structure, Hundert-
mark [6] showed that high-order blocks and tangles have a common generaliza-
tion, which he called ‘profiles’. These also work for discrete structures other
than graphs. We continue to work with profiles in this paper. All the reader
needs to know about profiles is explained in Part I of this paper [1].

In Part I we described a family of algorithms which construct, for any fi-
nite graph G and k 2 N, a tree-decomposition of G that has two properties:
it distinguishes all the k-blocks and tangles of order k in G, so that distinct
blocks or tangles come to sit in distinct parts of the decomposition, and it is
canonical in that the map assigning this decomposition to G commutes with
graph isomorphisms.
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In this follow-up to [1], we study these decompositions in more detail. Given k,
let us call a part of such a decomposition essential if it contains a k-block or
accommodates a tangle of order k. (Precise definitions will follow.) Since the
aim of our tree-decompositions is to display how G can be cut up into its highly
connected pieces, ideally every part of such a decomposition would be essential,
and the essential parts containing a k-block would contain nothing else. (This
makes no sense for tangles, since they cannot be captured by a set of vertices.)

Neither of these aims can always be attained. Our objective is to see when or
to which extent they can. After providing in Section 1 some background on how
tree-decompositions relate to oriented separation systems, we devote Section 2
to establishing upper bounds on the number of inessential parts in a canonical
tree-decomposition of a graph that distinguishes all its k-profiles. These bounds
depend in interesting ways on the algorithm chosen to find the decomposition.
All the bounds we establish are sharp.

In Section 3 we investigate to what extent the decomposition parts containing
a k-block can be required to contain nothing else. It turns out that there can be
k-blocks that never occur as entire parts in a tree-decomposition of adhesion < k,
due to a local obstruction in terms of the way in which these blocks are separated
from the rest of G. However, one can show that this is the only obstruction.
We find a condition by which such blocks can be identified, which leads to the
following best possible result: for every k, every finite graph has a canonical
tree-decomposition that distinguishes all its k-profiles e�ciently and in which
all those k-blocks are a part that occur as a part in some tree-decomposition of
adhesion < k [4]. Finally, we establish some su�cient global conditions on G
to ensure that every decomposition part containing a k-block contains nothing
else. (So these conditions imply that there are no local obstructions to this as
found earlier, for any k-block.)

In order to read this paper with ease, the reader should be familiar with [1];
in particular with the terminology introduced in Section 2 there, the notions of
a task and a strategy as defined in Section 3, and the notion of a k-strategy as
defined in Section 4. The proofs in [1] need not be understood in detail, but
Examples 1 and 4 make useful background.

Readers interested in k-blocks as such may refer to [2], where we relate the
greatest number k such that G has a k-block to other graph invariants.

Throughout this paper, we consider a fixed finite graph G = (V,E).

1 Orientations of decomposition trees

By [1, Theorem 2.2], every nested proper separation system N of our graph
G = (V,E) gives rise to a tree-decomposition (T,V) that induces it, in that the
edges of the decomposition tree T correspond to the separations in N . How
exactly (T,V) can be obtained from N is described in [3]. In this paper we shall
be concerned with how profiles – in particular, blocks and tangles – correspond
to nodes of T . This correspondence will be injective – distinct blocks or tangles
will ‘live in’ distinct nodes of T – but it will not normally be onto: only some of
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the nodes of T will accommodate a block or tangle (all of some fixed order k).
Our aim in this section is to show that every profile P living in a node of

T defines a consistent orientation of E(T ) (towards that node), or equivalently
of N (namely, N \ P ),1 and that the set of all consistent orientations of N
corresponds bijectively to the nodes of T . Let V = (Vt)t2T .

As (T,V) induces N , there is for every separation (A,B) 2 N an oriented
edge e = tAtB of T such that, if TA denotes the component of T � e that
contains tA and TB denote the component containing tB, we have

(A,B) =
⇣ [

t2TA

Vt ,
[

t2TB

Vt

⌘
.

If (T,V) was obtained from N as in [1, Theorem 2.2], then e is unique, and we
say that it represents (A,B) in T.2

Every node t 2 T induces an orientation of the edges of T, towards it. This
corresponds as above to an orientation O(t) of N ,

O(t) := {(A,B) 2 N | t 2 TB},

from which we can reobtain the part Vt of (T,V) as

Vt =
\

(A,B)2O(t)

B. (1)

We say that t induces the orientation O(t) of N , and that the separations in O(t)
are oriented towards t.

Distinct nodes t, t0 2 T induce di↵erent orientations of N , since these orienta-
tions disagree on every separation that corresponds to an edge on the path tT t0.
Also clearly, not all orientations of N are induced by a node of T . But it is
interesting in our context to see which are:

Theorem 1.1. (i) The orientations of N that are induced by nodes of T are
precisely the consistent orientations of N .

(ii) An orientation of the set of all proper (< k)-separations of G orients the
separations induced by any tree-decomposition of adhesion < k towards a
node of its decomposition tree if and only if it is consistent.

Proof. (i) Let O be an orientation of N that is not induced by a node in T,
and consider the corresponding orientation of (the edges of) T . Then there are
edges e, e0 of T that point in opposite directions. Indeed, follow the orientated
edges of T to a sink t; this exists since T is finite. As t does not induce O, some
oriented edge e0 = t0t00 has t lie in the component of T � e0 that contains t0.

1Recall that profiles are consistent orientations of separation systems such as N satisfying
a further axiom (P). A set of oriented tree-edges or of separations of G is consistent if no two
of them point away from each other; see [1] for the formal definition.

2In general if e is not unique, we can make it unique by contracting all but one of the
edges of T inducing a given partition in N , merging the parts corresponding to the nodes of
contracted edges.
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Then T � e0 contains a t0–t path. Its last edge e is oriented towards t, by the
choice of t. The separations (A,B), (C,D) 2 O represented by e and e0 then
satisfy (B,A)  (C,D), so O is inconsistent.

For the converse implication suppose an orientation O(t) induced by some
t 2 T is inconsistent. Then there are (A,B), (C,D) 2 O(t) with (D,C) 
(A,B). Let e be the oriented edge of T representing (A,B), and let f be the
oriented edge representing (C,D).

Consider the subtrees TA, TB, TC , TD of T . Note that TB \ TD contains t,
by definition of O = O(t), and hence contains the component Tt of T � e � f
containing t.

If f 2 TA, then TB is a connected subgraph of T �f containing t, and hence
contained in TD. With TB ✓ TD we also have B ✓ D. But now (D,C)  (A,B)
implies B ✓ D ✓ A, and so (A,B) is not a proper separation. But it is, because
(A,B) 2 N . Hence f 2 TB, and similarly e 2 TD.

Let us show that tB, tD 2 Tt. Suppose f lies on the path in T from t to tB.
Then this path traverses f from tD to tC , since its initial segment from t to f
lies in TD (the component of T � f containing t) and hence ends in tD. But
then e 2 TC , contrary to what we have shown. Thus f /2 tT tB, and clearly also
e /2 tT tB. Therefore tB 2 Tt, and similarly tD 2 Tt.

Since f /2 TA, we know that TA is a connected subgraph of T � f containing
an end of e. Adding e to it we obtain a connected subgraph of T � f that
contains both ends of e and therefore meets Tt, and adding Tt too we obtain a
connected subgraph of T�f that contains both TA and tD. Therefore TA ✓ TD,
and thus A ✓ D. Analogously, C ✓ B. But now (D,C)  (A,B) implies both
A ✓ D ✓ A and C ✓ B ✓ C, giving (A,B) = (D,C). But then O contains
both (C,D) and (D,C), which contradicts its definition as an orientation of N .

(ii) If a given orientation of the set Sk of all proper (< k)-separations of G
is consistent, then so is the orientation it induces on N . By (i), this orientation
of N orients it towards a node of the decomposition tree.

Conversely, if an orientation of Sk is inconsistent, then this is witnessed
by separations (A,B), (C,D) 2 Sk with (C,D)  (A,B) such that (A,B) is
oriented towards B but (C,D) is oriented towards C. By [1, Theorem 2.2],
N = {(A,B), (B,A), (C,D), (D,C)} is induced by a tree-decomposition (T,V).
Since the orientation {(D,C), (A,B)} which our given orientation of Sk induces
on N is inconsistent, we know from (i) that it does not orient N towards any
node of T .

Theorem 1.1 (i) implies in particular that any profile P which orients N
defines a unique node t 2 T : the t that induces its N -profile P \ N = O(t).
We say that P inhabits this node t and the corresponding part Vt. If P is a
k-block profile, induced by the k-block X, say, then this is the case if and only
if X ✓ Vt.

Given a set P of profiles, we shall call a node t of T and the corresponding
part Vt essential (wrt. P) if there is a profile in P which inhabits t.

Nodes t such that Vt ✓ A \ B for some (A,B) 2 N are called hub nodes;
the node t itself is then a hub. Example 2 in [1] shows that distinct hub nodes
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t, t0 2 T may have the same hub Vt = V 0
t . So the bijection established by

Theorem 1.1 does not induce a similar correspondence between the consistent
orientations of N and the parts of (T,V) as a set, only as a family V = (Vt)t2T .
This is illustrated by [3, Figure 7].

Theorem 1.1 (ii) will not be needed in the rest of this paper. But it is
interesting in its own right, in that it provides a converse to the following well-
known fact in graph minor theory. Every haven [9], preference [7] or bramble [5]
of order � k in G orients the set Sk of all (< k)-separations of G (e.g., ‘towards’
that bramble). In particular, it orients the separations induced by any tree-
decomposition of adhesion < k, and it orients these towards a node of that
decomposition tree. But this fact has no converse: while it is always possible to
orient Sk in such a way that the separations induced by any tree-decomposition
of adhesion < k are oriented towards a node t of the decomposition tree – take3

any consistent orientation of Sk and apply Theorem 1.1 (ii) – this orientation
of Sk need not be a haven or preference of order k: there may be no bramble of
order � k ‘living in’ t.4

Theorem 1.1 (ii) shows that the consistent orientations of Sk, which are gen-
eralizations of havens or preferences of order k, are the unique weakest-possible
such generalization that still orients all tree-decompositions of adhesion < k
towards a node.

2 Bounding the number of inessential parts

Let k 2 N, and let P be a set of k-profiles of our graph G, both fixed throughout
this section. Whenever we use the term ‘essential’ in this section, this will be
with reference to this set P.

Any canonical tree-decomposition distinguishing P has at least |P| essential
parts, one for every profile in P. Our aim in this section is to bound its number
of inessential parts in terms of |P|.

Variants of [1, Example 1] show that no such bounds exist if we ever use a
strategy that has all, allr, ext or loc among its values, so we confine ourselves to
strategies with values in {extr, locr}.

The definition of the parts of a tree-decomposition (T,V) being somewhat
complicated (see Section 1), rather than bounding the number |V| � |P| of
inessential parts of (T,V) directly, we shall bound the number |N | instead.
Since 1

2 |N | is the number of edges of T – as N contains ‘oriented’ separations,
every edge of T appears twice – and 1

2 |N |+ 1 its number of nodes, the number
of inessential parts will then be 1

2 |N |+ 1� |P|.
Our aim, then, will be to choose a strategy that minimizes |N |. Our strate-

gies should therefore take values in {extr, locr} only, i.e., we should reduce
3Every separation system has a consistent orientation; see [1].
4For example, identify three copies of K5 in one vertex v, and orient every (< 2)-separation

towards the side that contains two of these K5. This is a consistent orientation of S2 that is
not a 2-haven or 2-preference and is not induced by a bramble of order � 2, but which still
orients the 1-separations of any tree-decomposition of adhesion 1 towards a node t (whose
corresponding part could be either a K5 or a K1 hub).
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our tasks before we tackle them, by deleting separations that do not distin-
guish any profiles in P. Moreover, for a single reduced task (S,P) we have
ext(S,P) ✓ loc(S,P) by [1, (11)], i.e., every separation chosen by ext is also
chosen by loc. This suggests that the overall strategy Ext, which only uses extr,
should also return fewer separations than Loc, which only uses locr – perhaps
substantially fewer, since if we select fewer separations at each step we also have
more interim steps in which we reduce.

Surprisingly, this is not the case. Although our general bounds for Ext are
indeed better than those for Loc (or the same, which is already a surprise),
Example 2 below will show Loc yields better results than Ext for some graphs.

Let |P| =: p. For single tasks (S,P), we obtain the following bounds on |N |:
Lemma 2.1. For every feasible task (S,P) we have

2(p� 1)  |NExt(S,P)|  2p, and (2)
2(p� 1)  |NLoc(S,P)|  4(p� 1). (3)

Proof. The two lower bounds, which in fact hold for any strategy, follow from
the fact that N gives rise to a tree-decomposition (T,V) that induces it and
distinguishes P: this means that |N | = 2 (|T |� 1) � 2(p� 1).

Let us now prove the upper bound in (2), by induction on p. Let (R,P) be
the reduction of (S,P). If p  1 then R = ;, so the statement is trivial. Now
assume that p � 2. Then S 6= ;, since S distinguishes P. Let Pe be the set of
profiles in P that are extremal in (R,P). By [1, Lemma 3.1] we have Pe 6= ;.
Then

NExt(S,P) = N [
[

O2ON

NExt(SO,PO) , (4)

by definition of NExt(S,P), where N = extr(S,P). Every extremal P 2 P is
distinguished from all the other profiles in P by the separation (A,B) for which
P = P(A,B), so P lies in a singleton class PO = {P}. Then (SO,PO) reduces to
(;,PO), giving NExt(SO,PO) = ; for these O 2 ON . By the uniqueness of P(A,B)

in [1, Lemma 3.2], no separation in N distinguishes two non-extremal profiles
from P. So there is at most one other partition class PO with O 2 ON . If such
a PO exists it satisfies PO = P rPe, and if it is non-empty the O 2 ON giving
rise to it is unique. Therefore

NExt(S,P) = extr(S,P) [NExt(SO,P r Pe)

for this O if PrPe 6= ;, and NExt(S,P) = extr(S,P) otherwise. In the first case
we have

|NExt(SO,P r Pe)|  2 |P r Pe|
by the induction hypothesis, and in both cases we have |extr(S,P)|  2 |Pe| by
[1, Lemma 3.2 and (9)]. This completes the proof of (2).

For a proof of the upper bound in (3) let (T,V) be a tree-decomposition of G
that induces NLoc(S,P) as in [1, Theorem 2.2]. Since NLoc(S,P) contains only
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P-relevant separations, all the leaves of T are essential. Furthermore, we shall
prove the following:

For every edge e = t1t2 of T , either t1 or t2 is essential. (5)

Before we prove (5), let us show how it helps us establish the upper bound
in (3). If (5) holds, then all the neighbours of an inessential node are essential.
Let T 0 be obtained from T by deleting each inessential node and adding an edge
from one of its neigbours to all its other neighbours. Let us show that

T 0 has p nodes and at least half as many edges as T . (6)

The first of these assertions holds by definition of T and p. For the second, note
that for each inessential node we delete we lose exactly one edge. So to prove
the second claim in (6) it su�ces to show that T has at most kTk/2 inessential
nodes. But this follows from (5) and the fact that the leaves of T are essential:
every inessential node has at least two incident edges, and no edge is counted
twice in this way (i.e., is incident with more than one inessential node).

By (6), T has at most 2(p� 1) edges. Since NLoc(S,P) is induced by (T,V),
this will establish the upper bound in (3).

So let us prove (5). Suppose T has an edge e = t1t2 with neither ti essential.
Let (A,B) 2 NLoc(S,P) be the separation which e induces. Let TA denote the
component of T�e that contains t1, and let TB be the component containing t2.

At the time (A,B) was chosen by Loc we had a nested proper separation
system N and a consistent orientation O of N such that (A,B) 2 locr(SO,PO).
(When N = ; at the start, we have locr(SO,PO) = (S,P).) So there is a profile
P 2 PO such that (A,B) or (B,A) is maximal in (P \ SO,), say (A,B). By
the definition of a task, P orients S. By Lemma 1.1, therefore, P inhabits a
unique node t 2 T , making it essential. Then (A,B) 2 O(t), and hence t 2 TB.
Since t2 inessential by assumption, t 6= t2.

The last edge e0 on the t2–t path in T induces a separation (C,D) 2 O(t) ✓ P ,
and (A,B)  (C,D), or equivalently, (D,C)  (B,A). Since (A,B) is PO-
relevant there exists P 0 2 PO with (B,A) 2 P 0. Then (D,C) 2 P 0, since P 0

orients all of S consistently. But then (C,D) splits O, and thus lies in SO. This
contradicts the maximality of (A,B), completing the proof of (5) and hence
of (3).

It is easy to see that the upper bounds in Lemma 2.1 are tight. For example,
if G consists of n disjoint large complete graphs threaded on a long path, then
for k = 3 the canonical tree-decomposition produced by Loc will have n essential
parts consisting of these complete graphs and n� 1 inessential parts consisting
of the paths between them. When n is even, this example also shows that the
upper bound for Ext is best possible. In fact, the following example shows that
the upper bound in Lemma 2.1 (i) is best possible for all canonical tree-decom-
positions (regardless of which strategy is used to produce it):

Example 1. Let G consist of an n-cycle C together with n large complete
graphs K1, . . . ,Kn each intersecting C in one edge and otherwise disjoint. Then,
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for n � 3 and k = 3, any canonical tree-decomposition of G of adhesion < k
either has exactly one part or exactly the parts C,K1, . . . ,Kn. This is because
the 2-separations of G that induce 2-separations of C cannot be induced by
a canonical tree-decomposition of G, since they cross their translates under
suitable automorphisms of G.

It is more remarkable, perhaps, that the upper bound in Lemma 2.1 (i) is
so low: that at most one part of the tree-decomposition is not inhabited by
a profile from P. For if G is (k � 1)-connected and S is the set of all proper
(< k)-separations, then every task (S,P) is feasible [1, Lemma 4.1], and hence
Lemma 2.1 gives the right overall bounds.

If G is not (k � 1)-connected, the original task (S,P) need not be feasible,
and we have to use iterated strategies. Let Extk denote the k-strategy all whose
entries are Ext, and let Lock denote the k-strategy which only uses Loc. Inter-
estingly, having to iterate costs us a factor of 2 in the case of Ext, but it does not
a↵ect the upper bound for Loc. Hence for iterated strategies the two bounds
coincide:

Theorem 2.2. Let P be any set of k-profiles of G, and p := |P|. Let NExtk(P)
and NLock(P) be obtained with respect to the set S of all proper (< k)-separations.

(i) 2(p� 1)  |NExtk(P)|  4 (p� 1)

(ii) 2(p� 1)  |NLock(P)|  4 (p� 1)

(iii) If G is (k � 1)-connected, then |NExtk(P)|  2p.

Proof. The lower bounds for N follow as in the proof of Lemma 2.1. Statement
(iii) reduces to Lemma 2.1 (i), since Extk = Ext now and the entire task (S,P)
is feasible [1, Lemma 4.1].

For the proof of the upper bounds in (i) and (ii), let us define a rooted tree
(T, r) that represents the recursive definition of NExtk and NLock , as follows. Let

V (T ) := {;} [
[

1`k

P` ;

recall that P` for `  k is the set of all `-profiles of G that extend to a k-profile
in P. We select r = ; as the root, and make it adjacent to every P 2 P1. For
2  `  k we join P 2 P` to the unique P 0 2 P`�1 which it induces (i.e., for
which P 0 ✓ P ). This is clearly a tree, with levels {;},P1, . . . ,Pk. Let us call
the vertices of T that are not in Pk its internal vertices.

The internal vertices of T correspond bijectively to the tasks which our
iterated algorithm, either Extk or Lock, has to solve. Indeed, at the start the
algorithm has to solve the task (S0,P 0) with S0 the set of proper 0-separations
of G and P 0 = P1 the set of 1-profiles that extend to a k-profile in P. This task
corresponds to r in that P 0 is the set of children of r. Later, for ` = 2, . . . , k
recursively, the algorithm at step ` receives as input some tasks (S0,P 0), one for
every P 2 P`�1, in which P 0 is the set of `-profiles in P` extending P , and S0 is
the set of proper (`� 1)-separations of G that are nested with the set N`�1 of
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nested (< `� 1)-separations distinguishing P`�1 which the algorithm has found
so far. This task corresponds to P 2 V (T ) in the same way, in that P 0 is the
set of children of P .

Let c(v) denote the number of children of an internal vertex v. Since Ext
and Loc reduce every task before they solve it, the task (S0,P 0) corresponding
to a vertex v will add a separation to N only if c(v) = |P 0| � 2. Let (T 0, r0)
be obtained from (T, r) by suppressing any vertices with exactly one child; if r
is suppressed, its first descendant with more than one child becomes the new
root r0. The internal vertices of T 0 thus have degree at least 3, except that r0 has
degree at least 2. Let i denote the number of internal vertices of T 0. Since the
number of (non-root) leaves of T 0 is exactly p, we have at most (p� 1) internal
vertices, that is, i  p� 1.

Now consider the construction of NExtk(P). By (2) in Lemma 2.1, each
internal vertex v of T 0 contributes at most 2c(v) separations. So there are at
most twice as many separations in NExtk(P) as there are edges in T 0:

|NExtk(P)|  2 kT 0k = 2(p + i� 1)  4(p� 1).

During the construction of NLock(P), each internal vertex v of T 0 contributes
at most 4(c(v)� 1) separations, by (3) in Lemma 2.1. Writing I for the set of
internal vertices of T 0, we thus obtain

|NLock(P)|  4
X
v2I

�
c(v)� 1

�
= 4

�
kT 0k � i

�
= 4

�
|T 0|� i� 1) = 4(p� 1).

It is easy to construct examples showing that all these bounds are sharp.
Instead, let us give an example where Loc yields the best possible result of
2(p� 1), while Ext does not:

Example 2. Consider the 3-connected graph with four 4-blocks shown in Fig-
ure 1. The grey bars indicate separators of chosen separations. Algorithm Ext
chooses all these separations: first the two (inverse pairs of) outer separations,
then the two pairs of inner separations. On the other hand, Loc will choose the
three pairs of ‘straight’ separations at the first step, and no further separations
thereafter. Therefore Ext chooses one pair of separations more than Loc does.

Figure 1: A graph where Loc chooses fewer separations than Ext.
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3 Bounding the size of the parts

One of the first questions one may ask about canonical tree-decompositions
is whether they can be chosen so as to witness the tree-width of the graph.
Choosing the cycle C in Example 1 long, however, shows that this will not in
general be the case: restricting ourselves to a set of separations that is invariant
under all the automorphisms of G can result in arbitrarily large parts, and these
need not even be essential.

However, if we restrict our attention from arbitrary k-profiles to (those in-
duced by) k-blocks, we can try to make the essential parts small by reducing
the junk they contain, the vertices contained in an essential part that do not
belong to the k-block that made this part essential. Note that this aim conflicts
with our earlier aim to reduce the number of inessential parts: since this junk
is part of G, expunging it from the essential parts will mean that we have to
have other parts to accommodate it.

In general, we shall not be able to reduce the junk in essential parts to zero
unless we restrict the class of graphs under consideration. Our next example
shows some graphs for which any tree-decomposition of adhesion at most k,
canonical or not, has essential parts containing junk. The amount of junk in a
part cannot even be bounded in terms the size of the k-block inhabiting it.

Example 3. Consider the 4-connected graph obtained by joining two adjacent
vertices x, y to a K5 as in Figure 2. This graph has a single 5-block K, the
vertex set of the K5. In any tree-decomposition of adhesion at most 4, the part
containing K will contain x or y as well: since the 4-separations that separate x
and y from K cross, at most one of them will be induced by the decomposition.

x

K

y

Figure 2: A K5 with unavoidable junk attached

To increase the amount of junk in the part containing K, we can attach
arbitrarily many pairs of adjacent vertices to the K5 in the same way as we
added x and y. This will not increase the size of the 5-block K, but the part
containing K will also contain at least one vertex from each of those pairs.

The following theorem shows that the obstruction to obtaining essential
parts without junk illustrated by the above example is, in a sense, the only such
obstruction. Let us call a k-block X well separated in a separation system S
of proper (< k)-separations if the k-profile Pk(X) \ S it induces in S is well
separated, that is, if the maximal elements of Pk(X) \ S are nested with each
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other. (This fails in the example.) Recall that a separation (A,B) is tight if
every vertex in A \B has a neighbour in A r B and a neighbour in B r A.

Theorem 3.1. Let 1  k 2 N, and let S be a set of proper (< k)-separations that
includes all the tight (< k)-separations. Then every graph G has a canonical 5
tree-decomposition all whose separations induced by tree-edges are in S such that

(i) distinct k-blocks lie in di↵erent parts;
(ii) parts containing a k-block that is well separated in S coincide with that

k-block;
(iii) if the task (S,P) with P the set of all k-block profiles is reduced and feasible,

then every leaf part is a k-block.6

Every such decomposition that satisfies (i), but not necessarily (ii) or (iii), can
be refined to such a tree-decomposition that also satisfies (ii) and (iii).

Proof. Let P be the set of all k-block profiles in G. Let N ✓ S be any nested
separation system that distinguishes all its k-blocks and is canonical, i.e., in-
variant under the automorphisms of G. Such a set N exists by [1, Theorem 4.4].
(The separations provided by that theorem are tight, and hence in S, because
they are P-essential, i.e., distinguish two profiles in P ‘e�ciently’; see [1].) Then
the tree-decomposition (T,V) that induces N by [1, Theorem 2.2] satisfies (i).

For (ii) we refine N by adding the locally maximal separations of (S,P)
and their inverses. These are nested with S by [1, Corollary 3.5]. Hence the
refined separation system N 0 is again nested, and therefore induced by a tree-
decomposition (T 0,V 0). This decomposition is again canonical, since the set of
locally maximal separations is invariant under the automorphisms of G. Clearly,
(T 0,V 0) still satisfies (i).

To show that (T 0,V 0) satisfies (ii), suppose it has a part that contains a
well separated k-block X and a vertex v outside X. By the maximality of X
as a (< k)-inseparable set, there is a separation (A,B) 2 S with X ✓ B and
v 2 A r B. Clearly, (A,B) 2 Pk(X); choose (A,B) maximal in Pk(X), the
k-profile that X induces. Then (A,B) 2 N 0, by definition of N 0 and our as-
sumption that X is well separated.7 This contradicts our assumption that v lies
in the same part of (T 0,V 0) as X.

To show that the decomposition (T 0,V 0) obtained for (ii) also satisfies (iii),
consider a leaf part Vt. By the assumption in (iii), the separation (A,B) 2 N 0

that corresponds to the edge of T 0 at t and satisfies B = Vt distinguishes two
k-blocks. Let X be the k-block in Vt; it is unique, since N 0 distinguishes P
but no separation in N 0 separates Vt. Let P = Pk(X) be the k-profile that X
induces. Let (A0, B0) � (A,B) be maximal in S. By assumption in (iii), B0 ✓ B
too contains a k-block, which can only be X. Hence (A0, B0) 2 P .

5Here, this means that the tree-decomposition will be invariant under those automorphisms
of G that act on S. For example, this is the case for all the automorphisms of G if S consists
of all the tight (< k)-separations.

6Recall that (S,P) is feasible, for example, if G is (k � 1)-connected.
7Compare the definition of ‘locally maximal’ implicit in the definition of N 0.
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Since (S,P) is reduced and feasible, by assumption in (iii), [1, Lemma 3.1]
implies that (A0, B0) is extremal in S. Hence P is extremal, and therefore well
separated. We thus have Vt = X by (ii).

The idea behind allowing some flexibility for S in Theorem 3.1 is that this
can make (ii) stronger by making more k-blocks well separated. For example,
consider a tree-decomposition whose parts are all complete graphs K5 and whose
separations induced by tree edges all have order 3. The k-blocks for k = 5 are
the K5s, but none of these is well separated in the set S of all proper (< k)-
separations, since the natural 3-separations can be extended in many ways to
pairwise crossing 4-separations that will be the locally maximal separations.
However all the k-blocks are well separated in the smaller set S0 of all proper
(< 4)-separations, which are precisely the tight (< k)-separations. So applying
the theorem with this S0 would exhibit that the essential parts of our decom-
position are in fact k-blocks, a fact the theorem applied with S cannot see.

However, even with S the set of tight (< k)-separations, Theorem 3.1 (ii)
can miss some parts in canonical tree-decompositions that are in fact k-blocks,
because they are not well separated even in this restricted S:

Example 4. Let G consist of a large complete graph K to which three further
large complete graphs are attached: K1 and K2 by separators S1 and S2, re-
spectively, and K12 by the separator S1\S2. If |S1| = |S2| = k�1 and S1 6= S2,
the separations (K1 [ K12,K [ K2) and (K2 [ K12,K [ K1) are maximal in
Pk(K)\ S for the k-block K and the set S of all tight (< k)-separations. They
cross, since both have K12 on their ‘small’ side (Fig. 3).

K1

S1 S2

K

K2

K12

Figure 3: The 4-block K is a decomposition part but is not well separated

So K is not well separated. But the (unique) canonical tree-decomposition
of G that distinguishes its k-blocks still has K as a part: its parts are the four
large complete graphs, the decomposition tree being a star with centre K.

We wonder whether the notion of being well separated can be weakened, or
applied to a suitable set S of (< k)-separations, so as to give Theorem 3.1 (ii)
a converse: so that every graph has a canonical tree-decomposition that distin-
guishes its k-blocks, whose separations induced by decomposition tree edges are
in S, and in which every well separated k-block is a part, while conversely every
k-block that occurs as a part in such a tree-decomposition is well separated in S.
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Here is an attempt. Given a k-block X, let S(X) denote the set of all tight
separations (A,B) such that X ✓ B and A r B is a component of G�X. The
separations in S(X) are clearly nested.8 Write Sk for the set of all (< k)-separ-
ations of G. Then the condition that

S(X) ✓ Sk (7)

is a weakening of X being well separated in Sk. Indeed, if (A,B) 2 S(X) is
not in Sk, i.e. has order � k, we can find two crossing separations both max-
imal in Pk(X), as follows. Pick a vertex a 2 A r B. By the maximality of
X as a (< k)-inseparable set, our vertex a can be separated from X by some
(C,D) 2 Sk, say with a 2 C r D and X ✓ D. Then (C,D) 2 Pk(X). Replace
(C,D) with any maximal separation in Pk(X) that is greater than it, and re-
name that separation as (C,D). Then still a 2 C r D and X ✓ D. As A r B
is connected, and A \ B ✓ X has size � k although (A,B) is tight, it follows
that C \D contains a vertex a0 2 ArB. Like a, the vertex a0 is separated from
X by some maximal separation (C0,D0) 2 Pk(X). The separations (C,D) and
(C0,D0) are easily seen to cross, so X is not well separated.

On the other hand, condition (7) holds for every k-block X that does occur
as a part in a tree-decomposition of adhesion < k. Thus if (7) is still strong
enough to imply that X is a part in some, or any, canonical such tree-decompo-
sition, we shall have our desired converse of Theorem 3.1 (ii) with (7) replacing
‘well separated’.

Given k, call a tree-decomposition of a graph good if it is canonical, has adhe-
sion < k, and distinguishes all the k-blocks of G e�ciently: any two of them are
distinguished by an adhesion set whose order is minimum among all the separa-
tors in G between those blocks. The following result, which had been conjectured
in the original preprint of this paper, was announced by Carmesin and Gollin [4]:

Theorem 3.2. For every k, every finite graph has a good tree-decomposition in
which every k-block X that satisfies (7) is a part.

The proof of Theorem 3.2 is quite involved and builds on [3, Theorem 5.2].
However, the theorem has a corollary that can be stated with a minimum of
technical overheads and emphasises the way in which it is best possible:

Corollary 3.3. For every k, every finite graph has a good tree-decomposition
that includes among its parts all k-blocks that are a part in some tree-decompo-
sition of adhesion < k.

Proof. Consider the tree-decomposition (T,V) provided by Theorem 3.2. Let X
be any k-block that occurs as a part in some good tree-decomposition. As noted
earlier, this implies that X satisfies (7). By the choice of (T,V), this means that
X is also a part of (T,V).

8However, Example 4 with X = K1 and X0 = K2 shows that for distinct k-blocks X, X0 the
sets S(X) and S(X0) need not be nested: the separation (A, B) 2 S(X) with A = K[K2 and
B = K1 [K12 crosses the separation (A0, B0) 2 S(X0) with A0 = K [K1 and B = K2 [K12.
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Are there any natural conditions ensuring that every essential part is a k-
block? (In particular, such conditions will have to rule out Example 3.) We do
not know the answer to this question. But we can o↵er the following:

Theorem 3.4. Assume that G is (k� 1)-connected, and that every pair x, y of
adjacent vertices has one of the following properties:

(i) x and y have at least k � 3 common neighbours;
(ii) x and y are joined by at least b3

2 (k� 2)c independent paths other than xy;
(iii) x and y lie in a common k-block.

Then G has a canonical tree-decomposition of adhesion < k such that every part
containing a k-block is a k-block. In particular distinct k-blocks are contained
in di↵erent parts.

Proof. By Theorem 3.1 it su�ces to show that every element P of the set P of
k-block profiles is well separated in the set S of all the proper (< k)-separations.

We do this by applying [1, Lemma 3.4]. Given P 2 P, let (A,B), (C,D) be
crossing separations in P\S. If the separation (A[C,B\D) has order k�1, it
is in P\S by (P), and we are done. If not, then the separation (B[D,A\C) has
order < (k�1). Since G is (k�1)-connected, (B[D,A\C) must be improper.
This means that A \ C ✓ B [D, because B 6✓ A as B contains a k-block. But
since (A,B) and (C,D) cross, we cannot have A\C ✓ B\D. By symmetry we
may assume that there is a vertex x 2 (C \D) r B. As G is (k� 1)-connected,
(C,D) is tight, so x has a neighbour y 2 (A \B) r D. Let e := xy.

Suppose first that e satisfies (i). Since all common neighbours of x and y lie
in A \ C, this implies k � 1  |A \ C|  k � 2, a contradiction.

Now suppose that e satisfies (ii), and let W be a set of at least b3
2 (k � 2)c

independent x–y paths other than the edge xy. Let

X := (A \ C) r {x, y} Y := (A \B) r C Z := (C \D) r A .

Since A \ C ✓ B [D, we have

|X|+ |Y |+ |Z|  |A \B|� 1 + |C \D|� 1 = 2(k � 2). (8)

Every path in W that avoids X meets both Y and Z. As |X|  (k�2)�2, this
yields

|W|  |X|+ 1
2

�
|Y |+ |Z|

�
 |X|+ (k � 2)� 1

2 |X|  3
2 (k � 2)� 1,

a contradiction.
Finally assume that e satisfies (iii). Let X be a k-block containing x and y.

As x /2 B and y /2 D we have X ✓ A \ C, contradicting |A \ C|  k � 2.

For k = 2, Theorem 3.4 (i) implies Tutte’s theorem that every 2-connected
graph has a tree-decomposition whose essential parts are precisely its 3-blocks.
The decomposition obtained by any strategy starting with all is the decompo-
sition provided by Tutte [10], in which the inessential parts have cycle torsos.
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