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Summary. Recently a weighted approximation for the tail empirical distribution func-
tion has been developed (Drees et al. (2002)). We show that the same result can also be used
to improve a known uniform approximation of the distribution of the maximum of a random
sample. From this a general result about large deviations of this maximum is derived. In
addition, the relationship between two second order conditions used in extreme value theory
is clarified.

1 Introduction

Let {Xn, n ≥ 1} be independent identically distributed random variables with com-
mon distribution function F (x). Suppose F is in the domain of attraction of the
extreme value distribution with index γ ∈ R

Gγ(x) := exp
(
−(1 + γx)−1/γ

)
, 1 + γx ≥ 0,

that is, there exist normalizing constants an > 0 and bn ∈ R such that

P (Mn ≤ anx + bn) → Gγ(x), x ∈ R, (1.1)

as n → ∞, where Mn := max(X1, X2, ..., Xn).
Since the limit function Gγ is continuous, we have

lim
n→∞ sup

x∈R

|Fn(anx + bn) − Gγ(x)| = 0.

Cheng and Jiang (2001) proved that under the second order strengthening (1.4) of
condition (1.1) one can find a sequence A(n) satisfying A(n) → 0, as n → ∞ and A
is regularly varying with index ρ ≤ 0 and normalizing constants ãn > 0 and b̃n ∈ R

such that

lim
n→∞ sup

1+γx>0

∣∣∣∣∣F
n(ãnx + b̃n) − Gγ(x)

A(n)
+ (1 + γx)−1/γ−1Gγ(x)H̄γ,ρ((1 + γx)1/γ)

∣∣∣∣∣ = 0,

(1.2)
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where the function H̄γ,ρ is defined in (3.1) below. De Haan and Resnick (1996) estab-
lished a similar approximation under a somewhat stronger second order condition.
We will show that, under the same condition but with slightly different normalizing
constants, a weighted version of this result holds, that is more accurate for values
of x close to the right endpoint 1/(−γ) ∨ 0) of Gγ , that is, ∞ if γ ≥ 0 and 1/(−γ)
if γ < 0.

From this result it is easily deduced that

lim
n→∞

1 − Fn(anxn + bn)
1 − Gγ(xn)

= 1 (1.3)

for all sequences xn ↑ 1/((−γ) ∨ 0). Convergence (1.3), which can be considered
a result about large deviations of the maximum Mn from its ‘typical’ behavior,
was also studied in Section 2.3 of the monograph by Resnick (1987). There, for
different normalizing constants an and bn, quite complicated necessary and sufficient
conditions on the maximal rate at which xn may tend to 1/((−γ) ∨ 0) were given
such that (1.3) holds. In contrast, for our choice of the normalizing constants, the
large deviations result (1.3) holds for all sequences xn ↑ 1/((−γ) ∨ 0), provided the
second order condition (1.4) is met with ρ < 0.

Condition (1.1) is equivalent to the existence of a positive function a∗ such that

lim
t→∞

V (tx) − V (t)
a∗(t)

=
xγ − 1

γ

for all x > 0, where the function V is defined as a generalized inverse:

V (t) :=
(

1
− log F

)←
(t) = F←(e−1/t).

Cheng and Jiang (2001) proved that the following second order condition is
necessary for a uniform approximation of type (1.2): there exists a (positive or
negative) function A∗ and a parameter ρ ≤ 0 such that for all x > 0

lim
t→∞

V (tx)−V (t)
a∗(t) − xγ−1

γ

A∗(t)
= Hγ,ρ(x) :=




xγ+ρ−1
γ+ρ , ρ < 0, γ + ρ �= 0,

log x, ρ < 0, γ + ρ = 0,
1
γ xγ log x, ρ = 0 �= γ,
1
2 log2 x, ρ = 0 = γ.

(1.4)

Then there exist functions a and A satisfying a(t) ∼ a∗(t) and A(t) ∼ A∗(t) as
t → ∞, such for all ε > 0 there exists a constant tε > 0 such that for all t, tx ≥ tε

x−(γ+ρ)e−ε| log x|

∣∣∣∣∣∣
V (tx)−V (t)

a(t) − xγ−1
γ

A(t)
− Hγ,ρ(x)

∣∣∣∣∣∣ < ε (1.5)

(see Drees (1998)). Cheng and Jiang (2001) gave explicit representations of the
functions a and A in terms of F . Under this second order condition, following the
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lines of Drees et al. (2002), one may prove a weighted approximation to the tail of
the empirical distribution function which will be central for the proof of our main
result.

While here we work with a second order condition for the function V , usually the
analogous condition for U := (1/1 − F )← is considered. The relationship between
these two conditions is clarified in the Appendix.

2 Main results

Our main result is a weighted approximation to the normalized distribution function
Fn(anx + bn) of the maximum Mn where the additive constant bn is chosen equal
to V (n).

Theorem 2.1. Assume that V satisfies (1.4) with γ �= 0 or ρ < 0. Define for n ∈ N

an :=

{
a(n)

(
1 + γ

γ+ρA(n)
)

if ρ < 0, γ + ρ �= 0,

a(n) otherwise,
bn := V (n)

and

H̃γ,ρ(x) :=

{
xγ+ρ−xγ

γ+ρ if ρ < 0, γ + ρ �= 0,

Hγ,ρ(x) otherwise.

Then for all x0 greater than the left endpoint − 1
γ∨0 of Gγ and all ε > 0

sup
x0≤x< 1

(−γ)∨0

(
(1 + γx)1/γ

)1−εI{ρ=0}

×
∣∣∣∣Fn(anx + bn) − Gγ(x)

A(n)
+ Gγ(x)(1 + γx)−1/γ−1H̃γ,ρ((1 + γx)1/γ)

∣∣∣∣ = o(1)

as n → ∞.

The proof of Theorem 2.1 is based on a similar approximation where a less natural
additive constant b̄n and the scaling constant ān = a(n) are used (see Proposition
3.1). At first glance, seemingly one has to pay for the natural choice bn = V (n)
by a more complicated scaling constant an. However, (1.5) also holds when a(t)
is replaced with a(t)(1 + γ/(γ + ρ)A(t)) in the case ρ < 0, γ + ρ �= 0 and Hγ,ρ is
replaced with H̃γ,ρ. Hence there is nothing special about the normalizing function
a (and hence also about ān = a(n)), but its particular form is only due to the quite
arbitrary choice of the limiting function Hγ,ρ often considered in the literature.

From the weighted approximation established in Theorem 2.1, results on the
relative error of the extreme value approximation of Fn and on large deviations
follow readily:

Corollary 2.1. Under the conditions of Theorem 2.1 with ρ < 0 one has

sup
x0≤x< 1

(−γ)∨0

∣∣∣∣∣∣
1−F n(anx+bn)

1−Gγ(x) − 1

A(n)
− Gγ(x)

1 − Gγ(x)
(1 + γx)−1/γ−1H̃γ,ρ((1 + γx)1/γ)

∣∣∣∣∣∣ = o(1)
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as n → ∞. In particular,

lim
n→∞

1 − Fn(anxn + bn)
1 − Gγ(xn)

= 1

for any sequence xn ↑ 1/((−γ) ∨ 0).

3 Proofs

The main ingredient of the proof of Theorem 2.1 is an approximation similar to
the one asserted in Theorem 2.1 but using different normalizing constants and, as a
consequence, the following modification of the limiting function:

H̄γ,ρ(x) :=

{
xγ+ρ

γ+ρ if ρ < 0, γ + ρ �= 0,

Hγ,ρ(x) otherwise.
(3.1)

Proposition 3.1. Let

ān := a(n),

b̄n :=
{

V (n) − 1
γ+ρa(n)A(n) if ρ < 0, γ + ρ �= 0,

V (n) otherwise.

Then, under the conditions of Theorem 2.1,

sup
x0≤x< 1

(−γ)∨0

(
(1 + γx)1/γ

)1−ρ−ε

×
∣∣∣∣Fn(ānx + b̄n) − Gγ(x)

A(n)
+ Gγ(x)(1 + γx)−1/γ−1H̄γ,ρ((1 + γx)1/γ)

∣∣∣∣ = o(1)

as n → ∞.

Proof:
By the very same arguments as used in the proof of the Propositions 3.1 and 3.2 by
Drees et al. (2002), one obtains

sup
x0≤x< 1

0∨(−γ)

w(x)
∣∣∣n(− log F (ānx + b̄n)) − (1 + γx)−1/γ

A(n)

− (1 + γx)−1/γ−1H̄γ,ρ((1 + γx)1/γ)
∣∣∣ = o(1)

with w(x) :=
(
(1 + γx)1/γ

)1−ρ−ε
. This implies

Fn(ānx + b̄n) = exp
(
n log F (ānx + b̄n)

)
= exp

(
−(1 + γx)−1/γ − A(n)Φ(x) − o(1)

A(n)
w(x)

)

= Gγ(x) exp
(
−A(n)Φ(x) − o(1)

A(n)
w(x)

) (3.2)
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as n → ∞, where the o(1)-term is uniform for x0 ≤ x < 1/((−γ) ∨ 0) and

Φ(x) := (1 + γx)−1/γ−1H̄γ,ρ((1 + γx)1/γ).

Note that as x ↑ 1/((−γ) ∨ 0)

Φ(x) =




(1+γx)(ρ−1)/γ

γ+ρ , ρ < 0, γ + ρ �= 0

(1 + γx)−1/γ−1 log((1 + γx)1/γ), ρ < 0, γ + ρ = 0
1
γ (1 + γx)−1/γ log((1 + γx)1/γ), ρ = 0 �= γ

= o

(
1

w(x)

)
. (3.3)

Thus

A(n)Φ(x) + o(1)
A(n)
w(x)

= O(1)
A(n)
w(x)

−→ 0 (3.4)

as n → ∞ uniformly in x, provided we choose ε < 1 − ρ. Because of

1 − x ≤ e−x ≤ 1 − x + x2

for −1 ≤ x ≤ 1, we have eventually

1 − A(n)Φ(x) − o(1)
A(n)
w(x)

≤ exp
(
−A(n)Φ(n) − o(1)

A(n)
w(x)

)

≤ 1 − A(n)Φ(x) − o(1)
A(n)
w(x)

+
(

A(n)Φ(x) + o(1)
A(n)
w(x)

)2

.

By (3.4) the squared term is of smaller order than A(n)/w(x) uniformly in x.
Hence, in view of (3.2),

Fn(ānx + b̄n) = Gγ(x)
(

1 − A(n)Φ(x) − o(1)
A(n)
w(x)

)

as n → ∞, uniformly for x0 ≤ x < 1/((−γ) ∨ 0). �

For the proof of Theorem 2.1 we need two additional lemmas. Define

x̃ := x + ∆xA(n) with ∆x :=
1 + γx

γ + ρ
I{ρ<0,γ+ρ �=0}. (3.5)

Lemma 3.1.

sup
x0≤x< 1

(−γ)∨0

∣∣∣∣∣∣
(1+γx̃)−1/γ

(1+γx)−1/γ − 1

A(n)
+

1
γ + ρ

I{ρ<0,γ+ρ �=0}

∣∣∣∣∣∣ = o(1).
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Proof: Suppose γ �= 0. Since ∆x/(1 + γx) is constant, a Taylor expansion yields

(1 + γx̃)−1/γ = (1 + γx + γ∆xA(n))−1/γ

= (1 + γx)−1/γ

(
1 + γ

∆x

1 + γx
A(n)

)−1/γ

= (1 + γx)−1/γ

(
1 − ∆xA(n)

1 + γx
+ o(A(n))

)

and hence the assertion. The proof is similar in the case γ = 0. �

Next define for the ease of writing

y := (1 + γx)1/γ and ỹ := (1 + γx̃)1/γ .

Then Lemma 3.1 can be reformulated as follows: for all y0 > 0

lim
n→∞ sup

y≥y0

∣∣∣∣y/ỹ − 1
A(n)

+
1

γ + ρ
I{ρ<0,γ+ρ �=0}

∣∣∣∣ = 0. (3.6)

Lemma 3.2.

lim
n→∞ sup

y≥y0

y

∣∣∣∣∣e
−1/ỹ − e−1/y

A(n)
+

e−1/y

y
· 1
γ + ρ

I{ρ<0,γ+ρ �=0}

∣∣∣∣∣ = 0.

Proof: By (3.6) one obtains

e−1/ỹ − e−1/y = e−1/y

(
exp

(
−y/ỹ − 1

y

)
− 1

)

= e−1/y

(
− A(n)

y(γ + ρ)
I{ρ<0,γ+ρ �=0}(1 + o(1))

)
,

where the o(1)-term is uniform in x, and thus the assertion. �

Proof of Theorem 2.1: In view of Lemma 3.1, Proposition 3.1 implies that for all
x0 > −1/(0 ∨ γ)

sup
x0≤x̃< 1

(−γ)∨0

(
(1 + γx̃)1/γ

)1−ρ−ε

×
∣∣∣∣Fn(ānx̃ + b̄n) − Gγ(x̃)

A(n)
+ Gγ(x̃)(1 + γx̃)−1/γ−1H̄γ,ρ((1 + γx̃)1/γ)

∣∣∣∣ = o(1).

Next note that ānx̃+ b̄n = anx+ bn, so that the last approximation can be rewritten
as

sup
ỹ≥y0

ỹ1−ρ−ε

∣∣∣∣∣F
n(anx + bn) − e−1/ỹ

A(n)
+ e−1/ỹỹ−γ−1H̄γ,ρ(ỹ)

∣∣∣∣∣ = o(1).
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On the other hand, the assertion reads

sup
y≥y0

y1−εI{ρ=0}

∣∣∣∣∣F
n(anx + bn) − e−1/y

A(n)
+ e−1/yy−γ−1H̃γ,ρ(y)

∣∣∣∣∣ = o(1).

By (3.6) we have

sup
y≥y0

y1−εI{ρ=0}

ỹ1−ρ−ε
< ∞.

Hence, by Lemma 3.2, it suffices to prove that

sup
y≥y0

y1−εI{ρ=0}
∣∣∣e−1/ỹỹ−γ−1H̄γ,ρ(ỹ)

− e−1/yy−γ−1H̃γ,ρ(y) +
e−1/y

y
· 1
γ + ρ

I{ρ<0,γ+ρ �=0}
∣∣∣ −→ 0. (3.7)

Check that the term the absolute value of which is considered can be represented
as g(ỹ) − g(y) with

g(t) =




1
γ+ρ tρ−1e−1/t, ρ < 0, γ + ρ �= 0,

t−γ−1 log t e−1/t, ρ < 0, γ + ρ = 0,
1
γ t−1 log t e−1/t, ρ = 0 �= γ.

By the mean value theorem, the left-hand side of (3.7) equals

sup
y≥y0

y2−εI{ρ=0}
∣∣∣g′(ȳ)

( ỹ

y
− 1

)∣∣∣
for some ȳ between y and ỹ. Using (3.6), it is easily verified that

sup
y≥y0

y2−εI{ρ=0} |g′(ȳ)| = sup
ȳ≥y0

ȳ2−εI{ρ=0} |g′(ȳ)|(1 + o(1))

is bounded. Hence the assertion follows readily from (3.6). �

Proof of Corollary 2.1: The first assertion follows from Theorem 2.1 and the
boundedness of (1 + γx)1/γ(1 − Gγ(x)) for x ≥ x0. The second assertion is now
obvious since

Gγ(x)
1 − Gγ(x)

(1 + γx)−1−1/γH̃γ,ρ((1 + γx)1/γ)

is bounded for x ≥ x0. �

4 Appendix

In the present paper we use the second order condition (1.4) on V = (1/(− log F ))←(t),
while the analogous condition on U = (1/(1−F ))←(t) is more common in the litera-
ture. In this appendix, we will discuss the relationship between these two conditions.
To this end, we first examine the effect of certain transformations on the so-called
second order extended regular variation, that is, condition (1.4) in a slightly more
abstract framework.
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Proposition 4.1. Suppose g ∈ ERV (2)(γ1, ρ1) with γ1 ∈ R, ρ1 ≤ 0, i.e.

g(tx)−g(t)
a1(t) − xγ1−1

γ1

A1(t)
→ Hγ1, ρ1(x) (4.1)

and f satisfies

f(tx)
f(t) − xγ2

A2(t)
→ xγ2

xρ2 − 1
ρ2

(4.2)

with γ2 > 0 and |A2| ∈ RV (ρ2) for some ρ2 ≤ 0 and A(t) → 0 as t → ∞. If

A1(f(t))
A2(t)

→ c (4.3)

as t → ∞ for some c ∈ [−∞, +∞], then

g(f(tx))−g(f(t))
γ2a1(f(t)) − xγ1γ2−1

γ1γ2

|A1(f(t))| + |A2(t)|
→ sgn(A2)

(
1

1 + |c| ·
xγ1γ2

γ2

xρ2 − 1
ρ2

+
c

1 + |c| ·
1
γ2

Hγ1,ρ1(x
γ2)

) (4.4)

with sgn(A2) denoting the eventually constant sign of A2(t) and c/(1 + |c|) defined
as ±1 for c ±∞.

Corollary 4.1. (i) Suppose U ∈ ERV (2)(γ, ρ) with γ ∈ R, ρ ≤ 0 and auxiliary
functions a and A. If 2tA(t) → c ∈ [−∞, +∞] \ {1 − γ}, then

V (tx)−V (t)
a∗(t) − xγ−1

γ

A∗(t)
→ Hγ,ρ∗(x) (4.5)

as t → ∞ for all x ∈ R with

ρ∗ = max(ρ,−1),

a∗(t) =
(
1 − γ

1 + |c|A0(t)
)
a
( 1

1 − e−1/t

)
,

A∗(t) =
γ − 1 + c

1 + |c| A0(t),

A0(t) =
∣∣∣A( 1

1 − e−1/t

)∣∣∣ +
1
2t

.

(ii) Conversely, suppose V ∈ ERV (2)(γ, ρ) with γ ∈ R, ρ ≤ 0 and auxiliary func-
tions a and A. If 2tA(t) → c ∈ [−∞, +∞] \ {γ − 1}, then

U(tx)−U(t)
a∗(t) − xγ−1

γ

A∗(t)
→ Hγ,ρ∗(x)
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as t → ∞ for all x ∈ R with

ρ∗ = max(ρ,−1),

a∗(t) =
(
1 +

γ

1 + |c|A0(t)
)
a
( 1

1 − e−1/t

)
,

A∗(t) =
1 − γ + c

1 + |c| A0(t).

Remark 4.1. In the case c = γ − 1 V may or may not belong to ERV (2)(γ, ρ∗) for
some ρ∗ ≤ 0 if U ∈ ERV (2)(γ, ρ).

Proof of Proposition 4.1: Because (4.2) with γ2 > 0 implies f(t) → ∞ as t → ∞
and convergence (4.1) holds locally uniformly, one has for fixed x > 0

g(f(tx)) − g(f(t))
a1(f(t))

=
g(f(tx)

f(t) · f(t)) − g(f(t))

a1(f(t))

=
(f(tx)

f(t) )γ1 − 1

γ1
+ A1(f(t))Hγ1, ρ1

(
f(tx)
f(t)

)
+ o(A1(f(t)))

= xγ1γ2 ·
( f(tx)

xγ2f(t))
γ1 − 1

γ1
+

xγ1γ2 − 1
γ1

+ A1(f(t))Hγ1, ρ1

(
f(tx)
f(t)

)
+ o(A1(f(t))).

(4.6)

By (4.2), one has for fixed x > 0

f(tx)
xγ2f(t)

= 1 + A2(t)
xρ2 − 1

ρ2
+ o(A2(t)).

Hence

( f(tx)
xγ2f(t))

γ1 − 1

γ1
= A2(t)

xρ2 − 1
ρ2

+ o(A2(t)). (4.7)

From (4.6) and (4.7), one may conclude

g(f(tx)) − g(f(t))
γ2a1(f(t))

− xγ1γ2 − 1
γ1γ2

=
xγ1γ2

γ2

(
A2(t)

xρ2 − 1
ρ2

+ o(A2(t))
)

+
1
γ2

A1(f(t))Hγ1,ρ1(x
γ2) + o(A1(f(t))).

(4.8)

By (4.3), we can easily get (4.4).

Proof of Corollary 4.1:
(i) The function f defined by f(t) = 1/(1−e−1/t) satisfies (4.2) with γ2 = 1, ρ2 = −1,
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and A2(t) = −1/2t. Since V (t) = U(f(t)) and A(f(t))/A2(t) = −2tA(t)(1 + o(1)),
Proposition 4.1 yields

V (tx)−V (t)
a(f(t)) − xγ−1

γ

A0(t)
−→ 1

1 + |c|(x
γ−1 − xγ) +

c

1 + |c|Hγ,ρ(x).

Hence, because of 1/(1 + y) = 1 − y + o(y) as y → 0,
V (tx) − V (t)

a∗(t)

=
xγ − 1

γ

(
1 +

γ

1 + |c|A0(t) + o(A0(t))
)

+
( 1

1 + |c|(x
γ−1 − xγ) +

c

1 + |c|Hγ,ρ(x)
)
A0(t) + o(A0(t))

=
xγ − 1

γ
+

( 1
1 + |c|(x

γ−1 − 1) +
c

1 + |c|Hγ,ρ(x)
)
A0(t) + o(A0(t)). (4.9)

If γ = 1 then xγ−1 − 1 vanishes, and the assertion is obvious, because c is assumed
unequal to 1 − γ = 0.

If γ �= 1, then xγ−1 − 1 = (γ − 1)Hγ,−1(x). So if |c| = ∞ (which implies
ρ ≥ −1) or c = 0 (and hence ρ ≤ −1), then (4.5) is immediate from (4.9). Finally,
if c ∈ R \ {0, 1 − γ}, then necessarily ρ = −1 and γ − 1 + c �= 0, so that again the
assertion follows from (4.9).

(i) The proof is very similar to the one of (i). Here we use f(t) = 1/(− log(1 −
1/t)), satisfying (4.2) with γ2 = 1, ρ2 = −1, and A2(t) = 1/2t.
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