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1 Introduction

To assess the risk of extreme events that have not occurred yet, one needs to estimate the dis-

tribution function (d.f.) in the far tail. Extreme value theory provides a natural framework for

an extrapolation of the distribution function beyond the range of available observations via the

so-called Pareto approximation of the tail.

Assume that i.i.d. random variables (r.v.’s) Xi, 1 ≤ i ≤ n, with d.f. F are observed such that

lim
n→∞P

{
a−1

n ( max
1≤i≤n

Xi − bn) ≤ x
}

= Gγ(x)

for all x ∈ R, with some normalizing constants an > 0 and bn ∈ R; in short we write F ∈ D(Gγ).
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Here

Gγ(x) := exp
(− (1 + γx)−1/γ

)
(1.1)

for all x ∈ R such that 1 + γx > 0, and γ ∈ R is the so-called extreme value index. For γ = 0, the

right-hand side of (1.1) is defined as exp(−e−x).

This extreme value condition can be rephrased in the following way:

lim
t→∞ tF̄ (ã(t)x + b̃(t)) = (1 + γx)−1/γ (1.2)

for all x with 1+γx > 0. Here F̄ := 1−F , ã is some positive normalizing function and b̃(t) := U(t)

with

U(t) :=
(

1
1− F

)←
(t) = F←

(
1− 1

t

)

and F← denoting the generalized inverse of F . In other words, if X is a r.v. with d.f. F , then

lim
t→∞P

(X − b̃(t)
ã(t)

≤ x
∣∣∣X > b̃(t)

)
= 1− (1 + γx)−1/γ =: Vγ(x)

for x > 0, where Vγ is a so-called generalized Pareto distribution. Thus, roughly speaking, we have

for large t and x > b̃(t)

F̄ (x) = P{X > x} ≈ t−1
(
1 + γ

x− b̃(t)
ã(t)

)−1/γ
, (1.3)

that is, the tail of the d.f. can be approximated by a rescaled tail of a generalized Pareto distribution

with suitable scale and location parameter and shape parameter γ. Since the latter can be easily

extrapolated beyond the range of the observations, this framework offers an approach for estimating

the d.f. F in the far tail.

Condition (1.2) holds for most standard distribution, but not for all distributions. Hence before

applying approximation (1.3) one should check whether (1.2) is a reasonable assumption for the

data set under consideration. To this end, we do not want to specify the exact parameters of the

approximating generalized Pareto distribution beforehand.

A natural way to check the validity of (1.2) is to compare the tail of the empirical d.f. and a

generalized Pareto distribution with estimated parameters by some goodness-of-fit test. Here we

focus on tests of Anderson-Darling-type; however, using the empirical process approximations that

will be established in the paper, similar results can be easily proved for other goodness-of-fit tests.

Davison and Smith (1990) applied such goodness-of-fit tests to the famous River Nidd data, but

they used the critical values of the tests for exponentiality. Doing so, they ignored the fact that
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the exponential distribution is just one of the possible limiting generalized Pareto distributions

(cf. p. 4141 of Davison and Smith, 1990) and, in addition, that the parameters of the generalized

Pareto distribution must be estimated first. Indeed, we will see that in general the estimation of

the shape, scale and location parameters influence the asymptotic distribution of the test statistic.

This was already observed in a purely parametric generalized Pareto model by Choulakian and

Stephens (2001).

In the classical setting when a simple null hypothesis F = F0 is to be tested, test statistics of

Anderson-Darling type can be written in the form
∫ 1

0

(
Fn(F−1

0 (x))− x
)2

ψ(x) dx

for a suitable weight function ψ which is unbounded near the boundary of the interval [0, 1]; here

Fn denotes the empirical d.f. defined by

Fn(x) :=
1
n

n∑

i=1

I{Xi ≤ x}, x ∈ R.

If the null hypothesis is composite (but of parametric form), then F0 is replaced with a d.f. with

estimated parameters.

In the present framework two differences must be taken into account. First, we do not assume

that the left hand side and the right hand side of (1.3) are exactly equal, but the unknown d.f. F

is only approximated by the “theoretical” generalized Pareto d.f. Second, this approximation is

expected to hold only in the right tail, for x > b̃(n/k) with k ¿ n, say. In the asymptotic setting,

we will assume that k = kn is an intermediate sequence, that is,

lim
n→∞ kn = ∞, lim

n→∞ kn/n = 0.

The first condition is necessary to ensure consistency of the test, while the second condition reflects

the restriction to the tail.

To be more specific, here we consider the test statistic

Tn :=
∫ 1

0

[
n

kn
F̄n

(
â(

n

kn
)
x−γ̂n − 1

γ̂n
+ b̂(

n

kn
)
)
− x

]2

xη−2 dx (1.4)

with F̄n := 1 − Fn. Here γ̂n, â(n/kn) and b̂(n/kn) are suitable estimators of the shape, scale and

location parameter to be discussed later on, and η is an arbitrary positive constant. Since this test

statistic measures a distance between the conditional distribution of the excesses above b̂(n/kn) and

an approximating generalized Pareto distribution (cf. (1.2)), a plot of this statistic as a function
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of k = kn may also be a useful tool for determining the point from which on approximation (1.3)

is sufficiently accurate.

In the classical setting with simple null hypothesis, the asymptotic distribution of the Anderson-

Darling test statistic under the null hypothesis is usually derived from a weighted approximation of

the empirical distribution function. In analogy, in Theorem 2.1 we state a weighted approximation

to the tail empirical process

Yn(x) :=
√

kn

(
n

kn
F̄n

(
a
( n

kn

)
x + b

( n

kn

))
− (1 + γx)−1/γ

)
, x ∈ R. (1.5)

For the uniform distribution such approximations are well known; see, e.g., Csörgő and Horváth

(1993, Theorems 5.1.5 and 5.1.10). For more general d.f.’s F ∈ D(Gγ), one must very carefully

choose suitable modifications a and b of the normalizing functions to obtain accurate weighted

approximations (cf. Lemma 2.1). Moreover, it turns out that for a certain class of d.f.’s with

extreme value index γ = 0, a qualitatively different result holds. Proposition 2.1 gives an analogous

approximation to the corresponding process with estimated parameters in the case γ > −1/2. The

asymptotic normality of Tn then follows easily (Theorem 2.2).

An important step in the proof of approximation of Yn is to establish a weighted approximation

to the (deterministic) tail d.f. F̄ or, more precisely, to tF̄ (a(t)x+b(t))−(1+γx)−1/γ , which is proved

in Section 3 (see Proposition 3.2). This result, a purely analytical analog to the approximation of

the tail empirical quantile function (cf. Lemma 2.1) established by Drees (1998), is very useful in

a wider context. For instance, Drees et al. (2003) have derived large deviation results in extreme

value theory from this approximation. The Sections 4 and 5 contain the proofs of the main results,

while in Section 6 asymptotic critical values are determined and the actual size of the Anderson-

Darling type test with nominal size 5% is examined in a simulation study.

2 Main results

Approximation to the Tail Empirical Distribution Function

If i.i.d. uniformly distributed r.v.’s Ui are observed, then (1.2) holds with ã(t) = 1/t and γ = −1.

For this particular case, Csörgő and Horváth (1993, Theorems 5.1.5 and 5.1.10) gave a weighted

approximation to the left tail analog of the normalized tail empirical process Yn defined in (1.5).

Let

Un(t) :=
1
n

n∑

i=1

I{Ui ≤ t}, t ∈ R,
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denote the uniform tail empirical d.f. Then there exists a sequence of Brownian motions Wn such

that

sup
t>0

t−1/2e−ε| log t|
∣∣∣∣
√

kn

( n

kn
Un

(kn

n
t
)
− t

)
−Wn(t)

∣∣∣∣
P−→ 0 (2.1)

as n →∞ for all intermediate sequences kn, n ∈ N (see also Einmahl (1997, Corollary 3.3)).

By the well-known quantile transformation, (F←(1 − Ui))1≤i≤n has the same distribution as

(Xi)1≤i≤n. Because F̄ (x) ≤ t is equivalent to F←(1 − t) ≤ x, it follows that F̄n has the same

distribution as

x 7→ 1− 1
n

n∑

i=1

1{F←(1− Ui) ≤ x} =
1
n

n∑

i=1

1{Ui < F̄ (x)} = Un(F̄ (x)− 0),

that is the left hand limit of Un at F̄ (x). Hence, by the continuity of Wn, we obtain for suitable

versions of F̄n that

sup
{x:zn(x)>0}

(zn(x))−1/2e−ε| log zn(x)|
∣∣∣∣
√

kn

[ n

kn
F̄n

(
ã
( n

kn

)
x+ b̃

( n

kn

))−zn(x)
]
−Wn(zn(x))

∣∣∣∣
P−→ 0 (2.2)

with

zn(x) :=
n

kn
F̄

(
ã
( n

kn

)
x + b̃

( n

kn

))
.

In view of (1.2), one may conjecture that (2.2) still holds if zn(x) is replaced with (1 + γx)−1/γ .

However, for this to be justified, one must replace the normalizing functions ã and b̃ with suitable

modifications such that (1.2) holds in a certain uniform sense. Moreover, we must bound the speed

at which kn tends to ∞.

In the sequel, we will focus on distributions which satisfy the following second order refinement

of condition (1.2):

lim
t→∞

tF̄
(
ã(t)x + b̃(t)

)− (1 + γx)−1/γ

Ã(t)
= (1 + γx)−1−1/γHγ,ρ

(
(1 + γx)1/γ

)
(2.3)

for all x with 1 + γx > 0, some ρ ≤ 0, a function Ã which eventually has constant sign, and

Hγ,ρ(x) :=
1
ρ

(
xγ+ρ − 1

γ + ρ
− xγ − 1

γ

)
.

(Note that, under condition (1.2), Ã(t) necessarily tends to 0 as t tends to infinity, because the

numerator tends to 0, too.) De Haan and Stadtmüller (1996) proved that (2.3) is equivalent to

lim
t→∞

U(tx)− b̃(t)
ã(t)

− xγ − 1
γ

Ã(t)
= Hγ,ρ(x) (2.4)
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for all x > 0. Moreover, they showed that in (2.3) and (2.4) all possible non-trivial limits must

essentially be of the given types, and that |Ã| is necessarily ρ–varying.

Under this assumption, Drees (1998) and Cheng and Jiang (2001) determined suitable normal-

izing functions a and b such that convergence (2.4) holds uniformly in the following sense. In what

follows, f(t) ∼ g(t) means f(t)/g(t) → 1.

Lemma 2.1. Suppose the second order condition (2.4) holds. Then there exists a function A such

that for all ε > 0 there is a constant tε > 0 such that for all t and x with min(t, tx) ≥ tε

x−(γ+ρ)e−ε| log x|

∣∣∣∣∣∣∣∣

U(tx)− b(t)
a(t)

− xγ − 1
γ

A(t)
−Kγ,ρ(x)

∣∣∣∣∣∣∣∣
< ε. (2.5)

Here A(t) ∼ Ã(t),

a(t) :=





ctγ if ρ < 0,

γU(t) if ρ = 0, γ > 0,

−γ(U(∞)− U(t)) if ρ = 0, γ < 0,

U∗∗(t) + U∗(t) if ρ = 0, γ = 0

with c := limt→∞ t−γ ã(t) (which exists if ρ < 0),

b(t) :=





U(t)− a(t)A(t)/(γ + ρ) if γ + ρ 6= 0, ρ < 0,

U(t) else,

and

Kγ,ρ(x) :=





1
γ+ρxγ+ρ if ρ < 0, γ + ρ 6= 0,

log x if ρ < 0, γ + ρ = 0,

1
γ xγ log x if ρ = 0 6= γ,

1
2 log2 x if ρ = 0 = γ,

and for any integrable function g the function g∗ is defined by

g∗(t) := g(t)− 1
t

∫ t

0
g(u)dt.

In the sequel, we denote the right endpoint of the support of the generalized Pareto d.f. with

extreme value index γ by

1
(−γ) ∨ 0

=




−1/γ if γ < 0,

∞ if γ ≥ 0,
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and its left endpoint by

− 1
γ ∨ 0

=




−∞ if γ ≤ 0,

−1/γ if γ > 0.

We have the following approximation to the tail empirical process Yn defined in (1.5):

Theorem 2.1. Suppose that the second order condition (2.4) holds for some γ ∈ R and ρ ≤ 0. Let

kn be an intermediate sequence such that
√

knA(n/kn), n ∈ N, is bounded and choose a, b and A

as in Lemma 2.1. Then there exist versions of F̄n and a sequence of Brownian motions Wn such

that for all x0 > −1/(γ ∨ 0)

(i)

sup
x0≤x<1/((−γ)∨0)

(
(1 + γx)−1/γ

)−1/2+ε
∣∣∣Yn(x)−Wn

(
(1 + γx)−1/γ

)

−
√

knA
( n

kn

)
(1 + γx)−1/γ−1Kγ,ρ

(
(1 + γx)1/γ

)∣∣∣∣
P−→ 0

if γ 6= 0 or ρ < 0, and
(ii)

sup
x0≤x<∞

(
max

(
e−x,

n

kn
F̄

(
a
( n

kn

)
x + b

( n

kn

))))−1/2+ε
·

·
∣∣∣∣Yn(x)−Wn(e−x)−

√
knA

( n

kn

)
e−x x2

2

∣∣∣∣
P−→ 0

if γ = ρ = 0.

Remark 2.1. If, in particular,
√

knA(n/kn) tends to 0, then the bias term
√

knA(n/kn) (1 +

γx)−1/γ−1Kγ,ρ((1 + γx)1/γ) is asymptotically negligible. In order for this statement to be true, it

is sufficient to assume that the left-hand side of (2.3) remains bounded (rather than the present

limit requirement) provided that kn tends to infinity sufficiently slowly.

The assertion in Theorem 2.1(ii) is wrong if the maximum of e−x and n/knF̄ (a(n/kn)x +

b(n/kn)) is replaced with just one of these two terms. In particular, unlike in the case γ 6= 0 or

ρ > 0, here one cannot use a power of the pertaining generalized Pareto distribution (1 + γx)−1/γ .

Hence the asymptotic behavior of the tail empirical d.f. in the case γ = ρ = 0 is qualitatively

different from the behavior in the case (i). This is due to the fact that in the case γ 6= 0 or ρ < 0 the

tail behavior of F is essentially determined by the parameters γ and ρ, while in the case γ = ρ = 0

tail behaviors as diverse as F̄ (x) ∼ exp(− log2 x), F̄ (x) ∼ exp(−√x) and F̄ (x) ∼ exp(−x2), say,

are possible (cf. Example 3.1).
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Nevertheless, also in the case γ = ρ = 0 results similar to the one in case (i) hold if

max
(
e−x, (n/kn)F̄ (a(n/kn)x + b(n/kn))

)
is replaced with some weight function converging to

0 much slower than e−x as x tends to ∞:

Corollary 2.1. Under the conditions of Theorem 2.1 with γ = ρ = 0 one has for all τ > 0

sup
x0≤x<∞

max(1, xτ )
∣∣∣∣Yn(x)−Wn(e−x)−

√
knA

( n

kn

)
e−x x2

2

∣∣∣∣
P−→ 0.

The proofs of Theorem 2.1 and Corollary 2.1 are given in section 4.

According to these results, the standardized tail empirical d.f.

Yn((x−γ − 1)/γ) =
√

kn

(
n

kn
F̄n

(
a
( n

kn

)x−γ − 1
γ

+ b
( n

kn

))− x

)
, x ∈ (0, 1],

converges to a Brownian motion plus a bias term if kn tends to∞ not too fast. This may be used to

construct a test for F ∈ D(Gγ). However, to this end, first the unknown parameters γ, a(n/kn) and

b(n/kn) must be replaced with suitable estimators. The following result is an analog to Theorem

2.1(i) and Corollary 2.1 for the process with estimated parameters in the case γ > −1/2.

Proposition 2.1. Suppose that the conditions of Theorem 2.1 are satisfied for some γ > −1/2.

Let γ̂n, â(n/kn) and b̂(n/kn) be estimators such that

√
kn

(
γ̂n − γ,

â(n/kn)
a(n/kn)

− 1,
b̂(n/kn)− b(n/kn)

a(n/kn)

)
− (

Γ(Wn), α(Wn), β(Wn)
) P−→ 0 (2.6)

for some measurable real-valued functionals Γ, α and β of the Brownian motions Wn used in The-

orem 2.1. Let

L(γ)
n (x) :=





1
γ x

(
1
γ Γ(Wn)− α(Wn)

)
+ 1

γ Γ(Wn)x log x

− 1
γ x1+γ

(
γβ(Wn) + 1

γ Γ(Wn)− α(Wn)
)

if γ 6= 0,

x
(− β(Wn)− 1

2Γ(Wn) log2 x + α(Wn) log x
)

if γ = 0,

and

h(x) =





x−1/2+ε if γ 6= 0 or ρ < 0,

(1 + | log x|)τ if γ = ρ = 0.

Then, for the versions of F̄n used in Theorem 2.1 and every ε > 0 and τ > 0, one has

sup
0<x≤1

h(x)
∣∣∣∣
√

kn

[
n

kn
F̄n

(
â
( n

kn

)x−γ̂n − 1
γ̂n

+ b̂
( n

kn

))− x

]

−Wn(x)− L(γ)
n (x)−

√
knA

( n

kn

)
xγ+1Kγ,ρ

(1
x

)∣∣∣∣
P−→ 0.

(2.7)
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Remark 2.2. (i) If γ < −1/2, a rate of convergence of k
−1/2
n for the estimators in (2.6)

is not sufficient to ensure the approximation (2.7). To see this, note that in this case

b̂(n/kn) − b(n/kn) is of larger order than k
−1/2
n (n/kn)γ−ε and hence also of larger order

than the difference between the inth largest order statistic and the right endpoint F←(1) for

some sequence in → ∞ not too fast, leading, for small x > 0, to a non-negligible difference

between F̄n(a(n/kn)(x−γ − 1)/γ + b(n/kn)) and the corresponding expression with estimated

parameters.

(ii) Typically the functionals Γ, α and β depend on the underlying d.f. F only through γ if

the estimators γ̂n, â(n/kn) and b̂(n/kn) use only the largest kn + 1 order statistics and
√

knA(n/kn) → 0. This justifies the notation L
(γ)
n for the limiting function occurring in

(2.7) in that case. However, if
√

knA(n/kn) → c 6= 0 then L
(γ)
n will also depend on c; for

simplicity, we ignore this dependence in the notation.

Example 2.1. In Proposition 2.1 one may use the so-called maximum likelihood estimator in

a generalized Pareto model discussed by Smith (1987). Denote the jth order statistic by Xj,n.

Since the excesses Xn−i+1,n−Xn−kn,n, 1 ≤ i ≤ kn over the random threshold Xn−kn,n are approx-

imately distributed according to a generalized Pareto distribution with shape parameter γ and

scale parameter σn := a(n/kn) if F ∈ D(Gγ) and kn is not too big, γ and σn are estimated by the

pertaining maximum likelihood estimators γ̂n and σ̂n in an exact generalized Pareto model for the

excesses. They can be calculated as the solutions to the equations

1
k

k∑

i=1

log
(
1 +

γ

σ
(Xn−i+1,n −Xn−k,n)

)
= γ

1
k

k∑

i=1

1
1 + γ

σ (Xn−i+1,n −Xn−k,n)
=

1
γ + 1

.

In Theorem 2.1 of Drees et al. (2003) it is proved that γ̂n, â(n/kn) := σ̂n and b̂(n/kn) := Xn−kn,n

satisfy (2.6) with

Γ(Wn) = −(γ + 1)2

γ

(
(2γ + 1)Sn −Rn

)
+ (γ + 1)Wn(1),

α(Wn) = −γ + 1
γ

(
Rn − (γ + 1)(2γ + 1)Sn

)− (γ + 2)Wn(1),

β(Wn) = Wn(1),
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where

Rn :=
∫ 1

0
t−1Wn(t) dt,

Sn :=
∫ 1

0
tγ−1Wn(t) dt,

provided
√

knA(n/kn) → 0; if
√

knA(n/kn) → c > 0 then additional bias terms enter the formulas.

As usual, for γ = 0, these expressions are to be interpreted as their limits as γ tends to 0, that is,

Γ(Wn) = −
∫ 1

0
(2 + log t)t−1Wn(t) dt + Wn(1),

α(Wn) =
∫ 1

0
(3 + log t)t−1Wn(t) dt− 2Wn(1),

β(Wn) = Wn(1).

(Applying Vervaat’s (1972) lemma to the approximation to the tail empirical distribution function

given in Theorem 2.1, restricted to a compact interval bounded away from 0, and then using a

Taylor expansion of t 7→ (t−γ − 1)/γ shows that the Brownian motions used by Drees et al. (2003)

are indeed the Brownian motions used in Proposition 2.1 multiplied with −1.)

Hence one may apply Proposition 2.1 to obtain the asymptotics of the tail empirical distribution

function with estimated parameters. 2

A Test for the Extreme Value Condition

It is easy to devise tests for F ∈ D(Gγ) with γ > −1/2 using approximation (2.7). For example,

using the following limit theorem, the critical values of the Anderson-Darling type test can be

calculated which rejects the null hypothesis if knTn (defined in (1.4)) is too large.

Theorem 2.2. Under the conditions of Proposition 2.1 with
√

knA(n/kn) → 0 one has

knTn −
∫ 1

0

(
Wn(x) + L(γ)

n (x)
)2

xη−2 dx
P−→ 0 (2.8)

for all η > 0 if γ 6= 0 or ρ < 0, and all η ≥ 1 if γ = ρ = 0.

Remark 2.3. Note that
∫ 1
0

(
Wn(x) + L

(γ)
n (x)

)2
xη−2 dx > 0 a.s., because L

(γ)
n is a differentiable

function on (0, 1] while Wn has almost surely continuous, non-differentiable sample paths.

Since the continuous distribution of
∫ 1
0 (Wn(x) + L

(γ)
n (x))2xη−2dx does not depend on n, for

fixed γ > −1/2 its quantiles Qp,γ defined by P{∫ 1
0 (Wn(x) + L

(γ)
n (x))2xη−2dx ≤ Qp,γ} = p can be

obtained by simulations (see Section 6). Then the test rejecting F ∈ D(Gγ) if knTn > Q1−ᾱ,γ has

asymptotic size ᾱ ∈ (0, 1). (Likewise, one can consider a ‘two-sided’ test that rejects the hypothesis

if knTn < Qᾱ/2,γ or knTn > Q1−ᾱ/2,γ . However, this test seems intuitively less appealing because
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usually the tail empirical d.f. will be poorly approximated by a generalized Pareto d.f. under the

alternative hypothesis.)

If one wants to test F ∈ D(Gγ) for an arbitrary unknown γ > −1/2, one may use the test

rejecting the null hypothesis if knTn > Q1−ᾱ,γ̃n for some estimator γ̃n which is consistent for γ if

F ∈ D(Gγ). If the functionals Γ, α and β determining the limit distributions of γ̂n, â(n/kn) and

b̂(n/kn) are continuous functions of γ (like the ones obtained in Example 2.1), then also L
(γ)
n (x)

and hence the quantiles Qp,γ are continuous functions of γ. Thus the test has asymptotic size ᾱ.

Remark 2.4. A natural alternative to the maximum likelihood estimators discussed in Example

2.1 is to estimate a(n/kn), b(n/kn) and γ by those values a, b and γ for which the test statistic
∫ 1

0

[
n

kn
F̄n

(
a
x−γ − 1

γ
+ b

)
− x

]2

xη−2 dx

is minimized. Note, however, that the minimization of the integral in the threedimensional space

(0,∞)× R× (−1/2,∞) can be a daunting task, because it is a discontinuous function of its argu-

ments.

However, recall that, in fact, for (2.8) to hold we have not merely assumed that F ∈ D(Gγ) but

also that the second order condition (2.4) holds and, for the particular kn used in the definition

of the test statistic Tn, in addition we have assumed that A(t) → 0 sufficiently fast such that
√

knA(n/kn) → 0. Hence, we actually test the subset of the null hypothesis F ∈ D(Gγ) described

by these additional assumptions. This, however, is exactly what is needed in statistical appli-

cations. For instance, note that typically the very same assumptions are made when confidence

intervals for extreme quantiles or for exceedance probability over high thresholds are calculated.

Therefore, for this purpose, one must not only check whether F ∈ D(Gγ) but whether the Pareto

approximation is sufficiently accurate for the number of order statistics used for estimation! More-

over, if one lets k vary, then the test statistic can also be used to find the largest k for which the

Pareto approximation of the tail distribution beyond Xn−k:n is justified.

Remark 2.5. If one first tests for F ∈ D(Gγ) and, in the case of acceptance, then calculates

confidence intervals of the interesting extreme value parameters, then the confidence bounds should

be adjusted for this pre-testing. For example, to construct an adjusted confidence interval for γ,

first determine (by simulation) a constant r(γ) such that

P
{∫ 1

0

(
Wn(x) + L(γ)

n (x)
)2

xη−2 dx ≤ Q1−ᾱ,γ , |Γ(Wn)| ≤ r(γ)
}

= β

for some pre-specified β < 1 − ᾱ. As above, let γ̃n be any consistent estimator of γ. Then,

under the conditions of Theorem 2.2, the probability that the hypothesis is accepted and γ ∈ In :=
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[γ̂n − k
−1/2
n r(γ̃n), γ̂n + k

−1/2
n r(γ̃n)] converges to β. In this sense, In is a confidence interval with

asymptotic confidence level β.

A test for a similar hypothesis, but based on the tail empirical quantile function instead of the

tail empirical distribution function, has been discussed by Dietrich et al. (2002). That test does

not require γ > −1/2 but, on the other hand, U(∞) > 0 and a slightly different second order

condition were assumed.

The test based on the statistic knTn becomes particularly simple if Γ, α and β are the zero

functional, that is, the standardized estimation errors γ̂n − γ, â(n/kn)/a(n/kn) and (b̂(n/kn) −
b(n/kn))/a(n/kn) converge at a faster rate than k

−1/2
n . This can be achieved by using suitable

estimators based on mn largest order statistics with kn = o(mn) and
√

mnA(n/mn) → 0. (For

example, γ may be estimated by the estimator given in Example 2.1 with mn instead of kn, and

b(n/kn) by a quantile estimator of the type described in de Haan and Rootzén (1993).) In that

case the limit distribution
∫ 1
0 W 2

n(x)xη−2dx of the test statistic knTn does not depend on γ, so

that no consistent estimator γ̃n for γ is needed. However, this approach has two disadvantages.

Firstly, in practice it is often not an easy task to choose kn such that the bias is negligible (i.e.
√

knA(n/kn) → 0). It is even more delicate to choose two numbers kn and mn such that kn is

much smaller than mn but not too small and, at the same time, the bias of the estimators of the

parameters is still not dominating when these are based on mn order statistics. Secondly, while

this approach may lead to a test whose actual size is closer to the nominal value ᾱ, the power of

the test will probably higher if one choose a larger value for kn, e.g. kn = mn, because the larger kn

the larger will typically be the test statistic knTn if the tail empirical d.f. is not well approximated

by a generalized Pareto d.f. For these reasons, in the simulation study we will focus on the case

where the tail empirical d.f. and the estimators γ̂n, â(n/kn) and b̂(n/kn) are based on the same

number of largest order statistics.

3 Tail Approximation to the Distribution Function

A substantial part of the proof of Theorem 2.1 consists of proving an approximation to the tail of

the (deterministic) distribution function. In the sequel, we will use the notation

gt(x) := tF̄ (a(t)x + b(t))

g(x) := (1 + γx)−1/γ .

12



Then gt converges to g pointwise as t tends to infinity by the basic assumption F ∈ D(Gγ) (cf.

(1.2)). The following propositions give weighted approximations to the difference gt − g, that

are analogous to the approximation (2.5) for the quantile function. Indeed, because g←t (1/x) =

(U(tx) − b(t))/a(t), inequality (2.5) gives a weighted approximation to g←t − g←, which will be

used to derive a similar approximation for gt − g.

It is intuitively clear that under the second order condition, that describes the behavior of the

right tail of F , an approximation to gt(x) − g(x) can hold uniformly only for certain values of x

for which a(t)x + b(t) belongs to the tail of the support of F . More precisely, for all c, δ > 0, we

define sets

Dt,ρ := Dt,ρ,δ,c :=




{x : gt(x) ≤ ct1−δ} if ρ < 0,

{x : gt(x) ≤ |A(t)|−c} if ρ = 0.

Check that, in particular, eventually [x0,∞) ⊂ Dt,ρ for all x0 > −1/(γ ∨ 0).

Proposition 3.1. Suppose that the second order relation (2.4) holds for some γ ∈ R and ρ ≤ 0.

For ε > 0, define

wt(x) :=





gρ−1
t (x) exp(−ε| log gt(x)|) if γ 6= 0 or ρ 6= 0,

min
(
(gt(x))−1 exp(−ε| log gt(x)|), ex−ε|x|) if γ = ρ = 0.

Then, for all ε, δ, c > 0,

sup
x∈Dt,ρ

wt(x)
∣∣∣gt(x)− g(x)

A(t)
− g1+γ

t (x)Kγ,ρ(1/gt(x))
∣∣∣ → 0

as t →∞.

Note that ex−ε|x| = (g(x))−1 exp(−ε| log g(x)|) if γ = ρ = 0. Hence, in this case, we weight with

the minimum of the weight function used in the other cases and the analog where gt is replaced

with the limiting function g.

Next we establish an analogous result where gt(x) is replaced with g(x). To this end, let for

δ, c > 0

D̃t,ρ := D̃t,ρ,δ,c :=




{x : g(x) ≤ ct1−δ} if ρ < 0,

{x : g(x) ≤ |A(t)|−c} if ρ = 0,

and, for γ 6= 0 or ρ < 0,

w(x) := gρ−1(x) exp(−ε| log g(x)|).
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Proposition 3.2. If the second order relation (2.4) holds for some γ ∈ R and ρ ≤ 0, then

sup
x∈Dt,ρ

wt(x)
∣∣∣gt(x)− g(x)

A(t)
− g1+γ(x)Kγ,ρ(1/g(x))

∣∣∣ → 0 (3.1)

as t →∞. Moreover, if γ 6= 0 or ρ < 0, then

sup
x∈D̃t,ρ

w(x)
∣∣∣gt(x)− g(x)

A(t)
− g1+γ(x)Kγ,ρ(1/g(x))

∣∣∣ → 0, (3.2)

and for γ = ρ = 0

sup
x∈D̃t,0

wt(x)
∣∣∣gt(x)− g(x)

A(t)
− e−x x2

2

∣∣∣ → 0 (3.3)

for all δ, c > 0 as t →∞.

At first glance, it is somewhat surprising that the results look differently in the case γ = ρ = 0

in that one needs a more complicated weight function, namely the minimum of a function of the

standardized tail d.f. gt(x) and the corresponding function of the limiting exponential d.f. The

following example shows that indeed the straightforward analog to the assertion in the case γ 6= 0

or ρ < 0 does not hold, because, in the case γ = ρ = 0, gt(x) and g(x) may behave quite differently

for large x, despite of the pointwise convergence of gt(x) towards g(x).

Example 3.1. Here we give an example of a d.f. satisfying (2.4) such that

sup
x∈D̃t,0

ex−ε|x|
∣∣∣gt(x)− g(x)

A(t)
− e−x x2

2

∣∣∣ (3.4)

does not tend to 0 for any c, ε > 0.

Let F (x) := 1 − e−
√

x, x > 0, and a(t) := 2 log t, b(t) := log2 t, A(t) := 1/ log t. Then

U(x) = log2 x satisfies the second order condition (2.4):

1
A(t)

(U(tx)− U(t)
a(t)

− log x
)
→ log2 x

2

as t →∞. Moreover

gt(x) = t exp
(
−

√
2x log t + log2 t

)
= exp

(
− log t

(√
1 + 2x/ log t− 1

))
.

Hence, for x = x(t) = λ(t) log t/2 with λ(t) →∞ as t →∞, one obtains

gt(x) = exp
(
− log t

√
λ(t)(1 + o(1))

)
,

e−x x2

2
=

1
8

exp
(
2(log log t + log λ(t))− 1

2
λ(t) log t

)
= o(gt(x)), and

g(x) = o(gt(x)),
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so that

gt(x)− g(x)
A(t)

− e−x x2

2
=

gt(x)
A(t)

(1 + o(1)).

However, this contradicts the convergence of (3.4) to 0 as t →∞:

(e−x)−1+ε
∣∣∣gt(x)− g(x)

A(t)
− e−x x2

2

∣∣∣

= (e−x)−1+ε gt(x)
A(t)

(1 + o(1))

= exp
(1− ε

2
λ(t) log t−

√
λ(t) log t(1 + o(1)) + log log t

)
(1 + o(1))

→ ∞.

Likewise one can show that F (x) = 1− e−x2
, x > 0, satisfies the second order condition (2.4)

but that

sup
x∈Dt,0

(gt(x))−1 exp(−ε| log gt(x)|)
∣∣∣gt(x)− g(x)

A(t)
− e−x x2

2

∣∣∣ →∞.

2

For the proofs of the propositions, we need some auxiliary results. In what follows, we assume

that the conditions of Proposition 3.1 are met. Recall that

∆t(x) := g←t (x)− g←(x) =
U(t/x)− b(t)

a(t)
− x−γ − 1

γ
.

Lemma 3.1. For each ε > 0, there exists t̃ε > 0 such that

sup
x≤t/t̃ε

xγ+ρe−ε| log x||∆t(x)| = O(A(t))

as t →∞.

Proof: We focus on the case γ = ρ = 0; the assertion can be proved by the same arguments

in the other cases. From Lemma 2.1 we know that, for each δ > 0, there exists tδ such that for

t, t/x ≥ tδ

e−ε| log x||∆t(x)| ≤ e−ε| log x||A(t)|
( log2 x

2
+ δeδ| log x|

)
.

Choose δ < ε and t̃ε = tδ to obtain the assertion, since supx>0 e−ε| log x| log2 x < ∞. 2

In the case ρ = 0, we must deal with those very large values of x separately for which gt(x)/g(x)

is not necessarily close to 1. For this purpose, let

Bt,ρ := Bt,ρ,δ,c :=





(0, ct1−δ] if ρ < 0,

[|A(t)|c, |A(t)|−c] = {x : | log x| ≤ c| log |A(t)||} if ρ = 0,
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with δ, c > 0. Then Dt,ρ = {x : gt(x) ∈ Bt,ρ} for ρ < 0, while {x : gt(x) ∈ Bt,0} is a strict subset

of Dt,0.

Corollary 3.1. For all c, δ > 0,

sup
x∈Bt,ρ

xγ |∆t(x)| → 0

as t →∞.

Proof:

For ρ < 0, choose ε ≤ |ρ| in Lemma 3.1 to obtain

sup
x≤1

xγ |∆t(x)| ≤ sup
x≤1

xγ+ρe−ε| log x||∆t(x)| = O(A(t)) = o(1).

For all c, δ, t̃ε > 0, eventually ct1−δ is smaller than t/t̃ε. Hence, by Lemma 3.1,

sup
1≤x≤ct1−δ

xγ |∆t(x)| ≤ O(A(t)) · sup
1≤x≤ct1−δ

xε−ρ = O
(
A(t) · t(1−δ)(ε−ρ)

) → 0

if (1 − δ)(ε − ρ) < −ρ (which is satisfied for sufficient small ε > 0), since A(t) is ρ-varying and

hence A(t) = o(tη+ρ) for all η > 0.

In the case ρ = 0, one has eventually |A(t)|c > t̃ε/t, because |A| is slowly varying. Hence,

x > t̃ε/t for all x ∈ Bt,0 and for all ε ∈ (0, 1/c)

sup
x∈Bt,0

xγ |∆t(x)| ≤ O(A(t)) · sup
x∈Bt,0

eε| log x| = O
(
A(t)eεc| log |A(t)||) → 0.

2

If F is not eventually strictly increasing, then g←t (gt(x)) may be strictly smaller than x. In

this case, we need an upper bound on the difference.

Lemma 3.2. For all ε > 0

sup
x∈Dt,ρ

gγ+ρ
t (x) exp(−ε| log gt(x)|)|g←t (gt(x))− x| = o(A(t))

sup
x:gt(x)∈Bt,ρ

gγ
t (x)|g←t (gt(x))− x| → 0.

Proof:

De Haan and Stadtmüller (1996) proved that U(U←(y))− y = o
(
a(U←(y))A(U←(y))

)
as y →∞.

(Note that l. 2 on p. 391 of de Haan and Stadtmüller (1996) contains two errors; the correct formula

is limt→f(∞)[f(φ(t))− t]/a1(φ(t)) = 0.) Because of U←(a(t)x + b(t)) = t/gt(x), it follows that for

v := gt(x) one has

g←t (gt(x))− x =
U

(
U←(a(t)x + b(t))

)− (a(t)x + b(t))
a(t)

= o
(a(t/v)

a(t)
A(t/v)

)
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uniformly for v ∈ Bt,ρ. By the Potter bounds (see Bingham et al. (1987), Theorem 1.5.6)

A(t/v)
A(t)

≤ 2v−ρeε| log v|/2,
a(t/v)
a(t)

≤ 2v−γeε| log v|/2

for sufficiently large t, because t/v → ∞ uniformly for all x ∈ Dt,ρ. Now the first assertion is

obvious and the second assertion follows by the arguments given in the proof of Corollary 3.1. 2

Proof of Proposition 3.1. :

Let v = gt(x). Then, by Taylor’s formula,

v − g(g←t (v)) = g(g←(v))− g(g←t (v)) = −(
g′(g←(v))∆t(v) +

1
2
g′′(w)∆2

t (v)
)

for some w between g←(v) and g←t (v). Note that g′ = −g1+γ and hence −g′(g←(v)) = v1+γ . Since

g′′ = (1 + γ)g1+2γ is monotonic in its domain, g′′(w) is between g′′(g←(v)) = (1 + γ)v1+2γ and

g′′(g←t (v)) = (1 + γ)
(
1 + γ

(v−γ − 1
γ

+ ∆t(v)
))−(1+2γ)/γ

= (1 + γ)v1+2γ(1 + γvγ∆t(v))−(1/γ+2)

= v1+2γO(1)

as t →∞ uniformly for v ∈ Bt,ρ by Corollary 3.1. Hence, by Lemma 3.1 and Corollary 3.1

v − g(g←t (v))− v1+γ∆t(v) = O(v1+2γ∆2
t (v)) = v1−ρeε| log v|o(A(t))

uniformly for v ∈ Bt,ρ. In view of (2.5), this in turn implies

∣∣∣v − g(g←t (v))
A(t)

−v1+γKγ,ρ(1/v)
∣∣∣ ≤ v1+γ

∣∣∣∆t(v)
A(t)

−Kγ,ρ(1/v)
∣∣∣+v1−ρeε| log v|o(1) = v1−ρeε| log v|o(1).

(3.5)

Likewise, Taylor’s formula and Lemma 3.2 yield

|g(g←t (v))− g(x)| = |g′(w)|v−(γ+ρ)eε| log v|o(A(t))

for some w ∈ (g←t (v), x). As above, the monotonicity of g′ implies that |g′(w)| is between

|g′(g←t (v))| = ∣∣g(g←(v) + δt(v))
∣∣1+γ = v1+γ

∣∣1 + γvγ∆t(v)
∣∣−(1+1/γ) = v1+γO(1)

and

|g′(x)| =
∣∣g(g←(v) + ∆t(v) + g←t (v)− x)

∣∣1+γ

= v1+γ
∣∣1 + γvγ(∆t(v) + g←t (v)− x)

∣∣−(1+1/γ)

= v1+γO(1)
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by Corollary 3.1 and Lemma 3.2, and so

|g(g←t (v))− g(x)| = v1−ρeε| log v|o(A(t))

uniformly for v ∈ Bt,ρ. Combining this with (3.5), we obtain

wt(x)
∣∣∣gt(x)− g(x)

A(t)
− g1+γ

t (x)Kγ,ρ(1/gt(x))
∣∣∣ → 0 (3.6)

as t →∞, uniformly for v ∈ Bt,ρ.

Now, for ρ < 0 the assertion follows from Dt,ρ = {x : gt(x) ∈ Bt,ρ}.
In the case ρ = 0, it remains to prove that convergence (3.6) also holds uniformly for all x such

that gt(x) ≤ |A(t)|c, where we may assume c > 2/ε.

To this end, first note that for v = gt(x) and sufficiently large t

wt(x)|g1+γ
t (x)Kγ,0(1/gt(x))| ≤ v−1+εv1+γv−γ−ε/2 ≤ |A(t)|cε/2

which tends to 0 uniformly for v ≤ |A(t)|c. Likewise,

wt(x)
∣∣∣gt(x)
A(t)

∣∣∣ ≤ v−1+ε
∣∣∣ v

A(t)

∣∣∣ ≤ |A(t)|cε−1 → 0

uniformly for v ≤ |A(t)|c. Thus, it suffices to verify that wt(x)g(x) = o(A(t)) uniformly for

gt(x) ≤ |A(t)|c. For this purpose, we exploit the special choice of the normalizing functions a and

b given in Lemma 2.1 and treat the cases γ >, <,= 0 separately.

First we consider the case γ > 0. Then a(t)x + b(t) = (1 + γx)U(t) → ∞ uniformly for all x

satisfying gt(x) = tF̄ (a(t)x + b(t)) ≤ |A(t)|c → 0. Because F̄ is regularly varying with exponent

−1/γ, t ≥ 1/F̄ ((1 − ε)U(t)) ≥ 1/(2F̄ (U(t))) for sufficiently small ε > 0. By the Potter bounds it

follows that

gt(x) ≥ F̄
(
(1 + γx)U(t)

)

2F̄ (U(t))
≥ 1

4
(1 + γx)−1/(γ(1−ε/2)) =

1
4
g1/(1−ε/2)(x) (3.7)

and hence

wt(x)g(x) ≤ gε−1
t (x)(4gt(x))1−ε/2 ≤ 4|A(t)|cε/2 = o(A(t))

uniformly for gt(x) ≤ |A(t)|c, i.e. the assertion.

Likewise, in the case γ < 0, one can conclude the assertion from the inequality

gt(x) ≥ F̄
(
U(∞)− (1 + γx)(U(∞)− U(t))

)

2F̄
(
U(∞)− (U(∞)− U(t))

) ≥ 1
4
g1/(1−ε/2)(x). (3.8)
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Finally, consider the case γ = 0. Then

wt(x)g(x) ≤ e−εx ≤ exp
(− εg←t (|A(t)|c)) = gε

(
g←t (|A(t)|c))

for all gt(x) ≤ |A(t)|c. Apply (3.5) with v = |A(t)|c and ε = 1/2 to obtain

g(g←t (v))
A(t)

=
∣∣∣ v

A(t)
− vK0,0(1/v)

∣∣∣ + o(v1/2) = O
(|A(t)|c−1 + |A(t)|c/2

)
.

Thus

wt(x)g(x)
A(t)

≤ |A(t)|ε−1
∣∣∣g(g←t (|A(t)|c))

A(t)

∣∣∣
ε
= O

(|A(t)|ε(c−1)+ε−1 + |A(t)|ε−1+cε/2
) → 0,

and the proof is complete. 2

Proof of Proposition 3.2:

As in the proof of Proposition 3.1, let v := gt(x). We consider three cases.

Case (i): ρ < 0.

Inequality (3.5) and Corollary 3.1 imply

sup
x∈Dt,ρ

∣∣∣ g(x)
gt(x)

− 1
∣∣∣ ≤ sup

v∈Bt,ρ

A(t)
v

∣∣v1+γKγ,ρ(1/v) + v1−ρeε| log v|o(1)
∣∣ → 0. (3.9)

Hence, for γ + ρ 6= 0, by the definition of Kγ,ρ

sup
x∈Dt,ρ

wt(x)
∣∣∣g1+γ(x)Kγ,ρ(1/g(x))− g1+γ

t (x)Kγ,ρ(1/gt(x))
∣∣∣

= sup
x∈Dt,ρ

e−ε| log gt(x)| 1
|γ + ρ|

∣∣∣
( g(x)

gt(x)

)1−ρ
− 1

∣∣∣

→ 0.

(3.10)

If γ + ρ = 0, then the left-hand side of (3.10) equals

sup
x∈Dt,ρ

e−ε| log gt(x)|
∣∣∣
( g(x)

gt(x)

)1+γ
log

( g(x)
gt(x)

)
+

(( g(x)
gt(x)

)1+γ
− 1

)
log gt(x)

∣∣∣ → 0.

Now (3.1) is immediate from Proposition 3.1. By (3.9), w(x)/wt(x) tends to 1 uniformly for

x ∈ Dt,ρ. Moreover, g(x) ≤ ct1−δ implies gt(x) ≤ 2ct1−δ and so D̃t,ρ,δ,c ⊂ Dt,ρ,δ,2c for sufficient

large t. Thus (3.2) follows immediately from (3.1).

Case (ii): ρ = 0, γ 6= 0.

Define

D1
t,0 :=

{
x : |A(t)|c ≤ gt(x) ≤ |A(t)|−c

}
= {x : gt(x) ∈ Bt,0},

D2
t,0 :=

{
x : gt(x) ≤ |A(t)|c},
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so that Dt,0 = D1
t,0 ∪D2

t,0. As in case (i), (3.5) and Corollary 3.1 imply

sup
x∈D1

t,0

∣∣∣ g(x)
gt(x)

− 1
∣∣∣ ≤ sup

v∈Bt,0

A(t)
v

∣∣v1+γKγ,0(1/v) + veε| log v|o(1)
∣∣ → 0. (3.11)

Hence

sup
x∈D1

t,0

wt(x)
∣∣∣g1+γ(x)Kγ,0(1/g(x))− g1+γ

t (x)Kγ,0(1/gt(x))
∣∣∣

=
1
|γ| sup

x∈D1
t,0

e−ε| log gt(x)|
∣∣∣ g(x)
gt(x)

log
g(x)
gt(x)

+
g(x)
gt(x)

log gt(x)
∣∣∣

→ 0.

(3.12)

Note that

sup
x∈D2

t,0

wt(x)
∣∣g1+γ

t (x)Kγ,0(1/gt(x))
∣∣ = sup

x∈D2
t,0

1
|γ|e

−ε| log gt(x)|| log gt(x)| → 0. (3.13)

Moreover, by (3.7) and (3.8),

wt(x)|g1+γ(x)Kγ,0(1/g(x))| =
1
|γ|g

ε−1
t (x)g(x)| log g(x)|

= O
(
g(ε−1)/(1−ε/2)+1(x)| log g(x)|)

= O
(
gε/(2−ε)(x)| log g(x)|)

→ 0 (3.14)

uniformly for x ∈ D2
t,0, which proves (3.1) in this case.

Recall from (3.11) that gt/g → 1 uniformly for x ∈ D1
t,0 for all c > 0. In particular, one has

for sufficiently large t and x = g←(|A(t)|−c) that gt(x) ≤ 2|A(t)|−c ≤ |A(t)|−2c. Since g and gt are

decreasing functions, it follows that

D̃t,0 = D̃t,0,1,c = {x : g(x) ≤ |A(t)|−c} ⊂ {x : gt(x) ≤ |A(t)|−2c} = Dt,0,1,2c.

Hence (3.1) implies

sup
x∈D̃t,0

(gt(x))−1 exp(−η| log gt(x)|)
∣∣∣gt(x)− g(x)

A(t)
− g1+γ(x)Kγ,0(1/g(x))

∣∣∣ → 0

for all η > 0.

It remains to prove that, for sufficiently small η > 0, w/((gt(x))−1 exp(−η| log gt(x)|)) is uni-

formly bounded on D̃t,0. In view of (3.11), the boundedness holds uniformly on D1
t,0,1,2c. On

the other hand, similarly as in (3.7) and (3.8), the Potter bounds yield gt(x) ≤ 2g1−ε/2(x) for

sufficiently large t and all x ∈ D2
t,0. Therefore,

w(x)
(gt(x))−1 exp(−η| log gt(x)|) ≤ 2gε−1−(η−1)(1−ε/2)(x) → 0 (3.15)
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uniformly for x ∈ D2
t,0 if η < ε/2, and (3.2) is proved in case (ii).

Case (iii): γ = ρ = 0.

The convergences (3.11) and (3.12) can be established as in the case (ii). Moreover, because

g(x) ≤ g(g←t (|A(t)|c)) → 0 by (3.11), one has uniformly for x ∈ D2
t,0,

wt(x)|gt(x)K0,0(1/gt(x))| ≤ gε
t(x) log2 gt(x) → 0

wt(x)|g(x)K0,0(1/g(x))| ≤ gε(x) log2 g(x) → 0,

which proves (3.1). Assertion (3.3) follows by the very same arguments as in the case (ii). 2

The following approximations and bounds to gt are direct consequences of the above proposi-

tions.

Corollary 3.2. Suppose x0 > −1/(γ ∨ 0).

(i) If ρ < 0, then

sup
x0≤x<1/((−γ)∨0)

∣∣∣ g(x)
gt(x)

− 1
∣∣∣ → 0.

(ii) If ρ = 0 and γ 6= 0, then for all η > 0

sup
x0≤x<1/((−γ)∨0)

|gt(x)− g(x)|
g1−η(x)

→ 0

as t →∞ and thus

sup
x0≤x<1/((−γ)∨0)

gt(x)
g1−η(x)

is bounded.

(iii) If γ = ρ = 0, then for all η, c > 0

sup
x0≤x<−c log |A(t)|

|gt(x)− g(x)|
g1−η(x)

→ 0

as t →∞ and so

sup
x0≤x<−c log |A(t)|

gt(x)
g1−η(x)

is bounded.

Proof:

(i) By (3.9), one has for all δ ∈ (0, 1) and c > 0

[
x0,

1
(−γ) ∨ 0

)
⊂

{
x : g(x) ≤ c

2
t1−δ

}
⊂ {x : gt(x) ≤ ct1−δ} = Dt,ρ
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for sufficiently large t. Hence, again by (3.9),

sup
x0≤x<1/((−γ)∨0)

∣∣∣ g(x)
gt(x)

− 1
∣∣∣ → 0.

(ii) By a similar argument as in (i), one concludes [x0, 1/((−γ) ∨ 0)) ⊂ Dt,0. Hence Proposition

3.2 with ε = η implies

sup
x0≤x<1/((−γ)∨0)

1
A(t)

∣∣∣gt(x)− g(x)
g1−η(x)

−A(t)gγ+η(x)Kγ,0(1/g(x))
∣∣∣

= sup
x0≤x<1/((−γ)∨0)

gη−1(x)
∣∣∣gt(x)− g(x)

A(t)
− g1+γ(x)Kγ,0(1/g(x))

∣∣∣

→ 0.

Because A(t) → 0 and g(x) is bounded for x ≥ x0, the assertions are immediate from the definition

of Kγ,0.

(iii) The proof is similar to the one of (ii). Note that wt(x)/e(1−ε)x → 1 uniformly for x0 ≤ x <

−c log |A(t)| by (3.11). 2

4 Tail Approximation to the Empirical Distribution Function

For the proof of Theorem 2.1, we need an additional lemma.

Lemma 4.1. Let W denote a Brownian motion.

(i) If γ 6= 0 or ρ < 0, then

sup
x0≤x<1/((−γ)∨0)

g−1/2+ε(x)|W (gt(x))−W (g(x))| → 0 a.s.

as t →∞.

(ii) If ρ = γ = 0, then

sup
x0≤x

(
max(g(x), gt(x))

)−1/2+ε|W (gt(x))−W (g(x))| → 0 a.s.

as t →∞.

Proof:

(i) By Corollary 3.2 gt(x)−g(x) → 0 uniformly for x0 ≤ x < 1/((−γ)∨0). Using Levy’s modulus

of continuity of the Brownian motion (see Csörgő and Horváth (1993), Theorem A.1.2) one gets

for sufficiently large t

g−1/2+ε(x)|W (gt(x))−W (g(x))| ≤ 2g−1/2+ε(x)
∣∣(gt(x)− g(x)) log |gt(x)− g(x)|∣∣1/2

≤ 2
∣∣∣ gt(x)− g(x)
g(1−2ε)/(1−ε)(x)

∣∣∣
(1−ε)/2

→ 0 a.s.
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again by Corollary 3.2.

(ii) As in (i), one can conclude from Corollary 3.2 that

sup
x0≤x<−c log |A(t)|

g−1/2+ε(x)|W (gt(x))−W (g(x))| → 0 a.s.

Moreover, the law of the iterated logarithm yields

g−1/2+ε(x)|W (g(x))| = O
(
(log log(1/g(x)))1/2gε(x)

) → 0 a.s.

uniformly on {x : x > −c log |A(t)|} = {x : g(x) < |A(t)|c}. Since gt(x) → 0 uniformly on this set,

likewise one obtains

g
−1/2+ε
t (x)|W (gt(x))| → 0 a.s.,

and hence assertion (ii). 2

Proof of Theorem 2.1:

We focus on the case γ 6= 0 or ρ < 0, because the other case can be treated similarly. We have to

prove that the following expression tends to 0 uniformly for x0 ≤ x < 1/((−γ) ∨ 0):

I := g−1/2+ε(x)
∣∣∣∣
√

kn

[
n

kn
F̄n

(
a(

n

kn
)x + b(

n

kn
)
)
− g(x)

]

−Wn(g(x))−
√

knA
( n

kn

)
g1+γ(x)Kγ,ρ(1/g(x))

∣∣∣∣

≤ g−1/2+ε(x)

g
−1/2+ε/2
n/kn

(x)
g
−1/2+ε/2
n/kn

(x)
∣∣∣∣
√

kn

[ n

kn
F̄n

(
a(

n

kn
)x + b(

n

kn
)
)− gn/kn

(x)
]
−Wn(gn/kn

(x))
∣∣∣∣

+
g−1/2+ε(x)

w(x)
w(x)

√
knA

( n

kn

)∣∣∣∣
gn/kn

(x)− g(x)
A(n/kn)

− g1+γ(x)Kγ,ρ(1/g(x))
∣∣∣∣

+g−1/2+ε(x)|Wn(gn/kn
(x))−Wn(g(x))|

=: I1 + I2 + I3.

By (2.2) (with a and b instead of ã and b̃ such that zn(x) is replaced with gn/kn
(x)) and Corollary

3.2, one has supx0≤x<1/((−γ)∨0) I1
P−→ 0. From Proposition 3.2 and the fact that g−1/2+ε(x)/w(x) ≤

g1/2−ρ(x) is bounded uniformly for x0 ≤ x < 1/((−γ)∨0), it follows that supx0≤x<1/((−γ)∨0) I2 → 0.

Finally Lemma 4.1 shows that supx0≤x<1/((−γ)∨0) I3
P−→ 0. 2

Proof of Corollary 2.1:

Because of Theorem 2.1(ii) and max(1, xτ ) = o(e(1/2−ε)x) as x →∞ for all τ > 0 and ε ∈ (0, 1/2),

it suffices to prove that supx0≤x<∞ g
1/2−ε
n/kn

(x)max(1, xτ ) = O(1).
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According to Lemma 2.2 of Resnick (1987), there exists a function ā such that a(t)/ā(t) → 1

as t → ∞ and F t
(
ā(t)x + b(t)

) ≥ 1 − (1 + δ)3(1 + δx)−1/δ for all δ > 0, sufficiently large t and

x ≥ x0. Thus, by the mean value theorem, there exists θt,x ∈ (0, 1) such that

gt(x) = tF̄
(
ā(t)x + b(t)

) ≤ t
(
1−

(
1− (1 + δ)3(1 + δx)−1/δ

)1/t)

= (1 + δ)3(1 + δx)−1/δ
(
1− θt,x(1 + δ)3(1 + δx)−1/δ

)1/t−1

≤ 2(1 + δx)−1/δ

if x ≥ 0 and δ > 0 is sufficiently small. Since by the locally uniform convergence in (1.2)

supx0≤x<0 g
1/2−ε
n/kn

(x)max(1, xτ ) = O(1), it follows that

sup
x0≤x<∞

g
1/2−ε
n/kn

(x)max(1, xτ ) = O(1) + 2 sup
0≤x<∞

(
1 + δx

)−(1/2−ε)/δ
max(1, xτ ) = O(1)

if δ is chosen smaller than (1/2− ε)/τ . 2

5 Tail Empirical Process With Estimated Parameters: Proofs

In this section we prove the approximation to the tail empirical process with estimated parameters

stated in Proposition 2.1 and the limit theorem 2.2 for the test statistic Tn. In the sequel, we

will use the abbreviations a := a(n/k), â := â(n/k), b := b(n/k) and b̂ := b̂(n/k) wherever this is

convenient. Let

ga,b,γ(x) :=
(
1 + γ

x− b

a

)−1/γ
, g←a,b,γ(x) := a

x−γ − 1
γ

+ b (5.1)

and

yn(x) := ga,b,γ(g←
â,b̂,γ̂

(x)).

According to Theorem 2.1,

√
kn

[ n

kn
F̄n(g←a,b,γ(v))− v

]
≈ Wn(v) +

√
knA

( n

kn

)
v1+γKγ,ρ(1/v)

with respect to a suitable weighted supremum norm. In particular, for v = yn(x) the left-hand side

equals k
1/2
n

(
n/knF̄n(â(x−γ̂n−1)/γ̂n+b̂)−yn(x)

)
, that is the first term in (2.7) minus k

1/2
n (yn(x)−x).

It is easily seen that yn(x) converges x pointwise. Refined calculations show that k
1/2
n (yn(x) −

x) → L
(γ)
n (x). Hence Wn(yn(x)) + k

1/2
n A(n/kn)(yn(x))1+γKγ,ρ(1/yn(x)) can be approximated by

Wn(x) + k
1/2
n A(n/kn)x1+γKγ,ρ(1/x). So the main problem in the proof of Proposition 2.1 is to

show that these approximations hold uniformly in a suitable sense.
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We start with the uniform approximation of yn(x) which will serve as the basis for all the other

approximations. Define

An,kn :=
â(n/kn)
a(n/kn)

,

Bn,kn :=
b̂(n/kn)− b(n/kn)

a(n/kn)
so that

yn(x) =
(
1 + γ

(
Bn,kn + An,kn

x−γ̂n − 1
γ̂n

))−1/γ
.

Recall from (2.6) that

An,kn = 1 + k−1/2
n α(Wn) + oP (k−1/2

n ),

Bn,kn = k−1/2
n β(Wn) + oP (k−1/2

n ), (5.2)

γ̂n = γ + k−1/2
n Γ(Wn) + oP (k−1/2

n ).

Lemma 5.1. Suppose (5.2) holds. Let λn > 0 be such that λn → 0, and k
−1/2
n λγ

n → 0 if γ < 0, or

k
−1/2
n log2 λn → 0 if γ = 0.

(i) If γ > 0 then, for all ε > 0, x−1/2+ε
(√

kn(yn(x)−x)−L
(γ)
n (x)

) P−→ 0, and xε−1(yn(x)− x) P−→ 0

as n →∞ uniformly for x ∈ (0, 1].

(ii) If −1/2 < γ ≤ 0 then, for all ε > 0, x−1/2+ε
(√

kn(yn(x)−x)−L
(γ)
n (x)

) P−→ 0 and (yn(x)− x)/x
P−→

0 as n →∞ uniformly for x ∈ [λn, 1].

Proof: For γ 6= 0, define δn := 1 + γBn,kn − An,knγ/γ̂n, and ∆n := ∆n,x := δnγ̂n/(γAn,knx−γ̂n),

so that δn = OP (k−1/2
n ).

(i) By the mean value theorem there exist θn,x ∈ (0, 1) such that

yn(x) =
(
1 + γ

(
Bn,kn + An,kn

x−γ̂n − 1
γ̂n

))−1/γ

=
( γ

γ̂n
An,knx−γ̂n + δn

)−1/γ

=
( γ

γ̂n
An,knx−γ̂n

)−1/γ
(1 + ∆n)−1/γ (5.3)

=
( γ

γ̂n
An,knx−γ̂n

)−1/γ − 1
γ

( γ

γ̂n
An,knx−γ̂n(1 + θn,x∆n)

)−1/γ−1
δn

=
( γ

γ̂n
An,knx−γ̂n

)−1/γ − 1
γ

xγ̂n(1/γ+1)δn(1 + oP (1))

where the oP (1)-term tends to 0 uniformly for x ∈ (0, 1]. Hence again by the mean value theorem
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and (5.2), for some θn,x ∈ (0, 1),

yn(x)− x

=
(( γ

γ̂n
An,kn

)−1/γ − 1
)
xγ̂n/γ + (xγ̂n/γ − x)− 1

γ
xγ̂n(1/γ+1)δn(1 + op(1))

= −1
γ

(1 + op(1))
( γ

γ̂n
An,kn − 1

)
xγ̂n/γ + x1+θn,x(γ̂n/γ−1) log x

( γ̂n

γ
− 1

)− 1
γ

xγ̂n(1/γ+1)δn(1 + op(1))

=
1
γ

(1 + op(1))xγ̂n/γ
( γ̂n − γ

γ̂n
An,kn − (An,kn − 1)

)
+ x1+θn,x(γ̂n/γ−1) log x

γ̂n − γ

γ

−1
γ

xγ̂n(1/γ+1)
(
γBn,kn +

1
γ̂n

(γ̂n − γ)− γ

γ̂n
(An,kn − 1)

)
(1 + op(1)). (5.4)

Now the first assertion is a straightforward consequence of (5.2). For example,

x−1/2+ε
√

kn
1
γ

(1 + oP (1))xγ̂n/γ
( γ̂n − γ

γ̂n
An,kn − (An,kn − 1)

)

=
1
γ

x−1/2+ε exp
(
(γ̂n/γ − 1) log x

)
x
(√

kn
γ̂n − γ

γ̂n
An,kn −

√
kn(An,kn − 1)

)
(1 + oP (1))

=
1
γ

x−1/2+εx
(Γ(Wn)

γ
− α(Wn)

)
(1 + oP (1))

uniformly for x ∈ (0, 1].

Moreover, in view of (5.4),

xε−1(yn(x)− x) = −1
γ

(1 + op(1))
( γ

γ̂n
An,kn − 1

)
xγ̂n/γ−1+ε + xε+θn,x(γ̂n/γ−1) log x

( γ̂n

γ
− 1

)

−1
γ

xγ̂n−1+ε+γ̂n/γδn(1 + op(1))

P−→ 0

as n →∞ uniformly for x ∈ (0, 1].

(ii) First we consider the case γ = 0. Then

yn(x)− x

= exp
(
− (

Bn,kn + An,kn

x−γ̂n − 1
γ̂n

))− x

= x
(

exp
(
− (

Bn,kn + An,kn

(x−γ̂n − 1
γ̂n

+ log x
)− (An,kn − 1) log x

))− 1
)
.

(5.5)

An application of the mean value theorem to γ 7→ x−γ together with (5.2) yields

x−γ̂n − 1
γ̂n

= − log x +
1
2
γ̂n log2 x exp

(− θn,xγ̂n log x
)

(5.6)

for some θn,x ∈ (0, 1). It follows that

x−γ̂n − 1
γ̂n

+ log x
P−→ 0
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as n → ∞ uniformly for x ∈ [λn, 1], since then k
−1/2
n log2 x ≤ k

−1/2
n log2 λn → 0 and likewise

γ̂n log x
P−→ 0. Hence

Bn,kn + An,kn

(x−γ̂n − 1
γ̂n

+ log x
)− (An,kn − 1) log x

P−→ 0,

and by (5.5), (5.2) and (5.6)

x−1/2+ε
√

kn(yn(x)− x)

= −x−1/2+εx
(√

knBn,kn +
√

knAn,kn

(x−γ̂n − 1
γ̂n

+ log x
)−

√
kn(An,kn − 1) log x

)
(1 + oP (1))

= −x−1/2+εx
(
β(Wn) +

1
2
Γ(Wn) log2 x− α(Wn) log x

)
(1 + oP (1))

uniformly for x ∈ [λn, 1], that is, the first assertion.

Likewise one concludes from (5.5), (5.2) and (5.6) that (yn(x)− x)/x tends to 0 uniformly for

x ∈ [λn, 1].

Next assume −1/2 < γ < 0.

Because δn = OP (k−1/2
n ) and, by the definition of λn and (5.2),

k−1/2
n xγ̂n ≤ k−1/2

n λγ̂n
n = oP

(
exp

(
log λn(γ̂n − γ)

))
= oP (1),

∆n → 0 in probability uniformly for x ∈ [λn, 1]. Therefore, the first assertion can be established

as in the case γ > 0.

Furthermore, according to (5.4),
yn(x)− x

x
= −1

γ
(1 + op(1))

( γ

γ̂n
An,kn − 1

)
xγ̂n/γ−1 + xθn,x(γ̂n/γ−1) log x

( γ̂n

γ
− 1

)

−1
γ

xγ̂n+γ̂n/γ−1δn(1 + op(1))

= OP (k−1/2)x−ε

P−→ 0

as n →∞ uniformly for x ∈ [λn, 1] by the choice of λn, if 0 < ε < −γ. 2

Next we examine the expressions Wn(yn(x)) and (yn(x))1+γKγ,ρ(1/yn(x)).

Lemma 5.2. Under the conditions of Lemma 5.1 one has for all ε > 0:

(i) If γ > 0, then x−1/2+ε
(
Wn(yn(x))−Wn(x)

) P−→ 0 as n →∞ uniformly for x ∈ (0, 1].

(ii) If −1/2 < γ ≤ 0, then x−1/2+ε
(
Wn(yn(x))−Wn(x)

) P−→ 0 as n →∞ uniformly for x ∈ [λn, 1].
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Proof:

Similarly as in the proof of Lemma 4.1, the assertion follows from Lemma 5.1 using Levy’s modulus

of continuity of the Brownian motion:

x−1/2+ε|Wn(yn(x))−Wn(x)| = O
(
x−1/2+ε

∣∣(yn(x)− x) log |yn(x)− x|∣∣1/2
)

P−→ 0

uniformly over the ranges of x-values specified in the assertion. 2

Lemma 5.3. Under the conditions of Lemma 5.1 one has for all ε > 0:

(i) For γ > 0

x−1/2+ε
(
(yn(x))γ+1Kγ,ρ(1/yn(x))− xγ+1Kγ,ρ(1/x)

)
P−→ 0

as n →∞ uniformly for x ∈ (0, 1].

(ii) For −1/2 < γ ≤ 0

x−1/2+ε
(
(yn(x))γ+1Kγ,ρ(1/yn(x))− xγ+1Kγ,ρ(1/x)

)) P−→ 0

as n →∞ uniformly for x ∈ [λn, 1].

Proof:

(i) We only consider the case γ > 0 = ρ; the assertion can be proved similarly in the case

γ > 0 > ρ. Equation (5.3) implies

log
yn(x)

x
= O

(
log

( γ

γ̂n
An,kn

))
+ O

(( γ̂n

γ
− 1

)
log x

)
+ O(∆n,x) = OP

(
k−1/2

n (1 + | log x|))

uniformly for x ∈ (0, 1]. Hence, by the definition of Kγ,0 and Lemma 5.1(i),

x−1/2+ε
(
(yn(x))γ+1Kγ,0(1/yn(x))− xγ+1Kγ,0(1/x)

)

= x−1/2+ε
(
− yn(x) log(yn(x))

γ
+

x log x

γ

)

= −1
γ

(
x−1/2+εyn(x) log

yn(x)
x

+ x−1/2+ε(yn(x)− x) log x
)

= −1
γ

(
xε−1yn(x)x1/2OP

(
k−1/2

n (1 + | log x|)) + xε−1(yn(x)− x)x1/2 log x

)

P−→ 0

as n →∞ uniformly for x ∈ (0, 1].

(ii) In the case γ = 0 > ρ, according to the definition of K0,ρ, Lemma 5.1(ii) and the mean value
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theorem, there exists θn,x ∈ (0, 1) such that

x−1/2+ε
(
yn(x)K0,ρ(1/yn(x))− xK0,ρ(1/x)

)
= x−1/2+ε

((yn(x))1−ρ

ρ
− x1−ρ

ρ

)

=
1− ρ

ρ
x1/2+ε yn(x)− x

x

(
x + θn,x(yn(x)− x)

)−ρ

P−→ 0

as n →∞ uniformly for x ∈ [λn, 1].

Likewise, the assertion can be proved in the other cases . 2

Remark 5.1. The assertions of Lemma 5.1(ii) with weight function xε−1−γ instead of x−1/2+ε,

and of the Lemmas 5.2(ii) and 5.3(ii) also hold true for −1 < γ ≤ 0.

Lemma 5.4. Suppose pn → 0, npn → 0, and k
−1/2
n log2(npn) → 0 as n → ∞. Define g←a,b,γ as

in (5.1). Then, under the conditions of Proposition 2.1 for −1/2 < γ ≤ 0, P{g←
â,b̂,γ̂n

(npn/kn) ≤
Xn,n} → 0 as n →∞.

Proof: According to Theorem 1 of de Haan and Stadtmüller (1996), one has

a(tx)
xγa(t) − 1

A(t)
→ xρ − 1

ρ

as t → ∞. By similar arguments as used by Drees (1998) and Cheng and Jiang (2001) it follows

that, for all 0 < ε < 1/2, there exists tε > 0 such that for all t ≥ tε and x ≥ 1

∣∣∣∣
a(tx)
xγa(t) − 1

A(t)
− xρ − 1

ρ

∣∣∣∣ ≤ εxρ+ε.

Hence

a(n)
kγ

na(n/kn)
= 1 + A

( n

kn

)kρ
n − 1
ρ

+ o
(
A

( n

kn

)
kρ+ε

n

)
→ 1, (5.7)

because ρ ≤ 0 and
√

knA(n/kn) = O(1).

Now we distinguish two cases.

Case (i): −1/2 < γ < 0.

Then
g←
â,b̂,γ̂n

(npn/kn)−Xn,n

a(n/kn)
= −1

γ

( â

a
− 1

)
+

1
γ̂n

â

a

( kn

npn

)γ̂n

+
â

a

(1
γ
− 1

γ̂n

)

+
b̂− b

a
−

(b(n)− b(n/kn)
a(n/kn)

+
1
γ

)
− Xn,n − b(n)

a(n)
· a(n)
a(n/kn)

=: T1 + T2 + T3 + T4 − T5 − T6.
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Assumption (5.2) implies T1 + T3 + T4 = OP (k−1/2
n ) = op(k

γ
n) and

T2 = OP

(( kn

npn

)γ
exp

(
(γ̂n − γ) log

kn

npn

))
= OP

(( kn

npn

)γ
)

= oP (kγ
n),

because npn → 0 and k
−1/2
n log(npn) → 0.

Since, in view of (5.7) and the definition of b(n),

U(n)− b(n)
a(n/kn)

=
a(n)

a(n/kn)
· A(n)
γ + ρ

1{ρ < 0} = o(kγ
n),

approximation (2.5) yields

T5 =
kγ

n − 1
γ

+ o
(
kγ+ρ+ε

n A
( n

kn

))
+ o(kγ

n) +
1
γ

=
kγ

n

γ
+ o(kγ

n).

Finally, k−γ
n T6 converges to Gγ in distribution because of F ∈ D(Gγ) and (5.7).

Summing up, one obtains

g←
â,b̂,γ̂n

(npn/kn)−Xn,n

kγ
na(n/kn)

d−→ −
(
M +

1
γ

)

for a Gγ-distributed r.v. M . Now the assertion follows from the fact that −(M + 1/γ) > 0 a.s.

Case (ii): γ = 0.

By similar arguments as in the first case one obtains

g←
â,b̂,γ̂n

(npn/kn)−Xn,n

a(n/kn)
=

((
kn
npn

)γ̂n − 1

γ̂n
− log

kn

npn

)
â

a
+

( â

a
− 1

)
log kn +

â

a
log

1
npn

+
b̂− b

a
−

(b(n)− b(n/kn)
a(n/kn)

− log kn

)
− Xn,n − b(n)

a(n)
· a(n)
a(n/kn)

= oP (1) + oP (1) + log
1

npn
(1 + oP (1)) + OP (k−1/2

n ) + o(1) + OP (1)

= log
1

npn
(1 + oP (1))

P−→ ∞

from which the assertion is obvious. 2

Proof of Proposition 2.1:
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We must prove that the following expression tends to 0 uniformly for x ∈ (0, 1]:

I := x−1/2+ε

(√
kn

[ n

kn
F̄n

(
g←
â,b̂,γ̂n

(x)
)− x

]
−Wn(x)− L(γ)

n (x)−
√

knA
( n

kn

)
xγ+1Kγ,ρ(1/x)

)

=
x−1/2+ε

(yn(x))−1/2+ε/2
(yn(x))−1/2+ε/2

(√
kn

[ n

kn
F̄n

(
g←a,b,γ(yn(x))

)− yn(x)
]

−Wn(yn(x))−
√

knA
( n

kn

)
(yn(x))γ+1Kγ,ρ

( 1
yn(x)

))

+x−1/2+ε
(√

kn(yn(x)− x)− L(γ)
n (x)

)

+x−1/2+ε
(
Wn(yn(x))−Wn(x)

)

+x−1/2+ε
(√

knA
( n

kn

)
(yn(x))γ+1Kγ,ρ

( 1
yn(x)

)−
√

knA
( n

kn

)
xγ+1Kγ,ρ

(1
x

))

:= I1 + I2 + I3 + I4

Now we distinguish three cases.

Case (i): γ > 0.

By Lemma 5.1(i), supx∈(0,1] x
−1/2+ε/(yn(x))−1/2+ε/2 is stochastically bounded. Combining this

with Theorem 2.1, we obtain supx∈(0,1] |I1| → 0 in probability as n → ∞. An application of

Lemma 5.1(i), Lemma 5.2(i), and Lemma 5.3(i) gives

sup
x∈(0,1]

|I2| d−→ 0, sup
x∈(0,1]

|I3| P−→ 0, sup
x∈(0,1]

|I4| P−→ 0,

respectively. Hence supx∈(0,1] |I| → 0 in probability as n →∞.

Case (ii) −1/2 < γ < 0, or γ = 0 and ρ < 0.

Let λn := 1/(kn log kn). Obviously λn → 0, k
−1/2
n λγ

n → 0 and k
−1/2
n log2 λn → 0 as n → ∞,

and hence the Lemmas 5.1, 5.2 and 5.3 apply. Like in case (i), we obtain supx∈(λn,1] |I| → 0 in

probability as n →∞.

It remains to prove that supx∈(0,λn] |I| → 0 in probability. To this end, let pn := 1/(n log kn),

and so npn → 0 and k
−1/2
n log2(npn) → 0 as n →∞. Thus, for x ∈ (0, λn],

g←
â,b̂,γ̂n

(x) ≥ g←
â,b̂,γ̂n

(λn) = g←
â,b̂,γ̂n

(npn/kn).

It follows from Lemma 5.4 that

P
{

sup
x∈(0,λn]

x−1/2+ε n√
kn

F̄n

(
g←
â,b̂,γ̂n

(x)
) 6= 0

}
= P

{
g←
â,b̂,γ̂n

(npn/kn) < Xn,n

} → 0 (5.8)

as n →∞.
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Furthermore, it is easy to check that

x−1/2+ε
√

knx → 0, x−1/2+εWn(x) P−→ 0,

x−1/2+εL(γ)
n (x) P−→ 0, x−1/2+ε

√
knAxγ+1Kγ,ρ

(1
x

) → 0
(5.9)

uniformly for x ∈ (0, λn] as n → ∞. For example, the second convergence is an immediate

consequence of the law of the iterated logarithm, and in the case −1/2 < γ < 0

sup
x∈(0,λn]

x−1/2+ε|L(γ)
n (x)| ≤ sup

x∈(0,λn]

1
|γ|x

1/2+ε
∣∣∣1
γ

Γ(Wn)− α(Wn)
∣∣∣ + sup

x∈(0,λn]

1
|γ| |Γ(Wn)|x1/2+ε log x

+ sup
x∈(0,λn]

1
|γ|x

1/2+γ+ε
∣∣∣γβ(Wn) +

1
γ

Γ(Wn)− α(Wn)
∣∣∣

P−→ 0.

In view of (5.8) and (5.9), the assertion supx∈(0,λn] |I| → 0 in probability is immediate.

Case (iii): γ = ρ = 0.

According to Lemma 5.1, yn(x)/x → 1 in probability uniformly for x ∈ [λn, 1] with λn :=

1/(kn log kn), and hence

(1 + | log x|)τ

(1 + | log yn(x)|)τ
=

( 1 + | log x|
1 + | log x|+ oP (1)

)τ
= OP (1)

uniformly for x ∈ [λn, 1]. Therefore, one can argue as in case (ii) (using Corollary 2.1 instead of

Theorem 2.1) to establish the assertion. 2

Proof of Theorem 2.2:

By Proposition 2.1 one has
(√

kn

[ n

kn
F̄n

(
â
( n

kn
)
x−γ̂n − 1

γ̂n
+ b̂

( n

kn

))− x
])2

=
(

Wn(x) + L(γ)
n (x) +

√
knA

( n

kn

)
xγ+1Kγ,ρ(1/x) +

op(1)
h(x)

)2
(5.10)

Using the law of iterated logarithm, it is readily checked that∫ 1

0

(
Wn(x) + L(γ)

n

)2
xη−2 dx = OP (1)

∫ 1

0

(
xγ+1Kγ,ρ(1/x)

)2
xη−2 dx < ∞

∫ 1

0

xη−2

h2(x)
dx < ∞

for η > 0, and η ≥ 1 if γ = ρ = 0, provided ε or τ are chosen appropriately. Hence the assertion is

an immediate consequence of (5.10) and
√

knA(n/kn) → 0. 2

32



γ = 2 1.5 1 0.5 0.25 0 −0.25 −0.375 −0.45 −0.49 −0.499

p

0.995 0.545 0.513 0.507 0.525 0.553 0.621 0.672 0.739 0,739 0,889 0,909

0.99 0.477 0.462 0.459 0.474 0.494 0.554 0.604 0.667 0.726 0.774 0.795

0.975 0.408 0.389 0.383 0.390 0.409 0.459 0.510 0.558 0.590 0.641 0.657

0.95 0.349 0.337 0.330 0.337 0.355 0.390 0.431 0.468 0.500 0.539 0.552

0.9 0.289 0.281 0.278 0.285 0.295 0.318 0.355 0.381 0.405 0.435 0.444

0.5 0.151 0.148 0.147 0.149 0.154 0.162 0.178 0.189 0.199 0.207 0.211

0.1 0.083 0.082 0.081 0.082 0.085 0.089 0.095 0.099 0.103 0.105 0.106

0.05 0.071 0.070 0.070 0.071 0.073 0.078 0.080 0.083 0.087 0.089 0.090

0.025 0.062 0.062 0.062 0.063 0.064 0.068 0.071 0.073 0.076 0.077 0.078

0.01 0.053 0.054 0.054 0.055 0.056 0.059 0.060 0.062 0.066 0.066 0.067

0.005 0.048 0.049 0.049 0.050 0.051 0.052 0.054 0.055 0.059 0.058 0.059

Table 1: Quantiles Qp,γ of the limit distribution of knTn.

6 Simulations

First we want to calculate the limiting distribution of the test statistic knTn defined by (1.4), where

we use the maximum likelihood estimator γ̂n, â(n/kn) and b̂(n/kn) described in Example 2.1. Here

we have chosen η = 1, thus giving maximal weight to deviations in the extreme tail region that is

possible in the framework of Theorem 2.2 for all values of γ > −1/2.

To simulate
∫ 1
0 (Wn(x) + L

(γ)
n (x))2x−1 dx, the Brownian motion Wn on the unit interval is

simulated on a grid with 50 000 points. Then the integral is approximated by a Riemann sum for

the extreme value indices γ = 2, 1.5, 1, 0.5, 0.25, 0,−0.25,−0.375,−0.45,−0.49 and −0.499. Note

that for γ ≤ −1/2 the term L
(γ)
n is not defined since the integral Sn =

∫ 1
0 tγ−1Wn(t) dt defined in

Example 2.1 does not exist. The empirical quantiles of the integral statistic obtained in 20 000

runs are reported in Table 1. It is not surprising that the extreme upper quantiles increase rapidly

as γ < 0 decreases, since |Sn| → ∞ in probability as γ ↓ −1/2, and thus the limit distribution of

knTn converges weakly to ∞, too.

Next we investigate the finite sample behavior of the test described in Section 2, that rejects

the hypothesis that F ∈ D(Gγ) for some γ > −1/2 if knTn exceeds Q̂1−ᾱ,γ̃n . Here we use the

maximum likelihood estimator for γ also as the pilot estimator, that is, γ̃n = γ̂n. Since we
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have approximately determined the quantiles Qp,γ only for 11 different values of γ, we use linear

interpolation to approximate the quantiles for intermediate values of γ, that is, for γ̃n ∈ [γ1, γ2] we

define

Q̂p,γ̃n = Qp,γ1 +
γ̃n − γ1

γ2 − γ1
(Qp,γ2 −Qp,γ1)

where Qp,γi denote the quantiles given in Table 1. Moreover, we define Q̂p,γ̃n := Qp,2 if γ̃n > 2.

(If one wants to perform the test for a single data set then it seems more natural to simulate the

quantile Qp,γ̃n directly, but for our simulation study this approach is much too computer intensive.

However, a comparison of directly simulated quantiles with the approximations obtained by the

above linear interpolation for γ = 1.75, 1.25, 0.75,−0.1,−0.2,−0.3,−0.35 and −0.45 showed a

sufficient accuracy of the linear approximation.)

As usually in extreme value theory, the choice of the number kn of order statistics used for the

inference is a crucial point. Here we consider kn = 20, 40, . . . , 100 for sample size n = 200, and

kn = 50, 100, . . . , 400 for sample size n = 1000.

We have drawn 10 000 samples from each of the following distribution functions belonging to

the domain of attraction of Gγ for some γ > −1/2:

• Cauchy distribution (γ = 1, ρ = −2):

F (x) =
1
2

+
1
π

arctanx, x ∈ R.

• Log-gamma distribution LG(γ, m) (ρ = 0) with density

f(x) =
1

γmΓ(m)
logm−1(x)x−(1/γ+1)1[1,∞)(x),

for γ = 0.5, and m = 2 and m = 10.

• Burr(β, τ, λ) distribution (γ = 1/(τλ), ρ = −1/λ):

F (x) = 1−
(

β

β + xτ

)λ

, x > 0,

with (β, τ, λ) = (1, 2, 2).

• Extreme Value distribution EV (γ) (γ ∈ R, ρ = −1):

F (x) = exp
(− (1 + γx)−1/γ

)
, 1 + γx > 0,

with γ = 0.25 and γ = 0.
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• Weibull(λ, τ) distribution (γ = 0, ρ = 0):

F (x) = 1− exp(−λxτ ), x > 0,

with (λ, τ) = (1, 0.5).

• Standard normal distribution (γ = 0, ρ = 0).

• Reversed Burr(β, τ, λ) distribution (γ = −1/(τλ), ρ = −1/λ):

F (x) = 1−
(

β

β + (x+ − x)−τ

)λ

, x < x+,

with (β, τ, λ) = (1, 4, 1) and x+ = 1.

We used the software package XTREMES with its implemented routine for calculating the

maximum likelihood estimates. In some simulations either the algorithm could not find any solution

to the likelihood equations, or the maximum likelihood estimate of γ is less than −0.499, so that

the test cannot be applied. The relative frequency of simulations in which this happened are

given in the Tables 2–5; for all other values of kn not mentioned in these tables, the test could be

performed in all simulations.

For the reversed Burr distribution, one gets estimates of γ less than −0.499 in at least 1%

of the simulations for all values of kn and in about one third of all simulations if n = 200, and

for the normal distribution in more than 7% of the simulations for n = 200, while for all other

distributions this happened only if a small proportion of the data is used for the inference. It is

obvious that the problem of pilot estimates of γ being smaller than −1/2 becomes more and more

acute as the true extreme value index approaches −1/2; this is particularly true for small sample

sizes.

In the Tables 6 and 7 the empirical size of the test with nominal size ᾱ = 0.05 is reported,

that is, the relative frequency of simulations in which the hypothesis is rejected. These frequencies

are based only on those simulations in which the test could actually be applied. The numbers are

given in bold face for those kn for which the empirical mean squared error of γ̂n is minimal. Note

that for these ‘optimal’ sample fractions the bias and the variance of γ̂n are balanced. For smaller

kn, (usually) the bias is dominated by the variance, which indicates that the deviation of the true

distribution of the excesses from the ideal generalized Pareto distribution is small. As we have

expected (cf. the discussion after Remark 2.4), the empirical size of the test is close to or smaller

than its nominal size for this range of k, while for most distributions the actual size increases
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Cauchy LG(0.5,2) LG(0.5,10) Burr(1,2,2) EV(0.25) EV(0) Weib.(1,0.5) normal RBurr(1,4,1)

kn γ = 1, γ = 0.5, γ = 0.5, γ = 0.25, γ = 0.25, γ = 0, γ = 0, γ = 0, γ = −0.25

ρ = −2 ρ = 0 ρ = 0 ρ = −0.5 ρ = −1 ρ = −1 ρ = 0 ρ = 0 ρ = −1

20 0.2 0.7 0.2 2.6 2.1 5.8 1.7 10.8 17.3

40 0.1 0.8 2.0

60 0.1 0.2 0.7

80 0.1 0.7

100 0.2 1.4

Table 2: Percentage of simulations in which no maximum likelihood estimate was found for sample

size n = 200; empty entries correspond to 0

kn Cauchy LG(0.5,2) LG(0.5,10) Burr(1,2,2) EV(0.25) EV(0) Weib.(1,0.5) normal RBurr(1,4,1)

20 0.4 1.4 0.6 5.8 4.9 12.6 4.2 21.4 30.7

40 0.6 0.5 3.6 0.1 14.0 30.5

60 0.1 0.1 0.9 8.8 28.6

80 0.3 7.1 33.7

100 0.1 7.6 46.0

Table 3: Percentage of simulations in which γ̂n < −0.499 for sample size n = 200; empty entries

correspond to 0

kn Cauchy LG(0.5,2) LG(0.5,10) Burr(1,2,2) EV(0.25) EV(0) Weib.(1,0.5) normal RBurr(1,4,1)

50 0.2 0.6

100 0.1

Table 4: Percentage of simulations in which no maximum likelihood estimate was found for sample

size n = 1000; empty entries correspond to 0

kn Cauchy LG(0.5,2) LG(0.5,10) Burr(1,2,2) EV(0.25) EV(0) Weib.(1,0.5) normal

50 0.2 0.1 1.2 0.1 4.9

100 0.5

kn 50 100 150 200 250 300 350 400

RBurr(1,4,1) 14.5 4.3 2.0 1.1 0.9 0.9 1.1 2.0

Table 5: Percentage of simulations in which γ̂n < −0.499 for sample size n = 1000; empty entries

correspond to 0
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kn Cauchy LG(0.5,2) LG(0.5,10) Burr(1,2,2) EV(0.25) EV(0) Weib.(1,0.5) normal RBurr(1,4,1)

20 4.7 4.1 4.1 3.7 3.5 3.0 3.5 2.5 1.9

40 5.3 4.8 4.9 4.2 4.0 3.6 5.3 3.0 2.7

60 6.4 5.1 5.2 4.5 4.5 3.7 6.7 3.8 3.1

80 10.9 5.4 5.2 5.3 4.8 4.1 9.4 5.2 5.6

100 24.7 5.3 5.5 7.4 5.5 5.4 14.4 87 12.9

Table 6: Empirical size in % of the test with nominal size ᾱ = 5% for sample size n = 200.

kn Cauchy LG(0.5,2) LG(0.5,10) Burr(1,2,2) EV(0.25) EV(0) Weib.(1,0.5) normal RBurr(1,4,1)

50 4.9 4.3 4.7 4.4 4.3 3.7 4.6 3.5 3.0

100 5.3 4.8 5.1 4.8 4.4 4.3 5.3 4.4 3.5

150 5.5 4.6 5.2 5.0 4.7 4.5 6.8 4.9 3.9

200 5.9 4.6 5.5 5.6 4.4 4.5 9.1 6.7 5.3

250 7.6 4.8 6.2 6.5 5.0 5.2 12.4 9.8 8.5

300 11.5 4.9 6.7 7.5 5.3 5.9 17.4 14.0 14.7

350 19.4 4.7 7.5 9.7 6.2 7.5 24.3 21.3 24.9

400 34.4 5.1 8.6 12.7 7.1 10.0 34.4 30.7 40.6

Table 7: Empirical size in % of the test with nominal size ᾱ = 5% for sample size n = 1000.

rapidly if a larger number of order statistics is used, thus indicating the growing deviation from

the generalized Pareto model.

Note that the test behaves differently for the log-gamma distributions. The LG(0.5, 2) is

somewhat special: here first the bias of γ̂n increases as kn increases but for kn ≥ 350 (and n = 1000)

it decreases again until it almost vanishes for kn = 875, where the mean squared error is minimized.

Of course, such an ‘irregular’ behavior cannot be taken into account by the asymptotic extreme

value analysis which always assumes that kn/n tends to 0 and thus cannot deal with k-values close

to n.

For LG(0.5, 10), the empirical size of the test exceeds the nominal size if k is larger than

the ‘optimal’ value, but it grows very slowly. Such a behavior can be observed for some d.f.’s

satisfying the second order condition (2.4) with ρ = 0 (or ρ close to 0). Note that in this case the

function A(t), that (for t = n/kn) describes the rate of convergence of the first order term of the

deviation from the generalized Pareto model, is slowly varying and hence it decreases very slowly

as t increases. Therefore, an increase of kn leads to just a small increase of the model deviation
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Figure 1: Empirical size of the test with nominal size ᾱ = 0.05 as a function of kn for Cauchy

samples of size n = 1000.

which is difficult to detect by the test. Such d.f.’s are infamous for causing problems to data-driven

choices of k (see e.g. Drees and Kaufmann (1998)).

In view of these results, we may conclude that, for most d.f.’s, the test indeed indicates the

range of k-values for which extreme value estimators are only moderately biased. Unfortunately,

for very small k the test seems too conservative, in particular for the normal and the reversed Burr

distribution and, to a lesser extent, also for the Gumbel distribution EV(0).

This conclusion is also supported by Figure 1 that displays the empirical size of the test versus

k for the Cauchy distribution and k = 10, 15, 20, . . . , 400. In addition, the ratio of the absolute

bias to the root mean squared error of γ̂n is plotted by the dotted line. When the bias contributes

less than (about) 30% to the root mean squared error, then the test rejects the hypothesis with

probability 0.05 or less. As the influence of the bias on the total error increases, the probability of

a rejection rises above the 5%-line and increases more and more rapidly as k increases.

At first glance, it might be surprising that, unlike estimators of γ, the test behaves almost

equally well for small and large values of |ρ|. However, recall that for the actual size to be close

to the nominal value it is not important how accurate the estimators are but only how precise the

Gaussian approximation for the tail empirical distribution function with estimated parameters is.

While the rate of convergence of estimators of the extreme value index deteriorates as ρ tends to

0, this is not necessarily true for the accuracy of the normal approximation.
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Figure 2: Test statistic kTn (solid line) and estimated critical values of the test with nominal size

0.05 (dashed line) versus k.

7 Application: Sea Level Data

De Haan (1990) analyzed high tide water levels recorded at five different stations along the Dutch

coastline. Here we examine the levels observed at Delfzijl between 1881 and 1988. After some

preprocessing (cf. de Haan (1990)), one arrives at 1873 observations that may be regarded as

approximately independent. In Figure 2, the test statistic kTn is plotted versus k together with

the (estimated) critical value of the test with nominal size 0.05. It turns out that the null hypothesis

is clearly accepted for 29 ≤ k ≤ 1465. (For most k ≤ 28 the maximum likelihood estimator does

not exist or γ̂n < −0.499; the sawtooth shape of the curve is due to a rounding of the water level

given in centimeter to the next integer.)

A comparison with Figure 3 that displays a plot of γ̂n versus k reveals that the test statistic

starts to increase at the same point where the curve of γ̂n shows a clear downward trend, indicating

a growing negative bias of the estimator. This effect is in line with the findings of our simulation

study and the discussion after Remark 2.4.

Indeed, a qq-plot of the k upper order statistics Xn−i+1,n, 1 ≤ i ≤ k, versus the quantiles

Xn−k+1:n + â(n/k)((i/k)−γ̂n − 1)/γ̂n of the fitted generalized Pareto distribution shows a very

good fit for k = 1200 (Figure 4, left graph), while for k = 1600 the plot clearly deviates from the

diagonal (and, in fact, from any straight line), i.e. the largest 1600 observations cannot be fitted

well by a generalized Pareto distribution (Figure 4, right graph).
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Figure 3: Maximum likelihood estimator γ̂n versus k.
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Figure 4: QQ-plot of the k upper order statistics versus the fitted generalized Pareto quantiles for

k = 1200 (left) and k = 1600 (right).
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