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1 Introduction

A quaternionic structure on a vector space V 4n is a 3-dimensional linear
Lie algebra q ⊂ End(V ) with a basis J1, J2, J3 satisfying the quaternionic
relations

J2
α = −1 , JαJβ = −JβJα = Jγ .

Here (α, β, γ) is a cyclic permutation of (1, 2, 3). The basis (Jα)α is called
a standard basis of q. A quaternionic Kähler manifold is a Riemannian
manifold (M4n, g) together with a field of quaternionic structures q : x 7→
qx ⊂ so(TxM) such that:

1) q is parallel with respect to the Levi-Civita connection.

2) The curvature tensor Rx, x ∈M , of the metric g is invariant under the
natural action of qx.

It is known that 1) implies 2) if n > 1 and that any quaternionic Kähler
manifold is Einstein.

The main result of the paper is the following theorem.
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Theorem 1.1 Let M be a quaternionic Kähler manifold admitting a tran-
sitive unimodular group G of isometries. Then either M is flat and hence is
the Riemannian product of a torus and an Euclidean space or it is a quater-
nionic Kähler symmetric space G/H, where G is a simple Lie group and H
is the normalizer of a regular 3-dimensional subgroup Gα associated with a
long root α.

The proof of the theorem reduces to the case of negative scalar curvature
s < 0 and semisimple Lie group G . Indeed, if s > 0 the manifold M is
compact and in this case the theorem was proved in [A]. In the case s = 0,
the Ricci curvature Ric = 0 and the result follows from the fact that any
Ricci-flat homogeneous Riemannian manifold is flat [A-K]. Hence, we may
assume that s < 0 and hence Ric < 0.

The following result of I. Dotti Miatello shows that the groupG is semisim-
ple.

Theorem 1.2 [Do] Let M be a Riemannian manifold admitting a transitive
unimodular group G of isometries. If Ric < 0 then the group G is semisimple.

To prove the main theorem we need some basic facts concerning homo-
geneous quaternionic Kähler manifolds.

2 Basic facts about homogeneous quaternionic

Kähler manifolds

2.1. Let M be a quaternionic Kähler manifold which admits a transitive
group G of isometries. Then we identify M = G/H, where H is the stabilizer
of a point. We will say that M = G/H is a homogeneous quaternionic Kähler
manifold. Let g = h ⊕ m be a reductive decomposition, where g = LieG,
h = LieH, [h,m] ⊂ m. We identify m ∼= THM and denote by < ·, · > the
AdH-invariant scalar product on m induced by the Riemannian metric on
M . For any a ∈ g we define a skew-symmetric endomorphism La (Nomizu
operator) on m by the formula

2 < Lax, y >=< π[a, x], y > − < x, π[a, y] > − < πa, π[x, y] > ,

x, y ∈ m, where π : g→ m is the natural projection.
Remark that for a ∈ h the Nomizu operator La = ada|m is exactly the

isotropy operator. The following proposition is known.

Proposition 2.1 [A] A homogeneous Riemannian manifold M4n = G/H
(n > 1) is quaternionic Kähler iff the Nomizu operators belong to the nor-
malizer n(q) ∼= sp(1) ⊕ sp(n) in so(m) of some quaternionic structure q =
span{J1, J2, J3} on m.
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2.2. Structure equations. Let M = G/H be a homogeneous quater-
nionic Kähler manifold. We will always assume that the group G is connected
and semisimple. Then the Cartan-Killing form B of g is non degenerate on
g and h and we fix the reductive decomposition g = h ⊕ m, where m is the
B-orthogonal complement to h in g. Let Jα, α = 1, 2, 3, be a standard basis
of the corresponding quaternionic structure on m. Then for any a ∈ g we
can write

La =
3∑

α=1

ωα(a)Jα + L̄a ,

where L̄a belongs to the centralizer z(q) ∼= sp(n) of q in so(m) and the 1-forms
ωα satisfy the following structure equations

νπ∗ρα = dωα + 2ωβ ∧ ωγ . (1)

Here ρα = < ·, Jα· > is the Hermitian form associated with the complex
structure Jα; (α, β, γ) is a cyclic permutation of (1, 2, 3) and ν = s/4n(n+ 2)
is the reduced scalar curvature, see [A].

We denote by Ω the Kraines 4-form on m, given by

Ω =
3∑

α=1

ρα ∧ ρα .

It is Lg-invariant and defines a parallel 4-form on M (the Kraines form of
M). The 4-form π∗Ω on g is exact:

π∗Ω = dψ,

ψ =
3∑

α=1

ωα ∧ dωα + 4ω1 ∧ ω2 ∧ ω3 .

Denote by h̄ the kernel of the homomorphism

φ : h→ q, h 7→ Lh − L̄h =
3∑

α=1

ωα(h)Jα

and by a the orthogonal complement of h̄ in h with respect to the Cartan-
Killing form B. Since φ : a ↪→ q ∼= sp(1) is an embedding, d = dim a = 0, 1
or 3. We will say that the homogeneous quaternionic Kähler manifold M =
G/H is of type 1, 2 or 3, if d = 0, 1 or 3 respectively. Passing to the universal
covering, if needed, we may assume that M is simply connected and hence
that H is connected.
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3 Proof of the theorem for manifolds of type

1 and 2

3.1. Type 1 We assume now that a = 0. Then ωα(h) = 0, α = 1, 2, 3,
and the structure equations show that the 1-forms ωα are invariant under
the isotropy representation of the Lie algebra h and hence of the Lie group
H, since H is connected. This implies that ψ defines some invariant form
on M whose differential is the Kraines form Ω on M . In particular, the
volume form Ωn is the differential of some invariant form. This contradicts
the following result of Koszul [Ko], [Ha].

Theorem 3.1 Let M = G/H be an orientable Riemannian homogeneous
space of a connected unimodular Lie group G. Then the Riemannian volume
form is not cohomological to zero in the complex of invariant differential
forms.

3.2. Totally geodesic Kähler and quaternionic Kähler submani-
folds

Definition 3.1 Let (M, g, q) be a quaternionic Kähler manifold.

1) A submanifold N of M is called a Kähler submanifold if there ex-
ists a section J of the quaternionic structure q along N such that
(N, g|N, J) is a Kähler manifold, i.e. J is a parallel complex struc-
ture on N .

2) A submanifold N of M is called a quaternionic Kähler submanifold
if qxTxN ⊂ TxN for any x ∈ N .

Recall that any quaternionic Kähler submanifold N of a quaternionic
Kähler manifold (M, g, q) is totally geodesic with the same reduced scalar
curvature, in particular, (N, g|N, q|N) is a quaternionic Kähler manifold.

Let M = G/H be a homogeneous quaternionic Kähler manifold and

g = h + m = a + h̄ + m

be the corresponding reductive decomposition as before. Denote by Z0
G(b)

the connected component of the centralizer of an element b ∈ h in G.

Proposition 3.2 Let M = G/H be a homogeneous quaternionic Kähler
manifold of type k.

1) For any b ∈ h̄ ⊂ h = a + h̄ the orbit N = Z0
G(b)o of the point o = eH

is a quaternionic Kähler submanifold of the same type k or a point.
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2) For any a ∈ a− {0} the orbit N = Z0
G(a)o is a totally geodesic Kähler

submanifold or a point.

3) Assume k = 2. Then for any b ∈ h\ h̄ the orbit N = Z0
G(b)o is a totally

geodesic Kähler submanifold or a point.

Proof. It is known (see e.g. [A], Assertion 4) that the orbit N = Z0
G(b)o

of the centralizer of any element b ∈ h in a homogeneous Riemannian man-
ifold M = G/H is totally geodesic. In the case 1), the reductive decom-
position of the Lie algebra g0 = zg(b) corresponding to N can be written
as

g0 = a + zh̄(b) + n , n = zm(b).

Since Lb ∈ z(q) ∼= sp(n), the subspace n is quaternionic, i.e. qn ⊂ n. Now it
is immediate to check that N is a homogeneous quaternionic Kähler manifold
of type k, using the trivial fact that the image of b ∈ h∩g0 under the isotropy
representation on n ∼= ToN equals adb|n = Lb|n =

∑3
α=1 ωα(b)Jα|n + L̄b|n.

In the case 3), the reductive decomposition of g0 reads:

g0 = Ra+ zh̄(b̄) + n , n = zm(b),

where b = a ⊕ b̄ ∈ a ⊕ h̄. Without restriction of generality we can choose a
standard base (Jα)α of q such that Lb = J1 +L̄b, L̄b ∈ z(q). Since [Lb, J1] = 0,
n is a J1-invariant subspace of m. The structure equations (1) show that
ω2|n = ω3|n = 0, e.g.

0 = ω2([b, x]) = 0 + 2(0− ω3(x) · 1) = −2ω3(x), x ∈ n.

This shows that [Lx, J1] = 0 for all x ∈ g0. Since the Lie algebra generated
by the Nomizu operators contains the holonomy algebra, this implies that J1

defines an invariant parallel complex structure on N and hence N is a Kähler
submanifold.

In the case 2), g0 = zg(a) has the reductive decomposition

g0 = Ra+ h̄ + n , n = zm(a)

and the proof is the same as for the case 3). 2

Remark that in the cases 2) and 3) the N is a totally complex manifold
in the sense of Tsukada [T].

3.3. Invariant symplectic structure on quaternionic Kähler man-
ifolds of type 2 Now we consider the case when dim a = 1. Choosing an
appropriate standard basis (Jα)α we may assume a = Ra, B(a, a) = −1 and
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La = J1 + L̄a. The reductive decomposition g = h⊕m of g induces a decom-
position g∗ = h∗⊕m∗ of the dual space. For any k-form σ ∈ ∧kg∗ we denote
by σpq, (p+ q = k) the natural projection onto

∧pq := ∧ph∗ ⊗ ∧qm∗ .

If σ is AdH-invariant, σpq is also AdH-invariant and, in particular, σ0q is an
AdH-invariant k-form on m and hence defines an invariant form on M . The
1-forms ωα associated to the basis (Jα)α have the following properties:

ω1 = ω10
1 + ω01

1 is AdH-invariant and ω10
1 = −B(a, ·) 6= 0 ,

ω2 = ω01
2 and ω3 = ω01

3 .

Lemma 3.3 1) The 2-form dω10
1 (x, y) = B(a, [x, y]) belongs to ∧02, is

AdH-invariant and hence defines an invariant 2-form σ on M .

2) The forms ω2 ∧ ω3, ω2 ∧ dω2 + ω3 ∧ dω3 and ψ are AdH-invariant.

3) The Kraines form Ω on M is cohomological to σ ∧ σ.

Proof. The form dω10
1 is AdH-invariant, since ω1 is AdH-invariant. Let

h ∈ h, x ∈ m, then dω10
1 (h, x) = −ω10

1 ([h, x]) = 0, since [h,m] ⊂ m. Hence
(dω10

1 )11 = 0. The component (dω10
1 )20 = 0, because [h, h] ⊂ h̄ = ker ω1.

This proves 1).
2) The structure equations (1) imply

adhω2 = 2ω1(h)ω3 ,

adhω3 = −2ω1(h)ω2

for h ∈ h. From this 2) immmediately follows.
3) From the structure equations we obtain the following equalities:

dω1 = dω02
1 = π∗ρ1 − 2ω2 ∧ ω3 ,

dω2 = dω02
2 + dω11

2 ,

dω3 = dω02
3 + dω11

3 ,

dω02
2 = π∗ρ2 − 2ω3 ∧ ω01

1 ,

dω02
3 = π∗ρ3 − 2ω01

1 ∧ ω2 ,

dω11
2 = −2ω3 ∧ ω10

1 ,

dω11
3 = −2ω10

1 ∧ ω2 .

Using this we obtain
ψ = ψ03 + ψ12 .
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Moreover we compute

ψ12 = ω10
1 ∧ dω1 + ω2 ∧ dω11

2 + ω3 ∧ dω11
3 + 4ω10

1 ∧ ω2 ∧ ω3

= ω10
1 ∧ dω1 = ω10

1 ∧ dω10
1 + ω10

1 ∧ dω01
1 ,

ψ03 = ω01
1 ∧ dω1 + ω2 ∧ dω02

2 + ω3 ∧ dω02
3 + 4ω01

1 ∧ ω2 ∧ ω3

= ω01
1 ∧ dω1 + ω2 ∧ π∗ρ2 + ω3 ∧ π∗ρ3 .

Using these formulas we have

Ω = dψ = dψ12 + dψ03

= d(ω10
1 ∧ dω10

1 + ω10
1 ∧ dω01

1 ) + dψ03

= dω10
1 ∧ dω10

1 + d(dω10
1 ∧ ω01

1 + ψ03) .

According to 1), 2) dω10
1 ∧ω01

1 +ψ03 ∈ ∧03 is AdH-invariant and hence defines
an invariant 3-form τ on M . Hence, on the manifold M

Ω = σ ∧ σ + dτ . 2

As a corollary we obtain

Proposition 3.4 σ is an invariant symplectic form on M and M = G/H
is identified with the universal covering G/Z0

G(a) of the adjoint orbit AdGa =
G/ZG(a). Moreover, the group G is simple.

Proof. It is clear that the form σ is closed and invariant. Moreover, the form
σ2n is cohomological to Ωn. Since Ωn is not cohomological to zero by Koszul’s
theorem, the invariant form σ2n 6= 0. Hence, σ is non-degenerate, that is σ
is a symplectic form. The second statement follows now from the Kirillov-
Kostant description of homogeneous symplectic manifolds. Suppose now that
the semisimple group G is not simple. Without restriction of generality we
may assume that G = G1×G2. Then the homogeneous manifold G/H is G-
isomorphic to the direct product G1/H1×G2/H2 of homogeneous manifolds,
where H = Z0

G(a) = H1 × H2. Any invariant metric on such a manifold is
reducible. On the other hand, it is known that a quaternionic Kähler metric
of non zero scalar curvature is irreducible. This contradiction shows that the
group G is simple. 2

3.4. Type 2 The proof of the theorem for type 2 manifolds is based on
the following two lemmas.

Lemma 3.5 Assume that G/H is a quaternionic Kähler manifold of type 2
and rk g > 2. Then there exists h ∈ h̄ such that zg(h) is non-compact.
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Proof. Consider the root system R of (gC, tC), where t = Ra+ t̄, t̄ ⊂ h̄, is a
compact Cartan subalgebra of h and hence of g. Any root α ∈ R generates a
3-dimensional subalgebra g(α) = spanC{hα, eα, e−α}∩g, which is isomorphic
to su(2) or to sl(2,R). The root α is called compact respectively non-
compact, if g(α) ∼= su(2) respectively g(α) ∼= sl(2,R). If g is non-compact,
then there exists a non-compact root β, s. [He]. Choose 0 6= h ∈ t̄ ∩ kerβ.
Then zg(h) ⊃ g(β) ∼= sl(2,R). 2

Lemma 3.6 Let M = G/H be a homogeneous manifold, where G is a real
simple Lie group of rank 2 and H a compact subgroup of the form H =
Z0
G(a), a ∈ h. Assume that the isotropy representation of H preserves a

quaternionic structure on m ∼= THM . Then G/H = SU(3)/U(2) ∼= CP 2 or
= SU(1, 2)/U(2) ∼= CH2.

Proof. According to the theory of semisimple Lie algebras g is of type A2,
B2 or G2 and h is isomorphic to t2 or to t1 ⊕ su(2), where tn denotes the Lie
algebra of the n-dimensional torus. Assume that the isotropy representation
of M preserves some quaternionic structure. Then dimG/H ≡ 0 (4) and
(g, h) can only be of type (A2, t

1 ⊕ su(2)), (B2, t
2) or (G2, t

2). Checking the
real Lie algebras of Type A2, we conclude that the first pair gives exactly the
two manifolds G/H described in Lemma 3.6. Let now g be a real simple Lie
algebra of type B2 or G2 with a compact Cartan subalgebra t = t2. To prove
the lemma, it is sufficient to check that the isotropy representation adt|m of
t on m = [t, g] does not preserve any quaternionic structure q. Suppose that
such a quaternionic structure q exists. Then

adt|m ⊂ nso(m)(q) = sp(1)⊕ gl(n,H) ,

where n = 2 (resp. 3) if g has type B2 (resp. G2). There exists an element
0 6= b ∈ t such that A = abb|m ∈ gl(n,H). Since for any A ∈ gl(n,H) the

multiplicity of an eigenvalue of A is even, the root system R of (gC, tC) must
satisfy the following condition for any α ∈ R:

#{β ∈ R| β(b) = α(b)} ≡ 0 (2) .

From the picture of the root systems of type B2 and G2 one sees that this is
impossible. 2

Now we prove that there is no homogeneous quaternonic Kähler manifold
M = G/H of type 2 with an unimodular group G. By Prop. 3.4 we may
assume that G is simple. We will use induction on the rank of G. First
we remark that there is no quaternionic Kähler manifold M = G/H of type
2 and rkG ≤ 2. Indeed, if rkG = 1, then dimG = 3. If rkG = 2, the
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only quaternionic Kähler manifolds are the symmetric manifold SU(3)/U(2)
and its non-compact dual, which are not of type 2. Applying induction,
we assume that there is no quaternionic Kähler manifold G/H of type 2
and rkG < k. Let now M = G/H be a quaternionic Kähler manifold of
type 2 with an unimodular and hence simple group G of rkG = k. Let
g = (Ra + h̄) + m be the corresponding reductive decomposition. We may
assume that rk g > 2 and hence h̄ 6= 0. By Lemma 3.5 there exists b ∈ h̄
with non-compact centralizer g0 = zg(b). Remark that g0 is a reductive
and hence unimodular Lie algebra and g 6= g0 6⊂ h. According to Prop.
3.2 1) the orbit N of the corresponding connected Lie group Z0

G(b) is a
quaternionic Kähler submanifold of type 2. The corresponding reductive
and hence unimodular isometry group GN of (N, g|N) is the quotient of
Z0
G(b) by the kernel of non-effectivity, which contains {exp tb| t ∈ R}. Hence,

rkGN < rkZ0
G(b) = rkG = k. This contradicts the inductive assumption. 2

4 Proof of the theorem for type 3 manifolds

Now we consider a homogeneous quaternionic Kähler manifold M = G/H
of type 3 with semisimple Lie group G. We will consider the reductive de-
composition g = h + m, where m is the orthogonal complement to h with
respect to the Cartan-Killing form B. Moreover, h = a + h̄, where h̄ is the
kernel of the homomorphism φ : h → q ∼= sp(1) and a is the B-orthogonal
complementary ideal to h̄ in h, s. 2.2. With respect to a standard basis (Jα)α
of q the isomorphism φ|a : a

∼→ q ∼= sp(1) is given by φ(h) =
∑3
α=1 ωα(h)Jα,

in particular, the forms ωα|a are linearly independent.

Proposition 4.1 For any a ∈ a− {0}, g0 = zg(a) ⊂ h.

Proof. Without restriction of generality we may assume that ω1(a) = 1,
ω2(a) = ω3(a) = 0. According to Prop. 3.2 2)

g0 = zg(a) = h0 + n = Ra+ h̄ + n

defines a totally geodesic Kähler submanifold and ω2|g0 = ω3|g0 = 0. Remark
that g0 (and any quotient of g0) is reductive and hence unimodular. By the
structure equations (1) dω1 = νπ∗ρ1 on g0. Consider the decomposition of
ω1|g0

ω1 = ω10
1 + ω01

1 ∈ h∗0 + n∗

as before. Since ω1 is adh0-invariant, the 1-form ω01
1 is invariant, vanishes

on h0 and hence defines some invariant form on the homogeneous Kähler
manifold N = G0/H0, where G0 and H0 are the connected Lie subgroups
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of G with Lie algebra g0 and h0 respectively. ρ1 defines the Kähler form
σ on N and dω10

1 = dω1 − dω01
1 defines an invariant form on N , which is

cohomological to σ (up to the factor ν 6= 0). Since σ2k, k = dimCN , is a
volume form, the cohomological form (dω10

1 )2k is not zero on N by Koszul’s
theorem. In other words, dω10

1 defines an invariant symplectic form on N .
Remark now that the 1-form ω10

1 equals

ω10
1 = λB(a, ·) ∈ g∗0 , λ ∈ R− ,

since ω10
1 (h̄+ n) = 0 and ω10

1 (a) = 1 and h̄+ n is the orthogonal complement
of Ra in g0 with respect to the Cartan-Killing form B of g. This implies
dω10

1 = 0 on g0:

dω10
1 (x, y) = −ω10

1 ([x, y]) = −λB(a, [x, y]) = λB([x, a], y) = 0

for x, y ∈ g0. On the other hand we proved that dω10
1 defines a non-degenerate

form on N , hence N = pt and g0 ⊂ h. 2

Corollary 4.2 1) For all a ∈ a we have zg(a) = Ra+ h̄.

2) h = a + h̄ = ng(a).

3) Any Cartan subalgebra of h is a Cartan subalgebra of g and has the
form t = Ra+ t̄, where t̄ is a Cartan subalgebra of h̄.

Proposition 4.3 1) a is a compact regular 3-dimensional subalgebra as-
sociated to a long root α of (g, t).

2) g is simple.

Proof. By Cor. 4.2 3) there exists a Cartan subalgebra t of g of the form

t = Ra+t̄ ⊂ h. Obviously it normalizes a, hence aC is a regular 3-dimensional

subalgebra associated with some root α of (gC, tC). Since any 3-dimensional
regular subalgebra is contained in some simple ideal and its normalizer con-
tains all other simple ideals, from Cor. 4.2 2) and from the effectivity of G
statement 2) follows. It remains only to prove that α is long. It was proved
in [A] (s. Lemma 5 2)) that under our assumptions α is long, if g is not of
type G2. In the latter case the normalizer nα of the regular 3-dimensional

subalgebra associated to (any root) α is of the form nCα = aClong+aCshort, where
along (resp. ashort) is a regular 3-dimensional subalgebra associated to a long

(resp. short) root. Moreover, (g2/nα)C ∼= C4 ⊗ C2, where aCshort (resp. aClong
acts irreducibly on C4 (resp. C2) and trivially on C2 (resp. C4). This shows
that a = ashort is impossible, hence a = along. 2

The proof of the main theorem follows immediately from the following
proposition.
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Proposition 4.4 Let aα be a compact regular 3-dimensional subalgebra as-
sociated with a long root α of a simple non-compact real Lie algebra g. If its
normalizer ng(aα) is compact, then it is maximal compact and hence the
corresponding homogeneous space G/NG(aα) is a non-compact symmetric
quaternionic Kähler manifold (dual to a Wolf space).

The proof of Prop. 4.4 is based on the following lemma.

Lemma 4.5 Let σ, σ0 be two involutive automorphisms of a simple complex
Lie algebra g, with fix point sets gσ, gσ0. Assume gσ0 ⊂ gσ, then σ = σ0.

Proof. Let g = gσ0 +gσ0− and g = gσ+gσ− denote the corresponding symmet-
ric decompositions. They are orthogonal with respect to the Cartan-Killing
form. Moreover, since σ preserves gσ0 , it preserves also the orthogonal com-
plement gσ0− = a+ + a−, a+ = gσ ∩ gσ0− , a− = gσ−. Then

[a+, a−] ⊂ [gσ, gσ−] ⊂ gσ− ⊂ gσ0− .

On the other hand
[a+, a−] ⊂ [gσ0− , g

σ0
− ] ⊂ gσ0 .

Hence [a+, a−] = [a+, g
σ
−] = 0. Therefore the kernel k of the isotropy repre-

sentation of gσ on gσ−, which is an ideal of g, contains a+. Since g is simple,
0 = k = a+ and σ = σ0. 2

Corollary 4.6 Let l be a simple complex Lie algebra. There is no inclusion
between maximal compact subalgebras of different real forms g, g′ ⊂ l of

l = gC = g′C.

Proof. It is sufficient to consider the Cartan involutions of the real forms
and apply the lemma to their complex linear extensions. 2

Proof (of Prop. 4.4). Let k ⊃ nα = ng(aα) be a maximal compact subalgebra

of g. There exists some real form g′ of l = gC such that nα is maximally
compact in g′. This real form corresponds to the non-compact dual of the
Wolf space Gc/NGc(aα), where LieGc is the compact real form of l. Cor. 4.6
implies k = nα. 2
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