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Introduction

In this thesis, we will study recent generalizations of the classical divergence theo-
rem which relax considerably the regularity assumptions made on both the vector
fields and the domains of integration. The vector fields, whose divergence will
be interpreted as a Radon measure, may have discontinuities and ultimately we
will obtain a representation of the jump component of their divergence which is
suitable for the description of shocks, in terms of a generalized notion of normal
traces. As for boundary geometry, we will work in the context of sets with finite
perimeter, which include domains with Lipschitz boundaries. We will present a
self-contained synthesis of many related approaches which will yield variants of
known results and indicate some first applications of these variants, through the
related notion of normal trace, to nonlinear hyperbolic conservation laws.

The classical statement of the divergence theorem, the so-called Gauss-Green
formula, has rather old origins in the history of mathematics. The first formula-
tions date back to Lagrange (1762), Gauss (1813), Green (1825) and Ostrogradskij
(1831), who presented a first proof of it.
In its classical form, the statement is the following theorem.1

Theorem 0.0.1. (Classical Gauss-Green formula)
Let E ⊂ RN be an open regular set; that is, E is bounded, (Ē)◦ = E and ∂E is an
(N − 1)-manifold of class C1. Then ∀φ ∈ C1

c (RN ;RN)∫
E

divφ dx = −
∫
∂E

φ · νE dHN−1,

where νE is the interior unit normal to ∂E.

The class of open regular sets is actually too restrictive, since we see that it
does not include bounded open sets with Lipschitz boundary. Indeed, it is not
difficult to show that this theorem may be extended to certain open sets which do
not satisfy the boundary regularity requirements. For example, using convergence
theorems for integrals (such as Lebesgue’s dominated convergence theorem) one
can prove the formula for cones and cubes.

1Here and in what follows, Hs is the s-dimensional Hausdorff measure.
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The need for a characterization of a wider class of sets for which this theorem
was valid was satisfied by the theory of functions of bounded variation (BV), and,
in particular, by the concept of set of (locally) finite perimeter, due to Caccioppoli
(1928) and De Giorgi (1952).
As we will briefly recall in Chapter 1, a function u is in BV (Ω), for Ω ⊂ RN ,
if u ∈ L1(Ω) and its distributional derivative Du is a Radon measure; that is, a
vector valued Borel measure with finite total variation on compact sets. A set of
(locally) finite perimeter E is a set whose characteristic function χE is a (locally)
BV function.
For a set of finite perimeter, it is useful to consider two particular subsets of the
topological boundary: the reduced boundary, ∂∗E, on which it is well defined a
unit vector νE, called (up to a sign) measure theoretic interior unit normal; and the
measure theoretic boundary, ∂mE, which coincides up to a set of HN−1-measure
zero with ∂∗E.
This theory, as presented in [EG], for example, yields the following version of
Gauss-Green formula.

Theorem 0.0.2. (Gauss-Green formula on sets of finite perimeter)
Let E ⊂ RN be a set of locally finite perimeter. Then ∀φ ∈ C1

c (RN ;RN)∫
E

divφ dx = −
∫
∂mE

φ · νE dHN−1.

This result, although important for the large family of domains of integration
which are allowed, is however restricted to a class of integrands whose heavy reg-
ularity demands can prove to be inconvenient for applications. If we require less
regularity, we have to find a way to recover the meaning of divφ and of the normal
trace φ·νE. The solution to the first problem is found by considering special classes
of distributional derivatives (i.e. distributional derivative which can be represented
by Lp functions or by Radon measures), the solution to the second is rather more
delicate (in the case of the space BV it is of great importance the fact that any
BV function admits a representative which is well defined almost everywhere (a.e.)
with respect to the measure HN−1) and it will be handled through approximation
arguments.
Important progress in this direction have been made by De Giorgi and Federer,
who proved the same theorem for Lipschitz vector fields F , and later by Vol’pert
([VH]), who stated the following theorem.

Theorem 0.0.3. (Gauss-Green formula for BV vector fields)
Let Ω ⊂ RN be an open set, u ∈ BV (Ω;RN) ∩ L∞(Ω;RN) and E ⊂⊂ Ω be a set
of finite perimeter,∫

E1

d div(u) = divu(E1) = −
∫
∂mE

uνE · νE dHN−1
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where E1 is the measure theoretic interior of the set E and uνE is the interior
trace, that is, the approximate limit at x ∈ ∂mE restricted to ΠνE(x) := {y ∈ RN :
(y − x) · νE ≥ 0}.

We also briefly mention a related result due to Fuglede ([Fu2]), for vector fields
F ∈ Lp(RN ;RN) such that their distributional divergence is in Lp(RN).
Using the concept of module of order p of a family of Radon measures (connected
to the theory of extremal length), he defined a collection of sets of finite perimeter
E to be p-exceptional (p-exc) if there is a nonnegative function f ∈ Lp(RN) such

that
∫
∂∗E

f(x) dHN−1(x) = +∞, ∀E ∈ E .
He then stated the following result.

Theorem 0.0.4. (Fuglede)
Let F ∈ Lp(RN ;RN), 1 ≤ p <∞, with divF ∈ Lp(RN). Then∫

E

divFdx = −
∫
∂∗E

F (x) · νE(x)dHN−1(x)

for each set E of finite perimeter except those in a p-exc collection E.

The purpose of this work is to examine recent generalizations that concern vec-
tor fields F ∈ Lp(Ω;RN) such that divF is a Radon measure µ. These fields are
called divergence-measure fields, and their space is denoted by DMp(Ω;RN).
They were studied in the last years by, among the others, Anzellotti ([A]), who
investigated the properties of the normal trace as a functional defined on suitable
function spaces, and Chen and Frid ([CF1], [CF2], [CF3]), because of the interest
in possible applications in the context of nonlinear hyperbolic conservation laws.
They established a Gauss-Green formula and a way to define the normal trace over
the boundary ∂Ω of a bounded open set with Lipschitz deformable boundary. This
kind of set Ω is such that its boundary is locally the graph of a Lipschitz function
and there exists a bi-Lipschitz homeomorphism over its image Ψ : ∂Ω× [0, 1]→ Ω
which satisfies Ψ(x, 0) = x ∀x ∈ ∂Ω.
We notice that this definition of admissible domains allows for open sets which
need not to be regular, but is not as wide as the class of sets with finite perimeter.
Indeed, we may consider a set with C1 boundary except for a point where there
is a cusp, for example in R2 the set E = (B(1, 1) ∪ B(−1, 1) ∪ (B(0, 2) ∩ {(x, y) :
y ≤ 0}))◦ has a cusp in (0, 0), and so it cannot have a Lipschitz boundary, whereas
H1(∂∗E) = 4π and so it is a set of finite perimeter.

In Chapter 2 we shall give some of the basic properties of divergence-measure
fields, which will be shown to be closely related to those of BV functions. In-
deed, it is easy to see that if F = (F1, ..., FN) with Fi ∈ BV (Ω) ∩ Lp(Ω) ∀i, then
F ∈ DMp(Ω;RN).
However, in general, the condition divF = µ allows for cancellations, which thus
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make the space DMp larger and therefore more interesting. Indeed, an easy
example of this fact is F (x, y) = (sin 1

x−y , sin
1

x−y ): then F ∈ DM∞(R2;R2) \
BVloc(R2;R2) and divF = 0 inM(R2).

We also prove that, if F ∈ DMp
loc(Ω;RN) and N

N−1
≤ p ≤ ∞, then ||divF ||

is absolutely continuous with respect to the HN−q-measure, with q = p
p−1

. From
this result, we can see the particular importance of the case p = ∞, since we
have ||divF || � HN−1 for essentially bounded divergence-measure fields, which
is a result analogous to the one we know about the gradient of a BV function.
Indeed, we also show that for p ∈ [1,∞) we cannot in general expect to recover a
Gauss-Green formula: thus, our study will concentrate on the space DM∞.

In Chapter 3, we show two versions of the divergence theorem for essentially
bounded divergence-measure fields.
First, following [CTZ1], we give a self contained and geometrical proof of the
theorem for bounded open sets I with C1 (orientable) compact boundary. Through
an approximation by the interior of I, we show the existence of a normal trace,
which is an essentially bounded function on ∂I.
Then, after having established Leibniz rules for essentially bounded divergence-
measure fields and BV functions, following in the footsteps of Vol’pert’s work, we
prove the Gauss-Green formula over bounded sets of finite perimeter.

Theorem 0.0.5. (Gauss-Green formula for DM∞ fields on bounded sets
of finite perimeter) Let F ∈ DM∞(Ω;RN). If E ⊂⊂ Ω is a bounded set of
finite perimeter, then there exist interior and exterior normal traces of F on ∂∗E;
that is, (Fi · ν), (Fe · ν) ∈ L∞(∂∗E;HN−1) such that

divF (E1) = −2χEF ·DχE(∂∗E) = −
∫
∂∗E

Fi · ν dHN−1

and
divF (E) = −2χE0F ·DχE(∂∗E) = −

∫
∂∗E

Fe · ν dHN−1,

where E = E1 ∪ ∂mE, χEF ·DχE and χE0F ·DχE are the weak star limits, re-
spectively, of the sequences χEF · ∇(χE ∗ ρδ) and χE0F · ∇(χE ∗ ρδ) as δ → 0.
Moreover,

||Fi · ν||L∞(∂∗E;HN−1) ≤ ||F ||L∞(E1;RN )

and
||Fe · ν||L∞(∂∗E;HN−1) ≤ ||F ||L∞(Ω\E;RN ).

Moreover, as a corollary, we gain a representation formula of jump component
in the divergence of F ; that is, for any bounded set of finite perimeter E we have

χ∂∗EdivF = 2χEF ·DχE − 2χE0F ·DχE = (Fi · ν −Fe · ν)HN−1x∂∗E
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in the sense of Radon measures on Ω. Therefore we have

||divF ||(∂∗E) =

∫
∂∗E

|Fi · ν −Fe · ν| dHN−1

and, for any Borel set B ⊂ ∂∗E,

divF (B) =

∫
B

(Fi · ν −Fe · ν) dHN−1.

We then show that if F is also continuous, the interior and exterior normal traces
on ∂∗E coincide, as essentially bounded functions, and admit a representative
which is in fact the classical dot product F · νE, where νE is the measure theoretic
interior normal. It follows also that continuous fields have no jump component in
the divergence.
Then we examine the special case of an essentially bounded divergence-measure
vector field with constant direction F = fv, with v ∈ SN−1.

In Chapter 4, we show some consequences and applications of the Gauss-Green
formula.
We obtain gluing and extension theorems for essentially bounded divergence-
measure fields: if F1 ∈ DM∞(Ω;RN), F2 ∈ DM∞(RN \ W ;RN) and W ⊂⊂
E ⊂⊂ Ω for a set of finite perimeter E, then we can glue F1 and F2 over the
boundary of E; on the other hand, if F ∈ DM∞(Ω;RN) and HN−1(∂Ω) < ∞,
then we can extend F to 0 outside Ω.
Using techniques of harmonic analysis, we also prove an existence result for the
equation divF = µ in RN , with µ positive Radon measure in the subcritical case;
that is, for F ∈ DMp(RN ;RN) with 1 ≤ p ≤ N

N−1
. This equation is indeed of

great interest in the context of continuum mechanics and conservation laws, and
it has been studied by Phuc and Torres ([PT]) and Šilhavý ([S]).
Finally, we illustrate an application of the theory developed to nonlinear hyperbolic
systems of conservation laws

∂tu+ divxf(u) = 0 in Rd+1
+ := (0,+∞)× Rd.

It is well known that in order to have a unique weak solution of such a system, it
is natural to select only those solutions which satisfy the Lax entropy inequality

∂tη(u) + divxq(u) ≤ 0

in the sense of distributions for any convex entropy pair (η, q).
We show that for any weak solution u(t, x) ∈ L∞loc(R

d+1
+ ;Rm) the field (η(u), q(u))

is indeed in DM∞
loc(Rd+1

+ ;Rd+1) and, in particular, there exists a positive Radon
measure µη such that div(t,x)(η(u), q(u)) = −µη. This was first shown by Chen and
Frid and motivated the beginning of their investigations on these function spaces.
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Using the Gauss-Green formula, we prove that, for any τ > 0, if a weak en-
tropy solution u satisfies a vanishing mean oscillation property on the half balls
B+((τ, y), r) := B((τ, y), r) ∩ {(t, x) ∈ Rd+1 : t > τ}, then η(u) has an essentially
bounded trace η(u)tr Hd-a.e. on the hyperplane {(t, x) ∈ Rd+1 : t = τ}; that is,

lim
r→0

1

ωdrd+1

∫
C+((τ,y),r)

η(u(t, x)) dt dx = η(u)tr(τ, y),

where C+((τ, y), r) is the cylinder {(t, x) ∈ Rd+1 : 0 < t − τ < r, |x − y| < r}.
In particular, if we choose η(u) = uj, j = 1, ...,m, we obtain the trace for each
component of u.



Chapter 1

Preliminaries

In this chapter, we shall introduce some basic notions and tools from measure the-
ory, Sobolev spaces and BV 1 theory, which are useful for the study of divergence-
measure fields, with the aim of fixing also notation and making this exposition in
some way self-contained.
In particular, we are going to focus on the properties of the space of Radon mea-
suresM(Ω) as a dual space, on the notion of capacity and on the properties of sets
of finite perimeter (and therefore, on the first generalizations of the Gauss-Green
formula).
We will not provide all the proofs of the results we are going to exhibit, only those
which contain techinques that we will use in the following chapters.

1.1 Radon measures and total variation

Definition 1.1.1. Let (X,Σ) be a measure space and µ be a function µ : Σ →
[0,+∞].
µ is a positive2 measure if µ(∅) = 0 and it is σ-additive, i.e. for any sequence of
pairwise disjoint elements {Ek} ⊂ Σ

µ

(
+∞⋃
k=0

Ek

)
=

+∞∑
k=0

µ(Ek).

Moreover, µ is finite if µ(X) <∞ and it is σ-finite if X is the countable union of
sets of finite measure.

Definition 1.1.2. Let (X,Σ) be a measure space and m ∈ N.
1. µ : Σ → Rm is a measure if µ(∅) = 0 and it is σ-additive. If m = 1, µ is a

real signed measure, if m > 1, µ is a vector valued measure (that is, a vector
function whose components are real signed measures).

1BV is the space of functions of bounded variation, see 1.3.
2Many authors use the term nonnegative measure.

9
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2. If µ is a measure, the total variation ||µ||(E) for E ∈ Σ is defined as follows:

||µ||(E) := sup

{
+∞∑
k=0

|µ(Ek)| : Ek ∈ Σ pairwise disjoint, E =
+∞⋃
k=0

Ek

}
.

3. If µ is a real measure, we can define its positive and negative parts as

µ+ =
||µ||+ µ

2
and µ− =

||µ|| − µ
2

.

Obviously, we have µ = µ+ − µ− and ||µ|| = µ+ + µ−.

4. If µ is a positive measure we call the support of µ, denoted as supp(µ), the
closed set of all points x ∈ X such that µ(U) > 0 for every neighbourhood U
of x. If µ is a real signed or vector measure, we define supp(µ) := supp(||µ||).

We now fix some notation.
For our purposes, X is an open subset of RN and Σ is the σ-algebra of Lebesgue
measurable sets, which contains the σ-algebra of Borel sets (that is, the σ-algebra
generated by all open subsets of RN).
We shall indicate with LN the Lebesgue N -dimensional measure and with Hα, for
α ≥ 0, the α-dimensional Hausdorff measure (as is known, LN = HN).
Unless otherwise stated, a measurable set is a LN -measurable set.
For any measurable set E ⊂ RN , we denote by |E| the LN -measure of E, while,
when applied to a function with values in Rm, |.| is the euclidian norm.
B(x, r) is the open ball with center in x and radius r > 0 and ωN = |B(0, 1)|,
moreover, for α ≥ 0,

ωα =
π
α
2

Γ
(
1 + α

2

) ,
where Γ is Euler’s gamma function.
We recall also the definition of α-dimensional spherical measure Sα of a set A in
RN :

Sα(A) := lim
δ→0
Sαδ (A) = sup

δ→0
Sαδ (A),

where

Sαδ := inf

{
∞∑
j=1

ωαr
α
j : 2rj < δ,A ⊂

∞⋃
j=1

B(xj, rj)

}
.

This measure is strictly connected with the Hausdorff one, since we have just the
additional condition that the sets in δ-cover have to be balls, and it also satisfies
the inequalities

Hα ≤ Sα ≤ 2αHα, (1.1.1)

for which we refer to [Fe], pag. 171.
The symmetric difference of sets is denoted by
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A∆B := (A \B) ∪ (B \ A).

Unless otherwise stated, Ω ⊂ RN is an open set, and ⊂ is equivalent to ⊆.
We denote by E ⊂⊂ Ω a set E whose closure, Ē, is compact and contained in Ω,
by E◦ the interior of the set E and by ∂E its topological boundary.

For k ∈ N0 ∪ {∞}, m ∈ N, Ck
c (Ω;Rm) := {φ ∈ Ck(Ω;Rm), supp(φ) ⊂⊂ Ω} is

the space of Ck functions compactly supported in Ω, endowed with the sup norm,

||φ||∞ = sup
x∈Ω
|φ(x)|.

Definition 1.1.3. (Borel and Radon measures)

1. A positive measure µ on Ω is called a Borel measure if every Borel set in Ω is
µ-measurable.

2. A positive measure µ on Ω is a positive Radon measure if it is a Borel measure
and it is finite on compact subsets of Ω.

3. A real signed (or vector valued) measure is called a real signed (or vector
valued) Radon measure if it is defined on the Borel sigma algebra of any
compact subset of Ω and ||µ||(K) < ∞, ∀K ⊂ Ω compact. The space of
real Radon measures on Ω is denoted byMloc(Ω) and the space of Rm-vector
valued Radon measures byMloc(Ω;Rm).

4. If ||µ(Ω)|| <∞, then µ is a (real signed or vector valued) finite Radon measure.
The space of real finite Radon measures on Ω is denoted by M(Ω) and the
space of Rm-vector valued finite Radon measures byM(Ω;Rm).

Remark 1.1.1. M(Ω;Rm), m ≥ 1, endowed with the norm |||µ||| := ||µ||(Ω), is
a Banach space.

Proposition 1.1.1. (Inner and outer regularity of Radon measures) Let
µ be a positive Radon measure on Ω, then, for any Borel set B,

1. µ(B) = sup{µ(K) : K ⊂ B,K compact},

2. µ(B) = inf{µ(U) : B ⊂ U,U open}.
Proof. Any open subset of RN (with the induced euclidean topology) is a locally

compact separable metric space and any positive Radon measure on Ω is Borel and
σ-finite, since we can clearly cover Ω with the bounded open sets

Ωk :=

{
x ∈ Ω : |x| < k, dist(x, ∂Ω) >

1

k

}
, k ∈ N,

for which, since Ωk ⊂⊂ Ω, µ(Ωk) <∞ ∀k. Thus, the result follows from Proposi-
tion 1.43 in [AFP]. �
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Remark 1.1.2. Let µ be a positive Radon measure. If {At}t∈I , where I is un-
countable, is a family of µ-measurable sets in Ω such that their boundaries are
disjoint,

⋃
t∈I ∂At = Ω and for every compact K there exists an uncountable set

of indices J ⊂ I such that K ∩ ∂At 6= ∅, ∀t ∈ J , then there exists a countable
set N such that

µ(K ∩ ∂At) = 0 ∀t /∈ N .
We claim that, if such a set N did not exist, then there would be an uncountable
set Y such that µ(K ∩ ∂At) > ε > 0, ∀t ∈ Y . Suppose to the contrary that for
each ε > 0 the set of t’s which satisfy µ(K ∩ ∂At) > ε is countable.
We set εj = 1

j
and we have

{t ∈ I : µ(K ∩ ∂At) 6= 0} =
+∞⋃
j=1

{
t ∈ I : µ(K ∩ ∂At) >

1

j

}
,

so this set, being countable union of countable sets, is itself countable, contradict-
ing our assumption. We extract now from Y a sequence {tj}.
By the monotonicity and the σ-additivity, we have

µ(K) ≥
+∞∑
j=1

µ(K ∩ ∂Atj) = +∞,

which is absurd, since µ is a Radon measure. Therefore, such a Y cannot exist
and so N exists.
In the following chapters, the sets {At} will usually be balls B(x, r).

Proposition 1.1.2. Let µ ∈ M(Ω;Rm). Then, for every open set A ⊂ Ω, we
have

||µ||(A) = sup

{∫
Ω

φ · dµ : φ ∈ Cc(A), ||φ||∞ ≤ 1

}
.

Proof. See [AFP], Proposition 1.47.

Remark 1.1.3. If µ ∈ Mloc(Ω;Rm), then clearly µ ∈ M(W ;Rm) for any open
W ⊂⊂ Ω. Therefore Proposition 1.1.2 holds also for µ ∈ Mloc(Ω;Rm) if we take
open sets A ⊂⊂ Ω.

It is possible to characterize M(Ω;Rm) as a dual space: this yields a weaker
topology on it and therefore weak-star compactness of bounded sequences.
We denote by C0(Ω;Rm) the completion of Cc(Ω;Rm) with respect to the sup
norm. This is the space of continuous functions φ on Ω satisfying the property:
for any ε > 0 there exists a compact set K ⊂ Ω such that |φ(x)| < ε, ∀x ∈ Ω \K.

Theorem 1.1.1. (Riesz Representation Theorem)
Let L : C0(Ω;Rm) → R be a continuous linear functional; that is, L is linear and
satisfies

sup{L(φ) : φ ∈ C0(Ω;Rm), ||φ||∞ ≤ 1} <∞.



CHAPTER 1. PRELIMINARIES 13

Then there exists a unique µ ∈M(Ω;Rm) such that

L(φ) =

∫
Ω

φ · dµ, ∀φ ∈ C0(Ω;Rm).

Moreover,

|||µ||| = ||µ||(Ω) = sup{L(φ) : φ ∈ Cc(Ω;Rm), ||φ||∞ ≤ 1} = ||L||.

Proof. See [AFP], Theorem 1.54.

The following corollary is a direct consequence of the global version of the Riesz
Representation Theorem.

Corollary 1.1.1. Let L : Cc(Ω;Rm)→ R be a linear functional satisfying

sup{L(φ) : φ ∈ Cc(Ω;Rm), ||φ||∞ ≤ 1, supp(φ) ⊂ K} <∞,

for any compact set K ⊂ Ω. Then there exists a unique µ ∈ Mloc(Ω;Rm) such
that

L(φ) =

∫
Ω

φ · dµ, ∀φ ∈ Cc(Ω;Rm).

Thus we can identify any µ ∈M(Ω;Rm) with a continuous linear functional on
C0(Ω;Rm), written as

Lµ(φ) :=

∫
Ω

φ · dµ, ∀φ ∈ C0(Ω;Rm),

and analogouslyMloc(Ω;Rm) can be identified with the dual of Cc(Ω;Rm).
This leads us to the following notion.

Definition 1.1.4. Given a sequence {µk} in M(Ω), we say that µk weak-star
converges to µ, if and only if∫

Ω

φ · dµk →
∫

Ω

φ · dµ, ∀φ ∈ C0(Ω;Rm).

If {µk} and µ are in Mloc(Ω), we say that µk locally weak-star converges to µ, if
and only if ∫

Ω

φ · dµk →
∫

Ω

φ · dµ, ∀φ ∈ Cc(Ω;Rm).

Lemma 1.1.1. Let {µk} ⊂ M(Ω;Rm) be a weak-star convergent sequence, and
let µ be its limit. Then we have

lim sup
k→+∞

|||µk||| <∞

and
|||µ||| ≤ lim inf

k→+∞
|||µk|||.
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Proof. The first assertion follows from Uniform Boundedness Principle (Banach-
Steinhaus Theorem), since Lµk(φ)→ Lµ(φ) for each φ ∈ C0(Ω;Rm) and therefore
{Lµk(φ)} is a bounded sequence in R.
The second inequality comes from:

|Lµk(φ)| ≤ ||φ||∞|||µk|||

then, passing to the limit we have |Lµ(φ)| ≤ lim inf
k→+∞

||φ||∞|||µk||| and taking supre-
mum in φ yields the result. �

Remark 1.1.4. Weak-star convergence of finite Radon measures is equivalent to
local weak-star convergence with the condition that sup ||µk||(Ω) = C < ∞. We
observe that, by Lemma 1.1.1, this condition implies ||µ||(Ω) ≤ C.
Clearly weak-star convergence always implies local weak-star convergence.
On the other hand, if we suppose that µk locally weak-star converges to µ, then,
given ψ ∈ C0(Ω;Rm), for any ε > 0 there exists φ ∈ Cc(Ω;Rm) such that ||ψ −
φ||∞ < ε and so∣∣∣∣∫

Ω

ψ · dµk −
∫

Ω

ψ · dµ
∣∣∣∣ ≤ ∣∣∣∣∫

Ω

(ψ − φ) · dµk
∣∣∣∣+

∣∣∣∣∫
Ω

(ψ − φ) · dµ
∣∣∣∣

+

∣∣∣∣∫
Ω

φ · dµk −
∫

Ω

φ · dµ
∣∣∣∣

≤ 2Cε+

∣∣∣∣∫
Ω

φ · dµk −
∫

Ω

φ · dµ
∣∣∣∣ .

Now,
∫

Ω
φ · dµk →

∫
Ω
φ · dµ and so, since ε is arbitrary, we obtain weak-star

convergence.
Therefore, in what follows, we will always write µk

∗
⇀ µ to denote local weak-star

convergence, and, in the case of finite Radon measures, we will also check the
condition sup ||µk||(Ω) <∞.

We quote now a useful result about weak-star convergence.

Lemma 1.1.2. Let µ be a Radon measure on Ω, and let {µk} be a sequence of
Radon measures.
If µk and µ are positive, then the following are equivalent:

1. µk
∗
⇀ µ.

2. ∀A ⊂ Ω open,
µ(A) ≤ lim inf

k→+∞
µk(A)

and ∀K ⊂ Ω compact,
µ(K) ≥ lim sup

k→+∞
µk(K).



CHAPTER 1. PRELIMINARIES 15

3. ∀B ⊂⊂ Ω Borel set with µ(∂B) = 0,

lim
k→+∞

µk(B) = µ(B).

If µk and µ are Rm-vector valued Radon measures, µk
∗
⇀ µ and ||µk||

∗
⇀ ν, then

||µ|| ≤ ν. Moreover, if a µ-measurable set E ⊂⊂ Ω satisfies ν(∂E) = 0, then

µ(E) = lim
k→+∞

µk(E).

More generally, if f : Ω → Rm is a bounded Borel function with compact support
such that the set of its discontinuity points is ν-neglegible, then

lim
k→+∞

∫
Ω

f · dµk =

∫
Ω

f · dµ.

Proof. For the second part of the statement and the implication 1 → 2 we
refer to [AFP], Proposition 1.62. For the two remaining implications, we adapt
the proof in [EG], Section 1.9, Theorem 1, where Ω = RN .
In order to show that 2 implies 3, we take a Borel set B such that B ⊂ Ω and
µ(∂B) = 0. Then

µ(B) = µ(B◦) ≤ lim inf
k→+∞

µk(B
◦) ≤ lim sup

k→+∞
µk(B) ≤ µ(B) = µ(B).

Now we suppose that 3 holds and we observe that, since φ can be decomposed into
its positive and negative parts, we need only to prove 1 for nonnegative functions.
We fix ε > 0 and φ ∈ Cc(Ω) with φ ≥ 0. Let Ωs be defined as in the proof of
Proposition 1.1.1, but for s ∈ (1,+∞). By Remark 1.1.2, for all but countable
s, we have µ(∂Ωs) = 0. Therefore, there exists s0 such that supp(φ) ⊂ Ωs0

and µ(∂Ωs0) = 0. We can choose 0 = t0 < t1 < ... < tN = 2||φ||∞ such that
0 < ti − ti−1 < ε and µ(φ−1({ti})) = 0 for any i = 1, ..., N , by Remark 1.1.2. We
set Bi = φ−1((ti−1, ti]), then µ(∂Bi) = 0 for i ≥ 2. Now

N∑
i=2

ti−1µk(Bi) ≤
∫

Ω

φ dµk ≤
N∑
i=2

tiµk(Bi) + t1µk(Ωs0)

and
N∑
i=2

ti−1µ(Bi) ≤
∫

Ω

φ dµ ≤
N∑
i=2

tiµ(Bi) + t1µ(Ωs0);

and so 3 implies

lim sup
k→+∞

∣∣∣∣∫
Ω

φ dµk −
∫

Ω

φ dµ

∣∣∣∣ ≤ 2εµ(Ωs0),

which gives 1. �
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Remark 1.1.5. By Remark 1.1.2 and Lemma 1.1.2, we can assert that, if µk and
µ are positive Radon measures in Ω, for any x ∈ Ω and almost every r ∈ (0, R),
with R = Rx > 0 such that B(x,Rx) ⊂⊂ Ω, µ(∂B(x, r)) = 0 and so, if µk

∗
⇀ µ,

µk(B(x, r))→ µ(B(x, r)).
Moreover, if µk and µ are vector valued Radon measures, µk

∗
⇀ µ and ||µk||

∗
⇀ ν,

then for any x ∈ Ω and almost every r ∈ (0, R), with R = Rx > 0 such that
B(x,Rx) ⊂⊂ Ω, ν(∂B(x, r)) = 0 and µk(B(x, r))→ µ(B(x, r)).

Finally, we state a characterization of nonnegative linear functionals on C∞c (Ω).

Lemma 1.1.3. Let L : C∞c (Ω)→ R be linear and nonnegative; that is,

L(φ) ≥ 0, ∀φ ∈ C∞c (Ω) with φ ≥ 0.

Then there exists a positive Radon measure µ ∈Mloc(Ω) such that

L(φ) =

∫
Ω

φ dµ, ∀φ ∈ C∞c (Ω).

Proof. We choose a compact set K ⊂ Ω and we select a smooth function
ζ ∈ C∞c (Ω) with ζ = 1 on K and 0 ≤ ζ ≤ 1. Then, for any φ ∈ C∞c (Ω) with
supp(φ) ⊂ K, we set ψ = ||φ||∞ζ − φ ≥ 0. Therefore, since L is nonnegative, we
have 0 ≤ L(ψ) = ||φ||∞L(ζ)− L(φ) and so L(φ) ≤ C||φ||∞, with C := L(ζ).
L thus may be extended to a linear mapping L̂ : Cc(Ω) → R such that, for any
compact K ⊂ Ω,

sup{L(φ) : φ ∈ Cc(Ω;Rm), ||φ||∞ ≤ 1, supp(φ) ⊂ K} <∞.

Hence, Corollary 1.1.1 yields the existence of a real Radon measure µ such that

L(φ) =

∫
Ω

φ dµ, ∀φ ∈ Cc(Ω).

By the polar decomposition of measures, µ = h||µ||, where |h| = 1 ||µ||-a.e. The
fact that L is nonnegative implies that h = 1 ||µ||-a.e.; that is, µ is a positive
Radon measure. �

We recall now the statement of Lebesgue-Besicovitch differentiation theorem
and the definitions of approximate limit and precise representative.

Theorem 1.1.2. Let µ be a positive Radon measure on RN and u ∈ L1
loc(RN , µ).

Then
lim
r→0

1

µ(B(x, r))

∫
B(x,r)

u dµ = u(x)

for µ a.e. x ∈ RN .



CHAPTER 1. PRELIMINARIES 17

Proof. See [EG] Section 1.7.1 Theorem 1.

Corollary 1.1.2. Let µ be a positive Radon measure on RN , 1 ≤ p < ∞, and
u ∈ Lploc(RN , µ). Then

lim
r→0

1

µ(B(x, r))

∫
B(x,r)

|u− u(x)|p dµ = 0 (1.1.2)

for µ a.e. x.

Proof. See [EG] Section 1.7.1 Corollary 1.

Definition 1.1.5. A point x for which (1.1.2) with p = 1 holds is called a Lebesgue
point of u with respect to µ.

Definition 1.1.6. Assume u ∈ L1
loc(RN). Then

u∗(x) :=

lim
r→0

1

|B(x, r)|

∫
B(x,r)

u(y) dy if this limit exists

0 otherwise

is the precise representative of u.

Definition 1.1.7. Let u : RN → RM .

1. l ∈ RM is the approximate limit of u as y → x, and is denoted by

ap lim
y→x

u(y) = l

if ∀ ε > 0,

lim
r→0

|B(x, r) ∩ {|u− l| ≥ ε}|
|B(x, r)|

= 0;

2. u is approximately continuous at x ∈ RN if

ap lim
y→x

u(y) = u(x).

The following theorems assure the well posedness and the significance of the
previous definitions.

Theorem 1.1.3. The approximate limit is unique.

Proof. See [EG] Section 1.7.2 Theorem 2.

Moreover, we have the following result on approximate continuity.

Theorem 1.1.4. Let u : RN → RM be LN -measurable. Then u is approximately
continuous LN -a.e.

Proof. See [EG] Section 1.7.2 Theorem 3.
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1.2 Sobolev functions and p-capacity

Definition 1.2.1. For 1 ≤ p ≤ ∞ and k ∈ N, we define the Sobolev space

W k,p(Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) ∀α ∈ NN
0 , |α| ≤ k}

where Dαu is the αth-weak partial derivative of u, that is, an L1
loc function wich

satisfies ∫
Ω

uDαφ dx = (−1)|α|
∫

Ω

Dαuφ dx ∀φ ∈ C∞c (Ω)

and Dαφ =
∂α1+α2+...+αNφ

∂xα1
1 ∂x

α2
2 ...∂x

αN
N

.

The norm is given by

||u||Wk,p(Ω) =

∑
|α|≤k

∫
Ω

|Dαu|pdx

 1
p

for 1 ≤ p <∞

||u||Wk,∞(Ω) =
∑
|α|≤k

ess sup
Ω
|Dαu| for p = +∞.

We say that u ∈ W k,p
loc (Ω) if u ∈ W k,p(W ) for each open set W ⊂⊂ Ω.

Definition 1.2.2. A function ρ ∈ C∞c (RN) is a standard symmetric mollifying
kernel if it is a radial nonnegative function which satisfies supp(ρ) ⊂⊂ B(0, 1) and
||ρ||L1(RN ) = 1.
If u ∈ L1

loc(Ω), we define, for x ∈ Ωε := {x ∈ Ω : dist(x, ∂Ω) > ε},

uε(x) := u ∗ ρε(x) =

∫
Ω

u(y)ρε(x− y)dy

the mollification of u, where ρε(y) := 1
εN
ρ(y

ε
).

Theorem 1.2.1. (Properties of mollification)

1. For each ε > 0, uε ∈ C∞(RN) and Dαuε = (Dαρε) ∗ u for each multi-index α.

2. If u ∈ C(Ω), then uε → u uniformly on compact subsets of Ω.

3. If u ∈ Lploc(Ω) for some 1 ≤ p <∞, then uε → u in Lploc(Ω).

4. uε(x)→ u(x) if x is a Lebesgue point of u, therefore uε → u LN a.e.

5. If u ∈ W k,p
loc (Ω) for some 1 ≤ p ≤ ∞, then Dαuε = ρε ∗ Dαu in Ωε for each

|α| ≤ k.
In particular, for 1 ≤ p <∞, uε → u in W k,p

loc (Ω).

Proof. See [EG] Section 4.2.1 Theorem 1.
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Theorem 1.2.2. (Meyers-Serrin Approximation Theorem)
Let u ∈ W k,p(Ω) for some 1 ≤ p <∞.
Then there exists a sequence {uk} ⊂ W k,p(Ω) ∩ C∞(Ω)3 such that uk → u in
W k,p(Ω).

Proof. See [EG] Section 4.2.1 Theorem 2.

We present now the concept of capacity, which has been very useful in the study
of fine properties of Sobolev functions and which we will need in order to prove
results concerning absolute continuity of measures (Theorem 2.3.1).

Definition 1.2.3. For 1 ≤ p ≤ N and a compact subset K of the open set Ω in
RN , we define the p-capacity of K relative to Ω as

Capp(K,Ω) := inf

{∫
Ω

|∇φ|pdx : φ ∈ C∞c (Ω), φ ≥ 1 onK
}
.

If U ⊂ Ω is open, we set

Capp(U,Ω) := sup{Capp(K,Ω) : K ⊂ U compact}

and, for an arbitrary set A ⊂ Ω,

Capp(A,Ω) := inf{Capp(U,Ω) : A ⊂ U ⊂ Ω, U open}.

If Ω = RN , we write Capp(A,RN) = Capp(A), for any set A.

Remark 1.2.1. If 1 ≤ p < N and Ω = RN , the p-capacity of a set A may also be
defined as

Capp(A) = inf

{∫
RN
|Df |pdx : f ∈ Kp, {f ≥ 1}◦ ⊃ A

}
,

where

Kp := {f : RN → R : f ≥ 0, f ∈ Lp∗(RN), Df ∈ Lp(RN ;RN)}.

For this definition we refer to [EG], Section 4.7.1.

Remark 1.2.2. It is possible to show that, for any compact subset K of Ω,
Definition 1.2.3 is equivalent to

Capp(K,Ω) = inf

{∫
Ω

|∇φ|p dx : φ ∈ C∞c (Ω), 0 ≤ φ ≤ 1, {φ = 1}◦ ⊃ K

}
,

3With an abuse of notation, we denote by u ∈Wk,p(Ω)∩C∞(Ω) the equivalence class of functions in Wk,p(Ω)
which has a representative in C∞c (Ω).
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by the following approximation argument one finds in [Maz], §2.2.1, point (ii).
First, it is clear that for any K ⊂ Ω

inf

{∫
Ω

|∇φ|pdx : φ ∈ C∞c (Ω), φ ≥ 1 onK
}

≤ inf

{∫
Ω

|∇φ|pdx : φ ∈ C∞c (Ω), 0 ≤ φ ≤ 1, {φ = 1}◦ ⊃ K

}
,

since the second infimum is taken over a smaller set of functions.
Then we fix ε > 0 and pick ψ from the functions competing in the first infimum
such that

∫
Ω
|∇ψ|pdx ≤ Capp(K,Ω) + ε.

Let {λm} ⊂ C∞c (R) such that:

1. 0 ≤ λ′m ≤ 1 + 1
m
,

2. λm(t) = 0 in a neighborhood of (−∞, 0],

3. λm(t) = 1 in a neighborhood of [1,+∞),

4. 0 ≤ λm ≤ 1.

Therefore, 0 ≤ λm(ψ) ≤ 1 and this composition is clearly a smooth function equal
to 1 in a neighborhood of K.
So

inf

{∫
Ω

|∇φ|pdx : φ ∈ C∞c (Ω), 0 ≤ φ ≤ 1, {φ = 1}◦ ⊃ K

}
≤
∫

Ω

|∇λm(ψ)|pdx =

∫
Ω

|λ′m(ψ)|p|∇ψ|pdx ≤
(

1 +
1

m

)p
(Capp(K,Ω) + ε)

and sending m→ +∞ yields the opposite inequality and so the desired result.

Proposition 1.2.1. (Properties of capacity)
Let 1 ≤ p ≤ N .

1. If A1 ⊂ A2, then Capp(A1,Ω) ≤ Capp(A2,Ω).

2. If Ω1 ⊂ Ω2 are open and A ⊂ Ω1, then Capp(A,Ω2) ≤ Capp(A,Ω1). In
particular, if Ω2 = RN , Capp(A) ≤ Capp(A,Ω) for any open set Ω and any
set A ⊂ Ω.

3. If K1 and K2 are compact subsets of Ω, then

Capp(K1 ∪K2,Ω) + Capp(K1 ∩K2,Ω) ≤ Capp(K1,Ω) + Capp(K2,Ω).

4. If {Kj} is a monotone decreasing sequence of compact subsets of Ω, then

lim
j→+∞

Capp(Kj,Ω) = Capp

(
+∞⋂
j=1

Kj,Ω

)
.
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5. If {Aj} is a monotone increasing sequence of subsets of Ω, then

lim
j→+∞

Capp(Aj,Ω) = Capp

(
+∞⋃
j=1

Aj,Ω

)
.

6. If {Aj} is any sequence of subsets of Ω, then

Capp

(
+∞⋃
j=1

Aj,Ω

)
≤

+∞∑
j=1

Capp(Aj,Ω).

7. If A is a Borel subset of Ω, then

Capp(A,Ω) = sup{Capp(K,Ω) : K compact, K ⊂ A}.

Proof. Properties 1 and 2 are immediate consequences of the definition of p-
capacity.
For 3, we refer to [Maz], §2.2.1, point (v).
To prove 4, we notice that, for any ε > 0, there exists a function φ ∈ C∞c (Ω), φ ≥ 1
on
⋂+∞
j=1 Kj such that ∫

Ω

|∇φ|p dx ≤ Capp

(
+∞⋂
j=1

Kj,Ω

)
+ ε.

Since the sequence of compact sets is decreasing, there exists j0 = j0(ε) such that,
for any j ≥ j0, Kj ⊂ {φ ≥ 1− ε}; therefore

Capp

(
+∞⋂
j=1

Kj,Ω

)
≤ lim

j→+∞
Capp(Kj,Ω) ≤ Capp({φ ≥ 1− ε},Ω)

≤ (1− ε)−p
∫

Ω

|∇φ|p dx ≤ (1− ε)−p(Capp

(
+∞⋂
j=1

Kj,Ω

)
+ ε).

Since ε is arbitrary, property 4 follows.
For the other points, we refer to [HKM], Theorem 2.2 and 2.5. We observe that
in [HKM], the authors assume 1 < p < ∞, however, as we have shown, such an
assumption may be dropped in the proof of point 4. Points 5 and 6 are conse-
quences of point 1 and a lemma ([HKM], Lemma 2.3), whose proof relies only on
topological facts and on properties 1 and 3, which Maz’ja proved for 1 ≤ p ≤ N :
therefore these points are proved also in the case p = 1.
Any set function which is defined in the family of all subsets of an open set Ω
and which satisfies properties 1, 4 and 5 is called a Choquet capacity relative to Ω.
Point 7 is a property of Choquet capacities, whose proof may be found in [H], p.
149. �
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Remark 1.2.3. Property 7 in Proposition 1.2.1 is indeed true for a more general
class of sets, the Suslin sets, which contains the Borel sets, as it is shown in [Fe],
pag. 63-66.

Remark 1.2.4. Since clearly Capp(∅,Ω) = 0, from property 6 in Proposition 1.2.1
we deduce that Capp(·,Ω) is an outer measure on Ω. However, the p-capacity
relative to an open set Ω is not a Borel measure, since there are Borel sets of finite
capacity which are not Capp(·,Ω)-measurable.

Proposition 1.2.2. Let N ≥ 2, 1 ≤ p ≤ N , 0 < r < R <∞ and x ∈ RN , then

Capp(B(x, r), B(x,R)) =

NωN
(
N−p
p−1

)p−1

|R
p−N
p−1 − r

p−N
p−1 |1−p for 1 < p < N

NωN
(
log R

r

)1−N for p = N

and
Cap1(B(x, r), B(x,R)) ≤ NωNr

N−1.

In particular,

Capp(B(x, r), B(x, 2r)) ≤ C(N, p)rN−p for 1 ≤ p < N.

Proof. For 1 < p ≤ N , see [HKM], Section 2.11, and [Maz], § 2.2.4.
For p = 1, we use the following lemma ([Maz], §2.2.5): for any compact set K ⊂ Ω,

Cap1(K,Ω) = inf{HN−1(∂G) : K ⊂ G ⊂⊂ Ω, G open, ∂G C∞manifold}.

Hence, if K = B(x, r) and Ω = B(x,R), we see that

Cap1(B(x, r), B(x,R)) ≤ Cap1(B(x, r), B(x,R)) ≤ NωN(r + ε)N−1

for any 0 < ε < R− r, and so the estimate follows. �

Theorem 1.2.3. (Relations between capacity and Hausdorff measure)
For any 1 ≤ p < N and K compact subset of Ω, Capp(K,Ω) ≤ C(N, p)HN−p(K).
In particular, if HN−p(K) = 0, then Capp(K,Ω) = 0.
Moreover, if Ω = RN and A ⊂ RN , then

1. if 1 < p < N and HN−p(A) <∞, then Capp(A) = 0;

2. if 1 < p < N and Capp(A) = 0, then Hs(A) = 0 for s > N − p;

3. Cap1(A) = 0 if and only if HN−1(A) = 0.

Proof. Since K ⊂ Ω is compact, then dist(K, ∂Ω) = d > 0, and let {B(xk, rk)}
be a δ-covering of K; that is, K ⊂

⋃∞
k=1B(xk, rk) with 2rk < δ. We choose δ < d

2
.

We observe that, among the δ-coverings of K, those which better approximate the
SN−pδ -measure of K are those in which every ball has nonempty intersection with
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K, since we can always throw away balls which do not intersect K and obtain a
covering for which the sum

∑∞
k=1 ωN−pr

N−p
k is smaller. Thus, since

B(xk, rk) ∩ K 6= ∅ ∀k, we have dist(xk, ∂Ω) ≥ d − rk > d − δ
2
> 3d

4
> 0, which

implies that the balls B(xk, rk) and B(xk, 2rk) are inside Ω for each k.
Therefore, Capp(B(xk, rk),Ω) ≤ Capp(B(xk, rk), B(xk, 2rk)) (property 2 in Propo-
sition 1.2.1) and Proposition 1.2.2 states that

Capp(B(xk, rk), B(xk, 2rk)) ≤ C(N, p)rN−pk .

Hence, by subadditivity (property 6 in Proposition 1.2.1), we have

Capp(K,Ω) ≤
∞∑
k=1

Capp(B(xk, rk),Ω)

≤
∞∑
k=1

Capp(B(xk, rk), B(xk, 2rk)) ≤
∞∑
k=1

C(N.p)rN−pk

and so

Capp(K,Ω) ≤ CSN−pδ (K) ≤ CSN−p(K) ≤ C2N−pHN−p(K),

since we take the supremum over 0 < δ < d
2
and we use the estimate (1.1.1).

For the second part of the theorem, see [EG] Section 4.7.2 Theorems 3-4 and
Section 5.6.3 Theorem 3. �

The following theorem will show one important result on fine properties of
Sobolev functions in RN obtained using capacity.

Theorem 1.2.4. Let u ∈ W 1,p(RN), 1 ≤ p < N .

1. There is a Borel set B ⊂ RN such that Capp(B) = 0 and lim
r→0

1

|B(x, r)|

∫
B(x,r)

u dy

exists for each x ∈ RN \B.

2. For each x ∈ RN \B

lim
r→0

1

|B(x, r)|

∫
B(x,r)

|u− u∗(x)|p∗dy = 0,

where u∗ is the precise representative of u (Definition 1.1.6). Moreover, this
precise representative is p-quasicontinuous; that is, for any ε > 0, there exists
an open set V such that Capp(V ) ≤ ε and u|RN\V is continuous.

Proof. See [EG] Section 4.8 Theorem 1.
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Remark 1.2.5. In particular, it follows that the mollification of u converges point-
wise to u∗ up to a set B of Hausdorff dimension at most N − p: if x ∈ RN \ B,
then, by the definition of ρ and Jensen’s inequality, we have

|u∗(x)− uε(x)| =
∣∣∣∣∫

RN
(u∗(x)− u(y))ρε(x− y)dy

∣∣∣∣ ≤
||ρ||∞ωN

(
1

|B(x, ε)|

∫
B(x,ε)

|u(y)− u∗(x)|p∗dy
) 1

p∗

→ 0 as ε→ 0.

We state now a technical lemma which we will use in Chapter 2.

Lemma 1.2.1. Let 1 ≤ p < N and K be a compact subset of Ω. If Capp(K,Ω) =
0, then there exists a sequence of test functions φj ∈ C∞c (Ω) such that

1. 0 ≤ φj ≤ 1 and φj = 1 on K,

2. ||∇φj||Lp(Ω;RN ) → 0,

3. for each j, supp(φj) is contained in a compact set Cj ⊂ Ω such that

C1 ⊃ C2 ⊃ ... ⊃ K and
∞⋂
j=1

Cj = K,

4. if Ω = RN and 1 < p < N , φj(x)→ 0 for all x ∈ RN \A for some set A with
Capp(A) = 0.

Proof. By the definition of capacity, there exists of a sequence ψj ∈ C∞c (Ω)
such that ||∇ψj||Lp(Ω;RN ) → 0, which is point 2.
Moreover, by Remark 1.2.2, we also have point 1.

We observe that, since 1 ≤ p < N and ψj has compact support, the Gagliardo-
Nirenberg-Sobolev inequality is valid, so ||ψj||Lp∗ (Ω) ≤ C||∇ψj||Lp(Ω;RN ).
Thus, up to passing to a subsequence, ψj → 0 LN -a.e. in Ω.
We also point out the fact that we cannot have ||∇ψj||Lp(Ω;RN ) = 0 for some j,
otherwise ψj would be identically 0, which is in contradiction with the fact that
ψj = 1 on K.
Therefore, without loss of generality, we can ask that

||∇ψj||Lp(Ω;RN ) > ||∇ψj+1||Lp(Ω;RN )

for each j: indeed, ||∇ψj||Lp(Ω;RN ) > 0 for each j and goes to 0, so, up to choosing
a subsequence, we have monotone decay.

Now, let {δj}+∞
j=0 be a sequence which satisfies δj > 0, δj > δj+1 and δj → 0,

and define Kδj := {x : dist(x,K) ≤ δj}.
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Then, by properties of convolution and mollification, if ρ is a standard symmetric
mollifier, then χKδj−1

∗ρδj is a smooth function whose compact support is contained
in Kδj−1+δj =: Cj for each j ≥ 1.
We choose δ0 and δ1 in such a way that C1 ⊂ Ω.
Moreover, 0 ≤ χKδj−1

∗ ρδj ≤ 1 and it is identically equal to 1 in Kδj−1−δj .

So, if we define φj := ψj(χKδj−1
∗ρδj), then we have property 1, just by observing

that
{φj = 1}◦ = {ψj = 1}◦ ∩K◦δj−1−δj ⊃ K ∩Kδj−1−δj ⊃ K.

Then, we have
supp(φj) ⊂ supp(ψj) ∩Kδj−1+δj ⊂ Cj

and clearly Cj ⊃ Cj+1 by their definition, also
⋂∞
j=1 Cj =

⋂∞
j=1Kδj−1+δj = K. So

we have property 3.

Now we observe that

||∇φj||Lp(Ω;RN ) ≤ ||∇ψj(χKδj−1
∗ ρδj)||Lp(Ω;RN ) + ||ψj∇(χKδj−1

∗ ρδj)||Lp(Ω;RN ).

Clearly, ||∇ψj(χKδj−1
∗ ρδj)||Lp(Ω;RN ) ≤ ||∇ψj||Lp(Ω;RN ). The Hölder inequality

with p̂ = N
N−p , p̂

′
= N

p
yields

||ψj∇(χKδj−1
∗ ρδj)||Lp(Ω;RN ) ≤ ||ψj||Lp∗ (Ω)||∇(χKδj−1

∗ ρδj)||LN (Ω;RN )

and

|∇(χKδj−1
∗ ρδj)(x)| ≤

∫
Ω

χKδj−1
(y)|∇ρ(

x− y
δj

)| dy

δN+1
j

=

∫
B(0,1)

χKδj−1
(x− δjy)|∇ρ(y)| dy

δj
≤ ||∇ρ||L∞(B(0,1);RN )

ωN
δj
.

Then, by the Gagliardo-Nirenberg-Sobolev inequality, we have

||ψj∇(χKδj−1
∗ ρδj)||Lp(Ω;RN ) ≤ C||∇ψj||Lp(Ω;RN )|C1|

1
N

1

δj
.

So we need just to choose δj =
δ1

||∇ψ1||
1
2

Lp(Ω;RN )

||∇ψj||
1
2

Lp(Ω;RN )
for j ≥ 1 (the

multiplicative constant is due to the fact that we already fixed δ1 above) in order
to obtain also property 2.

Finally, if Ω = RN , in order to verify property 4, we notice that φj → 0 LN -a.e.
in RN and, by the Hölder inequality,

||φj||Lp(RN ) ≤ ||φj||Lp∗ (RN )|C1|
1
N ≤ ||ψj||Lp∗ (RN )|C1|

1
N ≤ C||∇ψj||Lp(RN ;RN ) → 0,
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and ||∇φj||Lp(RN ;RN ) → 0 as we showed.
So, φj → 0 in W 1,p(RN) and, since 1 < p < N , Theorem 4.3 in [HKM] implies
that φj(x)→ 0 for all x ∈ RN \ A, for some A with Capp(A) = 0. �

1.3 Functions of Bounded Variation

Definition 1.3.1. A function u ∈ L1(Ω) is called a function of bounded variation
if

sup

{∫
Ω

u divφ dx : φ ∈ C∞c (Ω;RN), ||φ||∞ ≤ 1

}
<∞.

We denote by BV (Ω) the space of all functions of bounded variation on Ω.
We say that u is locally of bounded variation, and we write u ∈ BVloc(Ω), if
u ∈ L1

loc(Ω) and if ∀ open set W ⊂⊂ Ω,

sup

{∫
W

u divφ dx : φ ∈ C∞c (W ;Rd), ||φ||∞ ≤ 1

}
<∞.

Theorem 1.3.1. (Riesz) Let u ∈ BVloc(Ω), then there exists a unique RN -vector
valued Radon measure µ such that∫

Ω

u divφ dx = −
∫

Ω

φ · dµ ∀φ ∈ C1
c (Ω;RN).

Proof. We define the linear functional L : C1
c (Ω;RN)→ R by

L(φ) := −
∫

Ω

u divφ dx, for φ ∈ C1
c (Ω;RN).

Since u ∈ BVloc(Ω), we have

sup
{
L(φ) : φ ∈ C∞c (W ;RN), ||φ||∞ ≤ 1

}
= C(W ) <∞

for each open set W ⊂⊂ Ω, and thus

|L(φ)| ≤ C(W )||φ||∞ for φ ∈ C1
c (W ;RN).

We fix any compact set K ⊂ Ω and then we choose an open set W such that
K ⊂ W ⊂⊂ Ω. For each φ ∈ Cc(Ω;RN) with supp(φ) ⊂ K, we choose a sequence
φk ∈ C1

c (W ;RN) such that φk → φ uniformly on W . Then we define

L̄(φ) := lim
k→+∞

L(φk).
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By the continuity of L on C1
c (Ω;RN) we have that this limit exists and is

independent of the choice of the sequence {φk} converging to φ. Thus L̄ uniquely
extends to a linear functional

L̄ : Cc(Ω;RN)→ R

and
sup

{
L̄(φ) : φ ∈ C∞c (Ω;RN), ||φ||∞ ≤ 1, supp(φ) ⊂ K

}
<∞

for each compact set K ⊂ Ω. So, by the Riesz Representation Theorem (Corollary
1.1.1), there exists an RN -vector valued Radon measure µ satisfying

L̄(φ) = −
∫

Ω

φ · dµ, ∀φ ∈ Cc(Ω,RN)

and so, since L̄(φ) = L(φ) for φ ∈ C1
c (Ω,RN), the result follows. �

This means that the distributional derivative Du of a BV function u is an RN -
vector valued Radon measure.
We write ||Du|| to indicate its total variation, which is a positive Radon measure
on Ω.

Remark 1.3.1. W 1,1(Ω) ⊂ BV (Ω) and ||Du||(Ω) = ||Du||L1(Ω;RN ) for u ∈ W 1,1(Ω).

Theorem 1.3.2. If {un} ⊂ BV (Ω) is such that un ⇀ u in Lp(Ω) for some
p ∈ [1,+∞), or weak-star for p = +∞, or in Lploc(Ω). Then ∀A ⊆ Ω open

||Du||(A) ≤ lim inf
n→+∞

||Dun||(A).

Proof. Indeed, we have ∀φ ∈ C∞c (A;RN)∫
A

un divφ dx→
∫
A

u divφ dx

and so, by Proposition 1.1.2,∫
A

u divφ dx = lim
n→+∞

∫
A

un divφ dx ≤ lim inf
n→+∞

||Dun||(A).

Taking the supremum over φ ∈ C∞c (A;RN) with ||φ||∞ ≤ 1 on the left hand
side, we have the claim. �

Remark 1.3.2. ||Du||(Ω) is a seminorm in BV (Ω). Clearly it is positively homo-
geneous and we get subadditivity by observing that∫

Ω

(u1 + u2)divφ dx ≤ ||Du1||(Ω) + ||Du2||(Ω).
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Theorem 1.3.3. The space BV (Ω) endowed with the norm

||u||BV (Ω) = ||u||L1(Ω) + ||Du||(Ω)

is a Banach space.

Proof. Let {un} be a Cauchy sequence in BV (Ω), then it is Cauchy in L1(Ω)
and so ∃u ∈ L1(Ω) such that un → u in L1.
By the lower semicontinuity (Theorem 1.3.2), u ∈ BV (Ω).
Moreover, ∀ε > 0,∃N ∈ N such that ||D(uk − un)||(Ω) < ε,∀k, n ≥ N .
So, again by lower semicontinuity, ||D(uk− u)||(Ω) ≤ lim inf

n
||D(uk− un)||(Ω) < ε

and from this it follows un converges to u in BV norm. �

Theorem 1.3.4. (Meyers-Serrin Approximation theorem)
Let u ∈ BV (Ω), then ∃{un} ⊂ BV (Ω) ∩ C∞(Ω) such that

1. un → u in L1(Ω)

2. ||Dun||(Ω)→ ||Du||(Ω).

Proof.
Fix ε > 0. Given a positive integer m, we set Ω0 = ∅, define for each k ∈ N, k ≥ 1
the sets

Ωk =

{
x ∈ Ω : dist(x, ∂Ω) >

1

m+ k

}
∩B(0, k +m)

and then we choose m such that ||Du||(Ω \ Ω1) < ε.
We define now Σk := Ωk+1 \ Ωk−1. Since {Σk} is an open cover of Ω, then there
exists a partition of unity subordinate to that open cover; that is, a sequence of
functions {ζk} such that:

1. ζk ∈ C∞c (Σk);

2. 0 ≤ ζk ≤ 1;

3.
∑+∞

k=1 ζk = 1 on Ω.

Then we take a standard mollifier ρ and ∀k we choose εk such that:

spt(ρεk ∗ (uζk)) ⊂ Σk

||ρεk ∗ (uζk)− uζk||L1(Ω) <
ε

2k

||ρεk ∗ (u∇ζk)− u∇ζk||L1(Ω;RN ) <
ε

2k

and we define uε =
∑+∞

k=1 ρεk ∗ (uζk).
Then uε ∈ C∞, since locally there are only a finite number of nonzero terms in the
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sum.
Also, uε → u in L1(Ω) since

||u− uε||L1(Ω) ≤
+∞∑
k=1

||ρεk ∗ (uζk)− uζk||L1(Ω) < ε.

Now, since uε ∈ L1(Ω), Theorem 1.3.2 implies ||Du||(Ω) ≤ lim inf
ε→0

||Duε||(Ω).

In order to obtain the reverse inequality, let φ ∈ C∞c (Ω;RN), ||φ||∞ ≤ 1. Then∫
Ω

uεdivφdx =
+∞∑
k=1

∫
Ω

ρεk ∗ (uζk)divφdx =
+∞∑
k=1

∫
Ω

uζkdiv(ρεk ∗ φ)dx

=
+∞∑
k=1

∫
Ω

udiv(ζk(ρεk ∗ φ))dx−
+∞∑
k=1

∫
Ω

u∇ζk · (ρεk ∗ φ)dx.

Using
+∞∑
k=1

∇ζk = 0 in Ω and the properties of the convolution, this last expres-

sion equals

+∞∑
k=1

∫
Ω

udiv(ζk(ρεk ∗ φ))dx−
+∞∑
k=1

∫
Ω

φ · (ρεk ∗ (u∇ζk)− u∇ζk)dx =: Iε1 + Iε2

Now, |ζk(ρεk ∗ φ)| ≤ 1 and each point in Ω belongs to at most three of the sets
{Σk}. Thus

|Iε1| ≤

∣∣∣∣∣
∫

Ω

udiv(ζ1(ρε1 ∗ φ))dx +
+∞∑
k=2

∫
Ω

udiv(ζk(ρεk ∗ φ))dx

∣∣∣∣∣ ≤
||Du||(Ω) +

+∞∑
k=2

||Du||(Σk) ≤ ||Du||(Ω) + 3||Du||(Ω \ Ω1) ≤ ||Du||(Ω) + 3ε

For the second term, we have |Iε2| < ε directly from our choice of εk.
Therefore, after passing to the supremum over φ, ||Duε||(Ω) ≤ ||Du||(Ω) + 4ε,
which yields uε ∈ BV (Ω) and point 2. �

Remark 1.3.3. If u ∈ BV (RN); that is, if Ω is the entire space RN , then the
approximating sequence satisfying properties 1) and 2) of Theorem 1.3.4 is much
easier to construct. Indeed, we need just to take uε = u ∗ ρε, where ρ is a standard
symmetric mollifier.
Indeed, uε → u in L1(RN) since u ∈ L1(RN).
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Secondly, we observe that

||∇uε||L1(RN ;RN ) = sup

{∫
RN
uε(x)divφ(x) dx : φ ∈ C∞c (RN ;RN), ||φ|| ≤ 1

}
= sup

{∫
RN

∫
RN
u(y)ρε(x− y)divφ(x) dxdy : φ ∈ C∞c (RN ;RN), ||φ|| ≤ 1

}
= sup

{∫
RN
u(y)divφε(y) dx : φ ∈ C∞c (RN ;RN), ||φ|| ≤ 1

}
≤ ||Du||(RN)

and so, by lower semicontinuity of the total variation, ||∇uε||L1(RN ;RN ) → ||Du||(RN).
We may fix a sequence εk → 0. Theorem 1.3.2 implies that for any open set A
||Du||(A) ≤ lim inf

k→+∞
||Duεk ||(A) and we observe that for any compact set K and

φ ∈ C∞c (K;RN), ||φ||∞ ≤ 1 we have∫
RN
uεk(x)divφ(x) dx =

∫
RN

∫
RN

divφ(x)u(y)ρεk(x− y) dydx

=

∫
RN
u(y)divφεk(y) dy ≤ ||Du||(K +B(0, εk))

since supp(φεk) ⊂ K + B(0, εk). Thus we can take the supremum over φ in order
to obtain ||Duεk ||(K) ≤ ||Du||(K +B(0, εk)), which implies lim sup

k→+∞
||Duεk ||(K) ≤

||Du||(K) since K is compact.
Hence the sequence of Radon measures ||∇uεk || satisfies point 2 of Lemma 1.1.2
and so we have point 1 of the same lemma; that is, ||Duεk ||

∗
⇀ ||Du|| inMloc(RN).

Moreover, since we have shown above that supk ||Duεk ||(RN) ≤ ||Du||(RN) < ∞,
Remark 1.1.4 yields also weak-star convergence inM(RN).

This remark applies also to BV functions with compact support inside Ω, since
these are trivially in BV (RN). Given u ∈ BV (Ω) with compact support, we can
indeed extend it to

û(x) =

{
u(x) if x ∈ Ω

0 if x ∈ RN \ Ω.

It is clear that û ∈ L1(RN). If we let ξ ∈ C∞c (Ω), ||ξ||∞ ≤ 1 and ξ = 1 in a
neighborhood of the support of u, then, for any φ ∈ C∞c (RN ;RN), ||φ||∞ ≤ 1, we
have ∫

RN
ûdivφ dx =

∫
Ω

udivφ dx =

∫
Ω

udiv(ξφ+ (1− ξ)φ) dx

=

∫
Ω

udiv(ξφ) dx ≤ ||Du||(Ω),

since ξφ ∈ C∞c (Ω;RN) and ||ξφ||∞ ≤ 1.
Taking the supremum over φ we obtain ||Dû||(RN) ≤ ||Du||(Ω) <∞.
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1.4 Sets of finite perimeter

Definition 1.4.1. A measurable set E ⊂ Ω is called a finite perimeter set in Ω
(or a Caccioppoli set) if χE ∈ BV (Ω).
A measurable set E ⊂ RN is said to have locally finite perimeter in Ω if χE ∈
BVloc(Ω).

Consequently, DχE is an RN -vector valued Radon measure on Ω whose total
variation is ||DχE||.
By the polar decomposition of measures, there exists a ||DχE||-measurable func-
tion with modulus 1 ||DχE||-a.e., which we denote by νE, such that DχE =
νE||DχE||.
Unless otherwise stated, from now on E will be a set of locally finite perimeter in
Ω.

Example 1.4.1. Any open bounded set E ⊂ Ω with ∂E ∈ C2 is a set of finite
perimeter in Ω.
Indeed, ∀φ ∈ C∞c (Ω;RN) with ||φ||∞ ≤ 1, by the classical Gauss-Green formula
we have ∫

Ω∩E
divφ dx = −

∫
∂(Ω∩E)

φ · νE dHN−1 = −
∫

Ω∩∂E
φ · νE dHN−1

≤
∫

Ω∩∂E
|φ||νE| dHN−1 ≤ HN−1(Ω ∩ ∂E),

where νE is the interior unit normal. Taking the supremum over φ yields ||DχE||(Ω) ≤
HN−1(Ω ∩ ∂E).
Therefore, E has finite perimeter and so, for any φ ∈ C∞c (Ω;RN),∫

Ω

χEdivφ dx = −
∫

Ω

φ ·DχE = −
∫

Ω∩∂E
φ · νE dHN−1.

This implies that DχE = νEHN−1x∂E in M(Ω;RN), by Riesz Representation
Theorem (Theorem 1.3.1), and so ||DχE|| = HN−1x∂E, which in particular yields

||DχE||(Ω) = HN−1(Ω ∩ ∂E). (1.4.1)

Remark 1.4.1. It can be also shown that every open bounded set with Lipschitz
boundary is a set of finite perimeter, with equality (1.4.1) holding, since this is
a consequence of the extension theorem for functions of bounded variation (see
[EG], Section 5.4). Moreover, any bounded open set Ω satisfying HN−1(∂Ω) <∞
has finite perimeter in RN (see [AFP], Proposition 3.62).

Equality (1.4.1) is not valid in general for sets of finite perimeter, as the following
example will show.
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Example 1.4.2. Let N ≥ 2, {xi} = QN ∩ [0, 1]N , E =
⋃∞
i=0 B(xi, ε2

−i), with
ε > 0 that shall be assigned, and [0, 1]N ⊂ Ω. We have

|E| ≤
∞∑
i=0

ωNε
N2−iN =

ωNε
N

1− 2−N
.

Since the rational points are dense in [0, 1]N , then E = [0, 1]N and ∂E = E \ E,
since E is open, which implies

|∂E| ≥ |E| − |E| ≥ 1− ωNε
N

1− 2−N
> 0

for ε small enough. This implies HN−1(∂E) =∞.
Observing that ∂E ⊂

⋃∞
i=0 ∂B(xi, ε2

−i), we have∫
Ω∩E

divφ dx = −
∫
∂E

φ · νE dHN−1 ≤
∞∑
i=0

∫
∂B(xi,ε2−i)

|φ||νE| dHN−1

≤
∞∑
i=0

HN−1(∂B(xi, ε2
−i)) =

∞∑
i=0

NωNε
N−12−(N−1)i =

NωNε
N−1

1− 2−(N−1)
.

Thus E is a set of finite perimeter for which ||DχE||(Ω) 6= HN−1(Ω ∩ ∂E).

This may suggest that for a set of finite perimeter is interesting to consider not
the whole topological boundary, but subsets of ∂E instead.

Definition 1.4.2. Let x ∈ Ω, then x ∈ ∂∗E, the reduced boundary of E, if

1. ||DχE||(B(x, r)) > 0,∀r > 0;

2. limr→0
1

||DχE ||(B(x,r))

∫
B(x,r)

νEd||DχE|| = νE(x);

3. |νE(x)| = 1.

It can be shown that this definition implies a geometrical characterisation of
the reduced boundary, by using the blow-up of the set E around a point of ∂∗E.

Definition 1.4.3. For x ∈ ∂∗E we define the hyperplane

H(x) = {y ∈ RN : ν(x) · (y − x) = 0}

and the half-spaces

H+(x) = {y ∈ RN : ν(x) · (y − x) ≥ 0},

H−(x) = {y ∈ RN : ν(x) · (y − x) ≤ 0}.
Also, for r > 0, we set

Er(x) = {y ∈ RN : x+ r(y − x) ∈ E}
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Theorem 1.4.1. If E is a set of finite perimeter in Ω, x ∈ ∂∗E and ν(x) =
−νE(x), then

χEr → χH−(x) in L1
loc(Ω)

χΩ\Er → χH−(x) in L1
loc(Ω)

as r → 0.

Proof. See [EG] Section 5.7.2 Theorem 1.

Formulated in another way, for r > 0 small enough, E ∩ B(x, r) is approxima-
tively equal to the half ball H−(x) ∩B(x, r).

Corollary 1.4.1. If x ∈ ∂∗E and ν(x) = −νE(x), then

1. lim
r→0

1

rN
|B(x, r) ∩ E ∩H+(x)| = 0,

2. lim
r→0

1

rN
|(B(x, r) \ E) ∩H−(x)| = 0.

Proof. We have
1

rN
|B(x, r)∩E∩H+(x)| = |B(x, 1)∩Er∩H+(x)| → |B(x, 1)∩H−(x)∩H+(x)| = 0,

by Theorem 1.4.1. Point 2 follows from the same theorem and

1

rN
|(B(x, r) \ E) ∩H−(x)| = 1

rN
(|B(x, r) ∩H−(x)| − |B(x, r) ∩ E ∩H−(x)|)

=
ωN
2
− |B(x, 1) ∩ Er ∩H−(x)|

→ ωN
2
− |B(x, 1) ∩H−(x)| = 0.

�
Using this result, we can give a generalization of the concept of unit interior

normal (respectively, unit exterior normal, up to a sign).

Definition 1.4.4. A unit vector ν(x) = −νE(x) for which property 1 of Corollary
1.4.1 holds is called the measure theoretic unit exterior normal to E at x, while,
accordingly, νE(x) is called the measure theoretic unit interior normal to E at x.

It follows that the measure theoretic unit interior normal νE is well defined at
least on the reduced boundary.
Moreover, the next theorem shows us that the reduced boundary can be written
as a countable union of compact subset of C1 manifolds, up to a set of Hausdorff
dimension at most N − 1.

Theorem 1.4.2. Assume E is a set of locally finite perimeter in RN . Then
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1. ∂∗E is a (N − 1)-rectifiable set; that is, there exist a countable family of C1

manifolds Sk, a family of compact sets Kk ⊂ Sk and set N of HN−1-measure
zero such that

∂∗E =
+∞⋃
k=1

Kk ∪N ;

2. νE|Sk is normal to Sk;

3. ||DχE|| = HN−1x∂∗E and for HN−1-a.e. x ∈ ∂∗E,

lim
r→0

||DχE||(B(x, r))

ωN−1rN−1
= 1.

Proof. See [EG] Section 5.7.3 Theorem 2.

We introduce now the density of a set at a certain point, in order to select
another useful subset of the topological boundary.

Definition 1.4.5. For every α ∈ [0, 1] and every measurable set E ⊂ RN , we
define

Eα := {x ∈ RN : D(E, x) = α},
where

D(E, x) := lim
r→0

|(B(x, r) ∩ E)|
|B(x, r)|

.

Definition 1.4.6. Referring to Definition 1.4.5,

1. E1 is called the measure theoretic interior of E.

2. E0 is called the measure theoretic exterior of E.

3. The measure theoretic (or essential) boundary of E is the set ∂mE := RN \
(E0 ∪ E1).

Remark 1.4.2. It is clear that E◦ ⊂ E1 and RN \ E ⊂ E0. Hence one has

∂mE ⊂ RN \ (E◦ ∪ RN \ E) = E \ E◦ = ∂E.

Moreover, by the Lebesgue-Besicovitch differentiation theorem (Theorem 1.1.2),
∂mE has LN -measure 0, since it is the set of non-Lebesgue points of χE.

We further observe that, as in [EG] Section 5.8, it is possibile to define the
measure theoretic boundary without using the density of a set.
Indeed the previous definition is equivalent to the following:

Definition 1.4.6’ Let x ∈ RN , then x ∈ ∂mE, the meaure theoretic boundary
of E, if the following two conditions hold:
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1. lim sup
r→0

|B(x, r) ∩ E|
rN

> 0,

2. lim sup
r→0

|B(x, r) \ E|
rN

> 0.

Theorem 1.4.3. If E ⊂ Ω is a set of finite perimeter, then

∂∗E ⊂ E
1
2 ⊂ ∂mE, HN−1(Ω \ (E0 ∪ ∂∗E ∪ E1) = 0.

In particular, E has density either 0, 1
2
or 1 at HN−1-a.e. x ∈ Ω, and, even if

E is only locally of finite perimeter, HN−1-a.e. x ∈ ∂mE belongs to ∂∗E; that is,
HN−1(∂mE \ ∂∗E) = 0.

Proof. See [EG] Section 5.8 Lemma 1 and [AFP] Theorem 3.61.

Remark 1.4.3. Since the functions of bounded variations are elements of L1, they
are equivalence class of functions, so that changing the value of any such function
on a set of LN -measure zero does not modify the BV class of the function.
Therefore, this is true also for sets of finite perimeter and we can choose any
representative Ẽ for E, which differs only by a set of measure zero, without altering
the measure theoretic boundary.
Throughout, we choose this preferred representative for E:

E := E1 ∪ ∂mE.

One of the greatest achievements of BV theory is to establish a generaliza-
tion of the Gauss-Green formula for every set of finite perimeter, though only for
differentiable vector fields.

Theorem 1.4.4. (Gauss-Green formula on sets of finite perimeter)
Let E ⊂ RN be a set of locally finite perimeter. Then for HN−1 a.e. x ∈ ∂mE,
there is a unique measure theoretic interior unit normal νE(x) such that ∀φ ∈
C1
c (RN ;RN) one has ∫

E

divφ dx = −
∫
∂mE

φ · νE dHN−1.

Proof. Since E is a set of locally finite perimeter, DχE = νEHN−1x∂∗E (Theo-
rem 1.4.2), where νE is the measure theoretic interior unit normal. Also, Theorem
1.4.3 implies HN−1(∂mE \ ∂∗E) = 0. Hence, for any φ ∈ C1

c (RN ;RN),∫
Ω

χEdivφ dx = −
∫

Ω

φ ·DχE = −
∫
∂mE

φ · νE dHN−1. �

Remark 1.4.4. Since HN−1(∂mE\∂∗E) = 0 (Theorem 1.4.3), without change, we
can integrate on the measure theoretic or on the reduced boundary with respect to
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the measure HN−1. Since in many practical cases ∂mE is easier to be determined,
Theorem 1.4.4 is often stated in this way. However, since Theorem 1.4.2 states
that ||DχE|| � HN−1x∂∗E and the precise representative of χE is well defined
on E1 ∪ ∂∗E ∪ E0 (Lemma 1.4.1 below), in what follows we will always use the
reduced boundary in the Gauss-Green formula.

Remark 1.4.5. We also observe that if E is a bounded set of finite perimeter
in RN , then we can drop the assumption on the support of φ. Indeed, there
exists R > 0 such that E ⊂ B(0, R), and so, given φ ∈ C1(RN ;RN), we can take
ϕ ∈ C∞c (RN), ϕ = 1 in B(0, R) (which in particular implies ∇ϕ = 0 in E), in
order to obtain∫

E

divφ dx =

∫
E

(ϕdivφ+ φ · ∇ϕ) dx =

∫
E

div(φϕ) dx

= −
∫
∂∗E

(φϕ) · νE dHN−1 = −
∫
∂∗E

φ · νE dHN−1.

It is also easy to see that if E ⊂⊂ Ω ⊂ RN , then we can take just φ ∈ C1(Ω;RN).

As in the case of Sobolev functions, it can be shown that for BV functions the
precise representative is well defined and it is the limit of the mollified sequence.

Definition 1.4.7. Let u ∈ L1
loc(Ω) and a ∈ RN .

We say that ua(x) is the approximate limit of u at x ∈ Ω restricted to Πa(x) :=
{y ∈ RN : (y − x) · a ≥ 0} if, for any ε > 0,

lim
r→0

|{y ∈ RN : |u(y)− ua(x)| ≥ ε} ∩B(x, r) ∩ Πa(x)|
|B(x, r) ∩ Πa(x)|

= 0

Definition 1.4.8. We say that x ∈ Ω is a regular point of a function u ∈ BV (Ω)
if there exists a vector a ∈ RN such that the approximate limits ua(x) and u−a(x)
exist. The vector a is called defining vector.

Example 1.4.3. Let E be a set of finite perimeter, for which we choose the
representative E1 ∪ ∂mE (see Remark 1.4.3), and u = χE, then each point in
E1 ∪ E0 ∪ ∂∗E is a regular point.
If x ∈ E1, ∀a ∈ RN (χE)a(x) = 1. ∀ε > 0 we have

{y ∈ RN : |χE(y)− 1| ≥ ε} ∩B(x, r) = E0 ∩B(x, r).

So,

lim
r→0

|{y ∈ RN : |χE(y)− 1| ≥ ε} ∩B(x, r)|
|B(x, r)|

= lim
r→0

|E0 ∩B(x, r)|
|B(x, r)|

= 1−D(E, x) = 0.
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Therefore, ∀a ∈ RN

|{y ∈ RN : |χE(y)− 1| ≥ ε} ∩B(x, r) ∩ Πa(x)|
|B(x, r) ∩ Πa(x)|

≤ |{y ∈ RN : |χE(y)− 1| ≥ ε} ∩B(x, r)|
|B(x, r)|

|B(x, r)|
|B(x, r) ∩ Πa(x)|

= 2
|{y ∈ RN : |χE(y)− 1| ≥ ε} ∩B(x, r)|

|B(x, r)|
→ 0 as r → 0.

In an analogous way, we show that ∀x ∈ E0 (χE)a(x) = 0 ∀a ∈ RN . ∀ε > 0 we
have

{y ∈ RN : |χE(y)| ≥ ε} ∩B(x, r) = E ∩B(x, r)

and so

lim
r→0

|{y ∈ RN : |χE(y)| ≥ ε} ∩B(x, r)|
|B(x, r)|

= lim
r→0

|E ∩B(x, r)|
|B(x, r)|

= D(E, x) = 0.

Therefore, ∀a ∈ RN

|{y ∈ RN : |χE(y)| ≥ ε} ∩B(x, r) ∩ Πa(x)|
|B(x, r) ∩ Πa(x)|

≤ |{y ∈ RN : |χE(y)| ≥ ε} ∩B(x, r)|
|B(x, r)|

|B(x, r)|
|B(x, r) ∩ Πa(x)|

= 2
|{y ∈ RN : |χE(y)| ≥ ε} ∩B(x, r)|

|B(x, r)|
→ 0 as r → 0.

Now let x ∈ ∂∗E and a be the measure theoretic interior normal. Then
(χE)a(x) = 1 and (χE)−a(x) = 0.
Referring to the notation of Corollary 1.4.1, we have Πa(x) = H−(x) and
Π−a(x) = H+(x), hence ∀ε > 0

lim
r→0

|{y ∈ RN : |χE(y)− 1| ≥ ε} ∩B(x, r) ∩ Πa(x)|
|B(x, r) ∩ Πa(x)|

= lim
r→0

|E0 ∩B(x, r) ∩ Πa(x)|
|B(x, r) ∩ Πa(x)|

= lim
r→0

2

ωNrN
|(B(x, r) \ E) ∩H−(x)| = 0

and

lim
r→0

|{y ∈ RN : |χE(y)| ≥ ε} ∩B(x, r) ∩ Π−a(x)|
|B(x, r) ∩ Π−a(x)|

= lim
r→0

|E ∩B(x, r) ∩ Π−a(x)|
|B(x, r) ∩ Π−a(x)|

= lim
r→0

2

ωNrN
|B(x, r) ∩ E ∩H+(x)| = 0.

This shows our claim.
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Theorem 1.4.5. Let u ∈ BV (Ω). The set of irregular points has HN−1-measure
zero.

Proof. See [VH] Chapter 4 §5.5, or [EG] Section 5.9 Theorem 3.

Theorem 1.4.6. Let u ∈ BV (Ω) and x be a regular point of u. Then

1. If ua(x) = u−a(x), any b ∈ RN is a defining vector and ub(x) = ua(x); that
is, x is a point of approximate continuity.

2. If ua(x) 6= u−a(x), then a is unique up to a sign.

3. The mollification of u converges to the precise representative u∗ at each regular
point and u∗(x) = 1

2
(ua(x) + u−a(x)).

Proof. See [VH] Chapter 4 §4.4 and Chapter 4 §5.6 Theorem 1, or [EG] Section
5.9 Corollary 1.

Remark 1.4.6. By Theorem 1.1.4, we deduce that condition 1) in Theorem 1.4.6
holds LN -a.e.

We state now some standard results on the mollification of characteristic func-
tions of sets of finite perimeter.

Remark 1.4.7. By Remark 1.3.3, if E be a set of finite perimeter and {χδk}
denotes the mollification of χE, then

||∇χδk ||L1(RN ) ≤ ||DχE||(RN)

and
||∇χδk ||L1(RN ) → ||DχE||(RN)

Lemma 1.4.1. If χδ is the mollification of χE for a set of finite perimeter E, then
the following hold:

1. χδ ∈ C∞(RN);

2. There is a set N with HN−1(N ) = 0 such that, for all x /∈ N , χδ(x)→ χ∗E(x)
and

χ∗E(x) =


1 if x ∈ E1

1
2

if x ∈ ∂∗E
0 if x ∈ E0

;

3. ∇χδ
∗
⇀ Dχ∗E inM(RN ;RN);

4. DχE = Dχ∗E.

5. If U is an open bounded set with ||DχE||(∂U) = 0, then ||∇χδ||(U) →
||DχE||(U);
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Proof.

1. It follows from Theorem 1.2.1.

2. From Theorems 1.4.5 and 1.4.6, we know χδ → χ∗E HN−1-a.e. and χ∗E(x) =
limr→0

1
|B(x,r)|

∫
B(x,r)

χE(y)dy = D(E, x), so if x ∈ E1, χ∗E(x) = 1; if x ∈ E0

then χ∗E(x) = 0 and, since ∂∗E ⊂ E
1
2 , if x ∈ ∂∗E then χ∗E(x) = 1

2
.

3. Since χδ → χ∗E in L1(RN), then∫
RN
χδψ dx→

∫
RN
χ∗Eψ dx

for each ψ ∈ Cc(RN); that is, they converge as distributions, which implies
∇χδ

∗
⇀ Dχ∗E as distributions:∫
RN
∇χδ · φ dx = −

∫
RN
χδdivφ dx→ −

∫
RN
χ∗Edivφ dx =

∫
RN
φ · dDχ∗E

for each φ ∈ C∞c (RN ;RN). Consequently they converge as RN -vector valued
Radon measures, by the density of C∞c (RN ;RN) in Cc(RN ;RN) with respect to
the sup norm and by the uniform boundedness of total variation (see Remark
1.4.7).

4. It is immediate from the fact that χ∗E = χE LN -a.e. and the definition of
derivative of a BV function.

5. Let {δk} be a nonnegative sequence converging to 0. Since χE has com-
pact support in Ω, Remark 1.3.3 yields that the sequence of Radon measures
||∇χδk || converges weak-star to ||DχE|| in M(RN) and thus Lemma 1.1.2
implies our assertion. �

We state now the co-area formula, which shows an important connection be-
tween BV functions and sets of finite perimeter.

Theorem 1.4.7. (Federer and Fleming co-area fromula)
If u ∈ BV (Ω), then for L1 a.e. s ∈ R, the set {u > s} has finite perimeter in Ω
and

||Du||(Ω) =

∫ +∞

−∞
||Dχ{u>s}||(Ω)ds.

Conversely, if u ∈ L1(Ω) and
∫ +∞
−∞ ||Dχ{u>s}||(Ω)ds <∞, then u ∈ BV (Ω).

Moreover, for any Borel set B ⊂ Ω we have

||Du||(B) =

∫ +∞

−∞
||Dχ{u>s}||(B)ds.

Proof. See [EG] Section 5.5 Theorem 1 and [AFP] Theorem 3.40.
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Remark 1.4.8. A consequence of Theorem 1.4.7 is that, for any u ∈ BV (Ω),
||Du|| � HN−1. Indeed, for any Borel set B ⊂ Ω such that HN−1(B) = 0, co-area
formula implies ||Du||(B) = 0.

Lemma 1.4.2. Let u : Ω → R be a Lipschitz function, and let A ⊂ RN be a set
of measure zero.
Then

HN−1(A ∩ u−1(s)) = 0 for L1-a.e. s ∈ R.

Proof. It is an immediate consequence of the classical co-area formula for Lip-
schitz functions (see [EG], Section 3.4.2 Theorem 1); that is,

0 =

∫
A

|∇u(x)|dx =

∫ +∞

−∞
HN−1(A ∩ u−1(s))ds.�

1.5 Generalizations of the Gauss-Green formula

In this paragraph, we formulate three extensions of the Gauss-Green formula for
sets of finite perimeter and fields with lower regularity, in order to compare them
with those we will provide in the following chapters.
The first one is about Lipschitz fields.

Theorem 1.5.1. (De Giorgi and Federer) If E is a bounded set of finite perime-
ter in RN and F : RN → RN is locally Lipschitz, then∫

E

divF dx = −
∫
∂∗E

F · νE dHN−1, (1.5.1)

where νE is the measure theoretic interior normal to E.

Proof. Let Fε = F ∗ ρε be a mollification of F , then, by Remark 1.4.5, we have∫
E

divFε dx = −
∫
∂∗E

Fε · νE dHN−1.

Since Fε → F uniformly on compact sets, by the continuity of F and Theo-
rem 1.2.1, and ∂∗E is bounded and has finite HN−1-measure, then we can apply
Lebesgue’s dominated convergence theorem to the right hand side and obtain

lim
ε→0

∫
∂∗E

Fε · νE dHN−1 =

∫
∂∗E

F · νE dHN−1.

On the other hand, we can find R large enough such that E ⊂⊂ B(0, R) and,
clearly, F is Lipschitz continuous on B(0, R): hence, F ∈ W 1,∞(B(0, R),RN) (see
[E], Section 5.8.2, Theorem 4) and, in particular, F ∈ W 1,1(B(0, R),RN).
By Theorem 1.2.1, we have Fε → F in W 1,1

loc (B(0, R),RN) and this yields
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divFε → divF in L1(E). Thus we obtain (1.5.1). �

A Gauss-Green formula for essentially bounded vector fields of bounded varia-
tions on bounded sets of finite perimeter was found by Vol’pert in the ’60s ([VH]).
The first ingredient is the product rule for essentially bounded BV functions, then
we need to show that, broadly speaking, the gradient of compactly supported BV
functions has zero mean value, as it happens for C1

c functions.

Proposition 1.5.1. Let u, v ∈ BV (Ω) ∩ L∞(Ω), then uv ∈ BV (Ω) and for each
i = 1, ..., N

Di(uv) = u∗Div + v∗Diu , (1.5.2)

in the sense of Radon measures, where u∗ is the precise representative of u (Defi-
nition 1.1.6).
In particular, for any set of finite perimeter E ⊂⊂ Ω,

χ∂∗EDu = (uνE − u−νE)DχE (1.5.3)

and

D(uχE) = uνEDχE + χE1Du, (1.5.4)
D(uχE) = u−νEDχE + χE1∪∂∗EDu, (1.5.5)

where νE is the measure theoretic interior normal to E and u±νE are the approxi-
mate limit of u restriced to Π±νE (see Definition 1.4.7).

Proof. See [VH] Ch.4 §6.4. and Ch.5 §1.3. We also give a sketch of the proof
of (1.5.4).
If we apply (1.5.2) to v = χE, we obtain

D(uχE) = u∗DχE + χ∗EDu. (1.5.6)

We observe that D(uχE) = D(uχ2
E): indeed, for any φ ∈ C1

c (Ω;RN), we have∫
Ω

φ · dD(uχE) = −
∫

Ω

uχEdivφ dx = −
∫

Ω

uχ2
Edivφ dx =

∫
Ω

φ · dD(uχ2
E),

and the density of C1
c (Ω;RN) in Cc(Ω;RN) yields the desired equality. Therefore

we deduce

D(uχE) = u∗DχE + χ∗EDu = D(uχ2
E)

= (uχE)∗DχE + χ∗ED(uχE) = (uχE)∗DχE + (χ∗E)2Du+ χ∗Eu
∗DχE.

It is possible to show that (uχE)∗(x) = 1
2
uνE(x) for HN−1-a.e. x ∈ ∂mE (see [VH],

Ch.5 §1.2 Theorem 1) and that the defining vector of u on ∂∗E is the measure
theoretic interior normal to E, νE. Moreover, since supp(DχE) ⊂ ∂∗E, χ∗E =
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χE1 + 1
2
χ∂∗E HN−1-a.e. (Lemma 1.4.1 and Theorem 1.4.3) and ||Du|| � HN−1

(Remark 1.4.8), we have

1

2
uνEDχE + (χE1 +

1

4
χ∂∗E)Du+

1

4
(uνE + u−νE)DχE

=
1

2
(uνE + u−νE)DχE + (χE1 +

1

2
χ∂∗E)Du,

which implies
1

4
(uνE − u−νE)DχE −

1

4
χ∂∗EDu = 0; (1.5.7)

that is, (1.5.3). Now, if we add twice (1.5.7) to (1.5.6) we get

D(uχE) =
1

2
(uνE + u−νE)DχE + (χE1 +

1

2
χ∂∗E)Du− 1

2
χ∂∗EDu+

1

2
(uνE − u−νE)DχE

= uνEDχE + χE1Du,

which is (1.5.4). To obtain (1.5.5), we subtract twice equation (1.5.7) from (1.5.4)
instead:

D(uχE) =
1

2
(uνE + u−νE)DχE + (χE1 +

1

2
χ∂∗E)Du+

1

2
χ∂∗EDu−

1

2
(uνE − u−νE)DχE

= u−νEDχE + χE1∪∂∗EDu.

This ends the proof. �

Lemma 1.5.1. If u ∈ BV (Ω) and has compact support, then∫
Ω

dDu = Du(Ω) = 0.

Proof. Since u has compact support, we can extend it to

û(x) =

{
u(x) if x ∈ Ω

0 if x ∈ RN \ Ω

and, by Remark 1.3.3, û ∈ BV (RN). With a little abuse of notation, we will
denote this extension again by u.

So, u = 0 on RN \ Ω. In particular, this implies that ||Du||(A) = 0 for each
open set A ⊂ RN \ Ω: indeed

0 =

∫
RN
udivφ dx = −

∫
RN
φ · dDu ∀φ ∈ C∞c (A;RN)

and ||Du||(A) is the supremum of these integrals over φ ∈ C∞c (A;RN) with ||φ||∞ ≤
1, by Proposition 1.1.2. By the properties of positive Radon measures (Proposition
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1.1.1), this implies ||Du||(B) = 0 for any Borel set B ⊂ RN \ Ω.
We set Ωk := {x ∈ RN : k > dist(x,Ω) ≥ k − 1} for k ≥ 2 and Ω1 := {x ∈ RN :
1 > dist(x,Ω) ≥ 0} \ Ω. Then, ||Du||(RN \ Ω) = 0 since RN \ Ω =

⋃+∞
k=1 Ωk and

each one of these sets has ||Du||-measure zero.
Now let ϕ ∈ C∞c (RN) such that ϕ = 1 on Ω1 ∪ Ω. Then it is clear that∫

RN
ϕdDu =

∫
RN
dDu

and, by the definition of the distributional derivative,∫
RN
ϕdDu = −

∫
RN
∇ϕudx = −

∫
RN\(Ω1∪Ω)

∇ϕudx = 0

since u has support inside Ω, thus Du(RN) = 0, which implies Du(Ω) = 0. �

Now we need only to exploit the product rule for the function χEu in order to
obtain the following version of the Gauss-Green formula.

Theorem 1.5.2. (Integration by Parts and Gauss-Green Formula for BV
Fields)

Let u ∈ BV (Ω) ∩ L∞(Ω) and E ⊂⊂ Ω be a set of finite perimeter. Then
u±νE ∈ L∞(∂∗E;HN−1) with the estimates

||uνE ||L∞(∂∗E;HN−1) ≤ ||u||L∞(E),

||u−νE ||L∞(∂∗E;HN−1) ≤ ||u||L∞(Ω\E).

In addition, we have∫
E1

dDu = Du(E1) = −
∫
∂∗E

uνE νE dHN−1, (1.5.8)∫
E

dDu = Du(E) = −
∫
∂∗E

u−νE νE dHN−1, (1.5.9)∫
B

dDu = Du(B) =

∫
B

(uνE − u−νE) νE dHN−1 (1.5.10)

for any Borel set B ⊂ ∂∗E.
If u ∈ BV (Ω;RN) ∩ L∞(Ω;RN),∫

E1

d div(u) = divu(E1) = −
∫
∂∗E

uνE · νE dHN−1, (1.5.11)∫
E

d div(u) = divu(E) = −
∫
∂∗E

u−νE · νE dHN−1, (1.5.12)∫
B

d divu = divu(B) =

∫
B

(uνE − u−νE) · νE dHN−1 (1.5.13)
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for any Borel set B ⊂ ∂∗E.

Proof. For HN−1-a.e. x ∈ ∂∗E we have that (uχE)∗(x) = 1
2
uνE(x) (see the

proof of Proposition 1.5.1) and that the precise representative is the limit of the
mollification (Theorems 1.4.5 and 1.4.6). Hence, it follows that

|uνE(x)| ≤ 2 lim
ε→0
|(uχE) ∗ ρε(x)| ≤ 2||u||L∞(E) lim

ε→0

∫
E

ρε(x− y) dy

= 2||u||L∞(E) lim
ε→0

∫
(E−x)/ε

ρ(z) dz = ||u||L∞(E)

by Theorem (1.4.1), for HN−1-a.e. x ∈ ∂∗E.
Then, we notice that u∗(x) = 1

2
(uνE(x)+u−νE(x)), and so (uχΩ\E)∗(x) = 1

2
u−νE(x)

for HN−1-a.e. x ∈ ∂∗E, which implies

|u−νE(x)| ≤ 2 lim
ε→0
|(uχΩ\E) ∗ ρε(x)| ≤ 2||u||L∞(Ω\E) lim

ε→0

∫
Ω\E

ρε(x− y) dy

= 2||u||L∞(Ω\E) lim
ε→0

∫
(Ω\E−x)/ε

ρ(z) dz = ||u||L∞(Ω\E)

by Theorem (1.4.1), for HN−1-a.e. x ∈ ∂∗E.
Equations (1.5.8) and (1.5.11) follow from Proposition 1.5.1 and Lemma 1.5.1.
Indeed, uχE ∈ BV (Ω) and has compact support, so∫

Ω

dD(uχE) = 0

which implies ∫
Ω

uνEdDχE + χE1dDu = 0.

DχE = νEHN−1x∂∗E by Theorem 1.4.2, and, in particular, uνE ∈ L1(∂∗E;HN−1);
thus we have ∫

E1

dDu = −
∫
∂∗E

uνEνE dHN−1,

which is an Integration by Parts formula. In a similar way, we deduce (1.5.9).
On the other hand, equation (1.5.10) follows from the evaluation of (1.5.3) over B
and again from DχE = νEHN−1x∂∗E.
Now, in order to prove the Gauss-Green formulas, as in the classical case, we need
just to apply Integration by Parts formulas to each component of u ∈ BV (Ω;RN)∩
L∞(Ω;RN), then for each i = 1, ..., N∫

E1

dDiu
i = −

∫
∂∗E

uiνEν
i
E dHN−1.

Summing over i yields (1.5.11). Arguing in this way, we obtain also (1.5.12) and
(1.5.13). �
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Remark 1.5.1. Proposition 1.5.1 and Theorem 1.5.2 can be formulated without
the hypothesis of the essential boundedness, adding the requirements that u∗ ∈
L1

loc(RN ; ||Dv||) and v∗ ∈ L1
loc(RN ; ||Du||) in the proposition and therefore that

u±νE ∈ L1(∂∗E;HN−1) in the theorem. For a good exposition of such variants of
Theorem 1.5.2 we refer the reader to the classical treatice of Maz’ya ([Maz]).

Finally, we quote a result by Fuglede, which concerns Lp vector fields and is
related to De Giorgi and Federer theorem (Theorem 1.5.1). It employs however
totally different techniques and concepts, starting from the definition of the module
of order p of a family of measures.

Definition 1.5.1. Let S be a family of Radon measures in RN . We associate to
such a family the set of nonnegative Lebesgue-measurable functions f on RN such
that

∫
RN f(x) dµ(x) ≥ 1 ∀µ ∈ S. If f enjoys these properties, we write f ∧ S.

We define the module of order p ∈ (0,+∞) of S as

Mp(S) := inf
f∧S

∫
RN
fp(x) dx.

Definition 1.5.2. A family of Radon measures S is said to be exceptional of order
p (p-exc) if Mp(S) = 0.
We shall say that a property holds p-a.e. if it holds for all σ ∈ M(RN) \ S, with
Mp(S) = 0.

Theorem 1.5.3. S ⊂ M(RN) is p-exc if and only if ∃f ∈ Lp(RN), f ≥ 0:∫
RN f dµ = +∞ ∀µ ∈ S.
Moreover, if f ∈ Lp(RN), then f ∈ L1(σ) for p-a.e. σ ∈M(RN).

Proof. See [Fu1] Theorem 2 and [Fu2] Ch. 1 Theorem 2.

Since to every set of finite perimeter E is possibile to associate the Radon
measure ||DχE|| = HN−1x∂∗E, we can import these definitions and results into
the context of sets finite perimeter. Thus we have the following notion.

Definition 1.5.3. Let 1 ≤ p < ∞. A collection E of sets of finite perimeter
E ⊂ RN is called exceptional of order p (abbreviated as p-exc) if there exists
g ∈ Lp(RN), g ≥ 0 such that∫

∂∗E

g(x)dHN−1(x) = +∞ ∀E ∈ E .

Theorem 1.5.4. (Fuglede)
Let F ∈ Lp(RN ;RN), 1 ≤ p <∞, with divF ∈ Lp(RN). Then∫

E

divFdx = −
∫
∂∗E

F (x) · νE(x)dHN−1(x) (1.5.14)

for each set E of finite perimeter except those in a p-exc collection E.
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Proof. Since we have excluded the p-exc collection E , we have that F ∈
L1(∂∗E;HN−1), by Theorem 1.5.3. In order to show (1.5.14), we prove that the
weak and the flux extensions of the differential operator div coincides, see [Fu2],
pag. 27-34. �

In the next chapter, we will introduce a new space of vector fields in order to
show that it is possible to extend Fuglede’s theorem to all sets of finite perimeter,
not just to p-almost all in the sense written above. However, we will require p =∞,
though we will relax the assumptions on divF .



Chapter 2

Divergence-measure fields

2.1 Definition and first properties

In this chapter we introduce the main object of our study; that is, the function
spaces DMp(Ω;RN), and we present their relevant properties. Most of these are
strictly connected with the theory of BV functions previously described. This
exposition is largely based on the initial paragraphs of the articles [CF1], [CF2],
[CF3], [CT] and [CTZ1].

Definition 2.1.1. A vector field F ∈ Lp(Ω;RN), 1 ≤ p ≤ ∞ is called a divergence-
measure field, and we write F ∈ DMp(Ω;RN), if

||divF ||(Ω) := sup

{∫
Ω

F · ∇φ dx : φ ∈ C∞c (Ω), ||φ||∞ ≤ 1

}
<∞.

A vector field F is a locally divergence-measure field, and we write
F ∈ DMp

loc(Ω;RN), if F ∈ DMp(W ;RN) for any W ⊂⊂ Ω open.

As a consequence of Riesz Representation Theorem for Radon measures (The-
orem 1.3.1), we have the following Riesz theorem for divergence-measure fields.

Theorem 2.1.1. If F ∈ DMp
loc(Ω;RN), then divF is a (real) Radon measure on

Ω and ∀ φ ∈ C1
c (Ω) we have∫

Ω

φ ddivF = −
∫

Ω

F · ∇φ dx.

Proof. One merely repeats the proof of the Riesz theorem for BV functions
(Theorem 1.3.1), where one just needs to define L(φ) := −

∫
Ω
F · ∇φ dx for

φ ∈ C1
c (Ω) and proceed in the same way. �

In the following chapters, we are going to consider the case p =∞; that is, the
space of essentially bounded divergence-measure fields. However, many basic facts

47



CHAPTER 2. DIVERGENCE-MEASURE FIELDS 48

can be proved for any 1 ≤ p ≤ ∞ and hence we give a general description of these
spaces.

Proposition 2.1.1. Let {Fj} ⊂ DMp(Ω;RN) a sequence such that Fj ⇀ F in
Lq(Ω;RN) for some q ∈ [1,+∞) or weak-star for q = +∞, or in Lqloc(Ω;RN).
Then ∀A ⊆ Ω open,

||divF ||(A) ≤ lim inf
j→∞

||divFj||(A)

Proof. Let φ ∈ C∞c (A) with ||φ||∞ ≤ 1, then Proposition 1.1.2 implies∫
Ω

F · ∇φ dx = lim
j→+∞

∫
Ω

Fj · ∇φ dx ≤ lim inf
j→∞

||divFj||(A)

and so, by taking the supremum over φ on the left hand side, we have the claim.
�

Theorem 2.1.2. DMp(Ω;RN) endowed with the norm

||F ||DMp(Ω;RN ) := ||F ||Lp(Ω;RN ) + ||divF ||(Ω)

is a Banach space.

Proof. Let {Fj} be a Cauchy sequence Cauchy in DMp(Ω;RN), then it is
Cauchy also in Lp and therefore there exists F ∈ Lp(Ω;RN) such that Fj → F in
Lp. So, in particular, Fj → F in L1

loc(Ω;RN), and, by Proposition 2.1.1,

||divF ||(Ω) ≤ lim inf
j→∞

||divFj||(Ω),

which implies F ∈ DMp(Ω;RN).
Moreover, ∀ε > 0 ∃j0 such that ∀j, k ≥ j0 ||div(Fj − Fk)||(Ω) < ε and, by lower
semicontinuity,

||div(Fj − F )||(Ω) ≤ lim inf
k→∞

||div(Fj − Fk)||(Ω) < ε

for j ≥ j0 and therefore Fj → F in DMp(Ω;RN). �

Theorem 2.1.3. (Approximation by smooth function)
Let F ∈ DMp(Ω;RN), then ∃{Fn} ⊂ DMp(Ω;RN) ∩ C∞(Ω;RN) such that

1.
∫

Ω
|Fn − F |dx→ 0;

2. ||divFn||(Ω)→ ||divF ||(Ω).

Proof.
Fix ε > 0. Given a positive integer m, we set Ω0 = ∅, define for each k ∈ N, k ≥ 1
the sets

Ωk =

{
x ∈ Ω : dist(x, ∂Ω) >

1

m+ k

}
∩B(0, k +m)
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and then we choose m such that ||divF ||(Ω \ Ω1) < ε.
We define now Σk := Ωk+1 \ Ωk−1. Since {Σk} is an open cover of Ω, then there
exists a partition of unity subordinate to that open cover; that is, a sequence of
functions {ζk} such that:

1) ζk ∈ C∞c (Σk);

2) 0 ≤ ζk ≤ 1;

3)
∑+∞

k=1 ζk = 1 on Ω.

Then we take a standard mollifier ρ and ∀k we choose εk such that:

spt(ρεk ∗ (Fζk)) ⊂ Σk∫
Ω

|ρεk ∗ (Fζk)− Fζk|dx <
ε

2k∫
Ω

|ρεk ∗ (F · ∇ζk)− F · ∇ζk|dx <
ε

2k

and we define Fε =
∑+∞

k=1 ρεk ∗ (Fζk).
Then Fε ∈ C∞, since locally there are only a finite number of nonzero terms in the
sum. Moreover, Fε ∈ Lp(Ω;RN). If 1 ≤ p <∞, by the properties of convolution,

||Fε||pLp(Ω;RN )
≤

+∞∑
k=1

||Fζk||pLp(Ω;RN )
=

∫
Ω

|F (x)|p
+∞∑
k=1

ζk(x)p dx ≤ ||F ||p
Lp(Ω;RN )

,

since the series of ζk converges uniformly (being locally a finite sum of bounded
functions) and 0 ≤ ζk ≤ 1, which implies ζpk ≤ ζk ∀p ≥ 1. If p = ∞, we observe
that ∀x ∈ Ω, x belongs to at most 3 sets of the open cover {Σk}, hence we have
|Fε(x)| ≤ 3||F ||L∞(Ω;RN ), which implies

||Fε||L∞(Ω;RN ) ≤ 3||F ||L∞(Ω;RN ). (2.1.1)

Also, ∫
Ω

|F − Fε|dx ≤
+∞∑
k=1

∫
Ω

|ρεk ∗ (Fζk)− Fζk|dx < ε.

Now, by Proposition 2.1.1, ||divF ||(Ω) ≤ lim inf
ε→0

||divFε||(Ω).



CHAPTER 2. DIVERGENCE-MEASURE FIELDS 50

In order to obtain the reverse inequality, let φ ∈ C∞c (Ω), ||φ||∞ ≤ 1. Then∫
Ω

Fε · ∇φdx =
+∞∑
k=1

∫
Ω

ρεk ∗ (ζkF ) · ∇φdx =
+∞∑
k=1

∫
Ω

ζkF · ∇(ρεk ∗ φ)dx

=
+∞∑
k=1

∫
Ω

F · ∇(ζk(ρεk ∗ φ))dx−
+∞∑
k=1

∫
Ω

F · ∇ζk(ρεk ∗ φ)dx.

Using
+∞∑
k=1

∇ζk = 0 in Ω and the properties of the convolution, this last expres-

sion equals

+∞∑
k=1

∫
Ω

F · ∇(ζk(ρεk ∗ φ))dx−
+∞∑
k=1

∫
Ω

φ(ρεk ∗ (F · ∇ζk)− F · ∇ζk)dx =: Iε1 + Iε2.

Now, |ζk(ρεk ∗ φ)| ≤ 1 and each point in Ω belongs to at most three of the sets
{Σk}. Thus

|Iε1| ≤

∣∣∣∣∣
∫

Ω

F · ∇(ζ1(ρε1 ∗ φ))dx +
+∞∑
k=2

∫
Ω

F · ∇(ζk(ρεk ∗ φ))dx

∣∣∣∣∣ ≤
||divF ||(Ω) +

+∞∑
k=2

||divF ||(Σk) ≤ ||divF ||(Ω) + 3||divF ||(Ω\Ω1) ≤ ||divF ||(Ω) + 3ε.

For the second term, we have |Iε2| < ε directly from our choice of εk.
Therefore, after passing to the supremum over φ, ||divFε||(Ω) ≤ ||divF ||(Ω) + 4ε,
which yields Fε ∈ DMp(Ω;RN) and point 2. �

We give now a few useful results which will allow us to establish when a sequence
of smooth functions {Fj} approximating F ∈ DMp(Ω;RN) is such that divFj

∗
⇀

divF .

Proposition 2.1.2. Let F ∈ DMp(Ω;RN) and {Fj} be a sequence in DMp(Ω;RN)
such that Fj → F in L1

loc(Ω;RN) and ||divFj||(Ω)→ ||divF ||(Ω).
Then, for every open set A ⊂ Ω,

||divF ||(Ā ∩ Ω) ≥ lim sup
j→+∞

||divFj||(Ā ∩ Ω). (2.1.2)

In particular, if ||divF ||(∂A ∩ Ω) = 0, then

||divF ||(A) = lim
j→+∞

||divFj||(A). (2.1.3)
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Proof. Let B = Ω \ Ā. Then, by Proposition 2.1.1 (lower semicontinuity),

||divF ||(B) ≤ lim inf
j→∞

||divFj||(B).

On the other hand, we have

||divF ||(Ā ∩ Ω) + ||divF ||(B) = ||divF ||(Ω) = lim
j→+∞

||divFj||(Ω)

= lim sup
j→+∞

||divFj||(Ā ∩ Ω) + ||divFj||(B)

≥ lim sup
j→+∞

||divFj||(Ā ∩ Ω) + lim inf
j→∞

||divFj||(B)

≥ lim sup
j→+∞

||divFj||(Ā ∩ Ω) + ||divF ||(B)

and then (2.1.2) follows. Now, if ||divF ||(∂A∩Ω) = 0, ||divF ||(Ā∩Ω) = ||divF ||(A)
and so

||divF ||(A) ≤ lim inf
j→+∞

||divFj||(A) ≤ lim sup
j→+∞

||divFj||(Ā ∩ Ω)

≤ ||divF ||(Ā ∩ Ω) = ||divF ||(A),

which implies (2.1.3). �

Corollary 2.1.1. Let F ∈ DMp(Ω;RN) and {Fj} be a sequence in DMp(Ω) such
that Fj → F in L1

loc(Ω;RN) and ||divFj||(Ω)→ ||divF ||(Ω).
Then we have ||divFj||

∗
⇀ ||divF || inM(Ω).

Proof. By Proposition 2.1.1, for each open set A ⊂ Ω,

||divF ||(A) ≤ lim inf
j→∞

||divFj||(A).

By Proposition 2.1.2, for each compact K ⊂ Ω,

||divF ||(K) ≥ lim sup
j→+∞

||divFj||(K).

So, by Lemma 1.1.2, ||divFj||
∗
⇀ ||divF ||, and, since ||divFj||(Ω) → ||divF ||(Ω)

implies sup ||divFj||(Ω) < ∞, Remark 1.1.4 yields the weak-star convergence in
M(Ω). �

Remark 2.1.1. Under the same hypotheses of Corollary 2.1.1 it is easy to see
that divFj

∗
⇀ divF inM(Ω). Indeed, for any φ ∈ C∞c (Ω), we have∫

Ω

φdivFj dx = −
∫

Ω

∇φ · Fj dx→ −
∫

Ω

∇φ · F dx =

∫
Ω

φ ddivF,
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by Lebesgue’s dominated convergence theorem. Now, if φ ∈ Cc(Ω), ∀ε > 0 there
exists φε ∈ C∞c (Ω) such that ||φ− φε||∞ < ε and so∣∣∣∣∫

Ω

φdivFj dx−
∫

Ω

φ ddivF

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

φεdivFj dx−
∫

Ω

φε ddivF

∣∣∣∣
+

∣∣∣∣∫
Ω

(φ− φε)divFj dx

∣∣∣∣+

∣∣∣∣∫
Ω

(φ− φε) ddivF

∣∣∣∣
≤
∣∣∣∣∫

Ω

φεdivFj dx−
∫

Ω

φε ddivF

∣∣∣∣
+ ε(||divF ||(Ω) + ||divFj||(Ω)).

By Theorem 2.1.3, we have

lim
j→+∞

∣∣∣∣∫
Ω

φdivFj dx−
∫

Ω

φ ddivF

∣∣∣∣ ≤ 2ε||divF ||(Ω).

Thus, the arbitrariety of ε yields the desired result. Finally, as shown in the proof
of Corollary 2.1.1, the sequence ||divFj||(Ω) is uniformly bounded and so Remark
1.1.4 gives the weak-star convergence in the sense of Radon measures.

Remark 2.1.2. In a way similar to the case of BV functions, if F ∈ DMp(RN ;RN),
1 ≤ p ≤ ∞, then Fε = F ∗ ρε satisfies point 2 of Theorem 2.1.3. Indeed, for any
φ ∈ C∞c (RN) with ||φ||∞ ≤ 1,∫

RN
Fε(x) · ∇φ(x) dx =

∫
RN

∫
RN
∇φ(x) · F (y)ρε(x− y) dydx =∫

RN
F (y) · ∇φε(y) dy ≤ ||divF ||(RN).

So, if we take the supremum over φ ∈ C∞c (RN) with ||φ||∞ ≤ 1, we gain
||divFε||(RN) ≤ ||divF ||(RN), and this, combined with lower semicontinuity, yields

||divFε||(RN)→ ||divF ||(RN).

Moreover, we know by the property of mollification (Theorem 1.2.1) that Fε →
F in L1

loc(RN ;RN), therefore, by Corollary 2.1.1 and Remark 2.1.1, ||divFε||
∗
⇀

||divF || and divFε
∗
⇀ divF inM(RN).

It is clear that this remark applies also to F ∈ DMp(Ω;RN), with compact support
inside Ω, since it can be extended to zero on RN \ Ω.
Indeed, let its extension be

F̂ (x) =

{
F (x) if x ∈ Ω

0 if x ∈ RN \ Ω.
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Then trivially F̂ ∈ Lp(RN ;RN). If we let ξ ∈ C∞c (Ω), ||ξ||∞ ≤ 1 and ξ = 1 in a
neighborhood of the support of F , then, for any φ ∈ C∞c (RN), ||φ||∞ ≤ 1, we have∫

RN
F̂ · ∇φ dx =

∫
Ω

F · ∇φ dx =

∫
Ω

F · ∇(ξφ+ (1− ξ)φ) dx

=

∫
Ω

F · ∇(ξφ) dx ≤ ||divF ||(Ω),

since ξφ ∈ C∞c (Ω).
Taking the supremum over φ we obtain ||divF̂ ||(RN) ≤ ||divF ||(Ω) < ∞, which
implies F̂ ∈ DMp(RN ;RN).

If we have just F ∈ DMp
loc(RN ;RN), then we would still have Fε → F in

L1
loc(RN ;RN) and for each compact K and φ ∈ C∞c (K) with ||φ||∞ ≤ 1,∫

RN
Fε(x) · ∇φ(x) dx =

∫
RN

∫
RN
∇φ(x) · F (y)ρε(x− y) dydx =∫

RN
F (y) · ∇φε(y) dy ≤ ||divF ||(K +B(0, ε)),

since supp(φε) ⊂ K+B(0, ε). Now we take the supremum as before and we obtain
||divFε||(K) ≤ ||divF ||(K +B(0, ε)). Hence we have

lim sup
ε→0

||divFε||(K) ≤ lim sup
ε→0

||divF ||(K +B(0, ε)) = ||divF ||(K).

Since for any bounded open set W we have F ∈ DMp(W ;RN), we have also
the lower semicontinuity on open subsets of W . Thus, if B is a bounded Borel set
with ||divF ||(∂B) = 0, we see that

||divF ||(B) = ||divF ||(B◦) ≤ lim inf
ε→0

||divFε||(B◦) ≤ lim sup
ε→0

||divFε||(B̄)

≤ ||divF ||(B̄) = ||divF ||(B),

which implies ||divFε||(B)→ ||divF ||(B).
Then Lemma 1.1.2 gives us ||divFε||

∗
⇀ ||divF || inM(W ).

Moreover, a slight modification of the argument of Remark 2.1.1 yields divFε
∗
⇀

divF in M(W ): indeed, we do not have anymore ||divFε||(W ) → ||divF ||(W ),
but, by the previous calculations, lim sup

ε→0
||divFε||(W ) ≤ ||divF ||(W ) < ∞ since

W is compact and divF is a Radon measure.
Therefore, we can conclude that ||divFε||

∗
⇀ ||divF || and divFε

∗
⇀ divF inMloc(RN).
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2.2 Comparison with BV (Ω;RN) and Examples

From theorems in section 2.1, it is reasonable to ask if the spaces of divergence-
measure vector fields actually provide example of functions which are not in BV
(or, for p > 1, BV ∩ Lp). Indeed, we can show that Lp(Ω;RN) ∩ BV (Ω;RN) ⊂
DMp(Ω;RN) ∩ L1(Ω;RN) (this two spaces obviously coincide if N = 1).

If u ∈ Lp(Ω;RN) ∩BV (Ω;RN), then each component of u is a BV function; so
for each i = 1, ..., N and for any φi ∈ C∞c (Ω;RN) we have

−
∫

Ω

ui divφi dx =

∫
Ω

φi · dDui.

We choose φi = ψei, where ei is the i-th element of the canonical basis of RN

and ψ ∈ C∞c (Ω), thus

−
∫

Ω

ui
∂ψ

∂xi
dx =

∫
Ω

ψ dDiui i = 1, ..., N.

Summing over i we obtain

−
∫

Ω

u · ∇ψ dx =

∫
Ω

ψ d

(
N∑
i=1

Diui

)
and, since

∑N
i=1 Diui is a finite Radon measure by BV theory, Definition 2.1.1

yields u ∈ DMp(Ω;RN) ∩ L1(Ω;RN).

However, the following example shows that the inclusion above is strict.

Example 2.2.1. The field
F (x) =

x

|x|N

belongs to DM1
loc(RN ;RN) \BVloc(RN ;RN).

Indeed, F ∈ L1
loc(RN ;RN) since, for every R > 0, passing to polar coordinates in

RN , ∫
B(0,R)

|F (x)|dx =

∫
U

∫ R

0

1

ρN−1
ρN−1|det(JΦ)|dρdθ = RNωN

where U = (0, 2π)× (0, π)N−2, θ is the vector angular variable on U and det(JΦ)
is the Jacobian of the change of variables divided by the factor ρN−1.
Moreover, we will show that

div(F ) = NωNδ,
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where δ is the Dirac delta measure centered in the origin.
Since F ∈ C1(RN \ {0};RN) we have

div

(
x

|x|N

)
=

N∑
i=1

1

|x|N
− Nx2

i

|x|N+2
=

N

|x|N

(
1− |x|

2

|x|2

)
= 0 ∀x 6= 0.

We can therefore apply classical divergence theorem in RN \B(0, ε) ∀ε > 0, so
for each open A and ∀ φ ∈ C∞c (A) we have∫

A

x

|x|N
· ∇φ(x)dx = 0

if 0 /∈ A, whereas, if 0 ∈ A,∫
A\B(0,ε)

x

|x|N
· ∇φ(x)dx = −

∫
∂B(0,ε)

φ(x)
x

|x|N
· x
|x|
dHN−1

−
∫
A\B(0,ε)

φ(x)div

(
x

|x|N

)
dx

= −
∫
∂B(0,ε)

φ(x)
x

|x|N
· x
|x|
dHN−1 ∀ε > 0.

Now we let ε → 0+ and, since F · ∇φ ∈ L1(A), by Lebesgue’s dominated
convergence theorem we have

lim
ε→0+

∫
A\B(0,ε)

x

|x|N
· ∇φ(x)dx =

∫
A

x

|x|N
· ∇φ(x) dx

= lim
ε→0+

−
∫
∂B(0,ε)

φ(x)
1

|x|N−1
dHN−1.

By smoothness, φ(x) = φ(0) + |x|R(x), with R(x) bounded for |x| ≤ ε, so

lim
ε→0+

∫
∂B(0,ε)

φ(x)
1

|x|N−1
dHN−1 = lim

ε→0+

∫
U

(φ(0) + εR(ε, θ))
1

εN−1
εN−1 |det(JΦ)| dθ.

Thus, ∫
A

x

|x|N
· ∇φ(x) dx = −φ(0)NωN ,

from which our claim follows.
On the other hand, F /∈ BVloc(RN ;RN), since for example ∂F1

∂x2
= −N x1x2

|x|N+2 ∈
L1

loc(RN \ {0}) and so, for every R > ε > 0,

sup

{∫
B(0,R)

∂φ

∂x2

F1 dx : φ ∈ C∞c (B(0, R) \B(0, ε)), ||φ||∞ ≤ 1

}
=

∫
B(0,R)\B(0,ε)

∣∣∣∣∂F1

∂x2

∣∣∣∣ dx ≥ CN

∫ R

ε

ρ2

ρN+2
ρN−1 dρ = CN log

R

ε
.
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Since ε is arbitrary, it follows that the total variation of ∂F1

∂x2
is unbounded on

compact sets containing the origin.

Remark 2.2.1. The Gauss-Green formula fails for the field of Example 2.2.1.
Let E = B(0, 1) ∩ {x ∈ RN : xN > 0}, then ∂∗E = (∂B(0, 1) ∩ {x ∈ RN : xN >
0}) ∪ (B(0, 1) ∩ {x ∈ RN : xN = 0}) and the interior unit normal is νE = eN on
B(0, 1) ∩ {x ∈ RN : xN = 0} and νE = − x

|x| on ∂B(0, 1) ∩ {x ∈ RN : xN > 0}.
So, since 0 /∈ E (not even in E1), ∫

E

ddivF = 0

but ∫
∂∗E

F · νE dHN−1 =

∫
∂B(0,1)∩{xN>0}

− 1

|x|N−1
dHN−1 = −NωN

2
.

As we shall see, high summability plays an important role in the possibility of
establishing a Gauss-Green formula.

We now provide a general example of an essentially bounded divergence measure
field, the main topic of our exposition.

Example 2.2.2. Let v ∈ L∞(R) and define the field F (x, y) := (v(x − y), v(x −
y)) ∈ L∞(R2;R2). For each φ ∈ C∞c (R2) we have∫

R2

F · ∇φ dxdy =

∫
R2

v(x− y)

(
∂φ(x, y)

∂x
+
∂φ(x, y)

∂y

)
dxdy.

We perform a change of variables: (x, y) = Φ(t, u) := ( t+u
2
, u−t

2
), whose Jacobian

is JΦ = |det(DΦ)| = 1
2
.

We write φ( t+u
2
, u−t

2
) = ϕ(t, u) and so, by Fubini’s theorem, the previous integral

becomes ∫
R2

v(t)
∂ϕ(t, u)

∂u
dudt = 0,

since
∫
R
∂ϕ(t,u)
∂u

du = 0 for each ϕ ∈ C∞c (R2).
Thus we can conclude that divF = 0 and so F ∈ DM∞(R2;R2).
In a similar way, we can also construct examples of fields F ∈ DM∞(RN ;RN),
just by considering functions vi ∈ L∞(R), i = 1, 2, ..., N if N is even, and then
defining F as

F (x) := (v1(x1 − x2), v2(x1 − x2), ..., vN−1(xN−1 − xN), vN(xN−1 − xN)).

If N is odd, then we take i = 1, 2, ..., N − 1 and we set a constant as the N -th
component of F .
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Also in this case the inclusion is strict. If, for example, v(t) = sin(1
t
), then

F ∈ DM∞(R2;R2) \BVloc(R2;R2).
Indeed, let φ ∈ C∞c (B(0, R);R2) for some R > 0 and, for each ε > 0, Lε :=
{(x, y) ∈ R2 : |y − x| ≤ ε}. Then, by Lebesgue’s dominated convergence theorem,

lim
ε→0+

∫
R2\Lε

sin

(
1

x− y

)
divφ(x, y) dxdy =

∫
R2

sin

(
1

x− y

)
divφ(x, y) dxdy.

Now, by classical integration by parts,∫
R2\Lε

sin

(
1

x− y

)
divφ(x, y) dxdy = −

∫
R

sin

(
1

ε

)
(φ1(t, t− ε)− φ1(t, t+ ε))

1√
2
dt

−
∫
R

sin

(
1

ε

)
(φ2(t, t+ ε)− φ2(t, t− ε)) 1√

2
dt

−
∫
R2\Lε

cos

(
1

x− y

)
1

(x− y)2
(−φ1(x, y) + φ2(x, y)) dxdy

= I1 + I2 + I3.

If ||φ||∞ ≤ 1, then |I1 + I2| ≤ 8R for each ε > 0, since H1(supp(φi) ∩ ∂Lε) ≤
2H1(B(0, R) ∩ L0) = 4R.
We can choose a sequence φj in C∞c (B(0, R);R2) in such a way that φ1

j → cos
(

1
x−y

)
and φ2

j → 0 in L1
loc(R2) and ||φj||∞ ≤ 1 for each j.

Then there exists a j0 such that, for each j ≥ j0,

||φj − (cos

(
1

x− y

)
, 0)||L1(B(0,R)) < ε3.

Therefore, since the supremum of cos
(

1
x−y

)
1

(x−y)2 over B(0, R)\Lε is less than
1
ε2
, we obtain∫

R2\Lε
sin

(
1

x− y

)
divφ(x, y) dxdy

≥
∫
B(0,R)\Lε

(
cos

(
1

x− y

))2
1

(x− y)2
dxdy − 8R− ε3 1

ε2

and the integral diverges as ε→ 0.
Indeed, with the same change of variables as above; that is, (x, y) = Φ(t, u) :=
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( t+u
2
, u−t

2
), we have Φ−1(B(0, R) \ Lε) = B(0,

√
2R) \ {|t| ≤ ε} and so∫

B(0,R)\Lε

(
cos

(
1

x− y

))2
1

(x− y)2
dxdy =

∫
B(0,
√

2R)\{|t|≤ε}

(
cos

(
1

t

))2
1

t2
1

2
dtdu

≥
∫

[−R,R]2\{|t|≤ε}

(
cos

(
1

t

))2
1

2t2
dtdu =

∫ R

−R

∫
{ε≤|t|≤R}

(
cos

(
1

t

))2
1

2t2
dtdu

=

[
t =

1

τ

]
= 2R

∫ 1
ε

1
R

(cos τ)2τ 2 1

τ 2
dτ = 2R[

1

2
(τ + cos τ sin τ)]

1
ε
1
R

≥ R

ε
− 1− 2R

which proves our claim.
Therefore the total variation of sin

(
1

x−y

)
is unbounded on any compact set con-

taining a segment of the line L0 and so this function does not belong to BVloc(R2).

Remark 2.2.2. Moreover, since F ∈ C∞(R2 \Lε;R2) for each ε > 0, then Gauss-
Green formula is valid for each E ⊂⊂ R2 \Lε of finite perimeter by Remark 1.4.5.
However, it is clearly impossible to define any reasonable notion of the trace on the
line y = x for F in a classical sense, since on that line the components of the field
have essential singularities. Nevertheless, the unit normal to the line x− y = ε is
(up to a sign) νε = (− 1√

2
, 1√

2
) so that the scalar product is meaningful and satisfies

F (x, x− ε) · νε = 0.
Then, by classical Gauss-Green formula, for any φ ∈ C1

c (R2),

0 =

∫
{x>y+ε}

divF φdxdy = −
∫
{x>y+ε}

F · ∇φ dxdy

and, by the dominated convergence theorem, this identity remains valid for ε→ 0.
This allows us to conclude that if we define the normal trace of F over y = x as
F · ν = 0, it would be coherent with the limit of the classical results.
As we shall see later, F has a weak normal trace over the boundary of any bounded
set of finite perimeter that is sufficient for the Gauss-Green formula to hold and
which can be shown to be an L∞ function identically 0 on the line y = x.

Example 2.2.3. Another archetypical example of a divergence measure field are
the so called transversal fields.
Let f ∈ Lploc(RN−1) for some 1 ≤ p ≤ ∞, and define F (x) = (0, 0, ..., f(x̂N)),
where x̂N = (x1, ..., xN−1).
It is clear that F ∈ Lploc(RN ;RN) and for each φ ∈ C∞c (RN) we have∫

RN
F · ∇φ dx =

∫
RN−1

∫
R
f(x̂N)

∂φ

∂xN
dxNdx̂N = 0

by Fubini’s theorem, since
∫
R

∂φ
∂xN

dxN = 0.
Therefore, divF = 0 and F ∈ DMp

loc(RN ;RN).
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More generally, we can take N functions fi ∈ Lploc(RN−1) and define F to be the
vector field whose components are Fi(x) = fi(x̂i). In the same way, we can show
divF = 0 and F ∈ DMp

loc(RN ;RN).

2.3 Normal trace and absolute continuity

Now we will introduce a first generalization of the notion of normal trace for a
divergence-measure field F on the boundary of a set E in a distributional sense
and prove that, in order to deal with it, we need just to consider ∂E.

Definition 2.3.1. Let F ∈ DMp(Ω;RN) with 1 ≤ p ≤ ∞. For a measurable set
E ⊂⊂ Ω, the trace of the normal component of F on ∂E is the linear functional
defined by

(TF )∂E(φ) :=

∫
E

∇φ · F dx+

∫
E

φ ddivF for any φ ∈ C∞c (Ω).

Remark 2.3.1. It is clear that (TF )∂E is a distribution. Moreover, if F ∈
C1
c (RN ;RN) and E is a regular or admissible set, then, by the classical divergence

theorem,

(TF )∂E(φ) = −
∫
∂E

φF · ν dHN−1,

where ν is the unit interior normal to ∂E.

Proposition 2.3.1. Let E ⊂⊂ Ω be an open set. Then supp((TF )∂E) ⊂ ∂E; that
is, ∀ φ, ψ ∈ C∞c (Ω) with ψ = φ on ∂E, then (TF )∂E(ψ) = (TF )∂E(φ).

Proof. Obviously, supp((TF )∂E) ⊂ Ē.
By contradiction, suppose that there exists a point x0 /∈ ∂E with x0 ∈ supp((TF )∂E)∩
E. This means that for each open set U containing x0 there exists a test function
φ ∈ C∞c (U ∩ E) such that

(TF )∂E(φ) 6= 0. (2.3.1)

We choose U ⊂ RN \ ∂E. Let Fε be the mollification of F , then, since
supp(Fεφ) ⊂⊂ E and Fεφ is a smooth function, one has

(TFε)∂E(φ) =

∫
E

∇φ · Fε dx+

∫
E

φdivFε dx =

∫
E

div(Fεφ) dx = 0.

Now, by the Lebesgue’s dominated convergence theorem, one finds∫
E

∇φ · Fε dx→
∫
E

∇φ · F dx.
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Since
∫
E
φdivFε dx = −

∫
E
∇φ·Fε dx→ −

∫
E
∇φ·F dx =

∫
E
φ ddivF , by sending

ε→ 0 we have
0 = (TF )∂E(φ),

which contradicts (2.3.1) above. �

The following theorem is a really interesting result, since it provides a way to
find the sets of divF -measure zero in RN with N > 1.

Theorem 2.3.1. (Absolute continuity of divF with respect to capacity)
If F ∈ DMp

loc(Ω;RN) with N
N−1

< p ≤ ∞, then ||divF || � Capq(·,Ω) (q :=
p
p−1

); that is, for each Borel set B ⊂ Ω such that Capq(B,Ω) = 0, ||divF ||(B) = 0.

Proof.
Since divF is a Radon measure on Ω, then its positive and negative parts divF+

and divF− are well defined.
Let B ⊂ Ω be a Borel set with Capq(B,Ω) = 0.
By the Hahn decomposition theorem, there exist Borel sets B± ⊂ B with B+ ∪
B− = B and B+∩B− = ∅ such that ±divFxB± ≥ 0; that is, divF+xB = divFxB+

and divF−xB = −divFxB−.
Hence, it suffices to prove that divF (B±) = 0, and, in order to do so, it suffices to
prove divF (K) = 0 for any compact subset K of B±, by Proposition 1.1.1.
We show only the case K ⊂ B+, as the case of B− is analogous.
By monotonicity (Proposition 1.2.1, property 1), Capq(K,Ω) = 0 for any K ⊂ B
if Capq(B,Ω) = 0.
Since Capq(K,Ω) = 0 and 1 ≤ q < N , we can apply Lemma 1.2.1 in order to find
a sequence of test functions φj ∈ C∞c (Ω) such that

1. 0 ≤ φj ≤ 1 and φj = 1 on K,

2. ||∇φj||Lp(Ω;RN ) → 0,

3. for each j, supp(φj) is contained in a compact set Cj ⊂ Ω such that

C1 ⊃ C2 ⊃ ... ⊃ K and
∞⋂
j=1

Cj = K,

Then, property 1 and the Hölder inequality yield∫
Ω

φj ddivF = divF (K) +

∫
Ω\K

φj ddivF

= −
∫

Ω

F · ∇φj dx ≤ ||F ||Lp(C1;RN )||∇φj||Lq(Ω;RN )

and so, by properties 2 and 3,

divF (K) ≤ ||divF ||(Cj \K) + ||F ||Lp(C1;RN )||∇φj||Lq(Ω;RN ) → 0 as j → +∞.
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�

Corollary 2.3.1. If F ∈ DMp
loc(Ω;RN), N

N−1
≤ p ≤ ∞ and q = p

p−1
, then

||divF || � HN−q.
Moreover, if Ω = RN and N

N−1
< p < ∞, we we have also that, if HN−q(B) < ∞

for a Borel set B, then ||divF ||(B) = 0.

Proof. If p = N
N−1

, q = N , so if a Borel set B ⊂ Ω satisfies H0(B) = 0, then
B = ∅ and trivially ||divF ||(B) = 0.
If N

N−1
< p ≤ ∞, it is enough to apply Theorems 1.2.3 and 2.3.1. Indeed, we

need to show that if we have a Borel set B ⊂ Ω such that HN−q(B) = 0, then
||divF ||(B) = 0. Since for every compact K ⊂ B we have HN−q(K) = 0, then
Capq(K,Ω) = 0 and so ||divF ||(K) = 0, but this is a Radon measure in Ω, thus,
by inner regularity, ||divF ||(B) = 0.
Then second part of the statement follows again immediately from Theorems 1.2.3
and 2.3.1 if p > N

N−1
. �

Remark 2.3.2. If F ∈ DMp
loc(RN ;RN), N

N−1
< p ≤ ∞, then, since by Theorem

1.2.5, each φ ∈ W 1,q(RN) is defined up to a set of Capq-measure zero, and therefore,
by Theorem 2.1.4, ||divF ||-a.e., it follows that the integral∫

RN
φ ddivF

is well defined.

Remark 2.3.3. We observe that there is a parallelism between a field F ∈
DM∞(Ω;RN) and a function u ∈ BV (Ω) since, by Remark 1.4.8, we have ||Du|| �
HN−1 and, by Corollary 2.3.1, ||divF || � HN−1. As we shall see in Chapter 3,
this will be of great relevance in order to obtain the Gauss-Green formula.

The result of Corollary 2.3.1 is optimal, as it is shown in [S], Example 3.3.
Indeed we have the following result.

Proposition 2.3.2. If 1 ≤ p < N
N−1

, then for an arbitrary signed Radon measure
with compact support µ there exists F ∈ DMp

loc(RN ;RN) such that divF = µ.
This means that µ may be not absolutely continuous with respect to any Hausdorff
measure or capacity.
On the other hand, if N

N−1
≤ p ≤ ∞, then for any s > N − q there exists a field

F ∈ DMp
loc(RN ;RN) such that ||divF || is not Hs absolutely continuous.

In order to prove the Proposition 2.3.2, we need the following result.

Proposition 2.3.3. Let µ be a signed Radon measure on RN with compact support
and set
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F (x) :=
1

NωN

∫
RN

(x− y)

|x− y|N
dµ(y) for a.e. x. (2.3.2)

Then

1. F ∈ DM1
loc(RN ;RN) and divF = µ;

2. if 1 ≤ p < N
N−1

, then F ∈ Lploc(RN ;RN);

3. if N
N−1

≤ p ≤ ∞, then F ∈ Lploc(RN ;RN) provided ||µ||(B(x, r)) ≤ crm

∀x ∈ RN and r ∈ (0, a), where a > 0, c > 0, m > d are constants and

d :=

{
N − p

p−1
if p <∞

N − 1 if p =∞.

Proof. For each x ∈ RN , let

G(x) :=

∫
RN
|x− y|1−N d||µ||(y).

By Fubini’s theorem for abstract measures, G is Lebesgue-measurable, since
f(x, y) = |x− y|1−N is nonnegative and ||µ|| ⊗ LN -measurable.
We prove that G ∈ Lp(RN) for every 1 ≤ p < N

N−1
. By Hölder’s inequality with

q := p
p−1

, one has

G(x)p ≤ ||µ||(RN)
p
q

∫
RN
|x− y|−p(N−1) d||µ||(y).

Therefore, if z ∈ RN and r > 0, by Fubini’s theorem,∫
B(z,r)

G(x)p dx ≤ ||µ||(RN)
p
q

∫
RN

∫
B(z,r)

|x− y|−p(N−1) dxd||µ||(y).

For any y ∈ RN we have B(z, r) ⊂ B(y, |z − y|+ r) and so

∫
B(z,r)

|x− y|−p(N−1) dx ≤
∫
B(y,|z−y|+r)

|x− y|−p(N−1) dx

=

∫
U

∫ |z−y|+r
0

ρN−1−p(N−1)|det(JΦ)|dρdθ

=
NωN

N − p(N − 1)
(|z − y|+ r)N−p(N−1),

where we passed to polar coordinates and used the fact that N−1−p(N−1) > −1;
that is p < N

N−1
. Hence we have
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∫
B(z,r)

G(x)p dx ≤ NωN
N − p(N − 1)

||µ||(RN)
p
q

∫
RN

(|z − y|+ r)N−p(N−1) d||µ||(y).

The integrand on the right hand side is a bounded function of y on the compact
support of ||µ|| and thus the integral is finite. Hence G ∈ Lploc(RN), which implies
that is finite and well defined for a.e. x.
Now, since |F (x)| ≤ 1

NωN
G(x), we see that F ∈ Lploc(RN ;RN) ⊂ L1

loc(RN ;RN) for
1 ≤ p < N

N−1
, which implies 2.

In order to prove 1, we recall that div( x
|x|N ) = NωNδ in the sense of distributions

(as shown in Example 2.2.1). So, ∀φ ∈ C∞c (RN), we have∫
RN
F (x) · ∇φ(x) dx =

∫
RN

∫
RN

1

NωN

(x− y)

|x− y|N
· ∇φ(x) dµ(y) dx,

which equals, by Fubini’s theorem,∫
RN
− 1

NωN

(
(·)
| · |N

∗ ∇φ
)

(y) dµ(y) =

∫
RN
−(δ ∗ φ)(y) dµ(y) = −

∫
RN
φ(y) dµ(y),

which implies that divF = µ.

Now let µ satisfy the hypothesis of point 3, and let s ∈ (d,m).
Assume first that p < ∞. Writing |x − y|1−N = |x − y|−

s
q |x − y|

s
q

+1−N and using
Hölder’s inequality we obtain

G(x)p ≤
(∫

RN
|x− y|−s d||µ||(y)

) p
q
∫
RN
|x− y|p(

s
q

+1−N) d||µ||(y).

We now prove that
∫
RN |x− y|

−s d||µ||(y) is bounded for every x ∈ RN . By the
layer cake representation formula, we have∫
RN
|x− y|−s d||µ||(y) ≤

∫
B(x,a)

|x− y|−s d||µ||(y) +

∫
RN\B(x,a)

|x− y|−s d||µ||(y)

≤
∫ +∞

0

||µ||({y ∈ B(x, a) : |x− y|−s > t}) dt+

∫
RN\B(x,a)

a−s d||µ||(y)

≤
∫ a−s

0

||µ||(B(x, a)) dt+

∫ +∞

a−s
||µ||(B(x, t−

1
s )) dt+ a−s||µ||(RN)

≤ cmam−s

m− s
+ a−s||µ||(RN) =: C <∞ ∀x ∈ RN .

Hence,

G(x)p ≤ C
p
q

∫
RN
|x− y|p(

s
q

+1−N) d||µ||(y).
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Thus if z ∈ RN and r > 0, we have, using B(z, r) ⊂ B(y, |z − y|+ r),∫
B(z,r)

G(x)p dx ≤ C
p
q

∫
RN

∫
B(y,|z−y|+r)

|x− y|p(
s
q

+1−N) dx d||µ||(y).

By s > d, we have N + p( s
q
−N + 1) > 0; thus the inner integral is finite and,

as above,∫
B(y,|z−y|+r)

|x− y|p(
s
q

+1−N) dx =
NωN

N + p( s
q
−N + 1)

(|z − y|+ r)N+p( s
q
−N+1),

which is a bounded function of y on the compact support of ||µ||. Hence G ∈
Lploc(RN).
If p =∞, for s ∈ (N − 1,m) we have

G(x) ≤
∫
RN
|x− y|−s d||µ||(y) ess sup

y∈supp(µ)

|x− y|s−N+1

≤ C ess sup
y∈supp(µ)

|x− y|s−N+1,

by the above steps. Now, s − N + 1 > 0 and hence |x − y|s−N+1 is bounded on
every compact of RN×RN , which implies G ∈ L∞loc(RN). Since |F (x)| ≤ 1

NωN
G(x),

we have proved point 3. �

Proof of Proposition 2.3.2: In the case 1 ≤ p < N
N−1

it is an immediate conse-
quence of Proposition 2.3.3.
If N

N−1
≤ p ≤ ∞, let m ∈ [0, N ], then (See [Fa], Corollary 4.12) there exists a

compact set K such that 0 < Hm(K) <∞ and, for some constant c,

Hm(K ∩B(x, r)) ≤ crm ∀x ∈ RN , ∀r > 0.

Choose any m ∈ (d, s) and let µ := HmxK and F as in (2.3.2). By Proposition
2.3.3, F ∈ DMp

loc(RN ;RN) and, since m < s and Hm(K) <∞, we have Hs(K) =
0 and thus divF is not Hs-absolutely continuous. �

Remark 2.3.4. The vector field F introduced in Example 2.2.1 can be con-
structed as in Proposition 2.3.3 with µ = NωNδ and, since clearly we do not
have δ(B(0, r)) ≤ crm for m > 0, we can conclude that F ∈ DMp

loc(RN ;RN)
∀ 1 ≤ p < N

N−1
.

Actually, this could also be checked just by calculating its Lp-norm over balls.

Another interesting consequence of Proposition 2.3.2 is that we cannot extend
the Theorem 3.2.1 to vector fields in DMp

loc(RN ;RN) for 1 ≤ p < N
N−1

in a trivial
way; that is, just by substituting ∞ with p.
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Indeed, suppose otherwise that for any bounded set of finite perimeter E there
exists Fi · νE ∈ Lp(∂∗E;HN−1) which satisfies

divF (E1) = −
∫
∂∗E

(Fi · νE)(x) dHN−1(x)

and, for some constant C independent of E and F ,

||Fi · νE||Lp(∂∗E;HN−1) ≤ C||F ||Lp(E;RN ). (2.3.3)

We set E = B(0, r) with r < 1.
Now, we choose again F (x) = x

|x|N and, since E1 = B(0, r) and ∂∗E = ∂B(0, r),
we have

divF (B(0, r)) = NωN = −
∫
∂B(0,r)

(Fi · νE)(x) dHN−1(x) ∀r < 1.

Hence the Hölder inequality and (2.3.3) yield

NωN ≤ ||Fi · νE||Lp(∂B(0,r);HN−1)(NωNr
N−1)1− 1

p

≤ C||F ||Lp(B(0,r);RN )(NωNr
N−1)1− 1

p

= C

(∫
B(0,r)

1

|x|(N−1)p
dx

) 1
p

(NωNr
N−1)1− 1

p

= CNωN

(
1

N − (N − 1)p

) 1
p

r
N
p
−(N−1)+(N−1)(1− 1

p)

= C1r
1
p ∀r < 1.

Thus we can send r → 0 and this leads to a contradiction.

We further observe that it is actually possible to define a consistent interior
normal trace for F on ∂B(0, r) for any r > 0. Since F is continuous in RN \ {0},
we can define it pointwise as

(Fi · νB(0,r))(x) := F (x) · − x

|x|
= − 1

|x|N−1

and it is imediate to see that it satisfies Gauss-Green formula on B(0, r), since

divF (B(0, r)) = NωN

and

−
∫
∂B(0,r)

(Fi · νB(0,r))(x) dHN−1(x) =

∫
∂B(0,r)

1

rN−1
dHN−1(x) = NωN .
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On the other hand, condition (2.3.3) fails to be satisfied: we would have

||Fi · νB(0,r)||Lp(∂B(0,r);HN−1) = (NωN)
1
p ≤ C(N, p)

(
NωN

N − (N − 1)p

) 1
p

r
N
p
−N+1

which is false for r small enough, since p < N
N−1

.

Remark 2.3.5. More generally, we can show that if F ∈ DMp
loc(RN ;RN) an

analogue to Theorems 3.2.1 and 3.2.2 for p <∞ fails in general.
Indeed, we assert that we can always find a bounded set of finite perimeter E such
that there do not exist interior and exterior normal traces (Fi · νE), (Fe · νE) ∈
L1(∂∗E;HN−1) satisfying respectively

∫
E1

φ ddivF = −
∫
∂∗E

φFi · νE dHN−1 −
∫
E1

∇φ · F dx ∀φ ∈ C∞c (RN) (2.3.4)

and, recalling that E = E1 ∪ ∂mE,∫
E

φ ddivF = −
∫
∂∗E

φFe · νE dHN−1 −
∫
E

∇φ · F dx ∀φ ∈ C∞c (RN). (2.3.5)

Choose F such that divF = HmxK, where 0 < m < N − 1 and K ⊂ B(0, 1
2
) ∩

{xN = 0}, with the same property as in the proof of Proposition 2.3.2.
This implies that for any Borel set in A we have

divF (A) = divF (A ∩K) = divF (A ∩ {xN = 0}).

Then we take E = B(0, 1) ∩ {xN > 0} and we subtract (2.3.4) from (2.3.5),
obtaining

∫
∂∗(B(0,1)∩{xN>0})

φ ddivF = −
∫
∂∗(B(0,1)∩{xN>0})

φ(Fe · νE −Fi · νE) dHN−1 (2.3.6)

since |E∆E1| = 0.
We observe that

∂∗(B(0, 1) ∩ {xN > 0}) = (B(0, 1) ∩ {xN = 0}) ∪ (∂B(0, 1) ∩ {xN > 0}).

Since Hm(K) < ∞, CapN−m(K) = 0 (see Theorem 1.2.3) and so, by Lemma
1.2.1, there exists a sequence φj ∈ C∞c (RN) which satisfies 0 ≤ φj ≤ 1, φj = 1 on
K and φj(x)→ 0 for all x ∈ RN \ A for some set A with CapN−m(A) = 0.
We can write equation (2.3.6) for any φj and, since the measure divF is supported
in K, we have∫

∂∗(B(0,1)∩{xN>0})
φj ddivF =

∫
K

ddivF = Hm(K) > 0.
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On the other hand, we know that φj → 0 HN−1-a.e. since CapN−m(A) = 0
implies Hs(A) = 0 for any s > m (see Theorem 1.2.3), hence in particular for
s = N − 1. Thus we may apply Lebesgue’s dominated convergence theorem
to the right hand side of (2.3.6), since 0 ≤ φj ≤ 1 and (Fe · νE − Fi · νE) ∈
L1(∂∗(B(0, 1) ∩ {xN > 0});HN−1). So we obtain

lim
j→+∞

∫
∂∗(B(0,1)∩{xN>0})

φj ddivF = Hm(K)

= lim
j→+∞

−
∫
∂∗(B(0,1)∩{xN>0})

φj(Fe · νE −Fi · νE) dHN−1 = 0,

which is absurd.

It is interesting to notice that what makes the Gauss-Green formula fail in this
case was the possibility of having divF supported on a set of Hausdorff dimension
strictly smaller than N − 1 which lies on the reduced boundary of a set of finite
perimeter.
Indeed, it can been shown that it is possible to recover such formula also in the case
F ∈ DMp

loc(RN ;RN)\DM∞
loc(RN ;RN) on bounded sets of finite perimeter E such

that ||divF ||(∂mE) = 0 (we actually need also another summability hypothesis on
F , see [S], Theorem 4.6).

Remark 2.3.6. We observe that in the case N = 1 we have trivially ||divF || �
H0 and we cannot improve this result since if F (x) = χ(0,+∞)(x), then F ∈
DMp

loc(R;R) for every 1 ≤ p ≤ ∞ (actually F ∈ BVloc(R)) and divF = DF = δ,
which is not absolutely continuous with respect to Hα for any α > 0.

2.4 Product Rules

Finally, we establish the following useful product rules.

Theorem 2.4.1. Let F ∈ DMp(Ω;RN), 1 ≤ p < ∞, and g ∈ C(Ω) ∩ L∞(Ω).
Suppose also that the distributional derivatives of g satisfy: for each j = 1, ..., N ,
∂g
∂xj
Fj ∈ L1(Ω) and the complement of the Lebesgue set of ∂g

∂xj
has measure zero

with respect to the measure |Fj|dx.
Then gF ∈ DMp(Ω;RN) and

div(gF ) = gdivF +∇g · F (2.4.1)

Proof. First, we notice that, by the boundedness of g, we have immediately
that gF ∈ Lp(Ω;RN).
Then, for any φ ∈ C∞c (Ω), we have, by definition of the distributional derivative,
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< div(gF ), φ >= − < F, g∇(φ) >= − < F,∇(gφ) > + < F, φ∇g > .

Therefore, it suffices to show that

< F,∇(gφ) >= − < divF, gφ > .

We set gδ = g ∗ ρδ, where ρ is a standard symmetric mollifier, then we have

− < divF, gδφ >=< F,∇(gδφ) >

=
N∑
j=1

< Fj,
∂(gδφ)

∂xj
>

=
N∑
j=1

< Fj, φ
∂gδ
∂xj

> + < Fj, gδ
∂φ

∂xj
>

Now we let δ → 0, so, by Lebesgue’s dominated convergence theorem,

< divF, gδφ > → < divF, gφ >

and

< Fj, gδ
∂φ

∂xj
> → < Fj, g

∂φ

∂xj
>

for each j, while, by the assumption on the set of non-Lebesgue points of ∂g
∂xj

,

< Fj, φ
∂gδ
∂xj

> → < Fj, φ
∂g

∂xj
>

for each j. Thus, by Leibniz rule, we have (2.4.1) in the sense of distributions, and
hence, by density, in the sense of Radon measures.
Since for each measurable set A ⊂ Ω

||div(gF )||(A) ≤ ||g||∞||divF ||(A) +

∫
A

N∑
j=1

∣∣∣∣ ∂g∂xj
∣∣∣∣ |Fj|dx <∞,

by the summability assumptions on ∂g
∂xj

, gF ∈ DMp(Ω;RN), which gives the claim.
�

Now we provide a product rule for the case p =∞, which we will need in order
to establish generalizations of the Gauss-Green formula.
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Theorem 2.4.2. Let g ∈ BV (Ω) ∩ L∞(Ω) and F ∈ DM∞(Ω;RN). Then gF ∈
DM∞(Ω;RN).

Moreover, if g is also locally Lipschitz, then, in the sense of Radon measures
on Ω,

div(gF ) = gdivF + F · ∇g. (2.4.2)

If g is not locally Lipschitz but with compact support, then we have

div(gF ) = g∗divF + F ·Dg ,

where g∗ is the precise representative of g (therefore, the limit of the mollified
sequence gδ) and F ·Dg is a Radon measure, which is the weak-star limit of F ·∇gδ
and is absolutely continuous with respect to ||Dg||.

Proof. Let Fj be the sequence of smooth functions associated to F as in Theo-
rem 2.1.3 and gj the sequence of smooth functions associated to g as in Theorem
1.3.4.
We have∫

Ω

|div(gjFj)|dx = sup

{∫
Ω

gjFj · ∇φ dx : φ ∈ C∞c (Ω), ||φ||∞ ≤ 1

}
and

∫
Ω
gjFj ·∇φ dx =

∫
Ω
Fj ·∇(gjφ) dx−

∫
Ω
φFj ·∇gj dx. Now, by their definitions,

||Fj||∞ ≤ 3||F ||∞ and ||gj||∞ ≤ 3||g||∞ (see also (2.1.1)), therefore∫
Ω

|div(gjFj)|dx ≤ 3||g||∞ sup

{∫
Ω

Fj · ∇φ dx : φ ∈ C∞c (Ω), ||φ||∞ ≤ 1

}
+

+ 3||F ||∞ sup

{∫
Ω

∇gj · φ dx : φ ∈ C∞c (Ω;RN), ||φ||∞ ≤ 1

}
≤ 3(||g||∞||divFj||(Ω) + ||F ||∞||∇gj||L1(Ω))

Hence, for any φ ∈ C∞c (Ω), ||φ||∞ ≤ 1, one has∣∣∣∣∫
Ω

gF · ∇φ dx
∣∣∣∣ = lim

j→+∞

∣∣∣∣∫
Ω

gjFj · ∇φ dx
∣∣∣∣ ≤ 3(||g||∞||divF ||(Ω)+||F ||∞||∇g||L1(Ω))

since, by property 1 in Theorems 1.3.4 and 2.1.3, gj → g and Fj → F in L1(Ω)
(resp. L1(Ω;RN)) and so∣∣∣∣∫

Ω

gjFj · ∇φ dx−
∫

Ω

gF · ∇φ dx+

∫
Ω

gjF · ∇φ dx−
∫

Ω

gjF · ∇φ dx
∣∣∣∣

≤ 3||∇φ||L∞(Ω;RN )(||g||L∞(Ω)||F − Fj||L1(Ω;RN ) + ||F ||L∞(Ω;RN )||g − gj||L1(Ω)),

which gives us the desired convergence result.
Now, gF ∈ L∞(Ω;RN ;RN), therefore gF ∈ DM∞(Ω;RN).
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By Remark 2.1.1, we have also divFj
∗
⇀ divF in M(Ω). Hence, if g is locally

Lipschitz, then, also by point 1 in Theorem 2.1.3,

gdivFj + Fj · ∇g
∗
⇀ gdivF + F · ∇g in M(Ω).

On the other hand, clearly div(gFj)
∗
⇀ div(gF ) in the sense of distributions.

Taking the limit in the identity

div(gFj) = gdivFj + Fj · ∇g
in the sense of distributions and using the fact that C∞c (Ω) is dense in Cc(Ω) with
respect to the norm ||.||∞, we obtain (2.4.2).

If g is not locally Lipschitz, but with compact support, let gδ = g ∗ ρδ be the
mollification of g, then formula (2.4.2) holds.
Now, it follows from Theorem 1.4.6 that gδ → g∗ HN−1-a.e. in Ω. Then, since by
Corollary 2.3.1, divF � HN−1,

gδdivF
∗
⇀ g∗divF in M(Ω)

as a consequence of the dominated convergence theorem applied to the measure
||divF ||.
Now we show that {div(gδF )} is uniformly bounded inM(Ω): by (2.4.2),

||div(gδF )||(Ω) ≤ ||g||∞||divF ||(Ω) + ||F ||∞ sup
δ>0
||∇gδ||L1(Ω) (2.4.3)

and the supremum is bounded by ||Dg||(Ω), by Remark 1.3.3.
By uniqueness of weak-star limits, div(gδF )

∗
⇀ div(gF ), since this latter is the

actual limit in the sense of distributions, and again we can argue with the density
of C∞c (Ω) in Cc(Ω). Then Remark 1.1.4 and the uniform boundedness of the
sequence, (2.4.3), imply the weak-star convergence inM(Ω).
Hence, F · ∇gδ is weakly-star convergent and, by (2.4.2),

F · ∇gδ
∗
⇀ F ·Dg = div(gF )− g∗divF.

Finally we treat the claim concerning F ·Dg. Let A ⊂ Ω be a measurable set
with ||Dg||(A) = 0, we are going to show that ||F ·Dg||(A) = 0.
Since F ·Dg is a Radon measure on Ω, then its positive and negative parts
(F ·Dg)+ and (F ·Dg)− are well defined.
By the Hahn decomposition theorem, there exist Borel setsA± ⊂ A withA+∪A− =
A and A+∩A− = ∅ such that ±F ·DgxA± ≥ 0; that is, (F ·Dg)+xA = F ·DgxA+

and (F ·Dg)−xA = −F ·DgxA−.
Hence, it suffices to prove that F ·Dg(A±) = 0, and, in order to do so, it suffices
to prove F ·Dg(K) = 0 for any compact subset K of A±, by Proposition 1.1.1.
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We show only the case K ⊂ A+, as the case of A− is analogous.
Since ||Dg||(K) = 0, for any ε > 0 there exists an open set V ⊃ K such that
||Dg||(V ) < ε (Proposition 1.1.1). Clearly, {B(x, rx)}x∈V is an open cover of K,
where we can choose 0 < rx < ε such that B(x, rx) ⊂ V for each x ∈ V and
||Dg||(∂B(x, rx)) = 0, since B(x, rx) ⊂ V for any rx < ρx, for some ρx > 0, and
therefore we apply Remark 1.1.2 to the family {B(x, t)}0<t<ρx .
Since K is compact, we can extract a finite subcover of J of balls such that

K ⊂
J⋃
j=1

B(xj, rj), rj < ε, ||Dg||

(
J⋃
j=1

B(xj, rj)

)
< ε,

and ||Dg||(∂B(xj, rj)) = 0 for each j.
Let φ ∈ Cc(

⋃J
j=1 B(xj, rj)). Since, by Remark 1.3.3, ||∇gδ||

∗
⇀ ||Dg||, then

| < F ·Dg, φ > | = lim
δ→0

∣∣∣∣∫
Ω

φ(x)F (x) · ∇gδ(x) dx

∣∣∣∣
≤ ||φ||∞||F ||∞ lim

δ→0
||∇gδ||L1(

⋃J
j=1B(xj ,rj))

= ||φ||∞||F ||∞||Dg||

(
J⋃
j=1

B(xj, rj)

)
< ε||φ||∞||F ||∞

by point 2 of Lemma 1.1.2. We can choose 0 ≤ φ ≤ 1 such that φ = 1 on K

and
∣∣∣∫⋃J

j=1B(xj ,rj)\K φ dF ·Dg
∣∣∣ ≤ Cε: for example, we can take φ = χK+B(0,δ) ∗ ρδ,

where ρ is a standard symmetric mollifier and δ := δ(ε) > 0 is small enough, in
order to have φ ∈ Cc(

⋃J
j=1B(xj, rj)). In this way∣∣∣∣∣

∫
⋃J
j=1B(xj ,rj)\K

φ dF ·Dg

∣∣∣∣∣ ≤ ||F ·Dg||((K +B(0, 2δ)) \K) < Cε

since ||F ·Dg||((K +B(0, 2δ)) \K)→ 0 as δ → 0. Thus we obtain

F ·Dg(K) =

∣∣∣∣∣
∫
⋃J
j=1 B(xj ,rj)

φ dF ·Dg −
∫
⋃J
j=1 B(xj ,rj)\K

φ dF ·Dg

∣∣∣∣∣ ≤ ε(||F ||∞ + C).

Since ε is arbitrary, this yields the desired result. �

Remark 2.4.1. In particular, this theorem is valid for g = χE for any E ⊂⊂ Ω
of finite perimeter.

Remark 2.4.2. If F ∈ BV (Ω;RN)∩L∞(Ω;RN), then clearly F ∈ DM∞(Ω;RN)
and Theorem 2.4.2 is consistent with Proposition 1.5.1.



CHAPTER 2. DIVERGENCE-MEASURE FIELDS 72

Indeed, for any g ∈ BV (Ω) ∩ L∞(Ω) with compact support, we have gF ∈
BV (Ω;RN) ∩ L∞(Ω;RN) and, for any j = 1, ..., N ,

Dj(gFj) = g∗DjFj + F ∗j Djg,

which implies
div(gF ) = g∗divF + F ∗ ·Dg. (2.4.4)

Now, we recall that F ·Dg is the weak-star limit of F · ∇gδ as δ → 0, where gδ is
a mollification of g. For any φ ∈ C1

c (Ω), we see that∫
Ω

φF · ∇gδ dx =

∫
Ω

F · ∇(φgδ) dx−
∫

Ω

gδF · ∇φ dx

= −
∫

Ω

φgδ ddivF −
∫

Ω

gδF · ∇φ dx.

Since divF � HN−1 (Corollary 2.3.1), gδ → g∗ HN−1-a.e. (Theorems 1.4.5 and
1.4.6) and g∗ = g LN -a.e. (Theorem 1.1.2), we send δ → 0 in order to obtain∫

Ω

φ dF ·Dg = −
∫

Ω

φg∗ ddivF −
∫

Ω

gF · ∇φ dx

= −
∫

Ω

φg∗ ddivF +

∫
Ω

φ ddiv(Fg).

Equation (2.4.4) yields∫
Ω

φ dF ·Dg = −
∫

Ω

φg∗ ddivF +

∫
Ω

φg∗ ddivF +

∫
Ω

φF ∗ · dDg;

that is, ∫
Ω

φ dF ·Dg =

∫
Ω

φF ∗ · dDg ∀φ ∈ C1
c (Ω).

The density of C1
c (Ω) in Cc(Ω) implies the identity F ·Dg = F ∗ · Dg in M(Ω),

and hence the consistency of the two product rules.



Chapter 3

The Gauss-Green formula for DM∞
fields

In this chapter we will provide two versions of the Gauss-Green formula for essen-
tially bounded divergence-measure fields, obtained through different methods: the
first one depends on a more geometrical approach, while the second on a measure-
theoretical one. Indeed, the former relies on a property of C1 compact manifolds
which allows us to apply an approximation argument from an interior neighbor-
hood. On the other hand, the latter is based on exploiting Leibniz rules (Thereom
2.4.2) and thus on finding identities between Radon measures.

3.1 Gauss-Green formula on bounded sets with regular bound-
ary

In this section, we will prove the existence of the normal trace and the correspond-
ing Gauss-Green formula for an essentially bounded divergence-measure field over
any bounded set with C1 boundary.
The method of proof of this theorem from [CTZ1] consists, roughly speaking, in
approximating the boundary of the given set by a family of suitable surfaces for
which the Gauss-Green theorem holds and then obtaining the desired trace as the
density of the weak-star limit of measures concentrated over these approximating
surfaces.
In this way, once defined a suitable notion of interior and exterior of a C1 ori-
entable manifold M , one can emphasize the fact that the normal trace related to
Gauss-Green formula over M is indeed an interior normal trace in the sense that
it is determined by the behavior of F in the interior of M .
As a first result, we prove the following lemma, which is already a version of the
general form of divergence formula, but it requires two more hypothesis which can
be removed.

73
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Remark 3.1.1. We note that, since F ∈ L∞loc(RN ;RN), then F ∈ L1
loc(RN ;RN), so

the precise representative F ∗ (Definition 1.1.6) of F is well defined on RN , equal to
F LN -a.e. and |F ∗(x)| ≤ ||F ||∞ ∀x. Therefore, we always are going to choose F ∗
as representative of the equivalence class of F in what follows, and we will denote
this representative simply by F .

Lemma 3.1.1. Let F ∈ DM∞
loc(RN ;RN) and Fε be a mollification of F . Then the

classical divergence theorem holds for Fε on any bounded set of finite perimeter E;
that is, ∫

E

divFε(x)dx = −
∫
∂∗E

Fε(x) · νE(x) dHN−1(x), (3.1.1)

where νE is the measure theoretic unit interior normal. If in addition we assume

1. Fε → F HN−1-a.e. on ∂∗E,

2. ||divF ||(∂E) = 0,

then
divF (E) = −

∫
∂∗E

F (x) · νE(x) dHN−1(x). (3.1.2)

Proof. By Theorem 1.5.1, we have that (3.1.1) holds, since Fε is smooth, and
so, in particular, locally Lipschitz.
Let W be a bounded open set such that E ⊂⊂ W . Since divFε

∗
⇀ divF and

||divFε||
∗
⇀ ||divF || inM(W ) by Remark 2.1.2, then, by assumption 2 and Lemma

1.1.2, we can conclude that divFε(E)→ divF (E).
By the properties of the mollification, |Fε(x)| ≤ ||F ||L∞(W ) ∀x ∈ E and ε small
enough, so, by assumption 1 and the fact that HN−1(∂∗E) < ∞, we can apply
Lebesgue’s dominated convergence theorem with respect to the measure HN−1 to
find ∫

∂∗E

Fε(x) · νE(x) dHN−1(x)→
∫
∂∗E

F (x) · νE(x) dHN−1(x).

Thus, we pass to the limit for ε→ 0 in identity (3.1.1) and we obtain (3.1.2). �

Conditions 1 and 2 are those we are going to get rid of, by showing that they
are always satisfied on almost every C1 surface approximating the manifold M .
Now we give a definition of what shall be called interior or exterior determined by
a compact C1 manifold.

Definition 3.1.1. Let M be a compact C1 manifold of dimension N − 1.

1. We define the exterior determined by M to be the connected component U of
RN \M that is unbounded.
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The interior I determined by M is defined to be everything else in the com-
plement of M ; namely,

I =
∞⋃
k=1

Bk with Bk ⊂ RN \M a bounded component.

Thus,

RN \M = U ∪

(
∞⋃
k=1

Bk

)
= U ∪ I.

2. We say that M is orientable with respect to U if on every conncected compo-
nent there is a unique interior normal well defined; that is, exactly one unit
vector normal to the manifold such that its opposite points towards U .

We observe that in such a way we allow compact manifolds which are not
connected, and at same time we discard coonected component of M which are
compact manifolds with boundary. Indeed, since the interior determined by the
components with boundary will be empty, they cannot be orientable with respect
to U .
As an example we can consider the cylinder M = {x ∈ RN−1 : |x| = 1} × [0, 1]:
U = RN \M and I = ∅.

Theorem 3.1.1. (Gauss-Green formula)
Let I ⊂ RN be the interior determined by a compact C1 manifold M of dimension
N − 1 with HN−1(M) <∞ . Then, for any F ∈ DM∞

loc(RN ;RN) ∩ L∞(RN ;RN),
there exists a signed Radon measure σ on ∂I = M with σ � HN−1xI and a
function Fi · ν : ∂I → R, which we shall denote as interior normal trace of F on
∂I, such that, for any φ ∈ C1

c (RN),∫
I

ddiv(φF ) =

∫
I

φ ddivF +

∫
I

F · ∇φ dx = −
∫
∂I

φ dσ = −
∫
∂I

φ(Fi · ν) dHN−1

(3.1.3)
and

||Fi · ν||L∞(∂I;HN−1) ≤ C||F ||L∞(RN ;RN ), (3.1.4)

where C = C(N, I).

Before we prove this theorem, we will state a version of a theorem due to
Whitney adapted to our situation.

Theorem 3.1.2. (Whitney)
Let M and I be as in Definition 3.1.1. Let ν be the interior normal and α > 0.
Then there exists a unit C1 vector field Λ∗ : M → RN and a number δ = δ(α) ∈
(0, 1) with the following properties.
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1. If πp : RN → Tp(M) is the orthogonal projection onto the tangent space of M
at p, then |πp(Λ∗(p))| ≤ α. Thus, Λ∗(p) is close to ν(p) when α is small, and

S∗p := {q ∈ RN : q = p+ tΛ∗(p), 0 < t < δ} ⊂ I.

2. As p ranges over M , the segments S∗p fill up an open interior neighborhood
U∗δ of M in a one-to-one way; that is,

U∗δ =
⋃
p∈M

S∗p ,

where S∗p1
∩ S∗p2

= ∅ whenever p1, p2 ∈M with p1 6= p2.

3. The mapping π∗ : U∗δ →M defined by

π∗(q) := p if q ∈ S∗p

is of class C1 and has the property that

ψ∗(q) := |π∗(q)− q| ≤ 2 dist(q,M) for q ∈ U∗δ .

Proof. See [W], Theorem 10A, p. 121.

Remark 3.1.2. This theorem is needed to produce an inward pointing vector at
each point of M such that the vectors corresponding to different points in M do
not intersect. When M is of class C2, the interior normal themselves satisfy this
property in a sufficiently small open interior neighborhood of M , so in this case
we may take ν in place of Λ∗.

Proof of Theorem 3.1.1
We divide the proof into ten steps.

1. Preliminaries
The number ψ∗(q) is the distance from q to M , measured along S∗p , where
π∗(q) = p.
The open sets It := I \ {q ∈ U∗δ : ψ∗(q) < t} for 0 < t < δ are nested,
contained in I and

⋃
t>0

It = I.

Since ψ∗ is continuous, we have ∂It ⊂ (ψ∗)−1(t) for all t ∈ (0, δ), with equality
holding whenever t is not a critical value of ψ∗.

2. ∀t ∈ (0, δ), ∂It is a C1 compact manifold, there exists a constant C(∂I,N)
independent of t such that

HN−1(∂It) ≤ C(∂I,N)HN−1(∂I) (3.1.5)

and It is a set of finite perimeter.
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The set ∂It may be considered as a deformation of M = ∂I along the vector
field Λ∗. In order to show this, we consider the mapping ht : ∂I → ∂It defined
for t ∈ (0, δ) as

q = ht(p) := p+ tΛ∗(p)

with h0(p) = p, so that π∗(q) = p with |ht(p)− p| = t and ht(∂I) = ∂It.
By Theorem 3.1.2, ht ∈ C1(M), with the Jacobian Jht depending only on t
and ||DΛ∗||L∞(M). Therefore, since h is injective, we may use co-area formula
to conclude that, for any A ⊂M which is HN−1-measurable,

HN−1(ht(A)) =

∫
A

Jht(x) dHN−1(x) ≤ C(δ, ||DΛ∗||∞)HN−1(A), (3.1.6)

which implies (3.1.5) for A = M = ∂I.
Since π∗ ◦ ht = Id, the chain rules implies that Jht is nonsingular everywhere
on M , therefore, it is a diffeomorphism and hence ∂It is an (N − 1)-manifold
of class C1, which is also compact, being image of a compact set through a
continuous function.
We also observe that this implies that It is a set of finite perimeter ∀t ∈ (0, δ),
since, ∀φ ∈ C∞c (RN ;RN), ||φ||∞ ≤ 1,∣∣∣∣∫

It

divφ dx

∣∣∣∣ =

∣∣∣∣∫
∂It

φ · νt dHN−1

∣∣∣∣ ≤ HN−1(∂It) <∞

by (3.1.5).

3. For L1-a.e. t ∈ (0, δ), conditions 1 and 2 in Lemma 3.1.1 hold for E = It
First, we know that Fε(x)→ F (x) for LN -a.e x, so there exists a set A ⊂ RN

with |A| = 0 such that we have pointwise convergence ∀x /∈ A. By Lemma
1.4.2, since ψ∗ is a differentiable function on U∗δ , we have

HN−1((ψ∗)−1(t) ∩ (A ∩ U∗δ )) = 0 for L1-a.e.t ∈ (0, δ).

Since ∂It ⊂ (ψ∗)−1(t), this implies condition 1 for t /∈ S, for some S with
L1(S) = 0.
Then, we observe that, by Remark 1.1.2, there exists a set Z ⊂ (0, δ) such
that L1(Z) = 0 and ||divF ||(∂It) = 0 ∀t /∈ Z, since clearly the sets It satisfy
the required hypotheses.
Therefore, conditions 1 and 2 hold ∀t ∈ (0, δ) \ (Z ∪S). From now on we will
always consider t in this set.

4. The signed measures defined by

σt(B) :=

∫
B∩∂It

F (x) · ν(x) dHN−1(x) for each Borel set B ⊂ RN



CHAPTER 3. THE GAUSS-GREEN FORMULA FOR DM∞ FIELDS 78

along with their positive and negative parts σ+
t and σ−t , where σt = σ+

t − σ−t ,
and their total variation measures ||σt|| are all weak-star converging for a
suitable subsequence tk → 0:

(σ+
tk
, σ−tk , σtk , ||σtk ||)

∗
⇀ (σ+, σ−, σ, ||σ||) in M(RN). (3.1.7)

By Remark 3.1.1, we have, for any Borel set B,

|σt|(B) ≤ ||F ||∞HN−1(∂It ∩B).

Therefore, by Definition 1.1.2 and (3.1.5), the total variation norm of σt sat-
isfies

|||σt||| = sup

{
+∞∑
k=0

|σt(Ek)| : {Ek} Borel sets partitioning RN

}

≤ ||F ||∞sup

{
+∞∑
k=0

HN−1(∂It ∩ Ek) : {Ek} Borel sets partitioning RN

}
= ||F ||∞HN−1(∂It) ≤ C||F ||∞HN−1(∂I) ∀t.

So {σt}t>0 and {||σt||}t>0 are bounded sets in M(RN), and also {σ±t }t>0,
since ||σt|| = σ+

t + σ−t . Hence, by Banach-Alaoglu theorem, there exists a
sequence tk → 0 and Radon measures σ, σ+, σ−, ||σ|| with σ = σ+ − σ− and
||σ|| = σ+ + σ− such that (3.1.7) holds.

5. The supports of the measures σ, σ+, σ− are all contained in ∂I.
It is enough to prove this for σ+, since the other two cases are analogous.
By contradiction, let x ∈ supp(σ+) \ ∂I and choose r > 0 such that B(x, r)∩
∂I = ∅. By the definition of the support of a Radon measure, there exists
φ ∈ Cc(B(x, r)) such that

∫
B(x,r)

φ dσ+ 6= 0.
By the weak-star convergence,

∫
B(x,r)

φ dσ+
tk
→
∫
B(x,r)

φ dσ+ 6= 0, and this
implies that there exists a k0 such that, ∀k ≥ k0,

∫
B(x,r)

φ dσ+
tk
6= 0.

This leads to a contradiction, since Itk ⊂ I, supp(σtk) ⊂ ∂Itk , and ∂Itk ∩
B(x, r) = ∅, for tk small enough.

6. We have
lim
tk→0

(σ+
tk
, σ−tk , σtk)(∂Itk) = (σ+, σ−, σ)(∂I). (3.1.8)

Since σ±tk are positive Radon measures and their supports are in ∂Itk , Lemma
1.1.2 yields

lim inf
tk→0

σ±tk(∂Ik) = lim inf
tk→0

σ±tk(R
N) ≥ σ±(RN) = σ±(∂I).
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Now we choose a compact set K ⊃ ∂I ∪ ∂Itk and then, by the previous step
and Lemma 1.1.2, we have

lim sup
tk→0

σ±tk(∂Itk) = lim sup
tk→0

σ±tk(K) ≤ σ±(K) = σ±(∂I).

Combining these two inequalities, we obtain (3.1.8) for σ+ and σ−. Since
σ = σ+ − σ−, we have the result for σ as well.

7. The measure σ is well defined.
Let It′k be another sequence of open sets for which Lemma 3.1.1 applies.
Moreover, we can choose it in such a way that tk > t′k for all k. Then we have

divF (It′k \ Itk) = −
∫
∂It′

k

F (x) · ν(x) dHN−1(x) +

∫
∂Itk

F (x) · ν(x) dHN−1(x)

= −σt′k(∂It′k) + σtk(∂Itk).

Since It′k \ Itk ⊂ I \ Itk is a monotone decreasing sequence of sets and⋂
k≥1

I \ Itk = ∅,

it follows that ||divF ||(It′k \ Itk)→ 0 and therefore that

σt′k(∂It′k)− σtk(∂Itk)→ 0,

which shows that σ is well defined, since it does not depend on the particular
subsequence chosen.

8. ||σ|| � HN−1x∂I.
Let A ⊂ ∂I with HN−1(A) = 0. By Theorem 1.4.2, ||DχI || = HN−1x∂I and
hence ||DχI ||(A) = 0.
Since 0 = ||DχI ||(A) = inf{||DχI ||(G) : A ⊂ G,G open}, for each ε > 0,
there exists an open set G ⊃ A such that HN−1(G ∩ ∂I) < ε.
Moreover, using (3.1.6), we obtain

||σtk ||(G) ≤
∫
G∩∂Itk

|F (x) · ν(x)| dHN−1(x) ≤ ||F ||∞HN−1(G ∩ ∂Itk)

≤ C(∂I,N)||F ||∞HN−1(h−1
tk

(G ∩ ∂Itk)).

By Lemma 1.1.2 and the continuity of h−1
tk

= π∗, we have

||σ||(A) ≤ ||σ||(G) ≤ lim inf
tk→0

||σtk ||(G)

≤ C||F ||∞ lim
tk→0
HN−1(h−1

tk
(G ∩ ∂Itk))

= C||F ||∞HN−1(G ∩ ∂I) < εC||F ||∞.

Since ε is arbitrary, we can conclude that ||σ||(A) = 0, as desired.
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9. We prove now (3.1.3).
Since F ∈ DM∞

loc(RN ;RN), then F ∈ DM∞(W ;RN) for some bounded open
set W such that I ⊂⊂ W . By Theorem 2.4.2, for any φ ∈ C1

c (RN) one has
φF ∈ DM∞(W ;RN), since clearly φ ∈ BV (W ) ∩ L∞(W ) and it is locally
Lipschitz, and

div(φF ) = φdivF + F · ∇φ.

By Lemma 3.1.1, we have

div(φF )(Itk) = −
∫
∂Itk

φ(x)F (x) · ν(x) dHN−1(x) for tk ∈ (0, δ) \ (S ∪ Z).

Since the sets Itk are nested and increasing as tk → 0, Itk =
⋃
tk≤t<δ It and

I =
⋃

0<t<δ It, hence

lim
k→+∞

div(φF )(Itk) = lim
k→+∞

div(φF )(
⋃

tk≤t<δ

It) = div(φF )(I).

Thus, by step 4, if we let k → +∞, we obtain

div(φF )(I) = −
∫
∂I

φ dσ. (3.1.9)

10. The Radon-Nykodim derivative of σ with respect to HN−1x∂I is a function
Fi · ν ∈ L∞(∂I;HN−1) such that (3.1.4) holds.
Since ||σ|| � HN−1x∂I, Radon-Nykodim theorem implies that there exists
Fi · ν ∈ L1(∂I;HN−1) such that (3.1.9) can be written as (3.1.3).
By the Lebesgue-Besicovitch differentiation theorem (Theorem 1.1.2), we
know that for HN−1-x ∈ ∂I one has

|(Fi · ν)(x)| = lim
r→0

∣∣∣∣ σ(B(x, r))

HN−1(∂I ∩B(x, r))

∣∣∣∣ .
Finally, a sequence of balls B(x, rj) with rj → 0 can be chosen in such a way
that ||σ||(∂B(x, rj)) = 0, by Remark 1.1.2, in order to have, by Lemma 1.1.2,

|(Fi · ν)(x)| = lim
rj→0

lim
tk→0

∣∣∣∣ σ(B(x, rj))

HN−1(∂I ∩B(x, rj))

∣∣∣∣
= lim

rj→0
lim
tk→0

∣∣∣∣∣
∫
∂Itk∩B(x,rj)

F (x) · ν(x) dHN−1(x)

HN−1(∂I ∩B(x, rj))

∣∣∣∣∣
≤ ||F ||L∞(RN ;RN ) lim

rj→0
lim
tk→0

HN−1(∂Itk ∩B(x, rj))

HN−1(∂I ∩B(x, rj))

≤ C(∂I,N)||F ||∞ lim
rj→0

HN−1(∂I ∩B(x, rj))

HN−1(∂I ∩B(x, rj))

= C(∂I,N)||F ||∞
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with the last inequality coming from (3.1.6). �

3.2 Gauss-Green formula on bounded sets of finite perime-
ter

We now establish a version of the Gauss-Green formula for DM∞(Ω;RN) fields on
bounded sets of finite perimeter. The method is analogous to the one Vol’pert used
in order to prove Theorem 1.5.2 and it is based on the product rule established in
the paper of Chen and Torres ([CT]). The results are similar to those presented
in the paper of Chen, Torres and Ziemer ([CTZ]), but here we are not using their
theory concerning the approximation of sets of finite perimeter by sets with smooth
boundary.
We recall that for a bounded set of finite perimeter E we select the representative
E = E1 ∪ ∂mE.
We begin with the following result concerning fields with compact support, similar
to Lemma 1.5.1.

Lemma 3.2.1. If F ∈ DM∞(Ω;RN) has compact support in Ω, then

divF (Ω) = 0.

Proof. Since F has compact support, we can extend it to

F̂ (x) =

{
F (x) if x ∈ Ω

0 if x ∈ RN \ Ω

and F̂ ∈ DM∞(RN ;RN), by Remark 2.1.2.
With a little abuse of notation, we will denote this extension again by F .

So, F = 0 on RN \ Ω. In particular, this implies that ||divF ||(A) = 0 for each
open set A ⊂ RN \ Ω: indeed

0 =

∫
RN
F · ∇φ dx = −

∫
RN
φ ddivF ∀φ ∈ C∞c (A)

and ||divF ||(A) is the supremum of these integrals over φ ∈ C∞c (A) with ||φ||∞ ≤ 1,
by Proposition 1.1.2. By the properties of positive Radon measures (Proposition
1.1.1), this implies ||divF ||(B) = 0 for any Borel set B ⊂ RN \ Ω.
We set Ωk := {x ∈ RN : k > dist(x,Ω) ≥ k − 1} for k ≥ 2 and Ω1 := {x ∈ RN :
1 > dist(x,Ω) ≥ 0} \ Ω. Then, ||divF ||(RN \ Ω) = 0 since RN \ Ω =

⋃+∞
k=1 Ωk and

each one of these sets has ||divF ||-measure zero.
Now let φ ∈ C∞c (RN) such that φ = 1 on Ω1 ∪ Ω.
Then it is clear that ∫

RN
φ ddivF =

∫
RN
ddivF



CHAPTER 3. THE GAUSS-GREEN FORMULA FOR DM∞ FIELDS 82

and, by the definition of the distributional derivative,∫
RN
φ ddivF = −

∫
RN
F · ∇φ dx = −

∫
RN\(Ω1∪Ω)

F · ∇φ dx = 0,

since F has support inside Ω. Thus divF (RN) = 0, which implies divF (Ω) = 0. �

Theorem 3.2.1. (The Gauss-Green formula) Let F ∈ DM∞(Ω;RN). If
E ⊂⊂ Ω is a bounded set of finite perimeter, then there exist interior and exterior
normal traces of F on ∂∗E; that is, (Fi · νE), (Fe · νE) ∈ L∞(∂∗E;HN−1) such that

divF (E1) = −2χEF ·DχE(∂∗E) = −
∫
∂∗E

Fi · νE dHN−1

and
divF (E) = −2χE0F ·DχE(∂∗E) = −

∫
∂∗E

Fe · νE dHN−1,

where χEF ·DχE and χE0F ·DχE are the weak star limits, respectively, of the
sequences χEF · ∇(χE ∗ ρδ) and χE0F · ∇(χE ∗ ρδ) as δ → 0, up to a subsequence.
Moreover,

||Fi · νE||L∞(∂∗E;HN−1) ≤ ||F ||L∞(E1;RN )

and
||Fe · νE||L∞(∂∗E;HN−1) ≤ ||F ||L∞(Ω\E;RN ).

Proof. By Theorem 2.4.2, it follows that

div(χ2
EF ) = div(χE(χEF )) = χ∗Ediv(χEF ) + χEF ·DχE

= χ∗E(χ∗EdivF + F ·DχE) + χEF ·DχE
= (χ∗E)2divF + χ∗EF ·DχE + χEF ·DχE, (3.2.1)

where χ∗E is the precise representative of χE.
On the other hand,

div(χ2
EF ) = div(χEF ) = χ∗EdivF + F ·DχE. (3.2.2)

Combining (3.2.1) with (3.2.2) yields

((χ∗E)2 − χ∗E)divF + χ∗EF ·DχE + χEF ·DχE − F ·DχE = 0.

On the other hand, divF � HN−1 by Corollary 2.3.1 and so Lemma 1.4.1 yields

((χ∗E)2 − χ∗E)divF = −1

4
χ∂∗EdivF. (3.2.3)
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By Theorem 2.4.2, F ·DχE � ||DχE|| and χEF ·DχE � ||DχE||, there-
fore these two measures are supported on ∂∗E. In particular this implies that
χ∗EF ·DχE = 1

2
F ·DχE.

From this fact and (3.2.3) we obtain

1

2
χ∂∗EdivF + F ·DχE − 2χEF ·DχE = 0. (3.2.4)

Therefore, if we subtract (3.2.4) from (3.2.2) we have

div(χEF ) = χE1divF +
1

2
χ∂∗EdivF + F ·DχE −

1

2
χ∂∗EdivF+

− F ·DχE + 2χEF ·DχE = χE1divF + 2χEF ·DχE.

On the other hand, if we add (3.2.4) to (3.2.2) we have

div(χEF ) = χE1divF +
1

2
χ∂∗EdivF + F ·DχE +

1

2
χ∂∗EdivF+

+ F ·DχE − 2χEF ·DχE = χEdivF + 2F ·DχE − 2χEF ·DχE.

We also observe that F ·DχE − χEF ·DχE is the weak-star limit of the sequence

F · ∇(χE ∗ ρδ)− χEF · ∇(χE ∗ ρδ) = (1− χE)F · ∇(χE ∗ ρδ) = χE0F · ∇(χE ∗ ρδ)

and so F ·DχE − χEF ·DχE = χE0F ·DχE1.
Thus, we have found

div(χEF ) = χE1divF + 2χEF ·DχE. (3.2.5)

and
div(χEF ) = χEdivF + 2χE0F ·DχE. (3.2.6)

Since χEF clearly has compact support in Ω, by Lemma 3.2.1 and (3.2.5) we
have

0 = div(χEF )(Ω) = divF (E1) + 2χEF ·DχE(Ω),

which implies, recalling that χEF ·DχE is supported on ∂∗E,

divF (E1) = −2χEF ·DχE(Ω) = −2χEF ·DχE(∂∗E). (3.2.7)

In an analogous way, Lemma 3.2.1 and (3.2.6) yield

divF (E) = −2χE0F ·DχE(∂∗E). (3.2.8)

Since χEF ·DχE � ||DχE|| = HN−1x∂∗E, the Radon-Nikodym theorem im-
plies that there exists a function Fi ·νE ∈ L1(∂∗E;HN−1) such that 2χEF ·DχE =

1χE0 has to be understood as χΩ∩E0 .
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(Fi · νE)HN−1x∂∗E.
Thus, we conclude that

divF (E1) = −
∫
∂∗E

(Fi · νE) dHN−1.

Analogously, χE0F ·DχE � ||DχE|| = HN−1x∂∗E and so there exists a func-
tion Fe · νE ∈ L1(∂∗E;HN−1) such that 2χE0F ·DχE = (Fi · νE)HN−1x∂∗E; that
is,

divF (E) = −
∫
∂∗E

(Fe · νE) dHN−1.

We prove now the estimates of the L∞-norm of the normal traces.
We set χδ := χE ∗ ρδ and we observe that χEDχE = 1

2
DχE: indeed for any

φ ∈ C1
c (Ω;RN) we have∫

Ω

χEφ · ∇χδ dx =

∫
Ω

χEdiv(χδφ) dx−
∫

Ω

χEχδdivφ dx

= −
∫

Ω

χδφ · dDχE −
∫

Ω

χEχδdivφ dx.

If we let δ → 0 we obtain that the limit of the right hand side exists, therefore
also the one of the left hand side must exist (at least in the sense of distributions);
moreover, it holds∫

Ω

φ · dχEDχE = −
∫

Ω

χ∗Eφ · dDχE −
∫

Ω

χ2
Edivφ dx

= −
∫

Ω

1

2
φ · dDχE −

∫
Ω

χEdivφ dx

= −
∫

Ω

1

2
φ · dDχE +

∫
Ω

φ · dDχE

since χ∗E = 1
2
on ∂∗E and DχE = νEdHN−1x∂∗E. Therefore, by the density of

C1
c (Ω;RN) in Cc(Ω;RN) with respect to the supremum norm, we have∫

Ω

φ · dχEDχE =

∫
Ω

1

2
φ · dDχE ∀φ ∈ Cc(Ω;RN) (3.2.9)

which implies χEDχE = 1
2
DχE inM(Ω;RN).

We also have χE0DχE = 1
2
DχE since it is the weak-star limit of the sequence

χE0∇χδ = ∇χδ − χE∇χδ
∗
⇀

(
1− 1

2

)
DχE

as δ → 0.
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By the Lebesgue-Besicovitch differentiation theorem (Theorem 1.1.2), we know
that for HN−1-a.e. x ∈ ∂∗E one has

|(Fi · νE)(x)| = lim
r→0

∣∣∣∣2χEF ·DχE(B(x, r))

HN−1(∂∗E ∩B(x, r))

∣∣∣∣ .
Now we observe that the sequence |χEF · ∇χδ| is bounded inM(Ω):

||χEF · ∇χδ||(Ω) ≤ sup

{∫
Ω

φ|χEF · ∇χδ| dx : φ ∈ C∞c (Ω), ||φ||∞ ≤ 1

}
≤
∫

Ω

|χEF · ∇χδ| dx ≤ ||F ||L∞(E1;RN )||∇χδ||L1(RN )

≤ ||F ||L∞(E1;RN )||DχE||(RN)

by Remark 1.4.7.
Thus, there exists a weak-star converging subsequence, which we label with δk,
and let the positive measure λ ∈M(Ω) be its limit.
In an analogous way, we can prove that the sequence or Radon measures |χE0F ·
∇χδ| is bounded, we just need to put in the previous calculation the norm
||F ||L∞(Ω\E;RN ). So there exists a weak-star converging subsequence, which we la-
bel again with δk, whose limit is the positive Radon measure λ0.
Moreover, we observe that also the sequences χE|∇χδk | and χE0 |∇χδk | are bounded
using the same argument as above. So there exist weak-star converging subse-
quences which we shall not relabel for simplicity of notation and which converge
to positive measures µ, µ0 ∈M(Ω).
By Remark 1.1.2, sequence of balls B(x, rj) with rj → 0 can be chosen in such
a way that ||DχE||(∂B(x, rj)) = λ(∂B(x, rj)) = µ0(∂B(x, rj)) = 0 and hence, by
Lemma 1.1.2,

lim
rj→0

∣∣∣∣2χEF ·DχE(B(x, rj))

||DχE||(B(x, rj))

∣∣∣∣ = lim
rj→0

∣∣∣∣∣∣∣∣
lim
δk→0

2

∫
B(x,rj)

χEF · ∇χδk dy

lim
δk→0

∫
B(x,rj)

|∇χδk | dy

∣∣∣∣∣∣∣∣
≤ lim

rj→0

2||F ||L∞(E1;RN ) lim
δk→0

∫
B(x,rj)

χE|∇χδk | dy

lim
δk→0

∫
B(x,rj)

|∇χδk | dy

= 2||F ||L∞(E1;RN ) lim
rj→0

1−
lim
δk→0

∫
B(x,rj)

χE0|∇χδk | dy

lim
δk→0

∫
B(x,rj)

|∇χδk | dy


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≤ 2||F ||L∞(E1;RN ) lim
rj→0

1−
lim
δk→0
|
∫
B(x,rj)

χE0∇χδk dy|

lim
δk→0

∫
B(x,rj)

|∇χδk | dy


= 2||F ||L∞(E1;RN ) lim

rj→0

(
1− |χE

0DχE(B(x, rj))|
||DχE||(B(x, rj))

)
= 2||F ||L∞(E1;RN ) lim

rj→0

(
1− 1

2

|DχE(B(x, rj))|
||DχE||(B(x, rj))

)
= ||F ||L∞(E1;RN ).

In the last passage we used the definition of reduced boundary: if x ∈ ∂∗E, then
|νE|(x) = 1, ||DχE||(B(x, r)) > 0 for r > 0 and νE(x) = limr→0

DχE(B(x,r))
||DχE ||(B(x,r))

. This
implies that

lim
r→0

|DχE(B(x, r))|
||DχE||(B(x, r))

= |νE(x)| = 1.

The estimate for the exterior normal trace Fe · νE can be obtained in a similar
way, considering instead balls contained in Ω which satisfy ||DχE||(∂B(x, rj)) =
λ0(∂B(x, rj)) = µ(∂B(x, rj)) = 0 and using the inequality∣∣∣∣∫

B(x,r)

χE0F · ∇χδk dy
∣∣∣∣ ≤ ||F ||L∞(Ω\E;RN )

∫
B(x,r)

χE0|∇χδk | dy.

This completes the proof. �

Remark 3.2.1. Since the proof of Theorem 3.2.1 relies on the product rule for
F ∈ DM∞(Ω;RN) and g ∈ BV (Ω)∩L∞(Ω) with compact support, then Remark
2.4.2 shows that this result is consistent with Theorem 1.5.2 in the case F ∈
BV (Ω;RN) ∩ L∞(Ω;RN).

An immediate corollary of this theorem is a way to represent the measure divF
on the reduced boundary of bounded sets of finite perimeter.

Corollary 3.2.1. Let F ∈ DM∞(Ω;RN). If E ⊂⊂ Ω is a bounded set of finite
perimeter, then

χ∂∗EdivF = 2χEF ·DχE−2χE0F ·DχE = (Fi ·νE−Fe ·νE)HN−1x∂∗E, (3.2.10)

which implies

divF (B) =

∫
B

(Fi · νE −Fe · νE) dHN−1 (3.2.11)

for any Borel set B ⊂ ∂∗E, and

||divF ||(∂∗E) =

∫
∂∗E

|Fi · νE −Fe · νE| dHN−1 (3.2.12)
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Proof. Equation (3.2.10) follows immediately from (3.2.4) in the proof of The-
orem 3.2.1, from F ·DχE − χEF ·DχE = χE0F ·DχE and from the definition of
the normal traces. Then we evaluate both measures in equation (3.2.10) over a
Borel set B in ∂∗E and we obtain (3.2.11). Finally, 3.2.12 immediately follows
from (3.2.10) and properties of total variation. �

Theorem 3.2.2. Let F ∈ DM∞(Ω;RN) and E ⊂⊂ Ω be a bounded set of finite
perimeter. Then, for any φ ∈ C1

c (RN),∫
E1

φ ddivF = −
∫
∂∗E

φ(Fi · νE) dHN−1 −
∫
E1

F · ∇φ dx (3.2.13)

and, recalling that, up to a set of HN−1 measure zero, E = E1 ∪ ∂∗E,∫
E

φ ddivF = −
∫
∂∗E

φ(Fe · νE) dHN−1 −
∫
E

F · ∇φ dx. (3.2.14)

Proof. By Theorem 2.4.2, we know that φF ∈ DM∞(Ω;RN) for any φ ∈
C1
c (RN). Using Theorem 3.2.1, we obtain

div(φF )(E1) = −2

∫
∂∗E

dφχEF ·DχE.

We have φχEF ·DχE = φχEF ·DχE, since, for any ψ ∈ Cc(Ω),∫
Ω

ψ dφχEF ·DχE = lim
δ→0

∫
Ω

ψ φχEF · ∇χδ dx

= lim
δ→0

∫
Ω

(ψφ)χEF · ∇χδ dx =

∫
Ω

(ψφ) dχEF ·DχE.

Since 2χEF ·DχE = (Fi · νE)HN−1x∂∗E, we have∫
E1

ddiv(φF ) = −
∫
∂∗E

φ(Fi · νE) dHN−1.

On the other hand, Theorem 2.4.2 yields div(φF ) = φdivF + F · ∇φ, which
implies ∫

E1

φ ddivF = −
∫
E1

F · ∇φ dx+

∫
E1

ddiv(φF )

and so the proof of equation (3.2.13) is complete. The proof of equation (3.2.14)
requires the same steps applied to the second identiy of Theorem 3.2.1. �

Remark 3.2.2. A consequence of Theorem 3.2.2 is that, in the case p = ∞,
the functional normal trace (TF )∂E (Definition 2.3.1) can be represented by an
essentially bounded function on ∂∗E:

(TF )∂E(φ) = −
∫
∂∗E

φ(Fe · νE) dHN−1 ∀φ ∈ C∞c (Ω).

From this it also follows that supp((TF )∂E) ⊂ ∂∗E.
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Theorem 3.2.3. (Consistency of the Normal Trace with the classical one)
Let F ∈ DM∞(Ω;RN)∩C(Ω;RN). If E ⊂⊂ Ω is a bounded set of finite perimeter,
then the interior and exterior normal trace coincide and admit a representative
which is in fact the classical dot product of F and the measure theoretic interior
unit normal to E on ∂∗E.

Proof. By Theorem 3.2.1, we have that 2χEF ·DχE = (Fi · νE)HN−1x∂∗E in
the sense of Radon measures and Fi · νE ∈ L∞(∂∗E;HN−1). This means that for
HN−1-a.e. x ∈ ∂∗E one has

(Fi · νE)(x) = lim
r→0

2
χEF ·DχE(B(x, r))

||DχE||(B(x, r))
. (3.2.15)

Moreover, if we let χδ = χE ∗ ρδ be a mollification of χE, we know that

χEF · ∇χδ
∗
⇀ χEF ·DχE in M(Ω),

which means that, ∀φ ∈ Cc(Ω),∫
Ω

φχEF · ∇χδ dx→
∫

Ω

φ dχEF ·DχE as δ → 0.

We observe that φF ∈ Cc(Ω;RN) and, since χE∇χδ
∗
⇀ χEDχE, we have also∫

Ω

(φF ) · ∇χδχE dx→
∫

Ω

(φF ) · dχEDχE as δ → 0.

Thus we can conclude that χEF ·DχE = F · χEDχE = 1
2
F · DχE (equation

(3.2.9) in the proof of Theorem 3.2.1), which means that

2χEF ·DχE(B(x, r)) =

∫
B(x,r)

F · dDχE.

Recalling the definition of λ from the proof of Theorem 3.2.1, Remark 1.1.2 implies
that we can choose a sequence rj → 0 such that λ(∂B(x, rj)) = 0.
Moreover, by the continuity of F , the function F · νE is well defined on ∂∗E and
is also in L1(∂∗E;HN−1).
Thus, from (3.2.15), for HN−1-a.e. x ∈ ∂∗E, we obtain

(Fi · νE)(x) = lim
j→+∞

∫
B(x,rj)

F (y) · dDχE(y)

||DχE||(B(x, rj))

= lim
j→+∞

∫
B(x,rj)

F (y) · νE(y)d||DχE||(y)

||DχE||(B(x, rj))

= F (x) · νE(x),

by Lemma 1.1.2 and the Lebesgue-Besicovitch differentiation theorem (Theorem
1.1.2).
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Applying the same steps to the measure 2χE0F ·DχE yields that it is equal to
F · DχE and hence, if we choose balls in Ω such that λ0(∂B(x, rj)) = 0 (see the
proof of Theorem 3.2.1), we find that also Fe · νE admits F · νE as representative
and hence it coincides with Fi · νE as class of L∞ functions. �

From this theorem we see that continuous fields have no jump component in
the divergence.

Corollary 3.2.2. Let F ∈ DM∞(Ω;RN)∩C(Ω;RN). Then, for any E ⊂⊂ Ω set
of finite perimeter, we have

||divF ||(∂∗E) = 0.

Proof. From equation (3.2.10) in Corollary 3.2.1 and from the proof of Theorem
3.2.3, we see that

χ∂∗EdivF = 2χEF ·DχE − 2χE0F ·DχE = 0

which implies
||χ∂∗EdivF || = 0.

Indeed, by definition of total variation measure, for any Borel set A it is equal to

sup

{
+∞∑
k=0

|divF (Bk ∩ ∂∗E)| : Bk Borel sets pairwise disjoint, A =
+∞⋃
k=0

Bk

}
and this yields 0 since every term in the series is null. �

Remark 3.2.3. We observe that the L∞ estimates in Theorem 3.2.1 are sharp
since we can find continuous divergence measure fields F for which

||Fi · νE||L∞(∂∗E;HN−1) = ||Fe · νE||L∞(∂∗E;HN−1) = ||F ||L∞(E1) = ||F ||L∞(Ω\E).

Indeed suppose E = [0, 1]N ⊂⊂ Ω and let F (x) = e1 = (1, 0, ..., 0). Then clearly
F ∈ DM∞(Ω;RN) ∩ C(Ω;RN) and ||F ||L∞(E1) = ||F ||L∞(Ω\E) = 1.
Moreover, on {0} × (0, 1)N−1, νE = e1 and so over this part of ∂∗E we have
Fi · νE = Fe · νE = F · νE = 1. This implies the identity of the norms.

Remark 3.2.4. If F ∈ DM∞(RN ;RN) is such that divF is a positive Radon
measure, then we have a partial converse to Proposition 2.3.3. Indeed, if we take
E = B(x, r), Theorem 3.2.1 yields

divF (B(x, r)) = −
∫
∂B(x,r)

(Fi · νB(x,r)) dHN−1.

Then divF ≥ 0 implies

divF (B(x, r)) ≤ ||F ||L∞(B(x,r);RN )NωNr
N−1 ≤ CrN−1,

where C := ||F ||L∞(RN ;RN )NωN .
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Example 3.2.1. LetN = 2, then F (x, y) = (sin
(

1
x−y

)
, sin

(
1

x−y

)
) ∈ DM∞(R2;R2)

as in Example 2.2.2. We will show now that the interior normal trace on any seg-
ment of the line {(x, y) : y = x} is indeed 0, as we suggested in Remark 2.2.2.
Let E := {(x, y) ∈ R2 : x ≤ y ≤ x + 1;−2R ≤ x + y ≤ 2R} for some R > 0 and
φ ∈ Cc(R2), then∫

R2

φ(x, y)χE(x, y)F (x, y) · ∇χδ(x, y) dx dy →
∫
R2

φ(x, y) dχEF ·DχE

and 2χEF ·DχE = (Fi · νE)H1x∂∗E.

Let IR
2

:= {(x, y) ∈ R2 : y = x, x ∈ [−R
2
, R

2
]} ⊂ ∂E, then we have νE|IR

2

=
1√
2
(−1, 1) and

∇χδk(x, y) =

∫
R2

∇x,yρδk(x− u, y − v)χE(u, v) du dv

= −
∫
R2

∇u,vρδk(x− u, y − v)χE(u, v) du dv

=

∫
∂∗E

ρδk(x− u, y − v)νE(u, v) dH1(u, v).

If (x, y) ∈ IR
2

+ B(0, δ) and |(x − u, y − v)| < δk, then (u, v) ∈ IR
2

+ B(0, δ + δk).
Then, if φ ∈ Cc(IR

2
+ B(0, δ)) and if we take δ and δk small enough (for example,

both < R
4
) so that (IR

2
+B(0, δ + δk)) ∩ ∂∗E = IR, we obtain∫

R2

φ(x, y)χE(x, y)F (x, y) · ∇χδ(x, y) dx dy

=

∫
(IR

2
+B(0,δ))∩E

φ(x, y)F (x, y) ·
∫
∂∗E

ρδk(x− u, y − v)νE(u, v) dH1(u, v) dx dy

=

∫
(IR

2
+B(0,δ))∩E

φ(x, y)F (x, y) ·
∫
IR

ρδk(x− u, y − v)νE(u, v) dH1(u, v) dx dy = 0,

since F (x, y) · νE|IR = 1
2

(
− sin

(
1

x−y

)
+ sin

(
1

x−y

))
= 0 for L2-a.e (x, y) ∈ (IR

2
+

B(0, δ)) ∩ E). Thus, ∫
IR

φ(x, y)(Fi · νE)(x, y) dH1(x, y) = 0

for any φ ∈ Cc(IR
2

+B(0, δ)), which in particular implies (Fi · νE) = 0 in IR
2
.

As a final remark, we notice that in special cases we can also recover an inte-
gration by parts formula.
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Remark 3.2.5. Let F ∈ DM∞(Ω;RN) such that F = fv for some f ∈ L∞(Ω)
and v ∈ SN−1. We have divF = Dvf in the sense of distributions, since, for any
φ ∈ C∞c (Ω),

−
∫

Ω

φ ddivF =

∫
Ω

F · ∇φ dx =

∫
Ω

fv · ∇φ dx =

∫
Ω

f∇vφ dx

and so Dvf ∈M(Ω) and ||Dvf ||(Ω)|| <∞.
Using the notation of [AFP] (Section 3.11), we denote by Πv the hyperplane or-
thogonal to v passing through the origin and by Ωv the orthogonal projection of
Ω on Πv. It is clear that, for any y ∈ Ωv, the section of Ω corresponding to y; that
is, Ωy

v := {t ∈ R : y + tv ∈ Ω}, is not empty.
Also, for any function f : B ⊆ Ω→ R and any y ∈ Ωv, the function
f yv : By

v ⊆ Ωy
v → R is defined by f yv (t) := f(y + tv). Dvf is called directional

distributional derivative, and it is well defined if f ∈ L1
loc(Ω), which is our case.

Theorem 3.103 in [AFP] states that if f ∈ L1
loc(Ω) and v ∈ SN−1, then

||Dvf ||(Ω) =

∫
Ωv

||Dtf
y
v ||(Ωy

v) dy.

From this, it follows immediately that the functions f yv belong to BVloc(Ω
y
v) for

HN−1-a.e. y ∈ Ωv. We also notice that, for any φ ∈ C∞c (Ω), Fubini’s theorem
implies

−
∫

Ω

φDvf =

∫
Ω

f∇vφ dx =

∫
Ωv

(∫
Ωyv

f(y + tv)
d

dt
φ(y + tv) dt

)
dy

=

∫
Ωv

(∫
Ωyv

f yv
d

dt
φyv dt

)
dy = −

∫
Ωv

(∫
Ωyv

φyv dDtf
y
v

)
dy,

since f yv ∈ L1
loc(Ω

y
v) for HN−1-a.e. y ∈ Ωv, and so,

Dvf = Dtf
y
v ⊗HN−1xΩv (3.2.16)

in the sense of Radon measures in Ω.
Moreover, Remark 3.104 in [AFP] implies that if E ⊂⊂ Ω is a set of finite perimter,
then Ey

v is of finite perimter in R for HN−1-a.e. y ∈ Ev. We can conclude that, for
HN−1-a.e. y ∈ Ev, Ey

v is the union of a finite number of pairwise disjoint intervals
{[a2j−1, a2j]}mj=1 in Ωy

v (see [AFP], Proposition 3.52).
Therefore, for any E ⊂⊂ Ω, we may apply (3.2.16) and Vol’pert’s results (Theorem
1.5.2):∫
E1

dDvf =

∫
Ev

(∫
Eyv

dDtf
y
v

)
dy =

∫
Ev

m∑
j=1

(f−1(y + a2jv)− f+1(y + a2j−1v)) dy,

where f−1(y + a2jv) is the approximate limit of f(y + ·v) in a2j from the left and
f+1(y+ a2j−1v) is the approximate limit of f(y+ ·v) in a2j−1 from the right, since
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the interior unit normal in one dimension is +1 or −1.
Thus we obtain an integration by part formula at least in the direction v.



Chapter 4

Final remarks and applications

In this chapter we will present some consequences and applications of the Gauss-
Green formula.
We will in particular illustrate gluing and extension theorems for essentially bounded
divergence-measure fields.
Then, we will show a particular form of the Gauss-Green formula in DM1

loc which
holds only on almost every ball and use it in order to find a condition for the
risolubility of the equation divF = µ in RN , for µ positive Radon measure and
F ∈ DMp(RN ;RN) with 1 ≤ p ≤ N

N−1
(for this and related subjects, see also

[PT]).
Finally, we will briefly recall the main features of hyperbolic systems of conserva-
tion laws, show how the theory of divergence-measure fields is strictly connected
with Lax entropy inequality and exhibit an application of Theorems 3.2.1 and 3.2.2
to this context.

4.1 Gluing and extension theorems

Theorem 4.1.1. (Gluing theorem) Let W ⊂⊂ E ⊂⊂ Ω,where Ω and W are
open sets and E is a set of finite perimeter. Let F1 ∈ DM∞(Ω;RN) and F2 ∈
DM∞(RN \W ;RN). Then

F (x) =

{
F1(x) if x ∈ E
F2(x) if x ∈ RN \ E

belongs to DM∞(RN ;RN), and

||F ||DM∞(RN ;RN ) ≤ ||F1||DM∞(E1;RN ) + ||F2||DM∞(RN\E1;RN )

+ ||Fi,1 · ν −Fi,2 · ν||L1(∂∗E;HN−1),

where Fi,1 · ν is the interior normal trace of F1 on ∂∗E and

(Fi,2 · ν)HN−1x∂∗E = 2χEF2 ·DχE,

93
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which can be seen as an interior normal trace, even if E is not a subset of RN \W .

Proof. Obviously, F ∈ L∞(RN ;RN) and

||F ||L∞(RN ;RN ) ≤ ||F1||L∞(E;RN ) + ||F2||L∞(RN\E;RN ).

Now, if φ ∈ C1
c (RN \W ), we observe that we can take ξ ∈ C1

c (RN \W ) such
that ξ = 1 on supp(φ): then we can extend ξF2 to a divergence-measure field F̂2

on RN by setting it equal to 0 in W (indeed, it has compact support, so we refer
to Remark 2.1.2).
By Theorem 3.2.1, we know that 2χEF̂2 ·DχE = (F̂i,2 ·ν)HN−1x∂∗E and, arguing
as in the proof of Theorem 3.2.2, we can show that∫

E1

ddiv(φF̂2) = −
∫
∂∗E

φ 2dχEF̂2 ·DχE.

For any ϕ ∈ Cc(RN), we have∫
RN
ϕχEF̂2 · ∇χδ dx =

∫
RN\W

(ϕξ)χEF2 · ∇χδ dx.

The set {χEF2 · ∇χδ} is bounded inM(RN \W ):

||χEF2 · ∇χδ||(RN \W ) ≤ ||F ||L∞(RN\W ;RN )||DχE||(RN),

by Remark 1.4.7. Thus there exists a converging subsequence labeled with δk

and, if suppϕ ⊂ RN \ W , we can conclude that χEF̂2 ·DχE = χEF2 · ∇χE in
M(RN \ W ). This implies (F̂i,2 · ν) = (Fi,2 · ν) HN−1-a.e. x ∈ ∂∗E, by the
definition.
Therefore we have∫

E1

∇φ · F̂2 dx+

∫
E1

φ ddivF̂2 =

∫
E1

ddiv(φF̂2) = −
∫
∂∗E

φ(Fi,2 · ν) dHN−1

and, since ξ = 1 and ∇ξ = 0 on suppφ, div(F̂2) = ξdivF2 +∇ξ ·F2 in suppφ, which
implies∫

E1∩suppφ

∇φ · F2 dx+

∫
E1∩suppφ

φ ddivF2 = −
∫
∂∗E

φ(Fi,2 · ν) dHN−1.

Recalling that |E \ E1| = 0,

−
∫
RN\W

φ ddivF2 =

∫
RN\W

F2 · ∇φ dx =

∫
RN\E

F2 · ∇φ dx+

∫
E∩suppφ

F2 · ∇φ dx

= −
∫
∂∗E

φ(Fi,2 · ν) dHN−1 −
∫
E1∩suppφ

φ ddivF2 +

∫
RN\E

F2 · ∇φ dx
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which implies

−
∫
RN\E1

φ ddivF2 = −
∫
∂∗E

φ(Fi,2 · ν) dHN−1 +

∫
RN\E

F2 · ∇φ dx

for any φ ∈ C1
c (RN \W ).

Therefore, choosing φ ∈ C1
c (RN) with ||φ||∞ ≤ 1 and ξ ∈ C1

c (RN \ W ) with
||ξ||∞ ≤ 1 and ξ = 1 on supp(φ) ∩ (RN \ E), we obtain∫

RN
F · ∇φ dx =

∫
E

F1 · ∇φ dx+

∫
RN\E

F2 · ∇φ dx

=

∫
E

F1 · ∇φ dx+

∫
RN\E

F2 · ∇(φξ) dx

= −
∫
E1

φ ddivF1 −
∫
RN\E1

φ ddivF2 −
∫
∂∗E

(Fi,1 · ν −Fi,2 · ν)φ dHN−1

≤ ||divF1||(E1) + ||divF2||(RN \ E1) + ||Fi,1 · ν −Fi,2 · ν||L1(∂∗E;HN−1).

Thus, taking the supremum over φ on the left hand side, we have the desired
result. �

Before we prove the extension theorem, we need the following result from mea-
sure theory.

Proposition 4.1.1. Let U ⊂ RN be an open bounded set with HN−1(∂U) < ∞.
Then there exists a sequence of bounded open sets Uk ⊂ Uk ⊂ U such that

1. |U \ Uk| → 0;

2. lim sup
k→+∞

HN−1(∂Uk) ≤ 4N−1 NωN
ωN−1
HN−1(∂U).

Proof. By the definition of spherical measure, for each integer k, there exists a
δk-covering of ∂U by balls ∂U ⊂

⋃∞
j=1B(xj, rj), with 2rj < δk ∀j, such that

∞∑
j=1

ωN−1r
N−1
j ≤ SN−1

δk
(∂U) +

1

k
≤ SN−1(∂U) +

1

k
. (4.1.1)

Since ∂U is compact, there exists a finite covering {B(xj, rj)}mkj=1 and so we set
Vk :=

⋃mk
j=1 B(xj, rj). We observe that ∂Vk ⊂

⋃mk
j=1 ∂B(xj, rj). This and (1.1.1)

imply

SN−1(∂Vk) ≤
mk∑
j=1

SN−1(∂B(xj, rj)) ≤ 2N−1NωN
ωN−1

mk∑
j=1

ωN−1r
N−1
j ,
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which, together with (4.1.1) and (1.1.1), yields

HN−1(∂Vk) ≤ 2N−1NωN
ωN−1

(
SN−1(∂U) +

1

k

)
≤ 2N−1NωN

ωN−1

(
2N−1HN−1(∂U) +

1

k

)
(4.1.2)

for any k. We set Uk := U \ Vk and so, by (4.1.1), we have

|U \ Uk| = |U ∩ Vk| ≤
mk∑
j=1

ωNr
N
j <

δk
2

ωN
ωN−1

mk∑
j=1

ωN−1r
N−1
j

≤ δk
2

ωN
ωN−1

(
2N−1HN−1(∂U) +

1

k

)
,

which goes to zero as δk → 0.
Finally, ∂Uk = ∂Vk ∩ U and so (4.1.2) implies 2. �

Definition 4.1.1. An open set U ⊂ RN is called an extension domain for F ∈
DM∞(U ;RN) if there exists F̂ ∈ DM∞(RN ;RN) such that F̂ = F on U .

Theorem 4.1.2. (Extension theorem) A bounded open set U satisfying
HN−1(∂U) <∞ is an extension domain for any F ∈ DM∞(U ;RN).

Proof. We define an extension of F by F̂ (x) := χU(x)F (x) ∀x ∈ RN .
We just need to show that ||divF̂ ||(RN) <∞.
Let Uk be the sequence of approximating sets given in Proposition 4.1.1: we observe
that, by Remark 1.4.1, each Uk is a set of finite perimeter since HN−1(∂Uk) <∞,
U1
k ⊂ Uk, since, by Remark 1.4.2, RN \ Uk ⊂ U0

k = RN \ (U1
k ∪ ∂mUk) and

|Uk∆U1
k | = 0.

Hence, for any φ ∈ C∞c (RN) with ||φ||∞ ≤ 1, we may apply the Gauss-Green
formula (Theorem 3.2.2):∫

Uk

F · ∇φ dx = −
∫
∂∗Uk

φ(Fi · νUk) dHN−1 −
∫
U1
k

φ ddivF.

Thus, by Proposition 4.1.1,∣∣∣∣∫
Uk

F · ∇φ dx
∣∣∣∣ ≤ ||divF ||(U1

k ) + ||F ||L∞(U1
k ;RN )HN−1(∂∗Uk)

≤ ||divF ||(Uk) + ||F ||L∞(Uk;RN )HN−1(∂Uk)

≤ ||divF ||(U) + ||F ||L∞(U ;RN )HN−1(∂Uk).

Letting k → +∞, Lebesgue’s dominated convergence theorem and Proposition
4.1.1 yield∣∣∣∣∫

U

F · ∇φ dx
∣∣∣∣ ≤ ||divF ||(U) + 4N−1NωN

ωN−1

||F ||L∞(U ;RN )HN−1(∂U) <∞.
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Since we have ∫
U

F · ∇φ dx =

∫
RN
F̂ · ∇φ dx,

it follows that

||divF̂ ||(RN) = sup

{∫
RN
F̂ · ∇φ dx : φ ∈ C∞c (RN), ||φ||∞ ≤ 1

}
<∞,

which concludes the proof. �

Corollary 4.1.1. Let U ⊂ RN be a bounded open set with HN−1(∂U) < ∞,
F1 ∈ DM∞(U ;RN) and F2 ∈ DM∞(RN \ U ;RN). Then if we set

F (x) :=

{
F1(x) if x ∈ U
F2(x) if x ∈ RN \ U

we have F ∈ DM∞(RN ;RN).

Proof. We can apply Theorem 4.1.2 to F1 in order to obtain that F̂1 := χUF1 ∈
DM∞(RN ;RN).
Now, we argue as in proof of Proposition 4.1.1, and we set Wk := U ∪ Vk, thus
Wk ⊂ W k ⊂⊂ B(0, R), for some R > 0 large enough, ∂Wk = ∂Vk \ U and

|(B(0, R) \ U) \ (B(0, R) \W k)| = |Vk \ U | ≤ |Vk| → 0.

We also have (B(0, R) \W k)
1 ⊂ B(0, R) \W k, HN−1(∂Wk) ≤ HN−1(∂Vk) < ∞,

which implies also

lim sup
k→+∞

HN−1(∂Wk) ≤ 4N−1NωN
ωN−1

HN−1(∂U).

Thus, for any φ ∈ C∞c (RN) with ||φ||∞ ≤ 1, we can apply the Gauss-Green formula
(Theorem 3.2.2) to the set B(0, R) \Wk and the field F2:∫
B(0,R)\Wk

F2·∇φ dx = −
∫
∂B(0,R)∪∂∗Wk

φ(Fi,2·νB(0,R)\Wk
) dHN−1−

∫
(B(0,R)\Wk)1

φ ddivF2.

Clearly, there existsR0 such that, for anyR ≥ R0, supp(φ) ⊂ B(0, R) and therefore∫
∂B(0,R)

φ(Fi,2 · νB(0,R)\Wk
) dHN−1 = 0. Hence we have∣∣∣∣∫

B(0,R)\Wk

F2 · ∇φ dx
∣∣∣∣ ≤ ||divF2||((B(0, R) \W k)

1) + ||F2||L∞(RN\U ;RN )HN−1(∂∗Wk)

≤ ||divF2||(B(0, R) \W k) + ||F2||L∞(RN\U ;RN )HN−1(∂Wk)

≤ ||divF2||(RN \ U) + ||F2||L∞(RN\U ;RN )HN−1(∂Wk).
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Letting k → +∞, we obtain, by the previous remarks on Wk and Lebesgue’s
dominated convergence theorem,∣∣∣∣∫
B(0,R)\U

F2 · ∇φ dx
∣∣∣∣ ≤ ||divF2||(RN \U ;RN)+4N−1NωN

ωN−1

||F2||L∞(RN\U)HN−1(∂U)

for any R ≥ R0 and thus∫
B(0,R)\U

F2 · ∇φ dx =

∫
supp(φ)\U

F2 · ∇φ dx =

∫
RN\U

F2 · ∇φ dx.

Hence, if we set F̂2(x) = χRN\U(x)F2(x) ∀x ∈ RN , we have∫
RN\U

F2 · ∇φ dx =

∫
RN
F̂2 · ∇φ dx,

which implies

||divF̂2||(RN) sup

{∫
RN
F̂2 · ∇φ dx : φ ∈ C∞c (RN), ||φ||∞ ≤ 1

}
<∞.

We have therefore proved that F̂2 ∈ DM∞(RN ;RN) and, since F = F̂1 + F̂2, we
have also F ∈ DM∞(RN ;RN). �

Finally, we state a result concerning the Gauss-Green formula on certain un-
bounded sets of finite perimeter.

Proposition 4.1.2. Let W be a bounded open set, F ∈ DM∞(RN \W ;RN) and
E ⊃⊃ W be a bounded set of finite perimeter. Then∫

E0

φ ddivF = −
∫
∂∗E

φ(Fi · νRN\E) dHN−1 −
∫
E0

F · ∇φ dx (4.1.3)

for any φ ∈ C1
c (RN).

Proof. Since E is bounded, there exists R > 0 such that E ⊂⊂ B(0, R).
Clearly B(0, R) is a set of finite perimeter and ∂∗(B(0, R) \E) = ∂B(0, R)∪ ∂∗E.
Moreover, recalling that E = E1 ∪ ∂mE implies B(0, R) \ E = B(0, R) ∩ E0, we
have (B(0, R) \ E)1 = B(0, R) \ E.
Indeed, if x ∈ B(0, R) ∩ E0, then there exists r0 > 0 such that ∀r ≤ r0 we have
B(x, r) ⊂ B(0, R) and x ∈ E0, so, for r ≤ r0,

|B(x, r) ∩B(0, R) ∩ E0|
|B(x, r)|

= 1− |B(x, r) ∩ E|
|B(x, r)|

→ 1 as r → 0,

which implies x ∈ (B(0, R) \ E)1. Hence (B(0, R) \ E)1 ⊃ B(0, R) \ E.
On the other hand, if x ∈ (B(0, R) \ E)1, then x ∈ E0 since

|B(x, r) ∩ E0|
|B(x, r)|

≥ |B(x, r) ∩B(0, R) ∩ E0|
|B(x, r)|

→ 1 as r → 0.
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If by contradiction x /∈ B(0, R), then either x ∈ RN \B(0, R) or x ∈ ∂B(0, R). In
the first case, there exists r0 > 0 such that ∀r ≤ r0 one has B(x, r) ⊂ RN \B(0, R),
which implies

|B(x, r) ∩B(0, R) ∩ E0|
|B(x, r)|

= 0, ∀r ≤ r0,

and this is a contradiction.
In the second case, |B(x,r)∩B(0,R)|

|B(x,r)| → 1
2
but |B(x,r)∩B(0,R)|

|B(x,r)| ≥ |B(x,r)∩B(0,R)∩E0|
|B(x,r)| → 1,

which is absurd.
Now, for any φ ∈ C1

c (RN), we apply the Gauss-Green formula (Theorem 3.2.2) to
the domain (B(0, R) \ E)1:∫

(B(0,R)\E)1

φ ddivF = −
∫
∂B(0,R)∪∂∗E

φ(Fi · νB(0,R)\E) dHN−1 −
∫
B(0,R)\E

F · ∇φ dx.

Since E and φ are fixed, there exists R0 such that, ∀R ≥ R0, E ⊂⊂ B(0, R) and
supp(φ) ⊂ B(0, R), and therefore we can integrate over the whole space minus
E in the first and the last integral, while

∫
∂B(0,R)

φ(Fi · νB(0,R)\E) dHN−1 = 0 and
clearly (Fi · νB(0,R)\E) = (Fi · νRN\E) on ∂∗E. We conclude that∫

RN\E
φ ddivF = −

∫
∂∗E

φ(Fi · νRN\E) dHN−1 −
∫
RN\E

F · ∇φ dx

for any φ ∈ C1
c (RN). Hence, since RN \ E = RN \ (E1 ∪ ∂mE) = E0, we have

(4.1.3). �

Remark 4.1.1. We observe that this argument could be used in the proof of
Theorem 4.1.1 as an alternative way to achieve a Gauss-Green formula for F2 over
the unbounded set of finite perimeter RN \ E.
Moreover, if F ∈ DM∞(RN ;RN) and E is a bounded set of finite perimeter, then

(Fe · νE) = −(Fi · νRN\E) HN−1-a.e. on ∂∗E, (4.1.4)

where these functions are respectively the exterior normal trace of F on ∂∗E and
the interior normal trace on ∂∗E taken with opposite orientation. Indeed, for any
φ ∈ C1

c (RN), by Theorem 3.2.2 and (4.1.3) we have∫
RN
F · ∇φ dx =

∫
E

F · ∇φ dx+

∫
RN\E

F · ∇φ dx = −
∫
∂∗E

φ(Fe · νE) dHN−1

−
∫
E

φ ddivF −
∫
∂∗E

φ(Fi · νRN\E) dHN−1 −
∫
RN\E

φ ddivF

= −
∫
∂∗E

φ(Fe · νE) dHN−1 −
∫
∂∗E

φ(Fi · νRN\E) dHN−1 −
∫
RN
φ ddivF

= −
∫
∂∗E

φ(Fe · νE) dHN−1 −
∫
∂∗E

φ(Fi · νRN\E) dHN−1 +

∫
RN
F · ∇φ dx,
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which implies ∫
∂∗E

φ(Fe · νE) dHN−1 = −
∫
∂∗E

φ(Fi · νRN\E) dHN−1.

Since this last identity is in particular true for any φ ∈ C∞c (RN), we have proved
(4.1.4).

4.2 An existence result in the subcritical case

We are going to study now a special case of the equation divF = µ on RN , for
N ≥ 2. First we state a version of Gauss-Green formula on balls.

Theorem 4.2.1. Let F ∈ DM1
loc(RN ;RN). Then for each x ∈ RN and for L1-a.e.

r > 0,

divF (B(x, r)) =

∫
∂B(x,r)

F (y) · (y − x)

|y − x|
dHN−1(y). (4.2.1)

Proof. Let Fε be a mollification of F , then we have, for any R > 0,

||Fε − F ||L1(B(x,R)) → 0 as ε→ 0.

So we have∫
B(x,R)

|Fε − F | dy =

∫ R

0

∫
∂B(x,r)

|Fε − F | dHN−1 dr → 0 as ε→ 0,

which implies that there exists a set IR ⊂ (0, R) with L1(IR) = 0 such that∫
∂B(x,r)

|Fε − F | dHN−1 → 0 as ε→ 0 for each r ∈ (0, R) \ IR.
We can repeat this argument with R = n for every n ∈ N and so, if we set
I =

⋃∞
n=1 In, we have

∫
∂B(x,r)

|Fε − F | dHN−1 → 0 as ε→ 0 ∀r ∈ R \ I.
∀ε > 0, the classical Gauss-Green formula yields∫

B(x,r)

divFε(y) dy =

∫
∂B(x,r)

Fε(y) · (y − x)

|y − x|
dHN−1(y).

By Remark 1.1.2, there exists a set J ⊂ R with L1(J ) = 0 such that, for any
r /∈ J , ||divF ||(∂B(x, r)) = 0. We can now take r ∈ R \ (I ∪ J ) and thus apply
Lemma 1.1.2 and Remark 2.1.2 in order to obtain

lim
ε→0

∫
B(x,r)

divFε(y) dy = divF (B(x, r)).

Hence, by observing that∣∣∣∣∫
∂B(x,r)

(Fε(y)− F (y)) · (y − x)

|y − x|
dHN−1(y)

∣∣∣∣ ≤ ∫
∂B(x,r)

|Fε(y)− F (y)| dHN−1(y),
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we have (4.2.1), ∀r ∈ R \ (I ∪ J ). �

As it is shown in [PT], the choice of RN as our domain allows us to use techniques
from harmonic analysis to study properties of divergence-measure fields. Therefore
we introduce the following notions of Riesz potential of order 1 and (1, p)-energy
associated to a positive Radon measure.

Definition 4.2.1. Let µ ∈ Mloc(RN) be a positive Radon measure. We define
the Riesz potential of order 1 of µ as

I1(µ)(x) :=

∫
RN

1

|x− y|N−1
dµ(y).

Definition 4.2.2. Let 1 < p < ∞. We say that µ ∈ Mloc(RN) has finite (1, p)-
energy if ∫

RN
(I1µ(x))p dx <∞.

Remark 4.2.1. We observe that the Riesz potential of order 1 of a positive
Radon measure is always well defined, being +∞ if the integral does not con-
verge. Morevoer, for any R > 0 we have

I1µ(x) ≥
∫
B(0,R)

1

|x− y|N−1
dµ(y) ≥ µ(B(0, R))

(|x|+R)N−1
.

This implies that, if I1µ has finite (1, p) energy, then we must have either p > N
N−1

or 1 < p ≤ N
N−1

and µ = 0. So µ = 0 is the only positive measure on RN which
has finite (1, p) in the subcritical case p ∈ (1, N

N−1
].

The main result which we are going to show here states that the equation
divF = µ, with µ ∈ Mloc(RN) and positive, has a solution F ∈ Lp(RN ;RN) with
1 ≤ p ≤ N

N−1
only if µ = 0. Actually, since F = 0 is a solution, we could say that

this equation has at least one solution in Lp(RN ;RN) if and only if µ = 0.

Theorem 4.2.2. Let 1 ≤ p ≤ N
N−1

. If F ∈ Lp(RN ;RN) satisfies divF = µ, for
some µ ∈Mloc(RN) positive, then µ = 0.

Proof. By the layer cake representation formula, we have

I1µ(x) =

∫
RN

1

|x− y|N−1
dµ(y)

=

∫ ∞
0

µ({y ∈ RN : |x− y|1−N > t}) dt =

∫ ∞
0

µ(B(x, t−
1

N−1 )) dt

=

∫ ∞
0

µ(B(x, r))
N − 1

rN
dr

= (N − 1) lim
ε→0+

∫ ∞
ε

µ(B(x, r))

rN
dr,



CHAPTER 4. FINAL REMARKS AND APPLICATIONS 102

where we are allowed to perform the change of variable t = r1−N since the function
t→ µ(B(x, t−

1
N−1 )) is upper semicontinuous.

Now, since divF = µ, we apply Theorem 4.2.1 and we have

I1µ(x) = (N − 1) lim
ε→0+

∫ ∞
ε

1

rN

∫
∂B(x,r)

F (y) · (y − x)

|y − x|
dHN−1(y) dr

= (1−N) lim
ε→0+

∫ ∞
ε

∫
∂B(x,r)

F (y) · (x− y)

|x− y|N+1
dHN−1(y) dr

= (1−N) lim
ε→0+

∫
{|x−y|>ε}

F (y) · (x− y)

|x− y|N+1
dy.

This last limit is known to exist for LN -a.e. x ∈ RN and it is equal to
c(N)

∑N
j=1RjFj(x), where Fj is the j-th component of F and RjFj is the j-th

Riesz transform of the function Fj (see [St], Chapter II, § 4.2, Theorem 3 and §
4.5 Theorem 4). Moreover, we have that

||Rjf ||Lp(RN ) ≤ C||f ||Lp(RN )

for 1 < p <∞, and
||Rjf ||L1,∞(RN ) ≤ C||f ||L1(RN ).

Thus we can conclude that, for p ∈ (1, N
N−1

],

||I1µ||Lp(RN ) ≤ C||F ||Lp(RN ;RN ) <∞,

and so, by Remark 4.2.1, we must have µ = 0.
On the other hand, if p = 1, we have

||I1µ||L1,∞(RN ) ≤ C||F ||L1(RN ;RN ) <∞.

We recall that the (quasi-)norm in the space L1,∞ is defined as

||f ||L1,∞(RN ) := sup
t>0

t|{x ∈ RN : |f(x)| > t}|.

Since Remark 4.2.1 shows that, for any R > 0,

I1µ(x) ≥ µ(B(0, R))

(|x|+R)N−1
,

we see that

{x ∈ RN : I1µ(x) > t} ⊃ {x ∈ RN :
µ(B(0, R))

(|x|+R)N−1
> t}
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and so

sup
t>0

t|{x ∈ RN : I1µ(x) >t}| ≥ sup
t>0

t|{x ∈ RN :
µ(B(0, R))

(|x|+R)N−1
> t}|

= sup
t>0

t ωN

((
µ(B(0, R))

t

) 1
N−1

−R

)N

= sup
t>0

t−
1

N−1 ωN (µ(B(0, R))
1

N−1 − t
1

N−1R)N = +∞,

unless µ = 0. Thus the statement is proved. �

Although we restrict ourselves to the case of a positive Radon measure µ, this
does not diminish the interest of the equation divF = µ. As we shall see (Remark
4.3.1), this is indeed the situation that occurs in the context of nonlinear hyperbolic
systems of conservation laws.

4.3 Nonlinear hyperbolic systems of conservation laws

In this section we will describe an application of the theory of divergence-measure
fields to the context of conservation laws. For completeness we will shortly sum-
marize the main features of such systems of partial differential equations.

4.3.1 Brief introduction

Definition 4.3.1. A general system of conservation laws is the following initial
value problem:

ut + divxf(u) = 0 in Rd+1
+ := (0,+∞)× Rd, (4.3.1)

u = g on {0} × Rd,

where u : Rd+1
+ → U ⊂ Rm, f ∈ C1(U ;Rm×d), divxf(u) is (at least formally)

the divergence with respect to x of the matrix f ; that is, the vector in Rm whose
elements are the divergences of the rows of f , and u0 is the initial datum.
u is called the conserved quantity, while f is the flux.

The terminology used above finds its origins in physics. If we suppose that the
components of the vector valued function u = u(t, x) are (smooth) densities of
some conserved quantities, then, given any bounded set V with smooth boundary,
the integral ∫

V

u(t, x) dx

represents the total amount of these quantities within V at time t. Conservation
laws in physics usually assert that the rate of change of such quantities is governed
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by a flux function f : Rm → Rm×d; that is, we have

d

dt

∫
V

u dx =

∫
∂V

f(u) · ν dHd,

where ν is the unit interior normal to V . Supposing also that u and f are smooth
enough and that we can apply the classical Gauss-Green formula, we obtain∫

V

ut dx = −
∫
V

divxf(u) dx,

which gives the above system since the domain of integration V is arbitrary and
the densities are supposed to be smooth.

Since f is differentiable, we may rewrite the system (4.3.1) in nondivergence
form as

ut +
d∑
j=1

Bj(u)uxj = 0, (4.3.2)

where Bj : Rm → Rm×m is the matrix whose components are {∂fi,j
∂uk
}i,k=1,...,m; that

is, the jacobian of the j-th column vector of f , ∇ufj.
In order to achieve well posedness for the initial value problem at least when f is
linear, we make a further assumption of algebraic nature.

Definition 4.3.2. The system of convervation laws (4.3.1) is strictly hyperbolic if
Bj(u) is real diagonalizable ∀j = 1, ..., d and ∀u ∈ Rm; that is, there exist m real
distinct eigenvalues λ1(u) < ... < λm(u) and bases of left and right linearly inde-
pendent eigenvectors, denoted by l1(u), ..., lm(u) and r1(u), ..., rm(u), and regarded
as row vectors and column vectors respectively.

Example 4.3.1. The first elementary examples of hyperbolic systems of conser-
vation laws are the linear ones.
Let d = 1 and f(u) = Au, where A is a m × m hyperbolic matrix, with real
eigenvalues λ1 < ... < λm and right and left eigenvectors ri, li, chosen such that
|ri| = |li| = 1 and li · rj = δij. Then the solution to the Cauchy problem

ut + Aux = 0 in R2
+

u = g on {0} × R.

with g ∈ C1(R), is

u(t, x) =
m∑
j=1

(lj · g(x− λjt))rj.

This means that in the scalar case (m = 1) the inital profile is shifted with constant
speed λ = f ′, otherwise if m > 1 the initial profile is decomposed as a sum of m
waves, each one travelling with one of the characteristic sppeds λj.
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In the general case, f is nonlinear and, even if we restrict ourselves to the case
d = 1, new features will arise in the solutions. Indeed, the eigenvectors depend on
u and nontrivial interactions between different waves will occur. Also, the eigen-
values λj(u) depend on u, so the shape of the travelling waves will vary in time
and this may lead to shock formation in finite time.
This is actually the major problem connected with nonlinearity: the loss of regu-
larity. It may be shown that, even if we assume the initial datum to be smooth, the
classical solution may develop singularities and form shock waves in finite time.
An example of this fact is given by Burgers’ equation (m = d = 1)

ut +

(
u2

2

)
x

= 0 in R2
+

u = g on {0} × R

with the initial data

g(x) =


1 if x ≤ 0

1− x if 0 ≤ x ≤ 1

0 if x ≥ 1

.

Indeed, any smooth solution is constant along the characteristics
y(s) = (g(x0)s + x0, s), s ≥ 0, for each x0 ∈ R fixed. Then for t ≥ 1 these lines
cross, leading to discontinuity of u (for details, we refer to [E], Section 3.4.1, Ex-
ample 1).

Since initially smooth solutions may become discontinuous within finite time,
in order to construct global solutions we have to work in a space of discontinuous
functions and to interpret the conservation laws in a distributional sense.

Definition 4.3.3. A function u ∈ L∞(Rd+1
+ ;Rm) is a weak solution of the system

of conservation laws (4.3.1) if, for any φ ∈ C∞c ([0,+∞)× Rd;Rm),∫ ∞
0

∫
Rd
u · φt +

d∑
j=1

fj(u) · ∇xjφ dx dt+

∫
Rd
g(x) · φ(0, x) dx = 0,

where fj is the j-th column of f .

However, extending the notion of solution from classical to weak introduces a
new difficulty: we may loose the uniqueness.
An easy example of this fact is again provided by the Burgers’ equation, with
initial datum

g(x) =

{
0 if x < 0

1 if x > 0
.
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In this case, since the method of characteristics does not provide any information
in the region {0 < x < t}, we have indeed at least two different weak solutions:

u1(t, x) =

{
0 if x < t

2

1 if x > t
2

and

u2(t, x) =


0 if x < 0
x
t

if 0 < x < t

1 if x > t

(for details, we refer to [E], Section 3.4.2, Example 2).
The strategy to overcome this problem is to state some new condition which the
acceptable solutions must satisfy. Historically the idea was to exclude ’nonphysi-
cal’ solutions, and this is why these further requests are called entropy conditions.
They indeed arise from a rough analogy with the thermodynamic principle that
physical entropy is a non-decreasing function of time.
We will not describe here all these criteria, nor we will discuss the Rankine-
Hugoniot conditions on jump discontinuities (for which we refer to [D] and [E]),
since these fall outside the purpose of this section. Rather we will concentrate
ourselves on the Lax entropy inequality.
First we need to define the concept of mathematical entropy.

Definition 4.3.4. We say that η ∈ C1(Rm) is an entropy for (4.3.1), with associ-
ated entropy flux q ∈ C1(Rm;Rd), if

∇uqj(u) = ∇uη(u)∇ufj(u), for j = 1, ..., d, (4.3.3)

We call F η
u = (η(u), q(u)) an entropy pair. If η is convex, we say F η

u is a convex
entropy pair.

We can easily check that any C1 solution of (4.3.1) satisfies also

η(u)t + divxq(u) = 0 (4.3.4)

since

η(u)t = ∇uη(u)ut = ∇uη(u)(−
d∑
j=1

∇ufj(u)uxj) = −
d∑
j=1

∇uqj(u)·uxj = −divxq(u).

This means that, for any entropy pair (η, q), the additional conservation law (4.3.4)
holds.

Definition 4.3.5. A function u ∈ L∞(Rd+1
+ ;Rm) is an weak entropy solution of

(4.3.1) if
η(u)t + divxq(u) ≤ 0 (4.3.5)
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holds in the sense of distributions for any convex entropy pair (η, q); that is,∫ +∞

0

∫
Rd
η(u)φt + q(u) · ∇xφ dxdt ≥ 0

for any φ ∈ C∞c (Rd+1
+ ) with φ ≥ 0.

Remark 4.3.1. Condition (4.3.5) implies that, for any convex entropy pair, the
distribution div(t,x)(η(u), q(u)) = div(t,x)F

η
u is nonpositive. Therefore, a corollary of

the Riesz representation theorem (Lemma 1.1.3) shows that there exists a positive
Radon measure on Rd+1

+ µη such that

div(t,x)F
η
u = −µη.

This is one of the main reasons of the original interest in the theory of divergence-
measure fields by Chen and Frid (see [CF1], [CF2], [CF3]). Indeed, it is easy to
show that F η

u ∈ DM∞
loc(Rd+1

+ ;Rd+1
+ ): since u ∈ L∞(Rd+1

+ ;Rm) and η and q are
continuously differentiable, F η

u ∈ L∞(Rd+1
+ ), and Remark 4.3.1 shows that its di-

vergence is actually a (nonpositive) Radon measure, though it is not necessarily
finite.

4.3.2 Traces on hyperplanes

We will now present a result concerning the possibility of recovering traces for
solution of hyperbolic systems of conservation laws on hyperplanes, following the
paper [CT2].

We fix some notation: given τ > 0, we set

Πτ := {(t, x) ∈ Rd+1 : t > τ},
B+((τ, y), r) := B((τ, y), r) ∩ Πτ ,

Bτ (y, r) := B((τ, y), r) ∩ ∂Πτ = {(τ, x) ∈ Rd+1 : |x− y| < r},
C+((τ, y), r) := {(t, x) ∈ Rd+1 : 0 < t− τ < r, |x− y| < r}.

We denote by ūr(τ, y) the average of u over the half ball B+((τ, y), r).

Definition 4.3.6. We say that u satisfies the vanishing mean oscillation property
for half balls on ∂Πτ if, for any continuous function q ∈ C(Rm;Rd),

lim
r→0

1

rd+1

∫
B+((τ,y),r)

|q(u(t, x))− q(u)r(τ, y)| dt dx = 0 (4.3.6)

for Hd-a.e. (τ, y) ∈ ∂Πτ , where q(u)r(τ, y) is the average of q(u) over the half ball
B+((τ, y), r).

We need the following result from measure theory.
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Lemma 4.3.1. Let µ be a positive Radon measure in Rd+1
+ . Then, for any τ > 0

and for Hd-a.e. y ∈ Rd,

lim
r→0

µ(C+((τ, y), r))

rd
= 0.

Proof. Let

Ak :=

{
y ∈ Rd : lim sup

r→0

µ(C+((τ, y), r))

rd
>

1

k

}
and, for R > 0,

ARk :=

{
y ∈ B(0, R) : lim sup

r→0

µ(C+((τ, y), r))

rd
>

1

k

}
,

where we denote here by B(0, R) the open ball of radius R in Rd. It is sufficient
to show that Hd(ARk ) = 0 for each k ∈ N and for each R > 0, since then

Hd(Ak) = lim
R→+∞

Hd(ARk ) = 0 ∀k

and so

Hd

(
+∞⋃
k=1

Ak

)
= 0.

Given y ∈ ARk and ε > 0, there exists a number ry < ε such that

µ(C+((τ, y), ry)) >
1

2k
rdy .

We can choose a sequence yj ∈ Ak such that B(yj, ryj)∩B(yi, ryi) = ∅ if j 6= i and
ARk ⊂

⋃∞
j=1B(yj, 3ryj) (see [G], Lemma 2.2, where we multiply ρ by ε). Then

Hd(ARk ) ≤ ωd

∞∑
j=1

(3rj)
d ≤ 2kωd3

d

∞∑
j=1

µ(C+((τ, yj), ryj)).

Since ryj < ε and yj ∈ B(0, R), then

C+((τ, yj), ryj) ⊂ LRε := {(t, y) ∈ Rd+1 : 0 < t− τ < ε, |(t− τ, y)| < R +
√

2ε}

and hence
Hd(ARk ) < 2kωd3

dµ(LRε ) ∀ε > 0.

Since µ is a Radon measure, it is finite on the compact set LR1 and so µ(LRε )→ 0
as ε→ 0, which implies Hd(ARk ) = 0. �
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Theorem 4.3.1. Let (η, q) be any convex entropy pair and let τ > 0. If u ∈
L∞(Rd+1

+ ;Rm) is a weak entropy solution of (4.3.1) and satisfies the vanishing
mean oscillation property on ∂Πτ , then η(u) has a trace on ∂Πτ ; that is, there
exists a function η(u)tr ∈ L∞(∂Πτ ;HN−1) such that, for Hd-a.e. (τ, y) ∈ ∂Πτ ,

lim
r→0

1

ωdrd+1

∫
C+((τ,y),r)

η(u(t, x)) dt dx = η(u)tr(τ, y). (4.3.7)

In particular, if we choose η(u) = uj, j = 1, ...,m, we obtain the trace for each
component of u.

Proof. By Remark 4.3.1, F η
u = (η(u), q(u)) ∈ DM∞

loc(Rd+1
+ ;Rd+1) and so F η

u ∈
DM∞(C+((τ, 0), 2R);Rd+1) for any R > 0. Therefore, by Theorem 3.2.1 there
exists a function FR · ν ∈ L∞(∂∗C+((τ, 0), R);Hd) which is the interior normal
trace of F η

u on

∂∗C+((τ, 0), R) = Bτ (0, R)∪{(t, x) ∈ Rd+1 : 0 < t−τ < R, |x| = R}∪Bτ+R(0, R).

Let y ∈ Rd and r > 0 such that C+((τ, y), r) ⊂ C+((τ, 0), R), then we have that
the interior normal trace to C+((τ, y), r) satisfies (Fy,r · ν)(τ, x) = (FR · ν)(τ, x)
Hd-a.e. (τ, x) ∈ Bτ (y, r). Indeed, by the Gauss-Green formula (Theorem 3.2.2),
we have that, for any φ ∈ C1

c (Rd+1),∫
C+((τ,0),R)

φ ddivF η
u +

∫
C+((τ,0),R)

F η
u · ∇φ dx = −

∫
∂∗C+((τ,0),R)

φ(FR · ν) dHd

and∫
C+((τ,y),r)

φ ddivF η
u +

∫
C+((τ,y),r)

F η
u · ∇φ dx = −

∫
∂∗C+((τ,y),r)

φ(Fy,r · ν) dHd,

since (C+((τ, y), r))1 = C+((τ, y), r) for any (τ, y) ∈ Rd+1 and r > 0. Now we can
take φ with compact support in B((τ, y), r), then C+((τ, 0), R) ∩ B((τ, y), r) =
C+((τ, y), r) ∩ B((τ, y), r) = B+((τ, y), r) and ∂∗C+((τ, 0), R) ∩ B((τ, y), r) =
∂∗C+((τ, y), r) ∩B((τ, y), r) = Bτ (y, r), and so∫

B+((τ,y),r)

φ ddivF η
u +

∫
B+((τ,y),r)

F η
u · ∇φ dx = −

∫
Bτ (y,r)

φ(FR · ν) dHd

= −
∫
Bτ (y,r)

φ(Fy,r · ν) dHd.

Since φ ∈ C∞c (B((τ, y), r)) is arbitrary, one obtains the desired result.
Moreover, since R itself is arbitrary, the above argument shows the existence
of an interior normal trace F · νΠτ over the whole hyperplane ∂Πτ , such that
(Fy,r · ν)(τ, x) = (F · νΠτ )(τ, x) Hd-a.e. (τ, x) ∈ Bτ (y, r) and for any (τ, y) ∈ ∂Πτ .
We also notice that this implies ||F ·νΠτ ||L∞(Bτ (0,R);Hd) ≤ ||F η

u ||L∞(C+((τ,0),R);Rd+1) ≤
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||F η
u ||L∞(Rd+1

+ ;Rd+1) for any R (Theorem 3.2.1), we can conclude that (F · νΠτ ) ∈
L∞(∂Πτ ;Hd).

Let G ⊂ ∂Πτ be the set of Lebesgue points of F ·νΠτ for which Lemma 4.3.1 and
property (4.3.6) hold; then we have Hd(∂Πτ \G) = 0. Therefore, for any (τ, y) ∈ G,
we can choose a representative of the interior normal trace to C+((τ, y), r) for
which (τ, y) is a Lebesgue point, since (Fy,r · ν)(τ, x) = (F · νΠτ )(τ, x) Hd-a.e.
(τ, x) ∈ Bτ (y, r). Without loss of generality, we may assume (τ, 0) ∈ G.

Having taken r > 0 and the interior normal trace as above (whose selected
representative we shall denote simply by F · νΠτ on Bτ (0, r)), we apply the Gauss-
Green formula with the test function

φ(t, x) = ϕ
(x
r

)
ρ(t− τ)(r + τ − t),

such that ϕ ∈ C∞c (Bτ (0, 1)) and ρ ∈ C∞c ([−1, 2R]), ||ρ||∞ ≤ 1, ρ = 1 on [0, R].
Since

φ(τ, x) = rϕ
(x
r

)
,

φ(τ + r, x) = 0,

φ(t, x) = 0 if |x| = r,

and
∂φ(t, x)

∂t
= ϕ

(x
r

)
(ρ′(t− τ)(r + τ − t)− ρ(t− τ)) = −ϕ

(x
r

)
∀t ∈ (τ, τ + r),

recalling that F η
u = (η(u), q(u)), we have∫

C+((τ,0),r)

φ ddivF η
u +

∫
C+((τ,0),r)

(−η(u(t, x))ϕ
(x
r

)
+ q(u(t, x)) · ∇xφ(t, x)) dt dx

= −
∫
Bτ (0,r)

rϕ
(x
r

)
(F · νΠτ )(τ, x) dHd(x).

Now we divide both sides by rd+1 and we show that

1

rd+1

∫
C+((τ,0),r)

q(u) · ∇xφ dt dx→ 0, (4.3.8)

1

rd+1

∫
C+((τ,0),r)

φ ddivF η
u → 0. (4.3.9)

We observe that∫
C+((τ,0),r)

∇xφ(t, x) dt dx =

∫ r

0

∫
Bτ (0,r)

ρ(t)(r − t)∇ϕ
(x
r

)
dx dt = 0 (4.3.10)
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since φ( ·
r
) ∈ C∞c (Bτ (0, r)). Therefore, if q(u)2r denotes the average of q(u) on the

half ball B+((τ, 0), 2r), then (4.3.10) implies∣∣∣∣ 1

rd+1

∫
C+((τ,0),r)

q(u) · ∇xφ dt dx

∣∣∣∣ =

∣∣∣∣ 1

rd+1

∫
C+((τ,0),r)

(q(u)− q(u)2r) · ∇xφ dt dx

∣∣∣∣
≤ 1

rd+1
||∇xφ||∞

∫
C+((τ,0),r)

|q(u)− q(u)2r| dt dx

≤ 1

rd+1
||∇xφ||∞

∫
B+((τ,0),2r)

|q(u)− q(u)2r| dt dx→ 0,

by property (4.3.6).
On the other hand, (4.3.9) follows from Lemma 4.3.1:∣∣∣∣ 1

rd+1

∫
C+((τ,0),r)

φ ddivF η
u

∣∣∣∣ ≤ ||ϕ||∞ r

rd+1
||divF η

u ||(C+((τ, 0), r))→ 0 as r → 0.

Thus, we have

lim
r→0

1

rd+1

∫
C+((τ,0),r)

ϕ
(x
r

)
η(u(t, x)) dt dx = lim

r→0

1

rd

∫
Bτ (0,r)

ϕ
(x
r

)
(F·νΠτ )(τ, x) dHd(x),

for any ϕ ∈ C∞c (Bτ (0, 1)).
Since C∞c (Bτ (0, 1)) is dense in L1(Bτ (0, 1)), ∀ε > 0, there exists ϕ such that

||ϕ− 1
ωd
||L1(Bτ (0,1)) < ε. Hence, performing the change of variable x = rξ, we have∣∣∣∣ 1

rd+1

∫
C+((τ,0),r)

η(u(t, x))

(
ϕ
(x
r

)
− 1

ωd

)
dt dx

∣∣∣∣
≤ ||η(u)||L∞(Rd+1

+ )

1

rd+1

∫
Bτ (0,1)

r

∣∣∣∣ϕ(ξ)− 1

ωd

∣∣∣∣ rd dξ
= ||η(u)||L∞(Rd+1

+ )||ϕ− (ωd)
−1||L1(Bτ (0,1)) < ||η(u)||L∞(Rd+1

+ )ε.

We can repeat the same kind of argument with (F · νΠτ ), obtaining∣∣∣∣ 1

rd

∫
Bτ (0,r)

(F · νΠτ )(τ, x)

(
ϕ
(x
r

)
− 1

ωd

)
dt dx

∣∣∣∣
≤ ||F · νΠτ ||L∞(Bτ (0,r))

1

rd

∫
Bτ (0,1)

∣∣∣∣ϕ(ξ)− 1

ωd

∣∣∣∣ rd dξ
≤ ||F η

u ||L∞(Rd+1
+ ,Rd+1)||ϕ− (ωd)

−1||L1(Bτ (0,1)) < ||F η
u ||L∞(Rd+1

+ ,Rd+1)ε.

Since (τ, 0) is a Lebesgue point for F · νΠτ , we have

lim
r→0

1

ωdrd

∫
Bτ (0,r)

(F · νΠτ )(τ, x) dx = (F · νΠτ )(τ, 0). (4.3.11)
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Since ε is arbitrary, and using (4.3.11), we find

lim
r→0

1

ωdrd+1

∫
C+((τ,0),r)

η(u(t, x)) dt dx = (F · νΠτ )(τ, 0)

and we conclude that the desired trace is η(u)tr(τ, 0) := (F · νΠτ )(τ, 0). �
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