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Introduction

In this thesis, we will study recent generalizations of the classical divergence theo-
rem which relax considerably the regularity assumptions made on both the vector
fields and the domains of integration. The vector fields, whose divergence will
be interpreted as a Radon measure, may have discontinuities and ultimately we
will obtain a representation of the jump component of their divergence which is
suitable for the description of shocks, in terms of a generalized notion of normal
traces. As for boundary geometry, we will work in the context of sets with finite
perimeter, which include domains with Lipschitz boundaries. We will present a
self-contained synthesis of many related approaches which will yield variants of
known results and indicate some first applications of these variants, through the
related notion of normal trace, to nonlinear hyperbolic conservation laws.

The classical statement of the divergence theorem, the so-called Gauss-Green
formula, has rather old origins in the history of mathematics. The first formula-
tions date back to Lagrange (1762), Gauss (1813), Green (1825) and Ostrogradskij
(1831), who presented a first proof of it.

In its classical form, the statement is the following theorem.!

Theorem 0.0.1. (Classical Gauss-Green formula)
Let E C RY be an open reqular set; that is, E is bounded, (E)° = E and OF is an
(N — 1)-manifold of class C*. Then V¢ € CH(RY;RY)

/diqudx: — | ¢ -vgdH N,
E oFE

where vg 1s the interior unit normal to OF.

The class of open regular sets is actually too restrictive, since we see that it
does not include bounded open sets with Lipschitz boundary. Indeed, it is not
difficult to show that this theorem may be extended to certain open sets which do
not satisfy the boundary regularity requirements. For example, using convergence
theorems for integrals (such as Lebesgue’s dominated convergence theorem) one
can prove the formula for cones and cubes.

1Here and in what follows, H® is the s-dimensional Hausdorff measure.
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The need for a characterization of a wider class of sets for which this theorem
was valid was satisfied by the theory of functions of bounded variation (BV), and,
in particular, by the concept of set of (locally) finite perimeter, due to Caccioppoli
(1928) and De Giorgi (1952).

As we will briefly recall in Chapter 1, a function u is in BV (Q2), for Q c R¥,
if w € L'(Q) and its distributional derivative Du is a Radon measure; that is, a
vector valued Borel measure with finite total variation on compact sets. A set of
(locally) finite perimeter E is a set whose characteristic function yg is a (locally)
BV function.

For a set of finite perimeter, it is useful to consider two particular subsets of the
topological boundary: the reduced boundary, 0*FE, on which it is well defined a
unit vector vg, called (up to a sign) measure theoretic interior unit normal; and the
measure theoretic boundary, 9™ E, which coincides up to a set of H¥~l-measure
zero with 0*F.

This theory, as presented in [EG], for example, yields the following version of
Gauss-Green formula.

Theorem 0.0.2. (Gauss-Green formula on sets of finite perimeter)
Let E C RY be a set of locally finite perimeter. Then V¢ € CHRY; RY)

/ divpde = — ¢ - vpdHN L
E omE

This result, although important for the large family of domains of integration
which are allowed, is however restricted to a class of integrands whose heavy reg-
ularity demands can prove to be inconvenient for applications. If we require less
regularity, we have to find a way to recover the meaning of div¢ and of the normal
trace ¢-vg. The solution to the first problem is found by considering special classes
of distributional derivatives (i.e. distributional derivative which can be represented
by LP functions or by Radon measures), the solution to the second is rather more
delicate (in the case of the space BV it is of great importance the fact that any
BV function admits a representative which is well defined almost everywhere (a.e.)
with respect to the measure H¥ 1) and it will be handled through approximation
arguments.

Important progress in this direction have been made by De Giorgi and Federer,
who proved the same theorem for Lipschitz vector fields F, and later by Vol'pert
([VH]), who stated the following theorem.

Theorem 0.0.3. (Gauss-Green formula for BV vector fields)
Let Q C RY be an open set, u € BV(;RN) N L®(QRY) and E CC Q be a set
of finite perimeter,

/ ddiv(u) = divu(E") = —/ Uy, - vg dHN !
El omE
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where E' is the measure theoretic interior of the set E and w,, is the interior
trace, that is, the approxvimate limit at x € O™E restricted to 11, (z) :== {y € RV :

(y —x)-vp > 0}.

We also briefly mention a related result due to Fuglede ([Fu2|), for vector fields
F € LP(RY;RY) such that their distributional divergence is in LP(R").
Using the concept of module of order p of a family of Radon measures (connected
to the theory of extremal length), he defined a collection of sets of finite perimeter
€ to be p-exceptional (p-exc) if there is a nonnegative function f € LP(RY) such

that / f(x) dHN Y (x) = +oo, VE € £.
O*E
He then stated the following result.

Theorem 0.0.4. (Fuglede)
Let F € LP(RY;RY), 1 < p < oo, with divF € LP(RY). Then

[E divFds = — /8 Pl v @)

for each set E of finite perimeter except those in a p-exc collection E.

The purpose of this work is to examine recent generalizations that concern vec-

tor fields F' € LP(Q;RY) such that divF is a Radon measure . These fields are
called divergence-measure fields, and their space is denoted by DMP(Q; RY).
They were studied in the last years by, among the others, Anzellotti ([A]), who
investigated the properties of the normal trace as a functional defined on suitable
function spaces, and Chen and Frid ([CF1], [CF2|, [CF3]), because of the interest
in possible applications in the context of nonlinear hyperbolic conservation laws.
They established a Gauss-Green formula and a way to define the normal trace over
the boundary 952 of a bounded open set with Lipschitz deformable boundary. This
kind of set €2 is such that its boundary is locally the graph of a Lipschitz function
and there exists a bi-Lipschitz homeomorphism over its image ¥ : 9 x [0,1] — Q
which satisfies ¥(x,0) = z Vo € 0€.
We notice that this definition of admissible domains allows for open sets which
need not to be regular, but is not as wide as the class of sets with finite perimeter.
Indeed, we may consider a set with C! boundary except for a point where there
is a cusp, for example in R? the set £ = (B(1,1) U B(—1,1) U (B(0,2) N {(x,y) :
y < 0}))° has a cusp in (0,0), and so it cannot have a Lipschitz boundary, whereas
HY(0*FE) = 47 and so it is a set of finite perimeter.

In Chapter 2 we shall give some of the basic properties of divergence-measure
fields, which will be shown to be closely related to those of BV functions. In-
deed, it is easy to see that if F' = (F},..., Fy) with F; € BV (Q) N LP(Q) Vi, then
F € DMP(Q; RY).

However, in general, the condition divF = pu allows for cancellations, which thus
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make the space DMP larger and therefore more interesting. Indeed, an easy
example of this fact is F(z,y) = (sin ;Z,sin ;1) then F € DM>(R%R?) \
BVioe(R?; R?) and divF = 0 in M(R?).

We also prove that, if F € DM% (Q;RY) and 25 < p < oo, then ||divF]||
is absolutely continuous with respect to the H¥ ~9-measure, with ¢ = z%' From
this result, we can see the particular importance of the case p = oo, since we
have ||divF|| < HN~! for essentially bounded divergence-measure fields, which
is a result analogous to the one we know about the gradient of a BV function.
Indeed, we also show that for p € [1,00) we cannot in general expect to recover a
Gauss-Green formula: thus, our study will concentrate on the space DM,

In Chapter 3, we show two versions of the divergence theorem for essentially
bounded divergence-measure fields.
First, following [CTZ1|, we give a self contained and geometrical proof of the
theorem for bounded open sets I with C! (orientable) compact boundary. Through
an approximation by the interior of I, we show the existence of a normal trace,
which is an essentially bounded function on OI.
Then, after having established Leibniz rules for essentially bounded divergence-
measure fields and BV functions, following in the footsteps of Vol'pert’s work, we
prove the Gauss-Green formula over bounded sets of finite perimeter.

Theorem 0.0.5. (Gauss-Green formula for DM fields on bounded sets
of finite perimeter) Let FF € DM>(Q;RY). If E CC Q is a bounded set of
finite perimeter, then there exist interior and exterior normal traces of F' on O*FE;

that is, (F; - v), (Fe-v) € L®(0*E; HN 1) such that

divE(E') = —2xgF - Dxg(0"E) = — Fi-vdHN?
o*FE

and

divF(E) = —2xpoF - Dxg(0*E) = — Fo-vdHN

o*E

where E = E*UO™E, xgF - Dxg and xgoF - Dxg are the weak star limits, re-
spectively, of the sequences xXgpF - V(xg * ps) and xgoF - V(xg * ps) as § — 0.
Moreover,

|| Fi - vl Lo mpanv—1) <[ F||Loo (2 )
and
1 Fe - vl (or -1y < (| F || Lo mrn)-
Moreover, as a corollary, we gain a representation formula of jump component
in the divergence of F'; that is, for any bounded set of finite perimeter £ we have

XorpdivE = 2xgF - Dxg — 2xgoF - Dxg = (Fi-v — Fo - v)HV 1LO'E
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in the sense of Radon measures on (). Therefore we have
||divE||(0"E) = / |\Fi-v— Fe- v dHN !
O*E
and, for any Borel set B C 0*EF,

divF(B) = / (Fi-v—F.,-v)dH N
B
We then show that if I is also continuous, the interior and exterior normal traces
on 0*F coincide, as essentially bounded functions, and admit a representative
which is in fact the classical dot product F' - vg, where vg is the measure theoretic
interior normal. It follows also that continuous fields have no jump component in
the divergence.

Then we examine the special case of an essentially bounded divergence-measure
vector field with constant direction F' = fv, with v € SV,

In Chapter 4, we show some consequences and applications of the Gauss-Green
formula.
We obtain gluing and extension theorems for essentially bounded divergence-
measure fields: if F; € DM™(LRY), F, € DM™RY \ W;RY) and W CC
E CcC Q for a set of finite perimeter E, then we can glue F; and F3 over the
boundary of F; on the other hand, if F € DM>®(Q;RY) and HY~1(0Q) < oo,
then we can extend F' to 0 outside (2.
Using techniques of harmonic analysis, we also prove an existence result for the
equation divF = p in RV, with u positive Radon measure in the subcritical case;
that is, for F € DMP(RY;RY) with 1 < p < . This equation is indeed of
great interest in the context of continuum mechanics and conservation laws, and
it has been studied by Phuc and Torres (|[PT]) and Silhavy ([S]).
Finally, we illustrate an application of the theory developed to nonlinear hyperbolic
systems of conservation laws

u+divyf(u) =0 in RE := (0, +00) x R%

It is well known that in order to have a unique weak solution of such a system, it
is natural to select only those solutions which satisfy the Lax entropy inequality

Oin(u) + divaq(u) <0

in the sense of distributions for any convex entropy pair (7, q).
We show that for any weak solution u(t, x) € L2 (REH; R™) the field (n(w), q(u))

loc

is indeed in DM (RE™; R¥1) and, in particular, there exists a positive Radon

measure (i, such that div( . (n(u), ¢(u)) = —p,. This was first shown by Chen and
Frid and motivated the beginning of their investigations on these function spaces.
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Using the Gauss-Green formula, we prove that, for any 7 > 0, if a weak en-
tropy solution u satisfies a vanishing mean oscillation property on the half balls
BT ((r,y),r) :== B((1,y),7) N {(t,x) € R4 : ¢t > 7}, then n(u) has an essentially
bounded trace n(u), H%-a.e. on the hyperplane {(¢,z) € R4 : ¢ = 7}; that is,

1
lim ———— / n(u(t,x)) dt de = n(u)e (1, y),
CH((my)r)

r—0 (grd+l
where CT((7,y),r) is the cylinder {(t,z) € R : 0 <t —7 < r oz —y| < r}
In particular, if we choose n(u) = u;, j = 1,...,m, we obtain the trace for each
component of u.



Chapter 1

Preliminaries

In this chapter, we shall introduce some basic notions and tools from measure the-
ory, Sobolev spaces and BV ! theory, which are useful for the study of divergence-
measure fields, with the aim of fixing also notation and making this exposition in
some way self-contained.

In particular, we are going to focus on the properties of the space of Radon mea-
sures M (£2) as a dual space, on the notion of capacity and on the properties of sets
of finite perimeter (and therefore, on the first generalizations of the Gauss-Green
formula).

We will not provide all the proofs of the results we are going to exhibit, only those
which contain techinques that we will use in the following chapters.

1.1 Radon measures and total variation

Definition 1.1.1. Let (X, ) be a measure space and p be a function p : ¥ —
[0, +o00].

w is a positive’ measure if () = 0 and it is o-additive, i.e. for any sequence of
pairwise disjoint elements {F}} C ¥

+00 +00

(U] - Suew

k=0

Moreover, p is finite if u(X) < oo and it is o-finite if X is the countable union of
sets of finite measure.

Definition 1.1.2. Let (X, X) be a measure space and m € N.

L. p: X — R™ is a measure if p(0)) = 0 and it is o-additive. If m = 1, p is a
real signed measure, if m > 1, u is a vector valued measure (that is, a vector
function whose components are real signed measures).

1BV is the space of functions of bounded variation, see 1.3.
2Many authors use the term nonnegative measure.
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2. If 41 is a measure, the total variation ||u||(E) for E € ¥ is defined as follows:

+oo +oo
||p|[(E) := sup {Z |i(Ex)| : Ex € ¥ pairwise disjoint, F = U Ek} :
k=0

k=0
3. If u is a real measure, we can define its positive and negative parts as

= ||u||2+u ond - — ||u||2—/{

Obviously, we have p = p™ — p~ and ||p|| = p* + .

4. If p is a positive measure we call the support of 11, denoted as supp(u), the
closed set of all points € X such that p(U) > 0 for every neighbourhood U
of x. If p is a real signed or vector measure, we define supp(u) := supp(||ul|).

We now fix some notation.
For our purposes, X is an open subset of RY and ¥ is the o-algebra of Lebesgue
measurable sets, which contains the o-algebra of Borel sets (that is, the o-algebra
generated by all open subsets of RY).
We shall indicate with £V the Lebesgue N-dimensional measure and with H?, for
a > 0, the a-dimensional Hausdorff measure (as is known, £V = HY).
Unless otherwise stated, a measurable set is a £¥-measurable set.
For any measurable set £ C RY, we denote by |E| the £L¥-measure of E, while,
when applied to a function with values in R™, |.| is the euclidian norm.
B(z,r) is the open ball with center in x and radius » > 0 and wy = |B(0,1)],
moreover, for o > 0,

w|R

™
Wo = ———,
F(1+3)
where I' is Euler’s gamma function.

We recall also the definition of a-dimensional spherical measure S* of a set A in

RN

+
R

S°(A) i= lim S7(4) = sup S3(A),

6—0

S = inf {Zwam‘-‘ 1 2r; <0,AC U B(:cj,rj)} :
j=1

=1

where

This measure is strictly connected with the Hausdorff one, since we have just the
additional condition that the sets in d-cover have to be balls, and it also satisfies

the inequalities
HY < S* < 29HY, (1.1.1)

for which we refer to |Fe|, pag. 171.
The symmetric difference of sets is denoted by
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AAB = (A\ B)U(B\ A).

Unless otherwise stated,  C R is an open set, and C is equivalent to C.
We denote by EE CC () a set E whose closure, F, is compact and contained in €2,
by E° the interior of the set E/ and by OF its topological boundary.

For k € NgU {c0}, m € N, C*(Q;R™) := {¢ € C*(Q;R™), supp(¢) CC Q} is

the space of C* functions compactly supported in €2, endowed with the sup norm,
[¢lloc = sup [¢(x)].
e

Definition 1.1.3. (Borel and Radon measures)

1. A positive measure p on 2 is called a Borel measure if every Borel set in €2 is
p-measurable.

2. A positive measure p on 2 is a positive Radon measure if it is a Borel measure
and it is finite on compact subsets of (2.

3. A real signed (or vector valued) measure is called a real signed (or vector
valued) Radon measure if it is defined on the Borel sigma algebra of any
compact subset of 2 and ||u||(K) < oo, VK C € compact. The space of
real Radon measures on € is denoted by Mi..(£2) and the space of R"-vector
valued Radon measures by M, (€2; R™).

4. If ||u(2)|| < oo, then pis a (real signed or vector valued) finite Radon measure.
The space of real finite Radon measures on € is denoted by M(2) and the
space of R"-vector valued finite Radon measures by M (€2; R™).

Remark 1.1.1. M(;R™), m > 1, endowed with the norm |||u||| := ||u||(£2), is
a Banach space.

Proposition 1.1.1. (Inner and outer regularity of Radon measures) Let
1 be a positive Radon measure on 2, then, for any Borel set B,

1. (B) = sup{p(K) : K C B, K compact},
2. w(B) =inf{u(U) : B C U,U open}.

Proof. Any open subset of R (with the induced euclidean topology) is a locally
compact separable metric space and any positive Radon measure on €2 is Borel and
o-finite, since we can clearly cover {2 with the bounded open sets

1
Q= {x € Q: x| < k,dist(z, 002) > E}’ ke N,

for which, since Q) CC Q, u(Q%) < oo Vk. Thus, the result follows from Proposi-
tion 1.43 in [AFP|. O
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Remark 1.1.2. Let p be a positive Radon measure. If {A;},c7, where Z is un-
countable, is a family of p-measurable sets in ) such that their boundaries are
disjoint, (J,c; 9A: = Q2 and for every compact K there exists an uncountable set
of indices J C Z such that K N 0A; # (), Vt € J, then there exists a countable
set N such that

p(KNoA) =0 Vit ¢ N.

We claim that, if such a set N did not exist, then there would be an uncountable
set ) such that u(K NodA;) > e >0, Vt € Y. Suppose to the contrary that for
each € > 0 the set of ¢’s which satisfy pu(K N 0A;) > € is countable.

We set ¢; = % and we have

+oo
1
{teZ: W(KNoA;) #0} = U {tEI:,u(KﬂaAt) > —,},
) J
7j=1
so this set, being countable union of countable sets, is itself countable, contradict-
ing our assumption. We extract now from Y a sequence {¢;}.
By the monotonicity and the o-additivity, we have
+00
u(K) > Z,u(Kﬁ 0A,) = +oo,
j=1
which is absurd, since p is a Radon measure. Therefore, such a ) cannot exist

and so N exists.
In the following chapters, the sets {A4;} will usually be balls B(z, ).

Proposition 1.1.2. Let p € M(Q;R™). Then, for every open set A C 2, we
have

||u||<A>=sup{/ﬂ¢- du:¢eoc<A>,||¢||oogl}.

Proof. See |[AFP], Proposition 1.47.

Remark 1.1.3. If g € M,.(2;R™), then clearly € M(W;R™) for any open
W cc Q. Therefore Proposition 1.1.2 holds also for p € M,.(2; R™) if we take
open sets A CC Q.

It is possible to characterize M(2; R™) as a dual space: this yields a weaker
topology on it and therefore weak-star compactness of bounded sequences.
We denote by Cy(Q2;R™) the completion of C.(£2;R™) with respect to the sup
norm. This is the space of continuous functions ¢ on 2 satisfying the property:
for any € > 0 there exists a compact set K C 2 such that |¢(z)| <€, Vo € Q\ K.

Theorem 1.1.1. (Riesz Representation Theorem)
Let L : Co(€;R™) — R be a continuous linear functional; that is, L is linear and
satisfies

sup{L(¢) : ¢ € Co(R™), [[¢]|c < 1} < o0
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Then there exists a unique € M(;R™) such that

L) = [ 0+ du Vo CuOR™),
Moreover,

eIl = 11ul1(€2) = sup{L(¢) : ¢ € Ce(R™), [|¢]|o0 < 1} = [|L]]
Proof. See |[AFP], Theorem 1.54.

The following corollary is a direct consequence of the global version of the Riesz
Representation Theorem.

Corollary 1.1.1. Let L : C.(Q;R™) — R be a linear functional satisfying

sup{L(¢) : ¢ € C(1R™), ||¢]| < 1, supp(¢) C K} < oo,

for any compact set K C §). Then there ezists a unique p € Mioe(€2;R™) such
that

L(¢) = /Q 6 du, Ve C(UR™).

Thus we can identify any p € M(Q; R™) with a continuous linear functional on
Co(2; R™), written as

L(6) = /Q o du, V€ Co(LR™),

and analogously M..(£2; R™) can be identified with the dual of C,(€2; R™).
This leads us to the following notion.

Definition 1.1.4. Given a sequence {u;} in M(2), we say that pp weak-star
converges to u, if and only if

/Cb d,uk—>/¢- dp, Yo € Co(;R™).
Q Q

If {pr} and p are in M,o.(€2), we say that py locally weak-star converges to pu, if
and only if

/¢>- duk%/qs- dp, Vo € Co(QR™).
Q Q

Lemma 1.1.1. Let {ux} € M(Q;R™) be a weak-star convergent sequence, and
let u be its limit. Then we have

lim sup ||| ][] < 00
k—4o00

and
< lim inf )
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Proof. The first assertion follows from Uniform Boundedness Principle (Banach-
Steinhaus Theorem), since L, (¢) — L,(¢) for each ¢ € Cp(£2; R™) and therefore
{L,.(¢)} is a bounded sequence in R.

The second inequality comes from:

| L (D) < [l oo 4]

then, passing to the limit we have |L,(¢)| < lliminf ||&|]0o || ||| and taking supre-
—+00
mum in ¢ yields the result. [

Remark 1.1.4. Weak-star convergence of finite Radon measures is equivalent to
local weak-star convergence with the condition that sup ||ux||(©2) = C' < co. We
observe that, by Lemma 1.1.1, this condition implies ||u||(2) < C.

Clearly weak-star convergence always implies local weak-star convergence.

On the other hand, if we suppose that pu, locally weak-star converges to pu, then,
given ¢ € Cy(2;R™), for any € > 0 there exists ¢ € C.(2;R™) such that ||y —
®|]oo < € and so

A¢JM—A¢M4§

+

+

[w=0)-du téw-¢wd4
A¢%m—4¢%u
A¢JM—A¢JA.

Now, fﬂ¢~ du, — fﬂ¢~ dp and so, since € is arbitrary, we obtain weak-star
convergence.

Therefore, in what follows, we will always write 1, — 1 to denote local weak-star
convergence, and, in the case of finite Radon measures, we will also check the
condition sup ||u||(2) < occ.

< 2Ce+

We quote now a useful result about weak-star convergence.

Lemma 1.1.2. Let p be a Radon measure on ), and let {u} be a sequence of
Radon measures.
If py and o are positive, then the following are equivalent:

1 g = p.

2. VA C Q open,
p(A) < liminf pg(A)
k—4o00
and VK C ) compact,
u(K) > limsup g (K).

k——+oco
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3. VB CC Q Borel set with n(0B) = 0,

lim g (B) = pu(B).

k——+o0

If uy and p are R™-vector valued Radon measures, i — p and ||| = v, then
||| < v. Moreover, if a pu-measurable set E CC Q) satisfies v(OF) = 0, then
F)= 1 E
wE) = lim pu(E).

More generally, if f : 2 — R™ is a bounded Borel function with compact support
such that the set of its discontinuity points is v-neglegible, then

lim /f~d,uk:/f-du.
k—+o00 Jo Q

Proof. For the second part of the statement and the implication 1 — 2 we
refer to [AFP]|, Proposition 1.62. For the two remaining implications, we adapt
the proof in [EG], Section 1.9, Theorem 1, where 2 = RY.

In order to show that 2 implies 3, we take a Borel set B such that B C © and
w(OB) = 0. Then

p(B) = p(B°) < lim inf iy (B°) < limsup 1 (B) < p(B) = u(B).
k—+o0 k—+o00

Now we suppose that 3 holds and we observe that, since ¢ can be decomposed into
its positive and negative parts, we need only to prove 1 for nonnegative functions.
We fix € > 0 and ¢ € C.(Q2) with ¢ > 0. Let Qg be defined as in the proof of
Proposition 1.1.1, but for s € (1,400). By Remark 1.1.2, for all but countable
s, we have u(0€)s) = 0. Therefore, there exists so such that supp(¢) C €,
and (0€Qs,) = 0. We can choose 0 = t) < t; < ... < ty = 2||¢||s such that
0<t;—ti1 <eand u(¢~'({t;})) =0 for any i = 1, ..., N, by Remark 1.1.2. We
set B; = ¢~ Y((ti_1,t]), then u(0B;) = 0 for i > 2. Now

th 11 (B / o dpy, < Zfzﬂk )+t (Qs,)
and

th (B /¢du < thu ) + 110 );

and so 3 implies
Q Q

lim sup
k—+o0

which gives 1. [J
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Remark 1.1.5. By Remark 1.1.2 and Lemma 1.1.2, we can assert that, if u; and
w are positive Radon measures in , for any x €  and almost every r € (0, R),
with R = R, > 0 such that B(z, R,) CC Q, u(0B(x,7)) = 0 and so, if up — p,
(B, 7)) = w(B(x,7)).

Moreover, if p, and p are vector valued Radon measures, pi — g and ||| = v,
then for any z € Q and almost every r € (0,R), with R = R, > 0 such that
B(z,R,) CC Q, v(0B(z,r)) =0 and p(B(x,r)) = p(B(x,r)).

Finally, we state a characterization of nonnegative linear functionals on C2°(€2).
Lemma 1.1.3. Let L : C°(2) — R be linear and nonnegative; that is,
L(¢) >0, Vo€ C(Q) with ¢ > 0.

Then there ezists a positive Radon measure p € Moc(S2) such that

L(g) = /Q bdu, V6 e C(Q).

Proof. We choose a compact set K C €2 and we select a smooth function
(€ CX(Q) with ¢ =1on K and 0 < ¢ < 1. Then, for any ¢ € C*(Q2) with
supp(¢) C K, we set 1) = ||¢||oo( — ¢ > 0. Therefore, since L is nonnegative, we
have 0 < L) = [|6lloL(C) — L(6) and 50 L() < C|[¢]|oe, with C = L(C).

~

L thus may be extended to a linear mapping L : C.(Q2) — R such that, for any
compact K C €,

sup{L(¢) : ¢ € Ce(LR™), [[¢]|oc < 1,5upp(9) C K} < oo.

Hence, Corollary 1.1.1 yields the existence of a real Radon measure ;1 such that

L) = [ édu. Vo€ Cl)

By the polar decomposition of measures, u = h||u||, where |h| = 1 ||u||-a.e. The
fact that L is nonnegative implies that h = 1 ||ul|-a.e.; that is, u is a positive
Radon measure. UJ

We recall now the statement of Lebesgue-Besicovitch differentiation theorem
and the definitions of approximate limit and precise representative.

Theorem 1.1.2. Let p be a positive Radon measure on RY and u € LL (RN ).

loc
Then 1
lim —/ wdp = ufz
=0 1(B(x,7)) J Bz )

for i a.e. x € RV,
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Proof. See [EG] Section 1.7.1 Theorem 1.

Corollary 1.1.2. Let p1 be a positive Radon measure on RV, 1 < p < oo, and

uw€ LP (RN u). Then
1
o _ Py —
) a0 2

for u a.e. x.
Proof. See [EG] Section 1.7.1 Corollary 1.

Definition 1.1.5. A point z for which (1.1.2) with p = 1 holds is called a Lebesgue
point of u with respect to p.

Definition 1.1.6. Assume u € L{._(R"). Then

loc

1
lim ——— u(y) d if this limit exists
u*(x) = { =0 ‘B(Q?, T)’ /B(ac,r) (y) Y
0 otherwise

is the precise representative of u.
Definition 1.1.7. Let u : RV — RM,

1. I € RM is the approzimate limit of u as y — x, and is denoted by

ap lim u(y) =1

y—T
ifVe>0,
— >
i B@n) 0 (u =12 0] _
r—=0 |B(x,r)|

2. u is approzimately continuous at x € RY if

ap lim u(y) = u(z).

Yy—T

The following theorems assure the well posedness and the significance of the
previous definitions.

Theorem 1.1.3. The approximate limit is unique.

Proof. See [EG| Section 1.7.2 Theorem 2.

Moreover, we have the following result on approximate continuity.

Theorem 1.1.4. Let u : RY — RM be LN -measurable. Then u is approzimately
continuous LN -a.e.

Proof. See [EG] Section 1.7.2 Theorem 3.
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1.2 Sobolev functions and p-capacity

Definition 1.2.1. For 1 < p < oo and k € N, we define the Sobolev space
WEP(Q) := {u € LP(Q) : D*u € LP(Q) Ya € N, |af <k}

where D%u is the o'-weak partial derivative of u, that is, an L} _ function wich
satisfies

/uDagzﬁdx: (—1)0‘|/Dauq§dx Vo € C°(Q)
Q Q
aa1+a2+...+a1\]¢

Dx {1 0xg? .0 N
The norm is given by

and D% =

v
|[ullwrr @) = Z / | D%u|Pdx for 1<p< oo
o<k
[[uf|wroo ) = Z ess sup |D%u| for p= +oo.
loo| <k

We say that u € WFP(Q) if u € W5?(W) for each open set W CC Q.

Definition 1.2.2. A function p € C®(RY) is a standard symmetric mollifying
kernel if it is a radial nonnegative function which satisfies supp(p) CC B(0, 1) and

||l 1@y = 1.
If u € L. (), we define, for z € Q. := {z € Q : dist(z, Q) > €},

wlo) = s o) = [ ulipda =)y
the mollification of u, where p(y) := 5p(¥).
Theorem 1.2.1. (Properties of mollification)
1. For each € > 0, u. € C®(RY) and D%u, = (D%p.) *u for each multi-index c.
Afu e C(Q), then ue — u uniformly on compact subsets of Q.
Afue LT () for some 1 < p < oo, then ue — u in Lj ().

2
3
4. u (z) = u(z) if x is a Lebesque point of u, therefore uc — u LY a.e.
5

Afu e VVIIZCP(Q) for some 1 < p < oo, then D*u. = p. * D*u in ). for each
la| < k.
In particular, for 1 < p < oo, ue — u in Wk’p(Q).

loc
Proof. See [EG] Section 4.2.1 Theorem 1.
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Theorem 1.2.2. (Meyers-Serrin Approximation Theorem)

Let u € WEP(Q) for some 1 < p < o0.

Then there exists a sequence {ur} C WHP(Q) N C=(Q)3 such that uy — u in
WHkP(Q).

Proof. See [EG] Section 4.2.1 Theorem 2.

We present now the concept of capacity, which has been very useful in the study
of fine properties of Sobolev functions and which we will need in order to prove
results concerning absolute continuity of measures (Theorem 2.3.1).

Definition 1.2.3. For 1 < p < N and a compact subset K of the open set €2 in
RY . we define the p-capacity of K relative to €2 as

Cap, (K, Q) := inf{/ \Vol|Pde : ¢ € C°(Q), ¢ > 1onK}.
Q

It U C Q) is open, we set
Cap, (U, Q) := sup{Cap,(K,Q) : K C U compact}
and, for an arbitrary set A C €2,
Cap, (A, Q) := inf{Cap,(U,Q) : ACU C Q, U open}.
If @ = RY, we write Cap,(A, RY) = Cap,(A), for any set A.

Remark 1.2.1. If 1 < p < N and Q = R¥, the p-capacity of a set A may also be
defined as

Cap,,(A) = inf{/ |Df|Pdx - f € KP, {f >1}° D A},
RN
where
KP:={f:RY - R:f>0,f € LP*R"),Df € LP(RY;R")}.

For this definition we refer to [EG], Section 4.7.1.

Remark 1.2.2. It is possible to show that, for any compact subset K of €2,
Definition 1.2.3 is equivalent to

Cap, (K, ) :inf{/ VolPdr: ¢ € C(02),0< p<1,{p=1}° DK},
Q

3With an abuse of notation, we denote by u € W¥*P(Q)NC(Q) the equivalence class of functions in W¥?(Q)
which has a representative in C2°(2).
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by the following approximation argument one finds in [Maz|, §2.2.1, point (ii).
First, it is clear that for any K C €

inf{/ |Vo|Pdx : ¢ € C2°(2), ¢ > 1011[(}
0

Sinf{/|V¢|pdx:¢EC§°(Q),0§<b§1,{¢:1}°DK},
0

since the second infimum is taken over a smaller set of functions.

Then we fix € > 0 and pick ¢ from the functions competing in the first infimum
such that [, |Vy|Pdz < Cap, (K, Q) + €.

Let {\,} € C(R) such that:

LO<N, <1+=

2. A (t) = 0 in a neighborhood of (—o0, 0],
3. Am(t) =1 in a neighborhood of [1, +00),
40<\, <1.

Therefore, 0 < A, (¢) < 1 and this composition is clearly a smooth function equal
to 1 in a neighborhood of K.
So

inf{/ ]V¢]pdx:¢€C§°(Q),O§¢§1,{¢:1}°DK}
Q

< [ [Pt = [ @pveras < (14 1) Cap, (K9 +9

and sending m — +o00o yields the opposite inequality and so the desired result.

Proposition 1.2.1. (Properties of capacity)
Let1 <p<N.

1. If Ay C Ay, then Cap,(A1,§2) < Cap,(Az, Q).

2. If 4 C Qy are open and A C €y, then Cap,(A,€) < Cap,(A,Q). In
particular, if Qy = RV, Cap,(A) < Cap,(A,Q) for any open set Q0 and any
set A C €.

3. If Ky and K5 are compact subsets of €, then
Cap, (K1 U Ky, Q) + Cap, (K1 N Ky, Q) < Cap, (K1, 2) + Cap,(K2,).

4. If {K;} is a monotone decreasing sequence of compact subsets of S, then

+o0
lim Cap,(Kj,2) = Cap, <ﬂ Kj,Q> .
j=1

j—+oo
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5. If {A;} is a monotone increasing sequence of subsets of ), then

+oo
Jim_Cap,(4;,2) = Cap, <U1 Aj, Q) .
]:
6. If {A;} is any sequence of subsets of 2, then

+o00 +o0o
Cap, (U A;, Q) < ZCapp(Aj,Q).
Pt =1

7. If A is a Borel subset of 2, then
Cap,(4,Q) = sup{Cap, (K, Q) : K compact, K C A}.

Proof. Properties 1 and 2 are immediate consequences of the definition of p-
capacity.
For 3, we refer to [Maz|, §2.2.1, point (v).
To prove 4, we notice that, for any € > 0, there exists a function ¢ € C(Q2), ¢ > 1
on (5] K; such that

+o00
/Q Vo[ dx < Cap, (ﬂ Kj,Q) +e.
j=1

Since the sequence of compact sets is decreasing, there exists jo = jo(€) such that,
for any j > jo, K; C {¢ > 1 — €}; therefore

Jj—+oo

+0c0
Capp (ﬂ Kj’ Q) S hm Ca“pp(Kja Q) S Capp({(b Z 1 - 6}, Q)
j=1

< —e)p/9|v¢|pdx < (1— )7 (Cap, (ﬁ.&ﬁ) +o).

Since € is arbitrary, property 4 follows.

For the other points, we refer to [HKM], Theorem 2.2 and 2.5. We observe that
in [HKM], the authors assume 1 < p < oo, however, as we have shown, such an
assumption may be dropped in the proof of point 4. Points 5 and 6 are conse-
quences of point 1 and a lemma ([HKM], Lemma 2.3), whose proof relies only on
topological facts and on properties 1 and 3, which Maz’ja proved for 1 < p < N:
therefore these points are proved also in the case p = 1.

Any set function which is defined in the family of all subsets of an open set €2
and which satisfies properties 1, 4 and 5 is called a Choquet capacity relative to €.
Point 7 is a property of Choquet capacities, whose proof may be found in [H], p.
149. O
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Remark 1.2.3. Property 7 in Proposition 1.2.1 is indeed true for a more general
class of sets, the Suslin sets, which contains the Borel sets, as it is shown in [Fe],
pag. 63-66.

Remark 1.2.4. Since clearly Cap,,((), Q) = 0, from property 6 in Proposition 1.2.1
we deduce that Capp(-, ) is an outer measure on ). However, the p-capacity
relative to an open set (2 is not a Borel measure, since there are Borel sets of finite
capacity which are not Cap, (-, {2)-measurable.

Proposition 1.2.2. Let N >2, 1<p< N,0<r < R< oo and x € RV, then

p—1 _ _
Nwy <N_p) |R1;—11V —rz;fllvll_p for 1<p< N

=1
)1_N for p=N

Cap,(B(z,r), B(z, R)) =
: Nwy (log%

and
Cap,(B(xz,r), B(z, R)) < Nwyr™ .

In particular,
Cap,(B(z,r), B(z,2r)) < C(N,p)r"™" for 1 <p<N.

Proof. For 1 < p < N, see [HKM], Section 2.11, and [Maz|, § 2.2.4.
For p = 1, we use the following lemma (|Maz|, §2.2.5): for any compact set K C €2,

Cap, (K, Q) = inf{H"1(0G) : K C G CcC Q, G open, dG C*° manifold}.

Hence, if K = B(z,r) and 2 = B(z, R), we see that
Capl(B(:E7 T)v B(:Ev R)) S Capl(B(x7 ’I"), B(l’, R)) S NWN(T + G)N_l
for any 0 < ¢ < R —r, and so the estimate follows. [

Theorem 1.2.3. (Relations between capacity and Hausdorff measure)
For any 1 <p < N and K compact subset of Q, Cap,(K,Q) < C(N,p)H N ?(K).
In particular, if HN"P(K) = 0, then Cap,(K,Q) = 0.

Moreover, if Q = RN and A C RN, then

1. if 1 <p <N and HN"P(A) < oo, then Cap,(A) = 0;
2. if 1 <p < N and Cap,(A) =0, then H*(A) =0 for s > N — p;
3. Cap,(A) = 0 if and only if HN"1(A) = 0.

Proof. Since K C 2 is compact, then dist(K,0Q) = d > 0, and let {B(zg, )}
be a d-covering of K; that is, K C (J,o, B(xy, ri) with 2r, < . We choose § < %l.
We observe that, among the d-coverings of K, those which better approximate the
8§V “P_measure of K are those in which every ball has nonempty intersection with
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K, since we can always throw away balls which do not intersect K and obtain a
covering for which the sum 3°°° wy_,71 * is smaller. Thus, since

B(xg, ) N K # 0 Vk, we have dist(zy, 09) > d—r, > d—$ > 3¢ > 0, which
implies that the balls B(xy, ) and B(xy, 2ry) are inside €2 for each k.

Therefore, Cap,,(B(xx, 1), ) < Cap,(B(z, &), B(xk, 2r1)) (property 2 in Propo-
sition 1.2.1) and Proposition 1.2.2 states that

Cap,,(B(wg, 1x), B(wg, 21)) < C(N, p)ry P

~—~

Hence, by subadditivity (property 6 in Proposition 1.2.1), we have

Cap, (K, Q) <Y Cap,(B(x, 1), Q)

< Z Cap,,(B(wg, 1), B(wg, 21)) Z

k=1 =

and so
Cap,(K,Q) < CS; P(K) < CSNP(K) < C2VPHN 7 (K),
since we take the supremum over 0 < § < %l and we use the estimate (1.1.1).

For the second part of the theorem, see |[EG| Section 4.7.2 Theorems 3-4 and
Section 5.6.3 Theorem 3. [

The following theorem will show one important result on fine properties of
Sobolev functions in RY obtained using capacity.

Theorem 1.2.4. Let u e WHP(RY), 1<p< N.

1
1. Thereis a Borel set B C RN such that Cap,(B) = 0 and lim ——— / udy
r—0 ’B(:C T)| B(z,r)

exists for each x € RN \ B.
2. For each x € RN \ B

1 _
T%|BIT|/J:T)U v

where u* is the precise representative of u (Definition 1.1.6). Moreover, this
precise representative is p-quasicontinuous; that is, for any € > 0, there exists
an open set V' such that Cap,(V) < € and u|gn\y is continuous.

Proof. See [EG] Section 4.8 Theorem 1.
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Remark 1.2.5. In particular, it follows that the mollification of u converges point-
wise to u* up to a set B of Hausdorff dimension at most N — p: if z € RN \ B,
then, by the definition of p and Jensen’s inequality, we have

/RN(u*(:U) —u(y))pe(z — y)dy‘ <

|u” () = ue(2)] =

1
1 . »*
[pllocwn (— u(y) — u* () dy) —0 as €— 0.
|B(z,€)| B(z,e)
We state now a technical lemma which we will use in Chapter 2.

Lemma 1.2.1. Let 1 <p < N and K be a compact subset of Q0. If Cap,(K,Q) =
0, then there exists a sequence of test functions ¢; € C°(2) such that

1.0<¢;<land ¢; =1 on K,
2. IVl Leurny = 0,
3. for each j, supp(¢;) is contained in a compact set C; C € such that

ClDCQD...DK and ﬂCj:K,

J=1

4. ifQ=RY and 1 <p < N, ¢j(x) = 0 for all x € RN \ A for some set A with
Cap,(A) = 0.

Proof. By the definition of capacity, there exists of a sequence ¢; € C°(2)
such that ||V4;||rs@ryy — 0, which is point 2.
Moreover, by Remark 1.2.2, we also have point 1.

We observe that, since 1 < p < N and v; has compact support, the Gagliardo-
Nirenberg-Sobolev inequality is valid, so [[t);] o= ) < C|IVj|| L)
Thus, up to passing to a subsequence, 1; — 0 LV-a.e. in Q.

We also point out the fact that we cannot have [[V);||1»qry) = 0 for some j,
otherwise 1); would be identically 0, which is in contradiction with the fact that
Y;=1on K.

Therefore, without loss of generality, we can ask that

VU]l o @mrny > (VUi Lomy)

for each j: indeed, ||V);|[Lr(mrny > 0 for each j and goes to 0, so, up to choosing
a subsequence, we have monotone decay.

Now, let {0, ;;08 be a sequence which satisfies d; > 0, §; > d;41 and 6; — 0,
and define K, := {z : dist(z, K) < §;}.
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Then, by properties of convolution and mollification, if p is a standard symmetric

mollifier, then y, _*ps; 1s a smooth function whose compact support is contained
i

in K5, 45, =: Cj for each j > 1.

We choose dg and 97 in such a way that C; C Q.

Moreover, 0 < XKs, | * Ps; < 1 and it is identically equal to 1 in K5, , ;.

So, if we define ¢; := 9; (XK[;F1 *ps,), then we have property 1, just by observing
that
{o; =1} ={v; =1}"NK;_ _; DKNKs ,—5 DK
Then, we have
supp(¢;) C supp(v;) N Ks;_ 45, C C}
and clearly Cj D Cjyy by their definition, also (172, C; = (2, K5,_,+5, = K. So
we have property 3.

Now we observe that
IVOiller vy < IV Xk, | * ps ) |omny + 1145V (X, * ps,)| Lo (i)

Clearly, ||Vib;(Xks, | * ps,)l|r@my) < V]l reomy). The Holder inequality

N

with p = =, p = & yields

H%’V(XK%.,I *péj)HLP(Q;]RN) < H%’\\LP*(Q)HV(XK(;F1 * péj)HLN(Q;]RN)

and

r—y. dy
V(xk, | *ps,)(@)] < / ity ) Vp(Y)|
j Q j 5] 5],

dy WN
= / Xrs,_, (@ = 09) Vo)l == < |IVolloeso.nmv) 5~
B(0,1) J

J

Then, by the Gagliardo-Nirenberg-Sobolev inequality, we have

11
165V Ocs,, * p5)l e @mny < ClIVY; || poama) |CL I =
j
: 01 3 :
So we need just to choose §; = ; ||v¢j||LP(Q;RN) for j > 1 (the

vall‘E,P(Q;RN)
multiplicative constant is due to the fact that we already fixed §; above) in order
to obtain also property 2.

Finally, if © = R, in order to verify property 4, we notice that ¢; — 0 LV -a.e.
in RV and, by the Holder inequality,

1 1
10511 e @y < 185l o @y [CLN < 15[z ) [CLIN < ClIVYy]| o vy = 0,
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and [|V¢;|| Lrwyryy — 0 as we showed.
So, ¢; — 0 in W'P(RY) and, since 1 < p < N, Theorem 4.3 in [HKM]| implies
that ¢;(x) — 0 for all z € RN \ A, for some A with Cap,(A) =0. O

1.3 Functions of Bounded Variation
Definition 1.3.1. A function u € L'(Q) is called a function of bounded variation
if
Sup{/ udivodr : ¢ € C(Q;RY), ||¢]|oe < 1} < 00.
Q

We denote by BV (€2) the space of all functions of bounded variation on €.
We say that u is locally of bounded variation, and we write u € BVj,.(f2), if
uwe L () and if V open set W CC ,

loc

sup{/ udivedr : ¢ € C(W;RY),||6]]0 < 1} < 00.
W

Theorem 1.3.1. (Riesz) Let u € BVi,.(Q), then there exists a unique RY -vector
valued Radon measure i such that

/udiwbda: = —/ ¢-du Vo € CHORY).
Q Q
Proof. We define the linear functional L : C!(;RY) — R by
L(¢) := —/udivgzﬁd:c, for ¢ € CHQ;RY).
0

Since u € BVo(2), we have
sup {L(¢) : € CZ(W;RY), ||l <1} = C(W) < 00
for each open set W CC €2, and thus
IL(@)| < C(W)||¢]lo for ¢ € Co(W:RY).

We fix any compact set K C 2 and then we choose an open set W such that
K Cc W cc Q. For each ¢ € C,(Q;RY) with supp(¢) C K, we choose a sequence
o € CHW;RYN) such that ¢, — ¢ uniformly on W. Then we define

L(8) = lm_L(6).
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By the continuity of L on C}(Q;RY) we have that this limit exists and is
independent of the choice of the sequence {¢y} converging to ¢. Thus L uniquely
extends to a linear functional

L:C(uRY) =R

and

sup {L(¢) : ¢ € CZ(URY), [|¢]| < 1,5upp(¢) C K} < o0

for each compact set K C ). So, by the Riesz Representation Theorem (Corollary
1.1.1), there exists an R¥-vector valued Radon measure p satisfying

L(¢) = —/qﬁ-du, Vo € C.(Q,RY)
Q
and so, since L(¢) = L(¢) for ¢ € C1(Q,RY), the result follows. [J

This means that the distributional derivative Du of a BV function u is an R -
vector valued Radon measure.
We write ||Dul| to indicate its total variation, which is a positive Radon measure

on €.
Remark 1.3.1. W"'(Q) € BV(Q) and || Du|[(Q) = ||Dul| 1 qzv) for u e WH(Q).

Theorem 1.3.2. If {u,} C BV(Q) is such that u, — wu in LP(Q2) for some
p € [1,400), or weak-star for p = +oo, or in Li, (2). Then YA C Q open

1Dull(4) < limint | D] (A)

Proof. Indeed, we have V¢ € C=°(A; RY)

/ u, dive de — / udive dz
A A

and so, by Proposition 1.1.2,

/ udivpdr = lim up dive dr < liminf || Du,||(A).
A n—-+00

n—-+oo A

Taking the supremum over ¢ € C°(A;RY) with ||¢]|c < 1 on the left hand
side, we have the claim. [J

Remark 1.3.2. ||Dul|(€2) is a seminorm in BV (2). Clearly it is positively homo-
geneous and we get subadditivity by observing that

/(u1 + ug)divgp dx < ||Duq||(2) + || Dusl|(€2).
Q
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Theorem 1.3.3. The space BV () endowed with the norm

lullBv) = [lullrr @) + [[Dul|(€2)
18 a Banach space.

Proof. Let {u,} be a Cauchy sequence in BV (Q), then it is Cauchy in L'(Q)
and so Ju € L'(Q) such that u, — u in L.
By the lower semicontinuity (Theorem 1.3.2), u € BV ().
Moreover, Ve > 0, 3N € N such that ||D(uy — u,)||(Q) < €,Vk,n > N.
So, again by lower semicontinuity, ||D(uy —u)||(2) < lminf ||D(ug —u,)||(R2) < €

and from this it follows wu,, converges to v in BV norm. [

Theorem 1.3.4. (Meyers-Serrin Approximation theorem)
Let u € BV(Q), then FH{u,} C BV (Q2) N C>(Q) such that

1. u, — u in LY(Q)
2. |[Dun|[(2) = || Dul[($2).

Proof.
Fix € > 0. Given a positive integer m, we set Qg = (), define for each k € N,k > 1
the sets

Qk:{xEQ: dist(x,0Q) > ! k}ﬂB(O,k+m)

m +

and then we choose m such that || Dul|(2\ ©;) < e.

We define now 2 := Qpy1 \ Qr_1. Since {3;} is an open cover of , then there
exists a partition of unity subordinate to that open cover; that is, a sequence of
functions {(} such that:

2.0<¢G <1
3.5 ¢ =10nQ,

Then we take a standard mollifier p and Vk we choose ¢ such that:
spb(pe, * (uCk)) C B

€
190, * (uGe) = uGillore) < 55
€
Hpek * (UVC}C) — uVCk||L1(Q;RN) < 2_k

and we define u, = >, pe, * (uCy).
Then u. € C*°, since locally there are only a finite number of nonzero terms in the
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sum.
Also, uc — w in L'(Q) since

= w1 ><Z||pek (uC) — uill 2oy < e

Now, since u. € L'(2), Theorem 1.3.2 implies ||Dul||(Q) < lim ionf || Ducl||(€2).
e—

In order to obtain the reverse inequality, let ¢ € C°(2;RY), ||@||oc < 1. Then

+o00 oo
ucdivodr = Pe * (uC)divode = wCediv(pe, * 6)de
/Q v ;/ﬂ k)d1v ;/Q div
400 e
= kz:;/QUdIV(Ck(pek * ¢))dl’ - ; /Q uV(, - (pek * ¢)dl’

+o0o
Using Z V(, = 0 in 2 and the properties of the convolution, this last expres-

. k=1
sion equals

+o00
Z/udlv Ce(pe,, * D) daz—Z/¢ (pe, * (uNV () —uNVC)de =: 1T + 15

Now, |Ck(pe, * ¢)| < 1 and each point in €2 belongs to at most three of the sets
{2x}. Thus

17| < <

+oo
[ w6 < oyt + > | vl + 0

|| Dul[(2 +ZHDUI| Zk) < |[Dul[(2) + 3[[Dul|(2\ ) < [|Dul[(2) + 3e

For the second term, we have |I5| < e directly from our choice of .
Therefore, after passing to the supremum over ¢, ||Duc||(2) < ||Du]|(Q) + 4e,
which yields u. € BV(Q2) and point 2. J

Remark 1.3.3. If u € BV(RY); that is, if Q is the entire space RY, then the
approximating sequence satisfying properties 1) and 2) of Theorem 1.3.4 is much
easier to construct. Indeed, we need just to take u. = u* p., where p is a standard

symmetric mollifier.
Indeed, u. — u in L*(RY) since u € LY(RY).
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Secondly, we observe that

IVl eviany = sup { [ w(ohtivo(o) de s 6 € C2@¥RY), ol <1}
—swp{ [ [ e~ i)dio(e) dady s 0 € CXRY RN, ol < 1

—sup{ [ uldiva.(n)de: o € CHERNRY ol <1} < |IDullR)

and so, by lower semicontinuity of the total variation, ||Vuc|| 1@y zyy = [|[Dul[(RY).

We may fix a sequence ¢, — 0. Theorem 1.3.2 implies that for any open set A

||Dul|(A) < 1,i€m inf || Due,||(A) and we observe that for any compact set K and
—+400

¢ € C(K;RY),|¢||e <1 we have
[ uateivot@)ar = [ [ divo@uty)p o - o) duds
RN RN JRN

= [ uw)aivo () dy < |[Dul (5 + B0,0)

since supp(¢e,) C K + B(0, ;). Thus we can take the supremum over ¢ in order

to obtain || Due, ||(K) < ||Dul|(K + B(0, €;)), which implies lim sup || Du,, || (K) <
k—4o0

||Du||(K) since K is compact.
Hence the sequence of Radon measures ||Vu,, || satisfies point 2 of Lemma 1.1.2

and so we have point 1 of the same lemma; that is, || Due, || — || Du|| in Myoe(RY).
Moreover, since we have shown above that supy, || Du,, ||(RY) < ||Dul|(RY) < oo,
Remark 1.1.4 yields also weak-star convergence in M(RY).

This remark applies also to BV functions with compact support inside €2, since
these are trivially in BV (RY). Given u € BV (Q) with compact support, we can

indeed extend it to
u(z) if €
(2) = (z) | N
0 if xeRY\Q.

It is clear that @ € L*(RY). If we let £ € C®(Q), ||¢]le < 1 and £ = 1 in a
neighborhood of the support of u, then, for any ¢ € C*(RY; RY), ||¢]| < 1, we
have

/ udivo do = / udivo do = / udiv(§p + (1 — £)¢) dz
RN Q Q
— [ wdivieo)do < [1Dul(@),

since ¢ € C(Q;RY) and ||€6]| < 1.
Taking the supremum over ¢ we obtain ||Dal|(RY) < [|Dul|(2) < oco.
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1.4 Sets of finite perimeter

Definition 1.4.1. A measurable set E C () is called a finite perimeter set in )
(or a Caccioppoli set) if yg € BV (Q).

A measurable set £ C RV is said to have locally finite perimeter in Q if yp €
BVioe ().

Consequently, Dy is an RY-vector valued Radon measure on 2 whose total
variation is || Dxgl||.
By the polar decomposition of measures, there exists a ||Dyg||-measurable func-
tion with modulus 1 ||Dyg||-a.e., which we denote by vg, such that Dxp =
vl [ DXzl
Unless otherwise stated, from now on E will be a set of locally finite perimeter in
Q.

Example 1.4.1. Any open bounded set £ C Q with 0F € C? is a set of finite
perimeter in €.
Indeed, Vo € C(;RY) with ||¢||e < 1, by the classical Gauss-Green formula

we have
/ dive de = —/ ¢-vpdHN ! = —/ ¢ vpdHN !
QNE A(QNE) QNOE

< [ lolivelant < M@ oK)
QNOE

where vg is the interior unit normal. Taking the supremum over ¢ yields || Dxgl||(©2) <
HNHQNOE).
Therefore, E has finite perimeter and so, for any ¢ € C°(Q; RY),

/XEdiV¢da::—/gb-DXE:—/ ¢ v dHN L
Q Q QNOE

This implies that Dygp = vg HY1LOE in M(;RY), by Riesz Representation
Theorem (Theorem 1.3.1), and so ||Dxg|| = HY~'LOF, which in particular yields

IDxs|(Q) = HY1(Q N IE). (1.4.1)

Remark 1.4.1. It can be also shown that every open bounded set with Lipschitz
boundary is a set of finite perimeter, with equality (1.4.1) holding, since this is
a consequence of the extension theorem for functions of bounded variation (see
[EG], Section 5.4). Moreover, any bounded open set Q satisfying HV~1(99Q) < oo
has finite perimeter in RY (see [AFP], Proposition 3.62).

Equality (1.4.1) is not valid in general for sets of finite perimeter, as the following
example will show.
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Example 1.4.2. Let N > 2, {z;} = Q¥ n[0,1)N, E = U2, B(;,€27"), with
€ > 0 that shall be assigned, and [0, 1]Y C . We have

Bl S ey _one”

Bl <2 w2 =7
Since the rational points are dense in [0,1]", then E = [0,1]¥ and 0F = E\ E,
since F is open, which implies

LUNEN
1—2-N

for € small enough. This implies HY~}(OF) = co.
Observing that IE C |J;~, 0B(z;,€27"), we have

| awsds—— [ ovpanir<y [ 9l ] M
QNE OE i—0 Y 0B(z;,e27%)

. > . N
S ZHN_l(aB(.TZ, 62_1)) = ZNUJNGN_12_(N_1)1 == %
=0 1=0

Thus E is a set of finite perimeter for which ||[Dxg||(Q) # HY~HQ N OE).

0E| > [B| - |E| > 1— >0

N-1

This may suggest that for a set of finite perimeter is interesting to consider not
the whole topological boundary, but subsets of OF instead.

Definition 1.4.2. Let x € 2, then x € 0*F, the reduced boundary of E, if
L. ||Dxg||(B(x,r)) > 0,Vr > 0;
2. lim, m [ VEA|IDXEl = VvE(2);
3. |ve(zx)| =1

It can be shown that this definition implies a geometrical characterisation of
the reduced boundary, by using the blow-up of the set E around a point of 0*F.

Definition 1.4.3. For x € 0*E we define the hyperplane
H(z) ={y e R" : v(z)-(y—z) =0}
and the half-spaces
H*(z) ={y € R" : v(z)-(y —x) >0},
H (r) ={y e RY: v(z)-(y —x) <0}.
Also, for r > 0, we set

E(x)={yeRY: z+r(y—z)e E}
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Theorem 1.4.1. If E is a set of finite perimeter in Q, x € O*FE and v(z) =
—vp(z), then

XB, = Xi-() i Ljpe(Q)
XO\E, = XH-() 0 L. (Q)
asr — 0.
Proof. See [EG] Section 5.7.2 Theorem 1.
Formulated in another way, for » > 0 small enough, £ N B(z,r) is approxima-
tively equal to the half ball H~ () N B(x, ).
Corollary 1.4.1. If x € 0*F and v(z) = —vg(x), then

1
. - + _
1. llinOrN|B(:v,T)ﬂEﬂH (x)| =0,

2. lim —|(B(z,r)\ E) N H™ ()] = 0.

r—07r

Proof. We have

7%|B(£L‘,?“)QEQH+<£L')’ = |B(x,1)NE,NH" (z)| = |B(x, )NH (z)NH* ()| = 0,

by Theorem 1.4.1. Point 2 follows from the same theorem and

SlB@ )\ B) A B (@) = (1B, r) 0 H- ()|~ Bla,r) 0B Q- (2)])
- %N —|B(x,1) N E, N H (2)|
= %V — |B(z,1) N H(z)| = 0.

O
Using this result, we can give a generalization of the concept of unit interior
normal (respectively, unit exterior normal, up to a sign).

Definition 1.4.4. A unit vector v(z) = —vg(x) for which property 1 of Corollary
1.4.1 holds is called the measure theoretic unit exterior normal to E at x, while,
accordingly, vg(z) is called the measure theoretic unit interior normal to E at x.

It follows that the measure theoretic unit interior normal vy is well defined at
least on the reduced boundary.
Moreover, the next theorem shows us that the reduced boundary can be written
as a countable union of compact subset of C' manifolds, up to a set of Hausdorff
dimension at most N — 1.

Theorem 1.4.2. Assume E is a set of locally finite perimeter in RY. Then
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1. O*E is a (N — 1)-rectifiable set; that is, there exist a countable family of C*
manifolds Sy, a family of compact sets K;, C S and set N of HN"t-measure
zero such that

400
0E = KiuN;
k=1

2. vgls, is normal to Sk;
3. ||Dxg|| = HN7ILO*E and for HN"t-a.e. x € O*F,

DB )

= 1.
r—0  wy_yrV-1

Proof. See [EG] Section 5.7.3 Theorem 2.

We introduce now the density of a set at a certain point, in order to select
another useful subset of the topological boundary.

Definition 1.4.5. For every a € [0,1] and every measurable set £ C RY, we
define
E*:={z eRY : D(E,r) = a},

where

o |BEn N B)
D) = 0 B )

Definition 1.4.6. Referring to Definition 1.4.5,
1. E'is called the measure theoretic interior of E.
2. EY is called the measure theoretic exterior of E.

3. The measure theoretic (or essential) boundary of E is the set O™E = RN \
(E°U EY).

Remark 1.4.2. It is clear that E° C E* and RV \ E C E°. Hence one has
O"E C RN\ (E°URN\E)=FE\ E°=0E.

Moreover, by the Lebesgue-Besicovitch differentiation theorem (Theorem 1.1.2),
O™E has LN-measure 0, since it is the set of non-Lebesgue points of Y.

We further observe that, as in [EG]| Section 5.8, it is possibile to define the
measure theoretic boundary without using the density of a set.
Indeed the previous definition is equivalent to the following:

Definition 1.4.6° Let z € RY, then 2 € 0™E, the meaure theoretic boundary
of E, if the following two conditions hold:
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B NE
| (x7r> ‘>0

1. i
map = 20
B E
2. limsmpl(x’—c’\g\| > 0.
r—0 r

Theorem 1.4.3. If E C ) is a set of finite perimeter, then
OECFE:COmE, HN"Y(Q\(E°USEUE") =0.

In particular, E has density either 0, 1%/ or 1 at HN t-a.e. x € Q, and, even if
E is only locally of finite perimeter, HY 1-a.e. x € O™E belongs to O*E; that is,
HNLO™E\ O*E) = 0.

Proof. See [EG| Section 5.8 Lemma 1 and [AFP| Theorem 3.61.

Remark 1.4.3. Since the functions of bounded variations are elements of L', they
are equivalence class of functions, so that changing the value of any such function
on a set of £LN-measure zero does not modify the BV class of the function.
Therefore, this is true also for sets of finite perimeter and we can choose any
representative F for E/, which differs only by a set of measure zero, without altering
the measure theoretic boundary.

Throughout, we choose this preferred representative for E:

E:=E'UO™E.

One of the greatest achievements of BV theory is to establish a generaliza-
tion of the Gauss-Green formula for every set of finite perimeter, though only for
differentiable vector fields.

Theorem 1.4.4. (Gauss-Green formula on sets of finite perimeter)
Let B C RY be a set of locally finite perimeter. Then for HN"! a.e. x € O™E,
there is a unique measure theoretic interior unit normal vg(z) such that V¢ €

CHRY;RY) one has
/divgzﬁd:c:—/ ¢ - vpdHN L.
E omE

Proof. Since E is a set of locally finite perimeter, Dy g = vgHY"'L0*E (Theo-
rem 1.4.2), where vg is the measure theoretic interior unit normal. Also, Theorem
1.4.3 implies HYN"1(0™E \ 0*F) = 0. Hence, for any ¢ € CH(RY;RY),

/XEdivgbdx:—/gb-DXE:— ¢-vpdHNT! O
Q Q omE

Remark 1.4.4. Since HV (0™ E\0*E) = 0 (Theorem 1.4.3), without change, we
can integrate on the measure theoretic or on the reduced boundary with respect to



CHAPTER 1. PRELIMINARIES 36

the measure H”~!. Since in many practical cases 0™F is easier to be determined,
Theorem 1.4.4 is often stated in this way. However, since Theorem 1.4.2 states
that ||Dxg|| < HY7'LO*E and the precise representative of xg is well defined
on E' U9*F U E° (Lemma 1.4.1 below), in what follows we will always use the
reduced boundary in the Gauss-Green formula.

Remark 1.4.5. We also observe that if E is a bounded set of finite perimeter
in RV, then we can drop the assumption on the support of ¢. Indeed, there
exists R > 0 such that F C B(0, R), and so, given ¢ € C'(RY; RY), we can take

p € C*(RY), ¢ =1 in B(0,R) (which in particular implies Vi = 0 in F), in
order to obtain

/ divpdr = /(gpdivgb +¢-Vy)dr = / div(¢yp) dx
B B E

:_/ (¢90)'VEd7‘lN71=— ¢ vy dHN L.
O*E

O*E
It is also easy to see that if E CC  C R, then we can take just ¢ € C1(Q;RY).

As in the case of Sobolev functions, it can be shown that for BV functions the
precise representative is well defined and it is the limit of the mollified sequence.

Definition 1.4.7. Let u € L{ () and a € RY.
We say that u,(z) is the approximate limit of u at x € Q restricted to I, (z) :=
{y e RY : (y — ) -a > 0} if, for any € > 0,

Lo Hy € RN July) = wa(a)] = €0 Be,r) (L)

s Bz, r) N1, (2)] =0

Definition 1.4.8. We say that x € Q is a regular point of a function u € BV (2)
if there exists a vector a € R such that the approximate limits u,(z) and u_4(7)
exist. The vector a is called defining vector.

Example 1.4.3. Let E be a set of finite perimeter, for which we choose the
representative E' U 0™E (see Remark 1.4.3), and u = xg, then each point in
E'U E° U 0*E is a regular point.

If v € E', Va € RY (xg)a(7) = 1. Ve > 0 we have

{y e RY ¢ [xg(y) — 1| > ¢} N B(x,r) = E°N B(x,r).
So,

N . _ > 0
My €RY xely) =11 > b N Bl _ BN Bl
r—=0 | B(x,7)] r=0  [B(z,7)]

=1-D(E,z)=0.
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Therefore, Va € RY
{y € RY : [xp(y) — 1| = ¢} N B(x,r) N1, ()]
[ B(z,r) N1l (z)]

cHyeRY:Ixe(y) —11 =} N B(x,r)| Bz, r)]
B B, 7)] | B(x,r) N Tla(x)]
_ oMy EeRY xply) 1| zepn Blar)| 0 oL

| B(z,7)]

In an analogous way, we show that Vz € E° (xg).(z) =0 Va € RY. Ve > 0 we
have

{y e RY : |x&(y)| > ¢ N B(x,r) = EN B(x,r)
and so

i L ERY s ps@)| 2 0 B _ |0 Bla, 1)
& Bz, )] 8 1B,

=D(E,z)=0.

Therefore, Va € RY
H{y € RY : [xu(y)| > ¢} N Bz, r) N,(2)]
|B(x,r) N1, (x)]
{y € RY : |xe(y)| > e} N B(z,r)|  |B(z,7)|
- |B(x,7)| |B(z,7) N1, (z)|
{y € RY : |xe(y)| > ¢} N B(z,7)|
|B(z,7)]
Now let x € 0*F and a be the measure theoretic interior normal. Then

(X£)a(z) = 1 and (xg)-a(z) = 0.
Referring to the notation of Corollary 1.4.1, we have I1,(z) = H~(x) and
II_,(z) = H*(z), hence Ve > 0

{y €RY: [xp(y) — 1 = €} N B(z,r) N1La()]

=2 —0 as r—0.

T
0 [B(z,r) N 11, ()
. |E°N B(z,r) N1,(2)] _ _
=1 = lim ——|(B EYNH =0
rl—I}(% |B(:(;’ 7’) ﬂ HQ(I)’ TI_I)I(l) CUNTN |( (x7 T) \ ) (x)|
and
€ RN ye(y)] > ) 0 Bl r) NIy (o)
r—0 |B(z,7) NI4(z)]
. |ENnB(x,r)NI_,(x)] )
=1 = lim ——|B ENH' =0.
B B ) NI @)] Sy D) NENHT@)] =0

This shows our claim.
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Theorem 1.4.5. Let u € BV(2). The set of irreqular points has H™ ~'-measure
zero.

Proof. See [VH| Chapter 4 §5.5, or [EG| Section 5.9 Theorem 3.
Theorem 1.4.6. Let u € BV (Q2) and = be a regular point of u. Then

1 If ug(x) = u_o(z), any b € RY is a defining vector and wy(z) = uq(z); that
is, T 1S a point of approximate continuity.

2. If ug(z) # u_o(x), then a is unique up to a sign.

3. The mollification of u converges to the precise representative u* at each reqular
point and u*(z) = 1 (uq(x) + u_q()).

Proof. See [VH]| Chapter 4 §4.4 and Chapter 4 §5.6 Theorem 1, or [EG| Section
5.9 Corollary 1.

Remark 1.4.6. By Theorem 1.1.4, we deduce that condition 1) in Theorem 1.4.6
holds £N-a.e.

We state now some standard results on the mollification of characteristic func-
tions of sets of finite perimeter.

Remark 1.4.7. By Remark 1.3.3, if E be a set of finite perimeter and {xs, }
denotes the mollification of x g, then

1VXs 1@y < [IDxEl|(RY)

and
VX6 @y = [[Dxsl|(RY)

Lemma 1.4.1. If x5 is the mollification of xg for a set of finite perimeter E, then
the following hold:

1. x5 € C=(RY);
2. There is a set N with HN"Y(N') = 0 such that, for allz ¢ N, xs(z) — x5()

and

if v € E'
ifre O'E
if v € EY

>
%
O
I

O Ni= =

3. Vxs — Dy in M(RY;RN);
4. Dxp = Dx5g.

5. If U is an open bounded set with ||Dxg||/(0U) = 0, then ||Vxs||(U) —
1Dxell(U);
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Proof.
1. It follows from Theorem 1.2.1.

2. From Theorems 1.4.5 and 1.4.6, we know xs — x5 HY la.e. and yj(x) =
limrﬁom(—;r)lfB(w) xe(y)dy = D(E,z), so if x € E', x5(z) = 1;if x € E°

then x3(z) = 0 and, since 0*E C E?, if x € 0*E then Xp(z) = 3.

3. Since x5 — x5 in L'(RY), then
[ ovde = [ xpws
RN RN

for each 1 € C.(RY); that is, they converge as distributions, which implies
Vxs A Dy}, as distributions:

Vxs - ¢odr = —/ xsdivo dx — — Xpdive de = ¢-dDxg

RN RN RN RN

for each ¢ € C(RY;RY). Consequently they converge as R¥-vector valued
Radon measures, by the density of C2°(RY; RY) in C.(RY; RY) with respect to

the sup norm and by the uniform boundedness of total variation (see Remark
1.4.7).

4. Tt is immediate from the fact that x5 = yg L£LY-a.e. and the definition of
derivative of a BV function.

5. Let {0;} be a nonnegative sequence converging to 0. Since yg has com-
pact support in 2, Remark 1.3.3 yields that the sequence of Radon measures
IV xs,|| converges weak-star to |[Dxg|| in M(RY) and thus Lemma 1.1.2
implies our assertion. [J

We state now the co-area formula, which shows an important connection be-
tween BV functions and sets of finite perimeter.

Theorem 1.4.7. (Federer and Fleming co-area fromula)
If u € BV(Q), then for L' a.e. s € R, the set {u > s} has finite perimeter in Q
and

+o0
1Dul® = [ 1Dl

[e.9]

Conversely, if u € LY(Q) and [727||Dx{uss|[(Q)ds < 0o, then u € BV ().
Moreover, for any Borel set B C §2 we have

+o0
1Dul(B) = [ D l[(B)ds.

(e 9]

Proof. See [EG] Section 5.5 Theorem 1 and [AFP| Theorem 3.40.
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Remark 1.4.8. A consequence of Theorem 1.4.7 is that, for any u € BV (),
|| Du|| < HN~1. Indeed, for any Borel set B C 2 such that HY~!(B) = 0, co-area
formula implies || Dul|(B) = 0.

Lemma 1.4.2. Let u : Q — R be a Lipschitz function, and let A C RN be a set
of measure zero.
Then

HYN Y AN (s)) =0 for L'-a.e.s €R.

Proof. It is an immediate consequence of the classical co-area formula for Lip-
schitz functions (see [EG], Section 3.4.2 Theorem 1); that is,

0:/A|Vu(x)|dx:/+OOHN_1(AHU_1(3))ds.D

—00

1.5 Generalizations of the Gauss-Green formula

In this paragraph, we formulate three extensions of the Gauss-Green formula for
sets of finite perimeter and fields with lower regularity, in order to compare them
with those we will provide in the following chapters.

The first one is about Lipschitz fields.

Theorem 1.5.1. (De Giorgi and Federer) If E is a bounded set of finite perime-
ter in RY and F : RN — R is locally Lipschitz, then

/didex:—/ F-vgdH"N 1, (1.5.1)
E o*E

where vg is the measure theoretic interior normal to E.

Proof. Let F. = F * p. be a mollification of F', then, by Remark 1.4.5, we have

/ divE,. dz = — / F.-vpdHN L.
E o*FE

Since F, — F uniformly on compact sets, by the continuity of F' and Theo-
rem 1.2.1, and 9*F is bounded and has finite H"¥ ~!-measure, then we can apply
Lebesgue’s dominated convergence theorem to the right hand side and obtain

lim F.  vgdHN—1 = / FvgdHNL.

=0 Jog O*E

On the other hand, we can find R large enough such that £ CC B(0,R) and,

clearly, F' is Lipschitz continuous on B(0, R): hence, F' € Wh>(B(0, R),R") (see
[E], Section 5.8.2, Theorem 4) and, in particular, ' € WbH(B(0, R), RY).
By Theorem 1.2.1, we have F, — F in W2 (B(0, R), RY) and this yields
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divF, — divF in L'(E). Thus we obtain (1.5.1). OJ

A Gauss-Green formula for essentially bounded vector fields of bounded varia-
tions on bounded sets of finite perimeter was found by Vol'pert in the '60s ([VH]).
The first ingredient is the product rule for essentially bounded BV functions, then
we need to show that, broadly speaking, the gradient of compactly supported BV
functions has zero mean value, as it happens for C! functions.

Proposition 1.5.1. Let u,v € BV(Q2) N L>(RY), then uv € BV () and for each
i=1,.. N
D;(uv) = u*D;v + v*D;u, (1.5.2)

in the sense of Radon measures, where u* is the precise representative of u (Defi-
nition 1.1.6).
In particular, for any set of finite perimeter £ CC €2,

XogDu = (uy, —u_p,)Dxg (1.5.3)
and
D(uxg) = vy, Dxg + xg Du,
D(UXE) = U,,,EDXE + XElua*EDU, (155)

where vg is the measure theoretic interior normal to £ and uy,, are the approxi-
mate limit of u restriced to 1y, (see Definition 1.4.7).

Proof. See [VH| Ch.4 §6.4. and Ch.5 §1.3. We also give a sketch of the proof
of (1.5.4).
If we apply (1.5.2) to v = xg, we obtain

D(uxg) = u"Dxg + xgpDu. (1.5.6)

We observe that D(uxg) = D(ux%): indeed, for any ¢ € C(£2;RY), we have

/qu ~dD(uxg) = —/quEdivgbd$ = —/QquEdivgbdx = /ngﬁ -dD(ux%),

and the density of C!(2;RY) in C.(Q;RY) yields the desired equality. Therefore
we deduce

D(uxg) =u"Dxg + x5pDu = D(uXQE)
= (uxe)"Dxs + XD (uxp) = (uxe)*Dxe + (X3)*Du + xzu* Dxp.

It is possible to show that (uxp)*(z) = fuy,(x) for HNt-ae. 2 € 0™E (see [VH],

Ch.5 §1.2 Theorem 1) and that the defining vector of u on 0*F is the measure
theoretic interior normal to E, vg. Moreover, since supp(Dyxg) C O*FE, x5 =
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XE + %Xa*E HV"Lae. (Lemma 1.4.1 and Theorem 1.4.3) and ||Dul|| < HV~!
(Remark 1.4.8), we have

1 1 1
§UVEDXE + (XE1 + ZX@*E)DU+Z(UVE + U_VE)DXE

= %(ul’E +u—yy)Dxe + (Xm + %XB*E)DU,
which implies
;l(qu — U—yy) DX — %X&*EDU = 0; (1.5.7)
that is, (1.5.3). Now, if we add twice (1.5.7) to (1.5.6) we get
D(uxp) = %(UVE + U ) DXE + (X1 + %Xa*E)DU - %X@*EDU + %(qu — U—yp)Dxp

= Uy, Dxp + X1 Du,

which is (1.5.4). To obtain (1.5.5), we subtract twice equation (1.5.7) from (1.5.4)
instead:

1 1 1 1

D(uxg) = 5(%1; +u_yy)Dxe + (Xpr + §X8*E>Du + §X8*EDU - 5(%@ —u_y,)Dxp
= Uy DX + XEi10o-5Du.

This ends the proof. [J

Lemma 1.5.1. If u € BV (Q)) and has compact support, then

/Q dDu = Du(Q) = 0.

Proof. Since u has compact support, we can extend it to

i(z) = u(z) if ze€Q
o if £eRN\Q

and, by Remark 1.3.3, & € BV (RY). With a little abuse of notation, we will
denote this extension again by wu.

So, u = 0 on RV \ Q. In particular, this implies that ||Du||(A) = 0 for each
open set A C RV \ Q: indeed

0= / udivpdr = — [ ¢-dDu Yo € C°(A;RY)
RN RN

and || Dul|(A) is the supremum of these integrals over ¢ € C°(A; RY) with ||@]|s <
1, by Proposition 1.1.2. By the properties of positive Radon measures (Proposition
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1.1.1), this implies ||Du||(B) = 0 for any Borel set B C RY \ Q.

We set Q= {z € RV : k > dist(2,Q) > k — 1} for k > 2 and Z—{IERN'
1 > dist(z,Q) > 0} \ Q. Then, ||Dul|(RY \ Q) = 0 since R¥ \ @ = [J, O and
each one of these sets has ||Du| |-measure zero.

Now let ¢ € C®°(RY) such that ¢ =1 on Q; UQ. Then it is clear that

/ pdDu = / dDu
RN RN

and, by the definition of the distributional derivative,

/ pdDu = — Vgpudx:—/ Voudr =0
RN RN RN\ (Q,UQ)

since u has support inside €2, thus Du(RY) = 0, which implies Du(Q2) = 0. O

Now we need only to exploit the product rule for the function xygu in order to
obtain the following version of the Gauss-Green formula.

Theorem 1.5.2. (Integration by Parts and Gauss-Green Formula for BV
Fields)
Let w € BV(Q) N L>®(Q) and E CC Q be a set of finite perimeter. Then
Uty € L®(0*E; HNY) with the estimates
||U’VE||L°°(8*E;'HN*1) S ||u||L°°(E)
u—vpl| L@ Bv—1) < ]| oo\ B).-

In addition, we have

/ dDu = Du(E") = —/ Uy, vy dHN (1.5.8)
B “E
/ dDu = Du(FE) = —/ Uy vp dHY L, (1.5.9)
E “E
/ dDu = Du(B) = / (U — U_yy) Vg dHN ! (1.5.10)
B B

for any Borel set B C 0*FE
If u € BV(;RY) N L2(Q; RY),

/ ddiv(u) = divu(E') =

El

/ddiv( ) = divu(E
E

/ddlvu—dlvu( )= /(ul,E u_y,) vp dHYN (1.5.13)
B B

/ Uy, - vg dHN T (1.5.11)
o*E

/ Uy, - vp dHN L, (1.5.12)
0

*E
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for any Borel set B C 0*E.

Proof. For HN"!-a.e. = € 0*E we have that (uxg)*(z) = su,,(z) (see the
proof of Proposition 1.5.1) and that the precise representative is the limit of the
mollification (Theorems 1.4.5 and 1.4.6). Hence, it follows that

s 0] < 21y ) (o) < 2l i [ e = )y
e—0 e—0 E

e—0 (Efm)/e
by Theorem (1.4.1), for HV-a.e. z € O*F.
Then, we notice that u*(z) = 3(uy, (x)+u_,,(x)), and so (uxa\p)*(z) = Fu_,, ()

for HV'-a.e. x € 0*E, which implies

|ty ()] < 21im [(uxeyp) * pe(2)] < 2f|ullLe@\p) 1im/ pe(z —y)dy
e—0 e—0 Q\E

2ot [ ) de = o
<0 J(o\B-z)/e

by Theorem (1.4.1), for HV'-a.e. z € 9*E.
Equations (1.5.8) and (1.5.11) follow from Proposition 1.5.1 and Lemma 1.5.1.
Indeed, uxp € BV (Q2) and has compact support, so

/ dD(uxg) =0
Q
which implies
/ Uy, dDXxE + XprdDu = 0.
Q

Dxg = vgHN1L0*E by Theorem 1.4.2, and, in particular, u,, € L'(0*E; HN1);

thus we have
/ dDu = —/ Uy v dHY T,
El I*E

which is an Integration by Parts formula. In a similar way, we deduce (1.5.9).
On the other hand, equation (1.5.10) follows from the evaluation of (1.5.3) over B
and again from Dyg = vgHN 1LO*E.

Now, in order to prove the Gauss-Green formulas, as in the classical case, we need
just to apply Integration by Parts formulas to each component of u € BV (Q; RV)N
L>®(Q; RY), then for each i =1,.... N

/ dDsu' = —/ uZEVjE dHN L
Bl O E

Summing over 7 yields (1.5.11). Arguing in this way, we obtain also (1.5.12) and
(1.5.13). O
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Remark 1.5.1. Proposition 1.5.1 and Theorem 1.5.2 can be formulated without
the hypothesis of the essential boundedness, adding the requirements that u* €
Ll (RY;||Dvl||) and v* € LL_(RY;||Du||) in the proposition and therefore that
Uty € LY(O*E;HY~!) in the theorem. For a good exposition of such variants of

Theorem 1.5.2 we refer the reader to the classical treatice of Maz’ya ([Maz]).

Finally, we quote a result by Fuglede, which concerns L? vector fields and is
related to De Giorgi and Federer theorem (Theorem 1.5.1). It employs however
totally different techniques and concepts, starting from the definition of the module
of order p of a family of measures.

Definition 1.5.1. Let S be a family of Radon measures in RY. We associate to
such a family the set of nonnegative Lebesgue-measurable functions f on RY such
that [on f(x)du(x) > 1Vu € S. If f enjoys these properties, we write f A S.

We define the module of order p € (0,+00) of S as

M, (S) := }g\l‘fs - fP(z) dx.

Definition 1.5.2. A family of Radon measures § is said to be exceptional of order
p (p-exc) if M,(S) = 0.

We shall say that a property holds p-a.e. if it holds for all ¢ € M(RY)\ S, with
M,(S) = 0.

Theorem 1.5.3. S C M(RY) is p-exc if and only if 3f € LP(RY), f > 0:
Jan fdp=+o0VpueS.
Moreover, if f € LP(RY), then f € L'(o) for p-a.e. 0 € M(RY).

Proof. See [Ful| Theorem 2 and [Fu2| Ch. 1 Theorem 2.
Since to every set of finite perimeter E is possibile to associate the Radon

measure ||Dyg|| = HYN1LO*E, we can import these definitions and results into
the context of sets finite perimeter. Thus we have the following notion.

Definition 1.5.3. Let 1 < p < oo. A collection £ of sets of finite perimeter
E C RY is called exceptional of order p (abbreviated as p-exc) if there exists
g € LP(RY), g > 0 such that
/ g(x)dHY " (x) = +oo0 VE € E.
O*E

Theorem 1.5.4. (Fuglede)
Let F € LP(RY;RY), 1 < p < oo, with divF € LP(RY). Then

/E divFdr = — /8 . F(x) - vg(x)dHN () (1.5.14)

for each set E of finite perimeter except those in a p-exc collection £.
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Proof. Since we have excluded the p-exc collection &£, we have that F €
LY(0*E; HN=1), by Theorem 1.5.3. In order to show (1.5.14), we prove that the
weak and the flux extensions of the differential operator div coincides, see [Fu2|,
pag. 27-34. U

In the next chapter, we will introduce a new space of vector fields in order to
show that it is possible to extend Fuglede’s theorem to all sets of finite perimeter,
not just to p-almost all in the sense written above. However, we will require p = oo,
though we will relax the assumptions on divF.



Chapter 2

Divergence-measure fields

2.1 Definition and first properties

In this chapter we introduce the main object of our study; that is, the function
spaces DMP(Q; RY), and we present their relevant properties. Most of these are
strictly connected with the theory of BV functions previously described. This
exposition is largely based on the initial paragraphs of the articles [CF1|, [CF2],
[CF3|, [CT| and [CTZ1].

Definition 2.1.1. A vector field F' € LP(Q; RY),1 < p < oo is called a divergence-
measure field, and we write ' € DMP(Q; RY), if

||divF||(Q) := sup{/ﬂF-ngdx c € C(N), |00 < 1} < 00.

A vector field F' is a locally divergence-measure field, and we write
F e DM} (;RY), if F € DMP(W;RY) for any W CC Q open.

As a consequence of Riesz Representation Theorem for Radon measures (The-
orem 1.3.1), we have the following Riesz theorem for divergence-measure fields.

Theorem 2.1.1. If F € DM (Q;RY), then divF is a (real) Radon measure on
Q andV ¢ € CHQ) we have

/ngdeivF:—/QF-ngdx.

Proof. One merely repeats the proof of the Riesz theorem for BV functions
(Theorem 1.3.1), where one just needs to define L(¢) = — [, F - Vodx for
¢ € CH(€) and proceed in the same way. [

In the following chapters, we are going to consider the case p = oo; that is, the
space of essentially bounded divergence-measure fields. However, many basic facts

47
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can be proved for any 1 < p < oo and hence we give a general description of these

spaces.

Proposition 2.1.1. Let {F;} C DMP(Q;RY) a sequence such that F; — F in
L1(Q;RY) for some q € [1,+00) or weak-star for ¢ = +oo, or in LL _(;RY).
Then VA C Q open,
divF||(4) < limn |[div ]| (4)
] o0

Proof. Let ¢ € C°(A) with ||¢]|s < 1, then Proposition 1.1.2 implies

/F-V(bda:: lim [ Fj-Ve¢dr <liminf||divF;||(A)

Jj—+oo

and so, by taking the supremum over ¢ on the left hand side, we have the claim.

U
Theorem 2.1.2. DMP(;RY) endowed with the norm

||F||DMP(Q;RN) = HFHLP(Q;RN) + [|div F'[|(€2)
1s a Banach space.

Proof. Let {F;} be a Cauchy sequence Cauchy in DMP(Q;RY), then it is
Cauchy also in L” and therefore there exists F' € LP(Q;R"Y) such that F; — F in
LP. So, in particular, F; — F in L. _(Q;R"), and, by Proposition 2.1.1,

loc

[[divF[(€) < Him inf [|divF5][(2),

which implies F' € DMP(;RY).
Moreover, Ve > 0 Jjo such that Vj, k > jo ||div(F; — F})||(©2) < € and, by lower
semicontinuity,

ldiv(E; — F)[|(©) < limint [Jdiv(E; ~ F)[[(©) < e

for j > jo and therefore F; — F in DMP(Q;RY). O

Theorem 2.1.3. (Approximation by smooth function)
Let F € DMP(Q;RY), then IH{F,} € DMP(Q;RY) N C>®(QRY) such that

1. [, |F, — Fldz — 0;
2. ||divF,||(2) — ||divE|[(92).

Proof.
Fix € > 0. Given a positive integer m, we set Qg = 0, define for each k € N,k > 1
the sets

QO = {ZL‘EQI dist(x, 0Q2) > }ﬂB(O,k+m)

m+ k
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and then we choose m such that [[divF|[(2\ Q) <e.
We define now X := Qpy1 \ 1. Since {¥;} is an open cover of €, then there
exists a partition of unity subordinate to that open cover; that is, a sequence of
functions {(x} such that:

1) e € C°(Zw);

2)0< G <1

3) S ¢ =1 o0n Q.

Then we take a standard mollifier p and Vk we choose ¢ such that:

Spt(ﬂﬁk * (ng)) C X
€

/ ey # (F-VG) = F - Veldn < =

and we define F, = > p., * (F ).
Then F, € C*, since locally there are only a finite number of nonzero terms in the
sum. Moreover, F. e LP(Q;RY). If 1 < p < oo, by the properties of convolution,

2k

IIFIILPQRN)<Z|IFCk||LpQRN /IF IPZ@ )P de < || F||L 0.,

since the series of (; converges uniformly (being locally a finite sum of bounded
functions) and 0 < ¢ < 1, which implies ¢} < ¢, Vp > 1. If p = 0o, we observe
that Vo € Q, x belongs to at most 3 sets of the open cover {3}, hence we have
|Fe(x)| < 3||F[| oo (rny, which implies

||F€||LOO(Q;RN) S 3||F||LOO(Q;RN). (211)

Also,
+oo
/ |F — F|dx < Z/ |0, * (FC) — FCldr < e
Q k=1 Q

Now, by Proposition 2.1.1, ||divF||(Q2) < lim iglf ||divFe|](€2).
e—
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In order to obtain the reverse inequality, let ¢ € C°(Q),||#||ooc < 1. Then

+00 +oo
€ dr = e, ¥ : dx = ’ e ¥ d
| B Vo ;/Qp (GF) - Voda ;/ng V(pey * 0)da

+00 +0o0
=N FV(Glpe * e~ | FVeulpa * d)d

+oo
Using Z V(= 0 in 2 and the properties of the convolution, this last expres-

k=1
sion equals

+oo
Z/F V (Gl pe, dx—2/¢pek (F V) — F-VG)de = IS+ IS,

Now, |Ck(pe, * ¢)] < 1 and each point in €2 belongs to at most three of the sets
{Xx}. Thus

+o00
I < / PVl eohds 3 / F -V (G(pey # 0))dz| <
+00
|| divF]|(©Q —|—Z\|dlvFH(Zk) < ||divF|[(2) + 3||div E || (22\ 1) < ||divF[](2) + 3e.
k=2

For the second term, we have |I§| < e directly from our choice of .
Therefore, after passing to the supremum over ¢, |[divF||(Q2) < ||divF||(Q) + 4e,
which yields F, € DMP(Q; RY) and point 2. OJ

We give now a few useful results which will allow us to establish when a sequence
of smooth functions {F}} approximating F' € DMP(Q;RY) is such that divF; =
divF.

Proposition 2.1.2. Let F' € DMP(Q;RY) and {F}} be a sequence in DMP(Q; RY)
such that F; — F in L (Q;RY) and ||divE}|[(2) — ||divF||(Q2).
Then, for every open set A C S,

|divE|[(AN Q) > limsup ||divEy|[(AN Q). (2.1.2)

j—+o0

In particular, if ||divF|[(0ANQ) =0, then
||divF||(A) = lim ||divF;||(A). (2.1.3)
J—r+00
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Proof. Let B = Q\ A. Then, by Proposition 2.1.1 (lower semicontinuity),
||divF||(B) < liminf ||divF;||(B).
j—00

On the other hand, we have
livFII(AN Q) + [ldivFI|(B) = [divE(|(9) = lim_[ldivE][(9)
j 00
= limsup ||divF}||(A N Q) + [|divF;||(B)

J—r+o00

> limsup [|divFy[|(A N Q) + lim inf [|divF}||(B)
j—00

Jj—+oo

> limsup [|divF}|[(AN Q) + [|divF||(B)

J—+oo

and then (2.1.2) follows. Now, if ||divF||(0ANQ) = 0, ||divF|](flﬂQ) = ||divF||(A)
and so

||divE]|(A) < liminf ||divE;||(A) < limsup ||divE;]|(A N Q)
J—rtoo j—+oo
< |ldivF[[(AN Q) = ||divF]|(A),
which implies (2.1.3). O

Corollary 2.1.1. Let F € DMP(Q;RY) and {F}} be a sequence in DMP(QQ) such
that F; — F in LL (Q;RY) and ||divE;||(Q) — ||divF]|[(£2).

loc

Then we have ||divEj|| = ||divF]| in M(RQ).
Proof. By Proposition 2.1.1, for each open set A C 2,
|divF||(A) < lim inf ||divF||(A).
By Proposition 2.1.2, for each compact K C €2,
||divF[|(K) > limsup ||divF}[|(K).
j—r+oo
So, by Lemma 1.1.2, ||divE;|| = ||divF||, and, since ||divE}||(Q) — ||divF]||(€2)

implies sup ||divF}|[(€2) < oo, Remark 1.1.4 yields the weak-star convergence in

M(Q). O

Remark 2.1.1. Under the same hypotheses of Corollary 2.1.1 it is easy to see
that divF; = divF in M(Q). Indeed, for any ¢ € C>(Q), we have

/¢divﬂdw——/V¢-Fjdx—>—/V¢-Fd:c—/¢ddivF,
Q Q Q Q
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by Lebesgue’s dominated convergence theorem. Now, if ¢ € C.(f2), Ve > 0 there
exists ¢ € C'°(Q2) such that ||¢p — ¢c||o < € and so

/Q G divE; dz — /Q be ddivF‘
/Q (¢ — ¢¢)divF; dw /Q (¢ — &) ddivF‘

/ bdivE; da — / e ddivF‘
Q Q
+ e([[divF[|(Q) + ||divE;][ (€2)).

/qbdivFj dx — / gbddivF‘ <
Q Q

+ +

<

By Theorem 2.1.3, we have

lim
j—+oo

/gbdivFj dx — / gbddivF‘ < 2¢||div F||(£2).
Q Q

Thus, the arbitrariety of € yields the desired result. Finally, as shown in the proof
of Corollary 2.1.1, the sequence ||divF}||(€2) is uniformly bounded and so Remark
1.1.4 gives the weak-star convergence in the sense of Radon measures.

Remark 2.1.2. In a way similar to the case of BV functions, if ' € DMP(RY; RY),
1 <p < o0, then F, = F % p, satisfies point 2 of Theorem 2.1.3. Indeed, for any
¢ € CZ(RY) with [|¢]]e < 1,

[ Fte) Voo = [ [ Vo) Fluoulo— ) duda -

[, P Vo) dy < jaivF (),

So, if we take the supremum over ¢ € C®(RY) with ||¢|/.c < 1, we gain
||divEL|[(RY) < ||divF||(RY), and this, combined with lower semicontinuity, yields

ldivF[|(RY) — ||divF||(RY).

Moreover, we know by the property of mollification (Theorem 1.2.1) that F, —
F in L (RY;RY), therefore, by Corollary 2.1.1 and Remark 2.1.1, ||divF,|| —

loc
||divF|| and divF, = divF in M(RY).

It is clear that this remark applies also to F' € DMP(Q; RY), with compact support
inside €2, since it can be extended to zero on RV \ Q.

Indeed, let its extension be

. F(z) if x€Q
F .
0 if zeRV\Q.
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Then trivially £ € LP(RV;RN). If we let € € C2(Q), ||¢]|e < 1 and € = 1 in a
neighborhood of the support of F, then, for any ¢ € C®(RY), ||¢||o < 1, we have

[

/ F~V¢dw:/F-V¢dx:/F-V(5¢+(1—§)¢)da:
RN Q Q
- / F V() dr < ||divFI|(Q),

since {¢ € C(Q).
Taking the supremum over ¢ we obtain ||divF|[|(RY) < ||divF||(Q) < oo, which
implies F' € DMP?(RN; RY).

If we have just F € DMP (RY;RY), then we would still have F. — F in

loc

Li (RY;RY) and for each compact K and ¢ € C°(K) with ||¢]| < 1,

/RN Fo(z) - Vo()dv = / Vo(x) - F(y)pelw — y) dyde =

RN JRN

[ F)- Voo dy < 1P| + BO,9),

since supp(¢.) C K+ B(0,¢). Now we take the supremum as before and we obtain

||divF.||(K) < ||divF||(K + B(0,€)). Hence we have

limsup ||divE,||(K) < limsup |[divF||(K + B(0,¢€)) = ||divEF||(K).
e—0

e—0

Since for any bounded open set W we have F' € DMP(W;RY), we have also
the lower semicontinuity on open subsets of W. Thus, if B is a bounded Borel set
with ||divF||(0B) = 0, we see that

||divE||(B) = ||divE||(B°) < limiglf ||divE,||(B°) < limsup ||divF,||(B)
e e—0
< ||divF||(B) = ||divF|(B),

which implies ||divF.||(B) — ||divF||(B).

Then Lemma 1.1.2 gives us ||divF,|| = ||divF|| in M(W).

Moreover, a slight modification of the argument of Remark 2.1.1 yields divF, =
divF in M(W): indeed, we do not have anymore ||divE|[(W) — [|divF||(W),
but, by the previous calculations, limsup ||divF,||(W) < ||divE||(W) < oo since

e—0
W is compact and divF is a Radon measure.

Therefore, we can conclude that ||divE.|| = ||divF|| and divF, = divF in Mo (RY).
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2.2 Comparison with BV ({;R") and Examples

From theorems in section 2.1, it is reasonable to ask if the spaces of divergence-
measure vector fields actually provide example of functions which are not in BV
(or, for p > 1, BV N LP). Indeed, we can show that LP(Q;RY) N BV (;RY) C
DMP(Q;RN) N LY RY) (this two spaces obviously coincide if N = 1).

If u e LP(Q;RY) N BV (£;RY), then each component of u is a BV function; so
for each i = 1,..., N and for any ¢ € C°(Q; RY) we have

- / w; dive! dr = / ¢' - dDu;.
Q Q

We choose ¢! = 1pe;, where e; is the i-th element of the canonical basis of RY
and ¢ € C°(Q), thus

9
Q uz Ox;

Summing over ¢ we obtain

—/Qu-wdx:/de<gDiui>

and, since ZZ]\LI D;u; is a finite Radon measure by BV theory, Definition 2.1.1
yields u € DMP(Q; RY) N LYQ; RY).

Q

However, the following example shows that the inclusion above is strict.

Example 2.2.1. The field
Flz)=

T eV

belongs to DML (RY;RN) \ BV,.(RY; RY).

loc
Indeed, F' € LL _(RY;RY) since, for every R > 0, passing to polar coordinates in
RV,

R
1
/ |F(2)]d = / / LNV det(JB)|dpds = RNwy
B(0,R) vJo P

where U = (0,27) x (0,m)¥~2,  is the vector angular variable on U and det(J®)
is the Jacobian of the change of variables divided by the factor p™¥ 1.
Moreover, we will show that

le(F) = NCL)N(S,
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where 0 is the Dirac delta measure centered in the origin.
Since F' € CH(RY \ {0};RY) we have

Nz? N |z|?
div (Iw|N> Z |x|N TRl T (1 B W) =0ve#0.

We can therefore apply classical divergence theorem in R \ B(0,¢) Ve > 0, so
for each open A and V ¢ € C°(A) we have

. z)dr =
e - votalt =0
if 0 ¢ A, whereas, if 0 € A,
x x x
———wadx:—/ o(z)——  —dHN !
/A\B(O,e) 2|V (=) dB(0,¢) ( )$|N ||

— d d
/A\B(O,e) ?) 1V<|$|N) !

:—/ $(x)—— - —dHV ' Ve > 0.
dB(0,¢) ||

]

Now we let ¢ — 0T and, since F' - V¢ € L'(A), by Lebesgue’s dominated
convergence theorem we have

lim 2 Ve(z)dr = T |N - Vo(x) da

=0 J A\ B(0,¢) |z
1

N-1
T A

= lim — o(x)

=0t JaB(0,e)

By smoothness, ¢(x) = ¢(0) + |z|R(z), with R(x) bounded for |z| < ¢, so

1
: N-1 : N-1
i [ o) 7 =l [ (00) R 0) e () a0
Thus,
from which our claim follows.
On the other hand, F' ¢ BV,.(RY;RY), since for example g% = N k% €
L (RN\ {0}) and so, for every R > ¢ > 0,
0
Sup{/ 8—¢F1dm:gbeCgO(B(O,R)\B(O,e)),HngOO§1}
B(0,R) 012

oF

B /B(O,R)\B(O,e) Oy

f p N-1 R
o drfv>C’N/E pN+2p dp:CNlog?.
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Since € is arbitrary, it follows that the total variation of g% is unbounded on
compact sets containing the origin.

Remark 2.2.1. The Gauss-Green formula fails for the field of Example 2.2.1.
Let E = B(0,1)N{x € RY : xx > 0}, then 9*F = (0B(0,1)N{x € RN : xx >
0}) U (B(0,1)N{z € RN : 2y = 0}) and the interior unit normal is vp = ey on
B0, 1)N{z € RN : 2y =0} and vp = —pyon 0B(0,1)N{z e RY : zy > 0}.

So, since 0 ¢ E (not even in E'),

/ ddivF =0
E

L/ F-VEJHN_IZE/ L v New
o*FE

dB(0,1)N{z >0} |z [V 2

but

As we shall see, high summability plays an important role in the possibility of
establishing a Gauss-Green formula.

We now provide a general example of an essentially bounded divergence measure
field, the main topic of our exposition.

Example 2.2.2. Let v € L>°(R) and define the field F(z,y) := (v(x — y),v(z —
y)) € L°(R?;R?). For each ¢ € C>°(R?) we have

B op(z,y)  O9(x,y)
/R2F-V¢dxdy—/RQU(x—y)< pe + o )dxdy.

We perform a change of variables: (z,y) = ®(t,u) := (5%, %), whose Jacobian
is J® = |det(D®)| = L.

We write ¢(55%, “t) = (¢, u) and so, by Fubini’s theorem, the previous integral

2 72
becomes Bo(t
/ v(t) plt u) dudt = 0,
]R2 a

u

since [, 2454 4y = 0 for each p € C2(R?).

Thus we can conclude that divF = 0 and so F' € DM>(R?; R?).

In a similar way, we can also construct examples of fields F' € DM>(RY;RY),
just by considering functions v; € L*(R), i = 1,2,..., N if N is even, and then
defining F' as

F(z) = (n1(x1 — @), v2(x1 — 22), ..., vn_1(zn_1 — ZN), on(TN_1 — ZN)).

If N is odd, then we take : = 1,2,....,N — 1 and we set a constant as the N-th
component of F.
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Also in this case the inclusion is strict. If, for example, v(t) = sin(3), then
F € DM*™(R% R?) \ BVioo(R?%; R?).
Indeed, let ¢ € C=°(B(0, R);R?) for some R > 0 and, for each ¢ > 0, L. :=
{(z,y) € R? : |y — x| < €}. Then, by Lebesgue’s dominated convergence theorem,

1 1
lim sin ( )div¢(x, y) dxdy = / sin ( )divqﬁ(m, y) dxdy.
e—0t R2\ L. xr—1Y R2 xr—1y

Now, by classical integration by parts,

. 1 ) - . 1 X o N
/IR2\L6 sin (x—y) dive(x,y) dovdy = /[RS (6) (o' (t,t—€)— ¢ (t,t+6))\/§dt

_14$n(%)0&@J+€)—¢%tt_€»§%

_/H@\LECOS< : )( (0 (,y) + 6*(a,y) dady

r—y) (x—y)
=L+ 1+ s

dt

If ||¢]|oe < 1, then |} + I5] < 8R for each ¢ > 0, since H!(supp(¢’) NIL.) <
2H'(B(0,R) N Ly) = 4R.

We can choose a sequence ¢; in C2°(B(0, R); R?) in such a way that gbjl- — oS <x—iy)
and ¢7 — 0 in Lj,(R?) and ||¢;|cc < 1 for each j.

loc

Then there exists a jp such that, for each j > jo,
1 3
||¢; — (cos x—_y ;)| B0y <€

Therefore, since the supremum of cos (x—iy> ﬁ over B(0, R)\ L. is less than

}2, we obtain

1
/ sin < ) dive(x,y) dxdy
R2\ L, r—y

1 S| 1
> / (cos < )) dedy—SR—63—2
B(0,R)\Le r—=y (z —vy) €

and the integral diverges as € — 0.
Indeed, with the same change of variables as above; that is, (z,y) = ®(¢t,u) :=
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(44, %=1), we have @1(B(0,R) \ L) = B(0, V2R)\ {|t| < €} and so

1 S| 1 11
/ (cos ( )) dxdy = / (COS <—>) — Sdtdu
B(0,R)\ L. r—y (-75 - ?J) B(0,V2R)\{|t|<e} t > 2
1 1\\?* 1
> cos | — —2 dtdu = - ) dtdu
[~R.RP\{|t|<e} t)) 2t {e<lti<R} t)) 2t

= {t = l} = QR/E (cos )72 —2d7' = 2R[§(T + cos T sin 7')]
1 T
R

>§—1—2R

€

= 1=

T

which proves our claim.
Therefore the total variation of sin (x—iy) is unbounded on any compact set con-

taining a segment of the line Ly and so this function does not belong to BVj,.(R?).

Remark 2.2.2. Moreover, since F' € C*(R?\ L,; R?) for each ¢ > 0, then Gauss-
Green formula is valid for each E CC R?\ L, of finite perimeter by Remark 1.4.5.
However, it is clearly impossible to define any reasonable notion of the trace on the
line y = x for F in a classical sense, since on that line the components of the field
have essential singularities Nevertheless, the unit normal to the line x —y = € is
(up to a sign) v, = (— \/5, \f) so that the scalar product is meaningful and satisfies
F(z,x —¢€)-v.=0.

Then, by classical Gauss-Green formula, for any ¢ € C}(R?),

0= / divF ¢ dxdy = —/ F-Vo¢dzdy
{z>y+e} {z>y+e}

and, by the dominated convergence theorem, this identity remains valid for e — 0.
This allows us to conclude that if we define the normal trace of F' over y = x as
F - v =0, it would be coherent with the limit of the classical results.

As we shall see later, F' has a weak normal trace over the boundary of any bounded
set of finite perimeter that is sufficient for the Gauss-Green formula to hold and
which can be shown to be an L* function identically 0 on the line y = .

Example 2.2.3. Another archetypical example of a divergence measure field are
the so called transversal fields.

Let f € LP (RN!) for some 1 < p < oo, and define F(z) = (0,0,..., f(Zn)),
where Ty = (21, ..., TNn_1).

It is clear that F' € L} (R™;RY) and for each <b € C=(RY) we have

loc

/ F - -Vodr = /f da:NdmN—O
RN ]RN 1

by Fubini’s theorem, since fR Ton dzy = 0.
Therefore, divF = 0 and F € DMlOC(RN RN,
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More generally, we can take N functions f; € L¥ (RV~!) and define F to be the

loc
vector field whose components are F;(z) = f;(Z;). In the same way, we can show

divF =0 and F € DML _(RY;RY).

loc

2.3 Normal trace and absolute continuity

Now we will introduce a first generalization of the notion of normal trace for a
divergence-measure field F' on the boundary of a set F in a distributional sense
and prove that, in order to deal with it, we need just to consider OF.

Definition 2.3.1. Let F' € DMP(;RY) with 1 < p < co. For a measurable set
E cc €, the trace of the normal component of F' on OF is the linear functional
defined by

(TF)op(¢) = /Eng-Fd:L‘—I—/EgbddivF for any ¢ € C°(Q).

Remark 2.3.1. It is clear that (T'F)yp is a distribution. Moreover, if F' €
CHRM;RY) and F is a regular or admissible set, then, by the classical divergence
theorem,

(TF)os(6) = — / OF v dHV

oE
where v is the unit interior normal to JF.

Proposition 2.3.1. Let E CC Q be an open set. Then supp((T'F)gr) C OF; that
is, ¥V ¢, € CX(Q) with ¥ = ¢ on OF, then (T'F)op(v¥) = (T'F)or(0).

Proof. Obviously, supp((TF)sz) C E.
By contradiction, suppose that there exists a point xg ¢ OF with z¢ € supp((TF)sr)N
E. This means that for each open set U containing x, there exists a test function
¢ € C°(U N E) such that

(TF)or(¢) # 0. (2.3.1)

We choose U C RY \ OE. Let F, be the mollification of F, then, since
supp(F.¢) CC E and F.¢ is a smooth function, one has

(TF)or(p) = /Equ - Fodr + /EqbdivF€ dr = /EdiV(FEgzﬁ) dx = 0.

Now, by the Lebesgue’s dominated convergence theorem, one finds

/V¢'F€dx—>/v¢~Fdx.
E E
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Since [, ¢divE. de = — [, V¢-F.dx — — [, Vé-F dx = [, ¢ ddivF, by sending
e — 0 we have
0= (TF)oe(9),

which contradicts (2.3.1) above. O

The following theorem is a really interesting result, since it provides a way to
find the sets of divF-measure zero in RY with N > 1.

Theorem 2.3.1. (Absolute continuity of divF with respect to capacity)

If F € DM} (G RY) with = < p < oo, then ||divF|| < Cap,(-,Q) (q :=

=57 ); that is, for each Borel set B C €2 such that Cap,(B, ) = 0, [|divF[|(B) = 0.
Proof.

Since divF is a Radon measure on (2, then its positive and negative parts divF ™"

and divF'~ are well defined.

Let B C €2 be a Borel set with Cap,(B,€) = 0.

By the Hahn decomposition theorem, there exist Borel sets B C B with B, U

B_ = Band B,NB_ = () such that +divFLBy > 0; that is, divF".B = divFLB,

and divF LB = —divFLB_.

Hence, it suffices to prove that divF'(By) = 0, and, in order to do so, it suffices to

prove divF (K) = 0 for any compact subset K of By, by Proposition 1.1.1.

We show only the case K C B, as the case of B_ is analogous.

By monotonicity (Proposition 1.2.1, property 1), Cap,(K,{2) = 0 for any K C B

if Cap,(B,€2) = 0.

Since Capq(K, ) =0and 1 < ¢ < N, we can apply Lemma 1.2.1 in order to find

a sequence of test functions ¢; € C°(€2) such that

1.0<¢; <land ¢; =1 o0n K,
2. |IV@llLrmny — 0,
3. for each j, supp(¢;) is contained in a compact set C; C €2 such that
C12C,>..OK and (C;=K,
j=1

Then, property 1 and the Holder inequality yield

/ ¢jddivF = divF(K) + ¢; ddivF
Q OK

__ / F V6, dz < |||y |1V, auan
Q

and so, by properties 2 and 3,
divF(K) < [|[divE|[(Cy \ K) + [|F| 1o cmm) [V Lamryy = 0 as j — +o0.
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O

Corollary 2.3.1. If I € DML _(Q;RY), % <p < oo andq = [%, then
||divF|| < HN7.

Moreover, if @ = RN and &~ < p < oo, we we have also that, if HN~1(B) < oo
for a Borel set B, then ||divF||(B) = 0.

Proof. If p = %, q = N, so if a Borel set B C € satisfies H(B) = 0, then
B = () and trivially ||divF||(B) = 0.
If % < p < 00, it is enough to apply Theorems 1.2.3 and 2.3.1. Indeed, we
need to show that if we have a Borel set B C 2 such that HV~9(B) = 0, then
||divF||(B) = 0. Since for every compact K C B we have HY"4(K) = 0, then
Cap,(K,Q) = 0 and so ||divF||[(K) = 0, but this is a Radon measure in €, thus,
by inner regularity, ||divF||(B) = 0.
Then second part of the statement follows again immediately from Theorems 1.2.3
and 2.3.1if p > 5. O
Remark 2.3.2. If F € DM}, (RV;R"Y), & < p < oo, then, since by Theorem

loc
1.2.5, each ¢ € WH4(RY) is defined up to a set of Cap,-measure zero, and therefore,
by Theorem 2.1.4, ||divF||-a.e., it follows that the integral

/ ¢ ddivF
RN
is well defined.

Remark 2.3.3. We observe that there is a parallelism between a field F €
DM>(Q; RY) and a function v € BV () since, by Remark 1.4.8, we have || Du|| <
HY~! and, by Corollary 2.3.1, ||[divF]|| < HN"!. As we shall see in Chapter 3,
this will be of great relevance in order to obtain the Gauss-Green formula.

The result of Corollary 2.3.1 is optimal, as it is shown in [S|, Example 3.3.
Indeed we have the following result.

Proposition 2.3.2. If1 <p< %, then for an arbitrary signed Radon measure

with compact support pu there exists F € DM (RY;RY) such that divF = p.
This means that u may be not absolutely continuous with respect to any Hausdorff
measure or capacity.

On the other hand, if % < p < o0, then for any s > N — q there exists a field
F e DM (RN RYN) such that ||divF|| is not H* absolutely continuous.

loc

In order to prove the Proposition 2.3.2, we need the following result.

Proposition 2.3.3. Let i be a signed Radon measure on RY with compact support
and set
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1 (z —y)
F(z) := d e . 2.3.2
@)= e [ T dnto) for a3 (232)
Then

1. F € DML (RN RY) and divF = pu;

2. if 1 <p< 55, then F € L}, (RV;RN);

loc

3. if N - < p < oo, then F e LY (RY;RY) provided ||p||(B(z,r)) < ™
Vo € RY and r € (0,a), where a >0, ¢ >0, m > d are constants and

g N—]ﬁ if p<oo
N -1 if p=o0.

Proof. For each x € RY, let

Gla) = [l =o' dlall()

By Fubini’s theorem for abstract measures, GG is Lebesgue-measurable, since

f(x,y) = |z — y|'~" is nonnegative and ||u|| ® £N measurable.
We prove that G € LP(RY) for every 1 < p < f By Holder’s inequality with
q:= = ~P-, one has

Glay < Wl ®)F [ =l 7D dllel3)

Therefore, if z € RY and r > 0, by Fubini’s theorem,

/ G()pd:c<||u||RNé’// & — 4PN dd) ]| ()-
B(z,r) RN J B(z,r)

For any y € RY we have B(z,r) C B(y, |z —y| + r) and so

/ 2 — | P gy < / 2 — PN g
B(=) Bly)e—yl+r)

|z—yl+r

= / / pN 1PN | det (J D) | dpdf
U Jo

- NCL)N

- N _ N—-p(N-1)
¥ gy vl e,

where we passed to polar coordinates and used the fact that N—1—p(N—1) > —1;
that is p < . Hence we have
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Nuwy Np/ N—p(N—1
Gz)Pdr < ————— RY)q z—yl+r)NPN=Dg .
[ Gty < S ti@)F [ (=140 i)

The integrand on the right hand side is a bounded function of y on the compact
support of ||u|| and thus the integral is finite. Hence G € L} (RY), which implies
that is finite and well defined for a.e. x.

Now, since |F(2)] < 75-G(x), we see that ' € Lj (RV;RY) C Ly (RV;RY) for
1<p< N 7, which implies 2.
In order to prove 1, we recall that div(

loc

v) = Nwyd in the sense of distributions
(as shown in Example 2.2.1). So, V¢ € C2°(RY), we have

F(2) Vo(x) dr = L 29 Go(a) duty) do.
/RN /RN /RN Nuwy |z -y

which equals, by Fubini’s theorem,

1 )
— ()N « Vo ) (y) du(y) =/ — (0% 9)(y) duly) = — | o(y) duly),
ey Nwn \|-| RN RN
which implies that divF = pu.
Now let u satisfy the hypothesis of point 3, and let s < (d, m)
Assume first that p < co. Writing |z — y|'™V = |z — y|"¢|z — y|« T and using

Holder’s inequality we obtain

G@ws(ANM—Mﬂwmmw)ééNu—mﬂﬁlMwmww.

We now prove that [ |2 —y|~*d||u||(y) is bounded for every z € RY. By the
layer cake representation formula, we have

[ o)< [ -y dlelw s [ eyl dlalw
RN B(z,a) RN\ B(z,a)
—+o00
s/ |mmweBuuowx—m*>ﬂwﬁ+/ o= dul|(v)
0

RN\ B(z,a)

S/Oa |IMII(B($7a))dt+/ T lll(Bla, ) dt + 0l [(RY)

cma™®

<

+a”*||u)|RY) =: C < 00 Vo € RY,

Hence,

G@Vscﬂ/ o = g5 dl )

RN
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Thus if 2 € RY and r > 0, we have, using B(z,r) C B(y, |z —y| + 1),

[ cwrasch [ [ el do)
B(zr) RN J B(y,[z—yl|+r)

By s > d, we have N + p(g — N + 1) > 0; thus the inner integral is finite and,
as above,
/ |z — y|p(§“’N) dr = Ny
Bly.|z—y|+7) N+p(Z—N+1)

(|2 = y| )N PG,

which is a bounded function of y on the compact support of ||u||. Hence G €
Lite(RY).

If p=o0, for s € (N — 1, m) we have

G@ﬂé/ 2~y dllull(y) esssup |z — gl
RN y€Esupp(p)

< O esssup |z —y|* VT,

y€Esupp(u)

by the above steps. Now, s — N + 1 > 0 and hence |z — y|*"VT! is bounded on
every compact of RN x RY, which implies G € Lgy, (RY). Since |F(2)| < 5-G(2),
we have proved point 3. [J

Proof of Proposition 2.3.2: In the case 1 < p < % it is an immediate conse-
quence of Proposition 2.3.3.
If A~ < p < oo, let m € [0,N], then (See |Fa], Corollary 4.12) there exists a
compact set K such that 0 < H™(K) < oo and, for some constant c,

H™(K N B(z,r)) <™ Yo € RY ¥r > 0.

Choose any m € (d,s) and let p:= H™_K and F as in (2.3.2). By Proposition
2.3.3, F € DM (RY;R") and, since m < s and H™(K) < oo, we have H*(K) =

0 and thus divF is not H*-absolutely continuous. [

Remark 2.3.4. The vector field F' introduced in Example 2.2.1 can be con-
structed as in Proposition 2.3.3 with © = Nwyd and, since clearly we do not
have 6(B(0,r)) < ¢r™ for m > 0, we can conclude that ' € DM (RY;RY)
Vi<p< %

Actually, this could also be checked just by calculating its LP-norm over balls.

Another interesting consequence of Proposition 2.3.2 is that we cannot extend
the Theorem 3.2.1 to vector fields in DM} (RY;RY) for 1 < p < %5 in a trivial
way; that is, just by substituting co with p.
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Indeed, suppose otherwise that for any bounded set of finite perimeter E there
exists F; - vg € LP(0*E; HN ™) which satisfies

divF(E') = — /8 (F )@y a)

and, for some constant C' independent of F and F',
| Fi - vEl| e @ mpv-1) < Cl|F|| o). (2.3.3)

We set £ = B(0,r) with r < 1.
Now, we choose again F(x) = mv and, since E' = B(0,r) and 0*F = 0B(0,r),
we have

divF(B(0,7)) = Nwy = —/ (Fi-ve)(z) dHY " (x) ¥r < 1.
dB(0,r)
Hence the Hoélder inequality and (2.3.3) yield

_1
Nwy < H]‘-z : VE"|LP(QB(O,T);”HN—1)(NWNTNil)l P

N71)1—%

< C||F||te(Bom)ryy (NwnT

1
1 P 1
=C (/ —dx) (Nwyr¥ 1175
B |2 =DP

1 % N 1
— CON - ;*(Nfl)Jr(N*l)(l*;)
N (N— (N — 1)p> '

:Cﬂ"% Vr < 1.

Thus we can send r — 0 and this leads to a contradiction.

We further observe that it is actually possible to define a consistent interior
normal trace for F' on dB(0,r) for any r > 0. Since F is continuous in RY \ {0},
we can define it pointwise as

x 1
Fi- . =F(z) —— = ———
( VB(o, ))(3?) (.17) ’$| ’LL"Nﬁl
and it is imediate to see that it satisfies Gauss-Green formula on B(0,r), since
divF(B(0,r)) = Nwn

and

1
[ Fevmen@ @ = [ @) = New,
0B(0,r) oBO,r) T
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On the other hand, condition (2.3.3) fails to be satisfied: we would have

1
1 Nwy PN
|| Fi - vBomLr@Bor)my-1) = (Nwy)? < C(N, p) (m) re N

N

which is false for r small enough, since p < .

Remark 2.3.5. More generally, we can show that if ¥ € DM} (RY;RY) an
analogue to Theorems 3.2.1 and 3.2.2 for p < oo fails in general.

Indeed, we assert that we can always find a bounded set of finite perimeter £ such
that there do not exist interior and exterior normal traces (F; - vg), (Fe - vg) €
LY(0*E; HN 1) satisfying respectively

/ gbddivF:—/ OF, - vpdH "' — | Vo Fdr Yo e C*(RY) (2.3.4)
El o*E

El

and, recalling that £ = E' U O™E,
/ ¢ddivlh = — OF, - vg dHN ! — / Vo - Fdr Vo € C2(RY). (2.3.5)
E O*E E

Choose F such that divF = H™_K, where 0 <m < N —1 and K C B(0,3)N
{zx = 0}, with the same property as in the proof of Proposition 2.3.2.
This implies that for any Borel set in A we have

divF(A) =divF(AN K) =divE (AN {xy = 0}).

Then we take £ = B(0,1) N {zxy > 0} and we subtract (2.3.4) from (2.3.5),
obtaining

¢ ddivF = — / O(Fo-vp—F;-vg)dHY ' (2.3.6)

/8*(B(0,1)ﬁ{zN>0}) 0*(B(0,1)N{zn>0})

since |[EAE!| = 0.
We observe that

9*(B(0,1) N {zy > 0}) = (B(0,1) N {zx = 0}) U (8B(0,1) N {zx > 0}).

Since H™(K) < oo, Capy_,,(K) = 0 (see Theorem 1.2.3) and so, by Lemma
1.2.1, there exists a sequence ¢; € C2°(R"Y) which satisfies 0 < ¢; <1, ¢; =1 on
K and ¢;(z) — 0 for all z € RV \ A for some set A with Capy_,,(A) = 0.

We can write equation (2.3.6) for any ¢; and, since the measure divF is supported
in K, we have

¢; ddivF = / ddivF = H™(K) > 0.

/6*(3(0,1)ﬁ{:rN>0}) K
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On the other hand, we know that ¢; — 0 H" '-a.e. since Capy_,,(4) = 0
implies H*(A) = 0 for any s > m (see Theorem 1.2.3), hence in particular for
s = N — 1. Thus we may apply Lebesgue’s dominated convergence theorem
to the right hand side of (2.3.6), since 0 < ¢; < 1 and (F. - vg — F; - vg) €
LY(0*(B(0,1) N {xy > 0}); HV~1). So we obtain

lim ¢; ddivF = H™(K)

J=40 Jox(B(0,1)n{zn>0})

¢j(Fe Vg — E : I/E) dHN_l = 07

= lim —/
j—+o0 9*(B(0,1)n{zn>0})

which is absurd.

It is interesting to notice that what makes the Gauss-Green formula fail in this
case was the possibility of having divF supported on a set of Hausdorff dimension
strictly smaller than N — 1 which lies on the reduced boundary of a set of finite
perimeter.

Indeed, it can been shown that it is possible to recover such formula also in the case
F e DM (RN RY)\ DMZ (RY; RY) on bounded sets of finite perimeter £ such

loc loc

that ||divE||(0™FE) = 0 (we actually need also another summability hypothesis on
F, see [S], Theorem 4.6).

Remark 2.3.6. We observe that in the case N = 1 we have trivially ||divF|| <
H? and we cannot improve this result since if F(z) = X(0400)(%), then F €
DM (R;R) for every 1 < p < oo (actually F' € BVjo(R)) and divF = DF = §,

loc
which is not absolutely continuous with respect to H* for any o > 0.

2.4 Product Rules

Finally, we establish the following useful product rules.

Theorem 2.4.1. Let F € DMP(Q;RY), 1 < p < oo, and g € C(2) N L>(Q).
Suppose also that the distributional derivatives of g satisfy: for each j =1,...,N,
%Fj € LY(Q) and the complement of the Lebesgue set of ang has measure zero
with respect to the measure |F;|dz.

Then gF € DMP(Q;RY) and

div(gF) = gdivF + Vg - F (2.4.1)

Proof. First, we notice that, by the boundedness of g, we have immediately
that gF € LP(Q; RY).
Then, for any ¢ € C°(2), we have, by definition of the distributional derivative,
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<div(gF),¢p >=— < F,gV(¢) >= — < F,V(g99) >+ < F,¢Vg > .

Therefore, it suffices to show that
< F\V(g9p) >= — < divF,gp > .
We set gs = g * ps, where p is a standard symmetric mollifier, then we have
— < divF, gs¢ >=< F,V(gs¢) >

N
_ d(gs9)
= < Fj, oz, >

Now we let 6 — 0, so, by Lebesgue’s dominated convergence theorem,

< divF,gs¢ > — < divF,gop >

and

¢ 06
< F; _— > < F,, g— >
jagﬁaxj — ]7gaxj

for each j, while, by the assumption on the set of non-Lebesgue points of %,
J
9gs dg
<F.,0— > = <F;,,¢o— >
J gb@x] J ¢8$]
for each j. Thus, by Leibniz rule, we have (2.4.1) in the sense of distributions, and

hence, by density, in the sense of Radon measures.
Since for each measurable set A C ()

N
: . dg
Idiv(oP)I(4) < [l v FII(A) + [ 3|22 Flde < o
j=117"
by the summability assumptions on %, gF € DMP(Q;RY), which gives the claim.

0

Now we provide a product rule for the case p = oo, which we will need in order
to establish generalizations of the Gauss-Green formula.
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Theorem 2.4.2. Let g € BV (Q) N L®(Q) and F € DM>(Q;RY). Then gF €
DM>=(Q;RY).
Moreover, if g is also locally Lipschitz, then, in the sense of Radon measures
on €,
div(gF) = gdivF + F - Vg. (2.4.2)

If g is not locally Lipschitz but with compact support, then we have
div(gF) = ¢g*divF + F - Dg,

where g* is the precise representative of g (therefore, the limit of the mollified
sequence gs) and F' - Dg is a Radon measure, which is the weak-star limit of F'-V gs
and is absolutely continuous with respect to ||Dygl||.

Proof. Let I} be the sequence of smooth functions associated to F' as in Theo-
rem 2.1.3 and g; the sequence of smooth functions associated to g as in Theorem
1.3.4.

We have

/ |div(g; F;)|dx = sup {/ G;F;-Vodr: ¢ e C(Q),]|¢]|e < 1}
Q Q

and [, g;F;-Vode = [, F;-V(g;¢) de— [, ¢F;-Vg; dz. Now, by their definitions,
|1 Filloo < 3||F|o0 and |]g;]]oc < 3|9l (see also (2.1.1)), therefore

[ (gl < 3lgllsup { [ Fi Vo6 e @), ol < 1} i
Q Q

+3|\F|\oosup{/ Vg, dde: 6 € CXQRY, [16]] < 1}
Q
< 3(1lgllocl [V EL 1 () + 1 lloc V551 L21c0)

Hence, for any ¢ € C°(Q), ||| < 1, one has

< 3([19lloo| [div [ () +[ | [0Vl 1)

/gF-qudx ’/ngj-qudx
Q Q

since, by property 1 in Theorems 1.3.4 and 2.1.3, g; — ¢ and F; — F in L'(Q)
(resp. L'(Q2;RY)) and so

lim
j—+oo

/ngj-Vqﬁdx—/gF-Vcﬁdx—l—/ng-V¢dx—/ng-V¢dx
Q Q Q Q
< 3|IV| o mn) (gl oo @ 1 F = Fil L1 umyy + | F|| oo @rmyllg — g5l @)

which gives us the desired convergence result.
Now, gF € L®(Q; RN; RY), therefore gF € DM>(Q; RY).
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By Remark 2.1.1, we have also divF; = divF in M(Q). Hence, if g is locally
Lipschitz, then, also by point 1 in Theorem 2.1.3,

gdivF; + F; - Vg > gdivF + F - Vg in M(Q).

On the other hand, clearly div(gFj) — div(gF) in the sense of distributions.
Taking the limit in the identity

div(gF;) = gdivF; + Fj - Vg

in the sense of distributions and using the fact that C'2°(€2) is dense in C.(€2) with
respect to the norm ||.||s, we obtain (2.4.2).

If g is not locally Lipschitz, but with compact support, let gs = g * ps be the
mollification of g, then formula (2.4.2) holds.
Now, it follows from Theorem 1.4.6 that gs — ¢* H™ '-a.e. in Q. Then, since by
Corollary 2.3.1, divF < HN 1,

gsdivF = g*divF in M(R)

as a consequence of the dominated convergence theorem applied to the measure
||divF].
Now we show that {div(gsF)} is uniformly bounded in M(Q): by (2.4.2),

div(g5P)I(62) < gl IV FII(©) + 11 Fll 51|V 2o (24.3)

and the supremum is bounded by ||Dg||(€2), by Remark 1.3.3.

By uniqueness of weak-star limits, div(gs;F) — div(gF), since this latter is the
actual limit in the sense of distributions, and again we can argue with the density
of C*(Q2) in C.(2). Then Remark 1.1.4 and the uniform boundedness of the
sequence, (2.4.3), imply the weak-star convergence in M(2).

Hence, F' - Vg5 is weakly-star convergent and, by (2.4.2),

F-Vgs; > F-Dg=div(gF) — g*divF.

Finally we treat the claim concerning F - Dg. Let A C Q be a measurable set
with ||Dgl||(A) = 0, we are going to show that || - Dg||(A) = 0.
Since F'- Dg is a Radon measure on €2, then its positive and negative parts
(F - Dg)* and (F - Dg)~ are well defined.
By the Hahn decomposition theorem, there exist Borel sets Ay C A with A, UA_ =
Aand A,NA_ = () such that +F - DgL Ay > 0; thatis, (F - Dg)t'LA=F - DgL A,
and (F'-Dg)"LA=—F-DgLA_.
Hence, it suffices to prove that F'- Dg(AL) = 0, and, in order to do so, it suffices
to prove F'- Dg(K) = 0 for any compact subset K of A, by Proposition 1.1.1.
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We show only the case K C A, , as the case of A_ is analogous.

Since ||Dgl||(K) = 0, for any ¢ > 0 there exists an open set V' O K such that
||1Dg||(V) < € (Proposition 1.1.1). Clearly, {B(z,7;)}zecv is an open cover of K,
where we can choose 0 < r, < € such that B(z,r,) C V for each z € V and
||Dgl||(0B(x,r,)) = 0, since B(x,r,) C V for any r, < p,, for some p, > 0, and
therefore we apply Remark 1.1.2 to the family {B(x,)}o<i<p, -

Since K is compact, we can extract a finite subcover of J of balls such that

J J
K C UB(xjvrj)v rj <€, HDgH (U B('rj7rj)> <€,

Jj=1 J=1

and ||Dgl||(0B(z;,7;)) = 0 for each j.
Let ¢ € CC(U;.Izl B(z;,7)). Since, by Remark 1.3.3, ||Vgs|| = ||Dgl|, then

| < F'-Dg,¢>|=lim
0—0

/Q ¢(x)F(x) - Vgs(x) dx

<111l F 1o 1 [ V05l 13 7 0,

J
= [[0llool [ F el Dyl (U B(%’f})) < €[ ]ool | F o0

j=1
by point 2 of Lemma 1.1.2. We can choose 0 < ¢ < 1 such that ¢ = 1 on K
and ‘fU;f:le’m\K odF - Dg‘ < Cle: for example, we can take ¢ = XK+ B3 * P6s
where p is a standard symmetric mollifier and § := d(¢) > 0 is small enough, in
order to have ¢ € CC(U;.]:1 B(xj,r;)). In this way

/ odF - Dg
71 B(zj,ri)\K

=1

< |[F-Dgll((K + B(0,20)) \ K) < Ce

since ||F' - Dg||((K 4+ B(0,26)) \ K) — 0 as § — 0. Thus we obtain

[

Jj=1

F-Dy(K) = 6dF-Dy- [ 6 dF Dy < €(||Fllw + C).

B(xj,r;) U/—y Blajri)\K

Since € is arbitrary, this yields the desired result. [J

Remark 2.4.1. In particular, this theorem is valid for ¢ = xg for any £ CC
of finite perimeter.

Remark 2.4.2. If ' € BV(Q;RY) N L*(Q;RY), then clearly F' € DM>(; RY)
and Theorem 2.4.2 is consistent with Proposition 1.5.1.
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Indeed, for any g € BV(Q2) N L*(2) with compact support, we have gF €
BV (;RY) N L>(Q;RY) and, for any j = 1,..., N,

Dj(gF;) = g"D;F; + F; D;g,

which implies
div(gF) = ¢g"divF + F* - Dg. (2.4.4)

Now, we recall that I’ - Dg is the weak-star limit of F'- Vgs as 6 — 0, where g5 is
a mollification of g. For any ¢ € C}(Q), we see that

/ng-Vg(;dx:/F-V(gbgg)dx—/ggF-ngdx
Q Q Q
:—/¢g5ddivF—/g5F-V¢d:c.
Q Q

Since divF < HN™! (Corollary 2.3.1), g5 — ¢g* H" '-a.e. (Theorems 1.4.5 and
1.4.6) and g* = g LN-a.e. (Theorem 1.1.2), we send § — 0 in order to obtain

/gbdF-Dg: —/¢g*ddivF—/gF-V¢dm
Q Q Q
= —/¢g* ddivF+/¢ddiV(Fg).
Q Q
Equation (2.4.4) yields
/¢dF-Dg: —/QSg*ddivF—l—/¢g*ddivF+/¢F*- dDyg;
) Q Q Q

that is,
/¢dF~Dg:/¢F*- dDg V¢ € CHQ).
Q Q

The density of C}(Q) in C.(2) implies the identity F - Dg = F* - Dg in M(),
and hence the consistency of the two product rules.



Chapter 3

The Gauss-Green formula for DM
fields

In this chapter we will provide two versions of the Gauss-Green formula for essen-
tially bounded divergence-measure fields, obtained through different methods: the
first one depends on a more geometrical approach, while the second on a measure-
theoretical one. Indeed, the former relies on a property of C' compact manifolds
which allows us to apply an approximation argument from an interior neighbor-
hood. On the other hand, the latter is based on exploiting Leibniz rules (Thereom
2.4.2) and thus on finding identities between Radon measures.

3.1 Gauss-Green formula on bounded sets with regular bound-
ary

In this section, we will prove the existence of the normal trace and the correspond-
ing Gauss-Green formula for an essentially bounded divergence-measure field over
any bounded set with C'* boundary.

The method of proof of this theorem from |[CTZ1| consists, roughly speaking, in
approximating the boundary of the given set by a family of suitable surfaces for
which the Gauss-Green theorem holds and then obtaining the desired trace as the
density of the weak-star limit of measures concentrated over these approximating
surfaces.

In this way, once defined a suitable notion of interior and exterior of a C' ori-
entable manifold M, one can emphasize the fact that the normal trace related to
Gauss-Green formula over M is indeed an interior normal trace in the sense that
it is determined by the behavior of F' in the interior of M.

As a first result, we prove the following lemma, which is already a version of the
general form of divergence formula, but it requires two more hypothesis which can
be removed.

73
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Remark 3.1.1. We note that, since F' € LS (RY; RY), then F € L] (RY;R"), so
the precise representative F* (Definition 1.1.6) of F is well defined on RY | equal to
F LN-ae. and |F*(x)| < ||F||e V. Therefore, we always are going to choose F*
as representative of the equivalence class of F' in what follows, and we will denote

this representative simply by F'.
Lemma 3.1.1. Let F' € DM (RY;RY) and F. be a mollification of F. Then the

loc
classical divergence theorem holds for F. on any bounded set of finite perimeter E;

that s,

/EdivFe(x)dx =— /B*E F.(x) - vp(z) dHY " (2), (3.1.1)

where vg is the measure theoretic unit interior normal. If in addition we assume
1. F,— F HN '-a.e. on O*FE,
2. ||divF||(OF) = 0,

then
divF(E) = — / F(z) - va(e) dH¥ (). (3.1.2)
O*E

Proof. By Theorem 1.5.1, we have that (3.1.1) holds, since F, is smooth, and
so, in particular, locally Lipschitz.
Let W be a bounded open set such that E cC W. Since divF., = divF and
|divE,|| = ||divF|| in M(W) by Remark 2.1.2, then, by assumption 2 and Lemma
1.1.2, we can conclude that divF.(F) — divF(FE).
By the properties of the mollification, |F.(z)| < ||F||z~w) V2 € E and € small
enough, so, by assumption 1 and the fact that H¥"1(9*F) < oo, we can apply
Lebesgue’s dominated convergence theorem with respect to the measure HV~! to

find

/(9 . F.(z)-vg(z)dHY Y (z) — F(x) - vg(x) dHY " (x).

oE
Thus, we pass to the limit for ¢ — 0 in identity (3.1.1) and we obtain (3.1.2). O

Conditions 1 and 2 are those we are going to get rid of, by showing that they
are always satisfied on almost every C! surface approximating the manifold M.
Now we give a definition of what shall be called interior or exterior determined by
a compact C! manifold.

Definition 3.1.1. Let M be a compact C*' manifold of dimension N — 1.

1. We define the exterior determined by M to be the connected component U of
RY \ M that is unbounded.
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The interior I determined by M is defined to be everything else in the com-
plement of M; namely,

I = U By, with B, ¢ RY\ M a bounded component.
k=1

Thus,
RN\ M =UU <U3k> =UUT.

k=1

2. We say that M is orientable with respect to U if on every conncected compo-
nent there is a unique interior normal well defined; that is, exactly one unit
vector normal to the manifold such that its opposite points towards .

We observe that in such a way we allow compact manifolds which are not
connected, and at same time we discard coonected component of M which are
compact manifolds with boundary. Indeed, since the interior determined by the
components with boundary will be empty, they cannot be orientable with respect
toU.

As an example we can consider the cylinder M = {z € R¥"!: |z| = 1} x [0, 1]:
U=RN\ M and I =0.

Theorem 3.1.1. (Gauss-Green formula)

Let I C RY be the interior determined by a compact C* manifold M of dimension
N — 1 with HN"Y (M) < oo . Then, for any F € DM (RY; RY) N Le(RY; RY),
there exists a signed Radon measure o on I = M with 0 < HN"'LI and a

function F; - v : 0 — R, which we shall denote as interior normal trace of F on
01, such that, for any ¢ € CHRY),

1 — 1 . — — — — .. N-1
/Iddlv(ng) —/I¢dd1VF+/IF Vodz /mgbda . o(Fi-v) d’}-(tg »

and
1Fi - v Lo ormv-1y < C||F || ooy my, (3.1.4)

where C' = C(N, I).

Before we prove this theorem, we will state a version of a theorem due to
Whitney adapted to our situation.

Theorem 3.1.2. (Whitney)

Let M and I be as in Definition 3.1.1. Let v be the interior normal and o > 0.
Then there exists a unit C* vector field A* : M — RY and a number § = §(a) €
(0,1) with the following properties.
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1. If mp, : RN — T,,(M) is the orthogonal projection onto the tangent space of M
at p, then |mp(A*(p))| < a. Thus, A*(p) is close to v(p) when « is small, and

jomp— N . *
Sy ={qeR 1 q=p+tA(p),0<t<d}Cl

2. As p ranges over M, the segments Sy fill up an open interior neighborhood
Us of M in a one-to-one way; that is,

ui=J s,

peM
where Sy N .S) = () whenever py,ps € M with py # po.
3. The mapping 7 : Uy — M defined by
m™(q) :=p if q€ S,
is of class C' and has the property that
*(q) :== |7 (q) — q| < 2dist(q, M) for q € Uj.

Proof. See W], Theorem 10A, p. 121.

Remark 3.1.2. This theorem is needed to produce an inward pointing vector at
each point of M such that the vectors corresponding to different points in M do
not intersect. When M is of class C?, the interior normal themselves satisfy this
property in a sufficiently small open interior neighborhood of M, so in this case
we may take v in place of A*.

Proof of Theorem 3.1.1
We divide the proof into ten steps.

1. Preliminaries
The number ¥*(q) is the distance from ¢ to M, measured along S,, where

™(q) = p.
The open sets I; == I\ {q € Uj : ¥*(q) < t} for 0 < t < § are nested,

contained in I and U I, =1

>0
Since 9* is continuous, we have 91, C (¢*)71(t) for all ¢ € (0, ), with equality
holding whenever ¢ is not a critical value of ¢*.

2.Vt € (0,9), 9I; is a C' compact manifold, there exists a constant C(OI, N)
independent of t such that

HYYoL) < C(0I, NYHN Y (oI) (3.1.5)

and I; is a set of finite perimeter.
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The set 0I; may be considered as a deformation of M = 0I along the vector
field A*. In order to show this, we consider the mapping h; : I — 91, defined
for t € (0,9) as

q = hu(p) == p+tA*(p)

with ho(p) = p, so that 7*(¢) = p with |h:(p) — p| =t and h,(0I) = 01,.

By Theorem 3.1.2, h; € C'(M), with the Jacobian Jh; depending only on ¢
and |[DA*||pee(ar). Therefore, since h is injective, we may use co-area formula
to conclude that, for any A C M which is H¥~!-measurable,

MY (hy(A)) = / Thy(@) dHN"1(2) < C(6,||DA*] | )HY1(4),  (3.1.6)

A

which implies (3.1.5) for A = M = 0I.

Since 7* o hy = Id, the chain rules implies that Jh; is nonsingular everywhere
on M, therefore, it is a diffeomorphism and hence JI; is an (N — 1)-manifold
of class C*', which is also compact, being image of a compact set through a
continuous function.

We also observe that this implies that I; is a set of finite perimeter V¢ € (0, 0),
since, ¥¢ € C2(RY;RY), [[¢]]o < 1,

/ dive da
Iy
by (3.1.5).

3. For L'-a.e. t € (0,0), conditions 1 and 2 in Lemma 3.1.1 hold for E = I,
First, we know that F.(x) — F(z) for LY-a.e x, so there exists a set A C RY
with |A| = 0 such that we have pointwise convergence Vo ¢ A. By Lemma
1.4.2, since ¢* is a differentiable function on U, we have

¢ * Vg dHNil

ol

< ’HNfl((?It) < o0

HY YN (ANUS)) =0 for L-aet € (0,6).

Since dI; C (¢*)7!(t), this implies condition 1 for ¢t ¢ S, for some S with
L1(S) =0.

Then, we observe that, by Remark 1.1.2; there exists a set Z C (0,6) such
that £1(Z) = 0 and ||divF||(01;) = 0 Vt ¢ Z, since clearly the sets I; satisfy
the required hypotheses.

Therefore, conditions 1 and 2 hold V¢ € (0,0) \ (ZU.S). From now on we will
always consider ¢ in this set.

4. The signed measures defined by

oy(B) = /B N F(x)-v(z)dHY Y (z) for each Borel set B C RY
Noly
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along with their positive and negative parts o, and o, , where o, = o, — o,
and their total variation measures ||oy|| are all weak-star converging for a
suitable subsequence tp — 0:

(04 00 s [low ) = (0, 07,0, [lol]) in M(RY). (3.1.7)
By Remark 3.1.1, we have, for any Borel set B,
|oe[(B) < [|F||H 191, N B).

Therefore, by Definition 1.1.2 and (3.1.5), the total variation norm of o, sat-
isfies

+00
|||o¢]|] = sup {Z low(Ex)| : {Ex} Borel sets partitioning RN}

k=0

+oo
< || F||sosup {Z HNYOI, N Ey) : {Ey} Borel sets partitioning RN}
k=0

= ||F||HY(OL) < C||F||HYH(OI) Wt

So {0:}1>0 and {||o¢||}s>0 are bounded sets in M(RY), and also {0} }s0,
since ||o¢|| = o, + o, . Hence, by Banach-Alaoglu theorem, there exists a
sequence t; — 0 and Radon measures 0,0, 07, ||o|| with 0 = 0" — ¢~ and
l|o|]| = o* + o~ such that (3.1.7) holds.

5. The supports of the measures o,0%, 0~ are all contained in OI.
It is enough to prove this for o™, since the other two cases are analogous.
By contradiction, let « € supp(c™) \ 9 and choose r > 0 such that B(z,r)N
0I = (). By the definition of the support of a Radon measure, there exists
¢ € Ce(B(z,r)) such that [y, ddo™ #0.
By the weak-star convergence, |, Ble.r) pdoy, — |, Blayy @do™ # 0, and this
implies that there exists a ko such that, Vk > ko, [ Blar) gbda,;: #0.
This leads to a contradiction, since I;, C I, supp(oy,) C 0Iy,, and 0, N
B(z,r) =0, for ¢, small enough.

6. We have
tlkiinm(U;;:’Ut_k?Utk)(aItk) = (o%,07,0)(0I). (3.1.8)
Since Ut:: are positive Radon measures and their supports are in 0I;, , Lemma
1.1.2 yields

.. + IR EI + /N +mNYy _ £
h}:iglf"tk(a]k)—h;fljglf"tk(R ) > 05 (RY) =0™(01).
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Now we choose a compact set K D 01 U d1;, and then, by the previous step
and Lemma 1.1.2, we have

lim sup crtik (01,) =limsup oy (K) < 0" (K) = o®(0I).

tp—0 tr—0

Combining these two inequalities, we obtain (3.1.8) for o™ and o~. Since

o =o0" — o, we have the result for o as well.

7. The measure o is well defined.
Let I;; be another sequence of open sets for which Lemma 3.1.1 applies.
Moreover, we can choose it in such a way that t; > ¢} for all k. Then we have

divF(Iy \ Ir,) = —/8] F(x) - v(z) dHNl(:vH/a[ F(x) - v(z)dHV ()

= —oy (0ly ) + 04, (013,).
Since Iy \ Iy, C I'\ I, is a monotone decreasing sequence of sets and
(N I\ 1y =0,
k>1
it follows that ||divF||(Iy \ It,) — 0 and therefore that
Utfc(a]ﬁ) — 0y, (0L;) — 0,

which shows that o is well defined, since it does not depend on the particular
subsequence chosen.

8. ||o|| < HN-LOI.
Let A C OI with HY"1(A) = 0. By Theorem 1.4.2, || Dx/|| = H¥~1LOI and
hence ||Dx;]|(A) = 0.
Since 0 = ||Dx;|[(A) = inf{||Dx/||(G) : A C G,G open}, for each ¢ > 0,
there exists an open set G D A such that HN"1{(GNII) < e.
Moreover, using (3.1.6), we obtain

o, (@) < /Gmal |[F(2) - v(@)| dHY () < ||FlloHY (G N O1,)

< COI, N)||F|lH " (h (G N alL,)).

By Lemma 1.1.2 and the continuity of ht’kl = 7, we have

lo]1(A) < lo]|(G) <liminf o, [|(G)
r—0

< CJ|Floo lim Y (h, (G N O1,))

= C||FlloH""HG NOI) < eC||F]|.

Since € is arbitrary, we can conclude that ||o||(A) = 0, as desired.
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9.

10.

We prove now (3.1.3).
Since F' € DM (RY;RY), then F' € DM>(W;RY) for some bounded open

loc

set W such that I CC W. By Theorem 2.4.2, for any ¢ € C}(R") one has
OF € DM>(W;RYN), since clearly ¢ € BV (W) N L*(W) and it is locally
Lipschitz, and

div(¢F) = ¢divF + F - V.

By Lemma 3.1.1, we have

div(pF)(I,) = — . o(2)F(z) - v(z) dHYN"H(x) for t, € (0,)\ (SU2Z).

Since the sets [;, are nested and increasing as ¢, — 0, [, = Utk<t<5 I; and
I'=Uyis It, hence

lim div(pF)(I,) = lim_div(oF)( U ) = div(eF)().

k—4o00
L <t<§

Thus, by step 4, if we let £ — 400, we obtain

div(eF)(I) = —/ ¢ do. (3.1.9)
o1

The Radon-Nykodim derivative of o with respect to HN~1LOI is a function

Fi-v € L®(OL; HNY) such that (3.1.4) holds.

Since ||o|] < HN7!'LOI, Radon-Nykodim theorem implies that there exists

Fi-v € LYOI; HN~1) such that (3.1.9) can be written as (3.1.3).

By the Lebesgue-Besicovitch differentiation theorem (Theorem 1.1.2), we

know that for HV¥~!-z € OI one has

|(F: - v)(2)] = lim

r—0

o(B(x,r)) ‘
HN-YOI N B(x,7))|

Finally, a sequence of balls B(x,r;) with r; — 0 can be chosen in such a way
that ||o||(0B(x,7;)) = 0, by Remark 1.1.2, in order to have, by Lemma 1.1.2,

o(B(z,rj))
HN-1(0I N B(x,r;))
faftkﬂB(:p,rj) F(x) . V(I) dHN—l(x)
HN-1(OI N B(z,r;))

HN-Y(0I,, N B(x,1;))
< co(rNN) lim i 3 3
S [1E Nl vy i, i, e B T A Bl )

_ HNNOIN Bz, 7))
<
_C@LNMWhggﬁmummB@m»

= C(0I,N)|[Fl|

|(F; - v)(x)| = lim lim

r;—0t,—0

= lim lim
rj—>0tk—>0
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with the last inequality coming from (3.1.6). O

3.2 Gauss-Green formula on bounded sets of finite perime-
ter

We now establish a version of the Gauss-Green formula for DM>(Q; RY) fields on
bounded sets of finite perimeter. The method is analogous to the one Vol’pert used
in order to prove Theorem 1.5.2 and it is based on the product rule established in
the paper of Chen and Torres (|[CT]). The results are similar to those presented
in the paper of Chen, Torres and Ziemer (|[CTZ]), but here we are not using their
theory concerning the approximation of sets of finite perimeter by sets with smooth
boundary.

We recall that for a bounded set of finite perimeter E we select the representative
E=FE'U0™E.

We begin with the following result concerning fields with compact support, similar
to Lemma 1.5.1.

Lemma 3.2.1. If F € DM>(Q;RY) has compact support in 2, then
divF(Q) = 0.

Proof. Since F' has compact support, we can extend it to

- F(z) if z€Q
F .
0 if zeRV\Q

and F' € DM>(RY;RY), by Remark 2.1.2.
With a little abuse of notation, we will denote this extension again by F'.

So, F' =0 on RY \ Q. In particular, this implies that ||divF]||(A) = 0 for each
open set A C RV \ Q: indeed

O—/RNF-V¢da:——/RN¢ddivF Vo € C(A)

and ||divF'||(A) is the supremum of these integrals over ¢ € C'°(A) with ||¢]]| < 1,
by Proposition 1.1.2. By the properties of positive Radon measures (Proposition
1.1.1), this implies ||divF||(B) = 0 for any Borel set B C RV \ Q.

We set Q := {z € RN : k > dist(2,Q) > k— 1} for k > 2 and Q; := {x € RV :
1 > dist(z,Q) > 0} \ Q. Then, ||divF||(RY \ Q) = 0 since RV \ Q = [J;> Q4 and
each one of these sets has ||divF'||-measure zero.

Now let ¢ € C>°(RY) such that ¢ =1 on Q; U Q.

Then it is clear that

QddivF = / ddivF
RN RN
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and, by the definition of the distributional derivative,

¢ ddivF = —/

RN

F-qudx:—/ F-Vodr =0,

RN RN\ (Q1U9)

since F has support inside 2. Thus divF(RY) = 0, which implies divF(Q2) = 0. J

Theorem 3.2.1. (The Gauss-Green formula) Let F € DM>(Q;RY). If
E CcC Q is a bounded set of finite perimeter, then there exist interior and exterior
normal traces of F on O*E; that is, (F;-vg), (Fe-vg) € L®(0*E; HN™Y) such that

divF(E') = —2xgF - Dxp(0"E) = — Fi-vgdH !
O*E
and

divF(E) = —=2xgpoF - Dxp(0*E) = — Fo vpdH™ 1,
O*E

where xgF - Dxg and xgoF' - Dxg are the weak star limits, respectively, of the
sequences XgF -V (xg * ps) and xpoF' - V(xg * ps) as § — 0, up to a subsequence.
Moreover,

|| Fi - vEl| Lo 9+ Bpv-1) < |F||poo (1m0
and
| Fe - vBl| Lo (9 B -1y < || F|| Lo (0 BRYY-
Proof. By Theorem 2.4.2, it follows that
div(x3F) = div(xe(xeF)) = Xpdiv(xeF) + x&F - Dxs
= Xp(XpdivF' + F'- Dxg) + xeF - Dxg
= (xp)’divF + x5F - Dxg + xgF - Dxg, (3.2.1)

where Y7 is the precise representative of xp.
On the other hand,

div(x%F) = div(xpF) = xjdivF + F - Dxp. (3.2.2)
Combining (3.2.1) with (3.2.2) yields

((X)* = X&)divF + X3 F - Dxg + xgF - Dxg — F - Dxg = 0.
On the other hand, divF < H"~! by Corollary 2.3.1 and so Lemma 1.4.1 yields

. 1
() = Xp)divE = = X pdivF. (3.2.3)
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By Theorem 2.4.2, F'- Dxp < ||Dxg|| and xgF - Dxg < ||Dxg||, there-
fore these two measures are supported on 9*F. In particular this implies that
XpF - Dxp = 3F - Dxg.

From this fact and (3.2.3) we obtain

1
SXorpdivE + F - Dyp — 2xpF - Dxp = 0. (3.2.4)

Therefore, if we subtract (3.2.4) from (3.2.2) we have

1 _ 1

—F-Dxg+2xgF -Dxg = xpmdivF + 2xgF - Dxg.
On the other hand, if we add (3.2.4) to (3.2.2) we have

1 - 1
div(xgF) = xprdivF + EXB*EdiVF +F-Dxg+ §X3*EdivF+

We also observe that F'- Dxg — xgF - Dxg is the weak-star limit of the sequence

F-V(xg*ps) —xel' -V(xe*ps) =1 —xe)F-V(xe*ps) = xXpoF - V(XE * ps)

and so F' - Dxg — xgF - Dxg = xgoF - Dxg'.
Thus, we have found

div(xgF) = xpdivF + 2xgF - Dxg. (3.2.5)

and
div(xgF') = xgdivF + 2xpo ' - Dxg. (3.2.6)

Since ygF' clearly has compact support in €2, by Lemma 3.2.1 and (3.2.5) we
have

0 = div(xgF)(Q) = divF(E") + 2xgF - Dxg(Q),
which implies, recalling that yzF - Dy is supported on 0*E,
divF(E') = —2xgF - Dxp(Q) = —2xgF - Dxp(0*E). (3.2.7)
In an analogous way, Lemma 3.2.1 and (3.2.6) yield
divF(E) = —2xgo F - Dxp(0°E). (3.2.8)

Since xgF - Dxp < ||Dxg|| = HYN'L0*F, the Radon-Nikodym theorem im-
plies that there exists a function F;-vg € LY (0*E; HN 1) such that 2ygF - Dy =

Ixgo has to be understood as X go-
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(./_'; . VE) HNL OE.
Thus, we conclude that

divF(EY) = — / (Fi - vg) dH L.

o*E

Analogously, xgoF - Dxg < ||Dxg|| = HY"1LO*E and so there exists a func-
tion F, - vp € LY(0*E; HN 1) such that 2xgoF - Dxg = (Fi - vg) HY1LO*E; that
is,

divF(E) = — / (Fo - vg) dHN
O*E

We prove now the estimates of the L*>*-norm of the normal traces.
We set x5 := xg * ps and we observe that ygDxp = %DXE3 indeed for any
¢ € CLQ;RY) we have
[ xpo- Vxsdn = [ xpdiviss)do = [ xexdivods
Q Q Q
—— [ o0+ dDxs ~ [ xexsdive de
Q Q
If we let 6 — 0 we obtain that the limit of the right hand side exists, therefore

also the one of the left hand side must exist (at least in the sense of distributions);
moreover, it holds

/ 6 dvpDxs — — / V- dDys — / Cudive de
Q Q Q

|
:_/_¢. dDXE—/XEdiV¢dx
92 Q

1
—— [ 50+ dDxe+ [ 6-dDxs
Q Q

since X = % on 0*FE and Dyp = vpdHY"'LO*E. Therefore, by the density of
CHO;RY) in C.(92; RY) with respect to the supremum norm, we have

/¢- dxgDxE = / %gb- dDxg V¢ € C.(Q;RY) (3.2.9)
Q Q

which implies xpDxg = $Dxg in M(Q;RY).
We also have xgoDxg = %DX g since it is the weak-star limit of the sequence

. 1
XeoVXs = VXs — XEVXs — (1 - 5) Dxg

as 0 — 0.
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By the Lebesgue-Besicovitch differentiation theorem (Theorem 1.1.2), we know
that for H¥"1l-a.e. 2 € 0*F one has

|(Fi - vp)(z)| = lim

r—0

2xgF - Dxgp(B(z,1)) ‘
HN-L(O*ENB(x,r))|

Now we observe that the sequence |ygF - Vxs| is bounded in M(2):
Ier - Txsl@) < suf [ eer Vil o € @), oll <1}
Q

< [ eF - Vxsl do < 1P oo Vs s
Q
< 11 sl Dxel| (&)

by Remark 1.4.7.

Thus, there exists a weak-star converging subsequence, which we label with &,
and let the positive measure A € M(2) be its limit.

In an analogous way, we can prove that the sequence or Radon measures |xgoF" -
Vxs| is bounded, we just need to put in the previous calculation the norm

|| || oo\ £y So there exists a weak-star converging subsequence, which we la-
bel again with d;, whose limit is the positive Radon measure \q.

Moreover, we observe that also the sequences xg|Vxs, | and x go|Vxs, | are bounded
using the same argument as above. So there exist weak-star converging subse-
quences which we shall not relabel for simplicity of notation and which converge
to positive measures p, pg € M(Q).

By Remark 1.1.2, sequence of balls B(x,r;) with r; — 0 can be chosen in such
a way that ||Dxg||(0B(x,r;)) = MOB(z,1;)) = po(0B(x,r;)) = 0 and hence, by
Lemma 1.1.2,

lim 2/ XeF - Vxs, dy
B(x,rj)

- |2xeF - Dxp(B(z,r;))| . |%—0
lim = lim
rj—>0 ||DXE||(B($,T])) rj—>0 hm |VX6 | dy
(5k—>0 B(x,r]-) k
2|\ F|| oo (B ) }im xe|Vxs,| dy
3 k0 B(J}J’j)
< 1_1m0
Tj—> hm |VX5]€| dy
(Sk—>0 B(:B,Tj)
lim X0 | Vx5, | dy

5k—>0 B(JZ,T]')

= 20|l o Jimy [ 1

lim IVxs,| dy
6k—>0 B((E,Tj)
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lim | X0 VXs, Yyl
Ok =0 B(Irrj)

S 2||F||L°°(E1RN) lim 1-—
) T‘jA)O .
lim Vxs,| dy

0 —0 B(.Z’ Tj)
X0 Dxi(B(z, T;))I)
IDxEl[(B(z,r;))
1 [Dxe(B(z,1;))|
2|[Dxell(B(x,r;))
In the last passage we used the definition of reduced boundary: if x € 0*F, then
lve|(z) =1, ||Dxe||(B(x,r)) > 0 for r > 0 and vg(z) = lim,_ % This
implies that

= QHFHLoo El. RN hm <]. —

= 2| fm ) = 1o,

Dxg(B

- IDx(B(z, 7))
=0 || Dxgl|(B(z,T))

The estimate for the exterior normal trace F, - v can be obtained in a similar

way, considering instead balls contained in €2 which satisty ||Dygl||(0B(z,7;)) =
Mo (0B(x,1j)) = w(0B(z,7;)) = 0 and using the inequality

= |vp(e)| = 1.

/( Xpo b - Vs, dy| < HFHLOO(Q\E;RN)/ X0 | VXxs,| dy.
B(z,r)

B(z,r)

This completes the proof. [J

Remark 3.2.1. Since the proof of Theorem 3.2.1 relies on the product rule for
F € DM>(Q;RY) and g € BV (Q) N L>(Q) with compact support, then Remark
2.4.2 shows that this result is consistent with Theorem 1.5.2 in the case F €
BV (Q;RY) N L>(Q; RY).

An immediate corollary of this theorem is a way to represent the measure divF
on the reduced boundary of bounded sets of finite perimeter.

Corollary 3.2.1. Let ' € DM>(Q;RY). If E CC Q is a bounded set of finite
perimeter, then

XorpdivF = 2xpF - Dxp—2xmF - Dxg = (F;-vp—F.-vg) HN 1LO*E, (3.2.10)

which tmplies
divF(B) = /(E vg — Fo-vg)dHN (3.2.11)
B

for any Borel set B C 0*F, and

HdivFH(a*E):/ \Fs v — Fo - v AN (3.2.12)
O*E
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Proof. Equation (3.2.10) follows immediately from (3.2.4) in the proof of The-
orem 3.2.1, from F' - Dxg — xgF - Dxg = xXpoF' - Dxg and from the definition of
the normal traces. Then we evaluate both measures in equation (3.2.10) over a
Borel set B in 0*FE and we obtain (3.2.11). Finally, 3.2.12 immediately follows
from (3.2.10) and properties of total variation. [J

Theorem 3.2.2. Let F € DM™(Q;RY) and E CC Q be a bounded set of finite
perimeter. Then, for any ¢ € CL(RY),

/ ¢ ddivF = — O(F; -vg) dHN ! —/ F-V¢dx (3.2.13)
E! O*E B
and, recalling that, up to a set of HN =1 measure zero, E = E* U 0*E,
/ ¢ddivF = — H(F, - vg)dHN ! — / F-Vodz. (3.2.14)
E O*E E

Proof. By Theorem 2.4.2, we know that ¢F € DM>(Q;RY) for any ¢ €
CHRY). Using Theorem 3.2.1, we obtain

div(pF)(E') = —2 /  doneF D,

We have ¢oxgF' - Dxg = ¢xrF - Dxg, since, for any ¢ € C.(Q),
[ wdoeT D =l [ ool Visds
Q =0 Jq

= yf%/(fﬂ(ﬁ) XelF - Vxsdr = /(Wﬂ dxgl' - Dxg.
—VJa Q
Since 2xgF - Dxg = (F; - vg) HN"1LO*E, we have

/ ddiv(¢pF) = — O(F; - vp) dHN L.
Bl

O*E
On the other hand, Theorem 2.4.2 yields div(¢F) = ¢divE + F - V¢, which
implies

/ElgbddivF: —/JEIF-V¢dx+/EI ddiv(¢F)

and so the proof of equation (3.2.13) is complete. The proof of equation (3.2.14)
requires the same steps applied to the second identiy of Theorem 3.2.1. [J

Remark 3.2.2. A consequence of Theorem 3.2.2 is that, in the case p = oo,
the functional normal trace (T'F)sp (Definition 2.3.1) can be represented by an
essentially bounded function on 9*E:

(TF)or(¢) = — O(Fe-vp) dHY 1 Vo € C2(Q).
0*E
From this it also follows that supp((T'F)sg) C 0*FE.
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Theorem 3.2.3. (Consistency of the Normal Trace with the classical one)
Let F € DM>(Q;RM)NC(RY). If E CC Q is a bounded set of finite perimeter,
then the intertor and exterior normal trace coincide and admit a representative
which is in fact the classical dot product of F' and the measure theoretic interior
unit normal to E on O*F.

Proof. By Theorem 3.2.1, we have that 2ygF - Dxg = (F; - vg) HN1LO*E in
the sense of Radon measures and F; - vg € L®(0*E; HN~'). This means that for
HN"1a.e. x € O*F one has

- vE)(x) = lim m(B(I’T»
(Fi - ve)(r) 71~—>02 IDxEl(B(z, 1)

Moreover, if we let x5 = xg * ps be a mollification of x g, we know that
XeF - Vxs = xgF - Dxg in M(Q),
which means that, V¢ € C.(Q),

(3.2.15)

/¢XEF-VX5dx—>/¢dXEF-DXE as 0 — 0.
Q Q

We observe that ¢F € C.(£;RY) and, since x5V ;s = YeDxg, we have also

/(¢F) -Vxsxedr — /(qu)- dxgDxg as 0 — 0.
0 Q

Thus we can conclude that xgF - Dxg = F - xgDxg = %F - Dxg (equation
(3.2.9) in the proof of Theorem 3.2.1), which means that

2xgF - Dxg(B(z,1)) :/ F-dDyxg.

B(z,r)
Recalling the definition of A\ from the proof of Theorem 3.2.1, Remark 1.1.2 implies
that we can choose a sequence r; — 0 such that A(0B(z,r;)) = 0.
Moreover, by the continuity of F', the function F - vg is well defined on 0*E and
is also in LY(9*E; HN ).
Thus, from (3.2.15), for HV"l-a.e. z € 9*F, we obtain

. fB(I,rj) F(y) - dDxe(y)
(Fi-vp)le) = Mm = B )
. fB(:L‘,rj) F(y) - ve(y)d||Dxel|(y)
RS e
= F(z) - vp(z),

by Lemma 1.1.2 and the Lebesgue-Besicovitch differentiation theorem (Theorem
1.1.2).
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Applying the same steps to the measure 2ygoF - Dy g yields that it is equal to
F - Dxg and hence, if we choose balls in € such that A\o(0B(z,r;)) = 0 (see the
proof of Theorem 3.2.1), we find that also F, - vg admits F' - vg as representative
and hence it coincides with F; - vg as class of L functions. [J

From this theorem we see that continuous fields have no jump component in
the divergence.

Corollary 3.2.2. Let F € DM>®(Q;RY)NC(Q;RY). Then, for any E CC Q set
of finite perimeter, we have

\|divF]|(9"E) = 0.

Proof. From equation (3.2.10) in Corollary 3.2.1 and from the proof of Theorem
3.2.3, we see that

XopdivE = 2xpF - Dxgp — 2xpoF - Dxp =0
which implies
HX@*EdiVFH = 0.

Indeed, by definition of total variation measure, for any Borel set A it is equal to

+00 +o00
sup {Z |divF' (B, NO*E)| : Bx Borel sets pairwise disjoint, A = U Bk}

k=0 k=0
and this yields 0 since every term in the series is null. [J

Remark 3.2.3. We observe that the L> estimates in Theorem 3.2.1 are sharp
since we can find continuous divergence measure fields F' for which

|Fi - vEl| Lo (@ mn—1) = [|Fe - VE|| Lo (9 v -1y = | F || (1) = [|F|| Lo\ B)-
Indeed suppose E = [0,1]Y cC Q and let F'(z) = e; = (1,0, ...,0). Then clearly
Fe DMOO(Q,RN> N C(Q,RN) and ||F||L00(E1) = ||F||Loo(Q\E) = 1.
Moreover, on {0} x (0,1)"', vg = e; and so over this part of 9*F we have
Fi-vg =F.-vg = F -vg = 1. This implies the identity of the norms.

Remark 3.2.4. If I € DM>(RY;R”) is such that divF is a positive Radon
measure, then we have a partial converse to Proposition 2.3.3. Indeed, if we take
E = B(z,r), Theorem 3.2.1 yields

divF(B(z,r)) = — / (F - Vigay) dHY .
OB(z,r)

Then divFE > 0 implies
divF(B(z, 7)) < ||F||zB@rzy NwyrY ™ < CrV 1

where C' := || F|| oo @y ;zvyNwn .



CHAPTER 3. THE GAUSS-GREEN FORMULA FOR DM FIELDS 90

Example 3.2.1. Let N = 2, then F(z,y) = (sin < ! ) sin ( )) € DM>(R?* R?)

as in Example 2.2.2. We will show now that the interior normal trace on any seg-
ment of the line {(z,y) : y = x} is indeed 0, as we suggested in Remark 2.2.2.
Let £ :={(z,y) eR?:x <y <z+1;—2R < x+y < 2R} for some R > 0 and
¢ € C.(R?), then

oz, y)xe(x, y)F(x,y) - Vxs(z,y) dedy — /R2 ¢(x,y) dxpF - Dxg

R?
and 2xgF - Dxg = (F; - vg) H'LO*E
Let In := {(z,y) € R?:y =ua,2 € [-£ 8]} C OF, then we have I/E‘Ig =
\%(—1, 1) and
Vs, (x,y) = /R? Vayps, (x —u,y —v)xe(u,v)dudy
= - /RQ Viwpe (T —u,y — v)xE(u,v) dudv
— /8 Ep(;k(x —u,y — v)ve(u,v) dH (u, v).

If (z,y) € In + B(0,0) and |(x — u,y — v)| < &, then (u,v) € In + B(0,0 + 0g).
Then, if ¢ € C’ (IR + B(0,9)) and if we take 6 and J; small enough (for example,
both < &) so that (1 r+ B(0,0 + dx)) NO*E = Ik, we obtain

/]R? (b(l', y)XE(I,y)F(x, y) . VX&(J:, y> dz dy

-/ o) Feg)- [ pale =y~ owp(u,) dH u,0) dr dy
(I +B(00)NE O E

/ o) F(w9) - [ panlo = ey = o)weliv) dH (u,v) dady =0,
(IE +B(0,0))NE Ir

since F(z,y) - vgl, = 3 <— sm( ) +sm< 1y>> =0 for L%a.e (z,y) € (Iz +
B(0,0)) N E). Thus,

o, y)(F; - ve)(z,y) dH (z,y) = 0

Ir
for any ¢ € C’c(lg + B(0,9)), which in particular implies (F; - vg) = 0 in Is.

As a final remark, we notice that in special cases we can also recover an inte-
gration by parts formula.
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Remark 3.2.5. Let F € DM™(Q;RY) such that F = fv for some f € L°(Q)
and v € S¥~1. We have divF = D, f in the sense of distributions, since, for any
¢ € C2(9),

—/chddivF:/QF~V¢dm=/va-V¢dw=/Qvaébdx

and so D, f € M(Q) and || D, f||()]| < oo.

Using the notation of [AFP| (Section 3.11), we denote by II, the hyperplane or-
thogonal to v passing through the origin and by €2, the orthogonal projection of
Q on II,. It is clear that, for any y € €,, the section of 2 corresponding to y; that
is, QY .= {t e R: y +tv € Q}, is not empty.

Also, for any function f: B C Q2 — R and any y € €, the function

fy: BY C QY — R is defined by f¥(t) := f(y + tv). D,f is called directional
dlstrlbutlonal derivative, and it is well defined if f € Li. (), which is our case.
Theorem 3.103 in [AFP] states that if f € LL _(Q) and v € S¥~L, then

DIl / D) d

From this, it follows immediately that the functions fY belong to BVj..(Q2¥) for
HV"Lae. y € Q,. We also notice that, for any ¢ € C°(2), Fubini’s theorem
implies

d
~ [onut = [ rviodn= [ ([ stusr) Goty o)) ay

- [ ([, rgerae) o= [ ([ orapsz) an

since f¥ € L (QY) for HNa.e. y € Q,, and so,
D,f = D, f¥ @ HN'LQ, (3.2.16)

in the sense of Radon measures in ).

Moreover, Remark 3.104 in [AFP] implies that if F CC € is a set of finite perimter,
then EY is of finite perimter in R for HV !-a.e. y € E,. We can conclude that, for
HN"Lae. y € E,, EY is the union of a finite number of pairwise disjoint intervals
{lagj1,az;]}7, in QY (see [AFP], Proposition 3.52).

Therefore, for any £ CC €2, we may apply (3.2.16) and Vol'pert’s results (Theorem
1.5.2):

/E1 dD,f = . (/Eg thfff) dy = /v ;(f—1(y + agv) — fra1(y + azi—1v)) dy,

where f_1(y + ag;v) is the approximate limit of f(y + -v) in ay; from the left and
f+1(y + agj_qv) is the approximate limit of f(y + -v) in agj_; from the right, since
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the interior unit normal in one dimension is +1 or —1.
Thus we obtain an integration by part formula at least in the direction v.
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Chapter 4

Final remarks and applications

In this chapter we will present some consequences and applications of the Gauss-
Green formula.

We will in particular illustrate gluing and extension theorems for essentially bounded
divergence-measure fields.

Then, we will show a particular form of the Gauss-Green formula in DM, which
holds only on almost every ball and use it in order to find a condition for the
risolubility of the equation divF = p in RY, for p positive Radon measure and
F € DMP(RY;RY) with 1 < p < &5 (for this and related subjects, see also
[PT]).

Finally, we will briefly recall the main features of hyperbolic systems of conserva-
tion laws, show how the theory of divergence-measure fields is strictly connected
with Lax entropy inequality and exhibit an application of Theorems 3.2.1 and 3.2.2
to this context.

4.1 Gluing and extension theorems

Theorem 4.1.1. (Gluing theorem) Let W CC E CC Q,where 2 and W are
open sets and E is a set of finite perimeter. Let I} € DM>(;RY) and Fy €
DM>(RN \ W;RY). Then

Fl(l’) Zf rek
F(I) = . N
Fy(z) if e RY\E
belongs to DM>(RY;RY), and
[[F|lppee@vmyy < |[Fillpmeermyy + P2l pmee @ ermy)
+ [|Fip v — Fia- ’/HLl(a*E;HN—l),
where F; 1 - v is the interior normal trace of Fy on O*E and

(Fia-v) HYNYO*E = 2xpFs - Dy,
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which can be seen as an interior normal trace, even if E is not a subset of RN\ W.

Proof. Obviously, F € L®(RY;RY) and
[ F|| oo mvsmeny < F1]|poo(mmyy + | F2]| oo ¥\ BimNY -

Now, if ¢ € CL(RN \ W), we observe that we can take ¢ € C}(RY \ W) such
that & = 1 on supp(¢): then we can extend I, to a divergence-measure field F

on RY by setting it equal to 0 in W (indeed, it has compact support, so we refer
to Remark 2.1.2).

By Theorem 3.2.1, we know that 2xpF - Dyp = (.7:]2 V) HNTLLO*E and, arguing
as in the proof of Theorem 3.2.2, we can show that

/ ddiV(¢F2) = _/ ¢2dXEF2 -DxE.
B 0°E
For any ¢ € C.(RY), we have
/ ngEFQ -Vysdr = / (@) xpFy - Vxsdz.
RN RN\W
The set {xgF» - Vxs} is bounded in M(RN \ W):
IxeFz - Vsl (RY N W) < ||F|| oo erv\iwien) [ DxEI(RY),

by Remark 1.4.7. Thus there exists a converging subsequence labeled with o
and, if suppp C RN \ W, we can conclude that ypFy - Dxg = xgks- Vxg in
M(RN \ W). This implies (Fs - v) = (Fip-v) HV lae. z € 0*E, by the
definition.

Therefore we have

Vo Fydr+ | ¢ddivF, = / ddiv(¢pFy) = — O(Fio-v)dHN?
El El

El o*E

and, since £ = 1 and V& = 0 on suppe, div(Fy) = £divFy + VE- F in suppg, which
implies

/ V¢ . FQ dx + / ¢dd1VF2 = — (b(.E’Q . I/) dHNil.
Elnsuppe ElNsuppe o0*E

Recalling that |E \ E'| =0,

—/ qbddivF2:/ F2~V¢dx:/ FQ«V¢dm+/ Fy - Vo du
RNM\W RNM\W RN\E ENsuppg

== o(Fiz-v)dH " - / ¢ ddiviy +/ Fy-Vodx

O*F ElNsuppé RN\E
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which implies

— / dddivF, = — O(Fio-v)dHN 1 + / Fy,-Vodr
RN\ E1 o*E RN\E
for any ¢ € CHRN \ W). o
Therefore, choosing ¢ € CHRY) with [|§|lc < 1 and £ € CHRY \ W) with
1€]]oe < 1 and € =1 on supp(¢) N (RY \ E), we obtain

/ F~V¢dx:/F1-V¢dx+/ - Vodx
RN E RN\E

:/EF1~V¢dx+/ Fy - V(6€) du

RN\E
= — ¢dd1VF1 — / qbdleFg — / («E,l 2 ,E’Q . l/)gb dHN_l
E? RN\E1 O*E
< [ldivF[|(E") + [|divF[|(RY\ EY) + | Fia - v = Fiz - Vo maev-1).

Thus, taking the supremum over ¢ on the left hand side, we have the desired
result. [

Before we prove the extension theorem, we need the following result from mea-
sure theory.

Proposition 4.1.1. Let U C RN be an open bounded set with HN~'(9U) < oo.
Then there exists a sequence of bounded open sets U, C U C U such that

1. |U\Uk| — 05
2. limsup HN =1 (QUy,) < 4N-1 Ty N1 (9U).
k—+o0 -

Proof. By the definition of spherical measure, for each integer k, there exists a
d-covering of OU by balls OU C |2, B(w;,7;), with 2r; < d; Vj, such that

N 1 1
D o< SN OU) + . < SN Y oU) + - (4.1.1)
j=1

Since OU is compact, there exists a finite covering {B(z;,7;)}; and so we set

Vi i= Uj% B(zj, ;). We observe that 0V, C |Jj™, 0B(x;,7;). This and (1.1.1)
imply

my N mp
SN_I(ﬁwg) S ZSN_1<8B<JIJ‘,TJ‘)) S 2N_1ﬂ ZWN_ﬂ”]N_l,
1 =1

WN—
j=1 N



CHAPTER 4. FINAL REMARKS AND APPLICATIONS 96

which, together with (4.1.1) and (1.1.1), yields

V1 avy) < oN1VEON [ evarigrny 1 L) <ovt NN Coneagyves gy 4 L
WN-1 k WN-1 k
(4.1.2)

for any k. We set Uy, := U \ V; and so, by (4.1.1), we have

which goes to zero as ; — 0.
Finally, 0Uy = 0V, N U and so (4.1.2) implies 2. OJ

Definition 4.1.1. An open set U C RY is called an extension domain for F €
DM (U;RY) if there exists F' € DM>(RY; R"Y) such that ' = F on U.

Theorem 4.1.2. (Extension theorem) A bounded open set U satisfying
HN=YHOU) < oo is an extension domain for any F € DM>=(U;RY).

Proof. We define an extension of F by F(x) := yy(z)F(z) Vo € RN,
We just need to show that ||divF||(RY) < oo,
Let Uy, be the sequence of approximating sets given in Proposition 4.1.1: we observe
that, by Remark 1.4.1, each U}, is a set of finite perimeter since H~1(0U}) < oo,
Ul C Uy, since, by Remark 1.4.2, RN\ U, c U = RN\ (U} U9™U,) and
|UxAUL| = 0.
Hence, for any ¢ € C®(RY) with ||¢||cc < 1, we may apply the Gauss-Green
formula (Theorem 3.2.2):

/ F-Védr = — O(F; - vy,) dHN —/ ¢ ddivF.
Uk 8*Uk

1
Uk

Thus, by Proposition 4.1.1,

/ F-Vodr
Uk

< divF||(Ug) + [1F ] oo ey Y (07 U)

< AV E|[(T8) + 1 1Fl| ey MY (0U5)
< ([ div F[(0) + (| Fll e HY (00,

Letting k — 400, Lebesgue’s dominated convergence theorem and Proposition
4.1.1 yield

/F-ngdx Now
U

< [V F(U) + 4Y 7 = [y ML (0) < o0,
N




CHAPTER 4. FINAL REMARKS AND APPLICATIONS 97

Since we have

/UF.wdx:/ F-Védz,

RN
it follows that

1divE]|(RY) = sup {/ FoVode: e CXRM, |6l < 1} <,
RN

which concludes the proof. [

Corollary 4.1.1. Let U C RY be a bounded open set with HNLOU) < oo,
Fy € DM>(U;RY) and F, € DM>=(RN \ U;RY). Then if we set

) F(zx) if zeU
Flz) = {Fz(:r) if € RN\U
we have F € DM™(RY;RY).

Proof. We can apply Theorem 4.1.2 to Fj in order to obtain that Fy o= xuv ki €
DM>=(RYN; RY).
Now, we argue as in proof of Proposition 4.1.1, and we set W}, := U UV}, thus
Wy, C Wy CC B(0, R), for some R > 0 large enough, 0W}, = 0V}, \ U and
(B0, R)\U)\ (B(0, R)\ Wy)| = [Vi \U| < [Vi| = 0.

We also have (B(0, R) \ W)! C B(0,R)\ Wy, HN"H0W,) < HN"L(9V,) < o0,
which implies also
N
limsup HY "L (0W,) < 4V 12N N1 a1,

k——+o00 WN-1

Thus, for any ¢ € C°(RY) with ||¢||s < 1, we can apply the Gauss-Green formula
(Theorem 3.2.2) to the set B(0, R) \ W and the field Fy:

/ o F2V¢ dr = —/ ¢<E,2'VB(0,R)\Wk) dHN_I—/ o ¢dd1VF2
B(0,R)\W OB(0,R)U0* W, (B(0O,R)\Wi)!

Clearly, there exists Ry such that, for any R > Ry, supp(¢) C B(0, R) and therefore
faB(o,R) ¢(Fiz2 - VB0,R)\W;) dHN~! = 0. Hence we have

/ Fy-Vodr
B(0,R\TW

< [JdivE[[((B(0, R) \ Wi)') + [[Foll oo ) B~ (07 W)

< ||divE||(B(0, R) \ W) + || Bl oo i) B~ (OW)
< |divE|[(RY\T) + || B oo grmm B~ (OW).-
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Letting £ — 400, we obtain, by the previous remarks on W, and Lebesgue’s
dominated convergence theorem,

B(0,R)\U

for any R > R and thus

/ Fz-qudx:/ Fg-qud:L':/ - Vodr.
B(0,R)\U supp(¢)\U RN\U

— N
< [[div Bl | (RN\T; RN )4V~ = | By | e v gy Y (OU)
N-1

Hence, if we set Fy(z) = Xeng () Fa(z) Yo € RN, we have

/ FZ-qudx:/ F, -V da,
RN\U RN

which implies

HdivFQH(RN)sup{/ Ey-Vodr: ¢ € CPRY), |90 < 1} < 00.
RN

We have therefore proved that F, € DM=(RN;RN) and, since F' = F} + F}, we
have also F' € DM>(RY;RY). O

Finally, we state a result concerning the Gauss-Green formula on certain un-
bounded sets of finite perimeter.

Proposition 4.1.2. Let W be a bounded open set, F € DM (RN \ W;RY) and
E DD W be a bounded set of finite perimeter. Then

/ ¢ ddivF = — O(F; - vgnyg) dHN —/ F-Vo¢dz (4.1.3)
B o*E

EO
for any ¢ € CHRY).

Proof. Since E is bounded, there exists R > 0 such that £ CcC B(0, R).
Clearly B(0, R) is a set of finite perimeter and 0*(B(0, R) \ E) = 0B(0, R) UO*E.
Moreover, recalling that F = E' U9™FE implies B(0, R) \ £ = B(0,R) N E°, we
have (B(0,R)\ E)! = B(0,R) \ E.

Indeed, if z € B(0, R) N E°, then there exists ry > 0 such that Vr < ry we have
B(x,7) C B(0,R) and x € E°, so, for r < r,
|B(xz,7) N B(0,R) N E°| - |B(z,7) N E|
| B(x,7)| |B(z,7)]
which implies = € (B(0,R) \ E)'. Hence (B(0,R) \ E)! > B(0,R) \ E.
On the other hand, if x € (B(0, R) \ E)*, then z € E since
|B(z,7) N E°| S |B(z,r) N B(0,R) N EY|
Bz, )|~ | B(x,7)]

—1 as r—0,

—1 as r— 0.
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If by contradiction z ¢ B(0, R), then either z € RN \ B(0, R) or z € 0B(0, R). In
the first case, there exists ry > 0 such that Vr < ry one has B(z,r) C RV \ B(0, R),
which implies
|B(x,r) N B(0, R) N E°|
| B(z,7)]

=0, Vr <nrg,

and this is a contradiction.
In the second case, —‘B(xlg)(mBg? By 1 b t |B($|;)(QB§(|) B> ‘B(I’r)‘;?(o’ﬁ)nEo‘

— 1,
which is absurd.

Now, for any ¢ € CH(RY), we apply the Gauss-Green formula (Theorem 3.2.2) to
the domain (B(0, ) \ E):

/ ¢oddivE = —/ &(Fi - vBo,r)\E) dHN 1 —/ F-Vodx.
(B(0,R)\E)! 0B(0,R)UO*E B(0,R)\E

Since E and ¢ are fixed, there exists Ry such that, VR > Ry, E CC B(0, R) and
supp(¢) C B(0, R), and therefore we can integrate over the whole space minus
E in the first and the last integral, while [, ;. o #(F; - Vao,p)\p) dHY ™ = 0 and

clearly (F; - vpo,r\e) = (Fi - Vrv\g) on O°E. We conclude that
/ pddivE = — [ G(F - vpmyp) dHY ! — / F-Véds
RN\E O*E RNM\E

for any ¢ € C}(RY). Hence, since RV \ E = RV \ (E' UO0™E) = E°, we have
(4.1.3). O

Remark 4.1.1. We observe that this argument could be used in the proof of
Theorem 4.1.1 as an alternative way to achieve a Gauss-Green formula for F, over
the unbounded set of finite perimeter RY \ E.

Moreover, if F' € DM™(RY; RY) and E is a bounded set of finite perimeter, then

(Fe - vp) = —(Fi - vpyg) HV '-ace. on O°E, (4.1.4)

where these functions are respectively the exterior normal trace of F' on 0*FE and
the interior normal trace on 0*F taken with opposite orientation. Indeed, for any
¢ € CL(RY), by Theorem 3.2.2 and (4.1.3) we have

/ F-qudx:/F-V¢dm+/ F-Védo=— | &F, vg)dH !
RN E

RN\E O*E

— [ ¢ddivF — O(Fi - vgm ) dHN 71 — ¢ ddivF
\
E O*FE RN\E

=— | O(F vp)dHV ' - O(F; - vn\g) dHY T — [ ¢ddivF
O*FE O*E RN

= — H(Fo-vg)dHN ™ — O(F; - vpnyg) dHN T + / F-Vodz,
O*FE O*FE RN
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which implies
O(Fe-vp) dHN " = — [ G(F - vy ) dHV .
B O*E

Since this last identity is in particular true for any ¢ € C>°(RY), we have proved
(4.1.4).

4.2 An existence result in the subcritical case
We are going to study now a special case of the equation divF = p on RY, for
N > 2. First we state a version of Gauss-Green formula on balls.

Theorem 4.2.1. Let F € DM _(RY:RY). Then for each x € RN and for L'-a.e.
r >0,

ly — |
Proof. Let F, be a mollification of F', then we have, for any R > 0,

divF(B(a:,r)):/aB( )F(y) W=2) yn-1y) (4.2.1)

HF FHLI zR)_>0 as € — 0.

So we have

R
/ |F€—F|dy:/ / |F, — F|dHY " dr -0 as € — 0,
B(z,R) 0 OB(z,r)

which implies that there exists a set Zp C (0, R) with £'(Zz) = 0 such that
faB(m) |F. — F|dHN"t — 0 as € — 0 for each r € (0, R) \ Zx.

We can repeat this argument with R = n for every n € N and so, if we set
I = U1 Zn, we have [yp o |Fe — F| dHN 1 - 0ase—0Vr e R\ Z.

Ve > 0, the classical Gauss-Green formula yields

/ divF(y) dy = / F) - =D agevy),
B(z,r) 0B(z,r) |y - ZL‘|

By Remark 1.1.2, there exists a set J C R with El(j) = 0 such that, for any
r¢ J, ||divE||(0B(z,r)) = 0. We can now take r € R\ (ZU J) and thus apply
Lemma 1.1.2 and Remark 2.1.2 in order to obtain

lim divF (y) dy = divF (B(z,1)).

e—0 B(x,r)

Hence, by observing that

[ - Fu)- (,y_ W=2) e, >]s [ 1R - Pl ),
OB(z,r) y — x| OB(z,r)
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we have (4.2.1), Vr e R\ (ZU J). O

As it is shown in [PT], the choice of RY as our domain allows us to use techniques
from harmonic analysis to study properties of divergence-measure fields. Therefore
we introduce the following notions of Riesz potential of order 1 and (1, p)-energy
associated to a positive Radon measure.

Definition 4.2.1. Let p € Mi(RY) be a positive Radon measure. We define
the Riesz potential of order 1 of p as

() = [ o)

Definition 4.2.2. Let 1 < p < co. We say that u € M..(RY) has finite (1,p)-
enerqgy if

/RN(IW(QJ))” dr < 0.

Remark 4.2.1. We observe that the Riesz potential of order 1 of a positive
Radon measure is always well defined, being +oc if the integral does not con-
verge. Morevoer, for any R > 0 we have

| H(B(O. B)
hato) 2 | e ) o e

This implies that, if [ has finite (1, p) energy, then we must have either p > %

orl <p< % and p = 0. So p = 0 is the only positive measure on R" which
has finite (1, p) in the subcritical case p € (1, 125].

The main result which we are going to show here states that the equation
divF = u, with g1 € Mioo(RY) and positive, has a solution F' € LP(RY;RY) with
1<p< % only if = 0. Actually, since F' = 0 is a solution, we could say that
this equation has at least one solution in LP(RY;R") if and only if p = 0.

Theorem 4.2.2. Let 1 < p < 5. If F € LP(RY;RY) satisfies divF = p, for

some j1 € Myoo(RY) positive, then p = 0.

Proof. By the layer cake representation formula, we have

1
Lp(r) = /RN Wd#(y)

= [ty e R o=y > iyt = [ (B a

:/OOOM(B(x,r))NTNldT
(N —1) i [ ABE),

=0t J rN

T,
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where we are allowed to perform the change of variable ¢ = r!~* since the function
1

t — pu(B(z,t”¥-1)) is upper semicontinuous.

Now, since divF = u, we apply Theorem 4.2.1 and we have

=) N
Lip(x) = (N —1) lim / dH r
! ( ) ( EHOJr € 8B.I7‘) ‘y—fﬂ‘ ( )
(x y) N-1
— )1 d
6‘lggr/‘ /BB(IT) .T |N+1 " ( ) '
. (z —y)
=(1—N) lim Fly)  ———dy.
e—0t {|z—y|>¢€} ‘l’ - y‘N+1

This last limit is known to exist for £V-a.e. x € RY and it is equal to
¢(N) Z?]ﬂ R;Fj(x), where F; is the j-th component of F' and R;F; is the j-th
Riesz transform of the function F; (see [St|, Chapter II, § 4.2, Theorem 3 and §
4.5 Theorem 4). Moreover, we have that

1R fllr@ny < ClIf|| ooy

for 1 < p < 0o, and
||ij||L1v°°(RN) < C||f||L1(RN)-

Thus we can conclude that, for p € (1, NN 7],
1l ey < ClF|| @y < 00,

and so, by Remark 4.2.1, we must have p = 0.
On the other hand, if p = 1, we have

[T pl[proe @y < CJ|F|[ g1y ray < o0.
We recall that the (quasi-)norm in the space L1 is defined as

| £]] 1o vy = stligt\{w eRY : |f(z)] > t}].

Since Remark 4.2.1 shows that, for any R > 0,

u(B(0, k)
Li(z) > W,

we see that

n(B(0, R))

{xERN:II,u(:L’)>t}D{x€]RN:W

>t}
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and so

stlig)t]{:c e RY : Iiu(z) >t} > supt|{a: cRY: W >t}

St ((“(Bf el

=supt” NT wy (u(B(0, R m TR)N
>0

+00,
unless p = 0. Thus the statement is proved. [

Although we restrict ourselves to the case of a positive Radon measure p, this
does not diminish the interest of the equation divF = p. As we shall see (Remark
4.3.1), this is indeed the situation that occurs in the context of nonlinear hyperbolic
systems of conservation laws.

4.3 Nonlinear hyperbolic systems of conservation laws

In this section we will describe an application of the theory of divergence-measure
fields to the context of conservation laws. For completeness we will shortly sum-
marize the main features of such systems of partial differential equations.

4.3.1 Brief introduction

Definition 4.3.1. A general system of conservation laws is the following initial
value problem:

uy + divy f(u) =0 in RE™ == (0, +00) x R, (4.3.1)

u=g on {0} x R,
where u : RE™ — U c R™, f € CYU;R™), div,f(u) is (at least formally)
the divergence with respect to x of the matrix f; that is, the vector in R™ whose

elements are the divergences of the rows of f, and ug is the initial datum.
u is called the conserved quantity, while f is the flux.

The terminology used above finds its origins in physics. If we suppose that the
components of the vector valued function v = wu(t,z) are (smooth) densities of
some conserved quantities, then, given any bounded set V' with smooth boundary,

the integral
/ u(t, z)dx
1%

represents the total amount of these quantities within V' at time ¢. Conservation
laws in physics usually assert that the rate of change of such quantities is governed
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by a flux function f : R™ — R™*%: that is, we have

d
— [ udr = fu)-vdH?,
dt Jy ov

where v is the unit interior normal to V. Supposing also that v and f are smooth
enough and that we can apply the classical Gauss-Green formula, we obtain

/V w dr = — /V div, f(u) dz,

which gives the above system since the domain of integration V' is arbitrary and
the densities are supposed to be smooth.

Since f is differentiable, we may rewrite the system (4.3.1) in nondivergence
form as

d
Uy + Z Bj(u)ug; =0, (4.3.2)

j=1
where B; : R™ — R™ ™ is the matrix whose components are {%{j: Vik=1,.m; that

is, the jacobian of the j-th column vector of f, V,f;.
In order to achieve well posedness for the initial value problem at least when f is
linear, we make a further assumption of algebraic nature.

Definition 4.3.2. The system of convervation laws (4.3.1) is strictly hyperbolic if
B;(u) is real diagonalizable Vj = 1,...,d and Vu € R™; that is, there exist m real
distinct eigenvalues A\;(u) < ... < Ap(u) and bases of left and right linearly inde-
pendent eigenvectors, denoted by Iy (), ..., [, (u) and r1(w), ..., (u), and regarded
as row vectors and column vectors respectively.

Example 4.3.1. The first elementary examples of hyperbolic systems of conser-
vation laws are the linear ones.

Let d = 1 and f(u) = Au, where A is a m x m hyperbolic matrix, with real
eigenvalues \; < ... < \,, and right and left eigenvectors r;,l;, chosen such that
|ri| = |l;] =1 and [; - r; = 6;;. Then the solution to the Cauchy problem

us + Au, =0 in Ri
u=g on {0} xR.
with g € C1(R), is
u(t,x) = (I glw = At))r;.

j=1
This means that in the scalar case (m = 1) the inital profile is shifted with constant
speed A = f’, otherwise if m > 1 the initial profile is decomposed as a sum of m

waves, each one travelling with one of the characteristic sppeds A;.
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In the general case, f is nonlinear and, even if we restrict ourselves to the case
d = 1, new features will arise in the solutions. Indeed, the eigenvectors depend on
u and nontrivial interactions between different waves will occur. Also, the eigen-
values A;(u) depend on u, so the shape of the travelling waves will vary in time
and this may lead to shock formation in finite time.
This is actually the major problem connected with nonlinearity: the loss of regu-
larity. It may be shown that, even if we assume the initial datum to be smooth, the
classical solution may develop singularities and form shock waves in finite time.
An example of this fact is given by Burgers’ equation (m =d = 1)

2
ut—i-(%) =0 in Ri
u=g on {0} xR

with the initial data

1 if <0
glx)=<1—z if 0<z<1.
0 if z>1

Indeed, any smooth solution is constant along the characteristics

y(s) = (g(xo)s + zo,s), s > 0, for each xy € R fixed. Then for ¢ > 1 these lines
cross, leading to discontinuity of u (for details, we refer to [E|, Section 3.4.1, Ex-
ample 1).

Since initially smooth solutions may become discontinuous within finite time,
in order to construct global solutions we have to work in a space of discontinuous
functions and to interpret the conservation laws in a distributional sense.

Definition 4.3.3. A function u € L®(RT™;R™) is a weak solution of the system
of conservation laws (4.3.1) if, for any ¢ € C>([0, +00) x R R™),

o d
/o 4du~¢t+;fj(u)~vxj¢dxdt+/Rdg(:v)wb(o,a:)d:c:(),

where f; is the j-th column of f.

However, extending the notion of solution from classical to weak introduces a
new difficulty: we may loose the uniqueness.
An easy example of this fact is again provided by the Burgers’ equation, with

initial datum
(z) 0if z<0
I g
g 1if 2>0
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In this case, since the method of characteristics does not provide any information
in the region {0 < = < t}, we have indeed at least two different weak solutions:

.f i
w(ta) =40 <3
1 1fx>§
and
0 ifz<0
up(t,x) =q % f0<z<t
1 fz>t

(for details, we refer to [E|, Section 3.4.2, Example 2).

The strategy to overcome this problem is to state some new condition which the
acceptable solutions must satisfy. Historically the idea was to exclude 'nonphysi-
cal’ solutions, and this is why these further requests are called entropy conditions.
They indeed arise from a rough analogy with the thermodynamic principle that
physical entropy is a non-decreasing function of time.

We will not describe here all these criteria, nor we will discuss the Rankine-
Hugoniot conditions on jump discontinuities (for which we refer to [D] and [E]),
since these fall outside the purpose of this section. Rather we will concentrate
ourselves on the Lax entropy inequality.

First we need to define the concept of mathematical entropy.

Definition 4.3.4. We say that n € C'(R™) is an entropy for (4.3.1), with associ-
ated entropy fluz ¢ € C*(R™;RY), if

Vugi(u) = Vyn(u)Vyfi(u), for j=1,...4d, (4.3.3)

We call FI' = (n(u),q(u)) an entropy pair. If n is convex, we say F)! is a convex
entropy pair.

We can easily check that any C! solution of (4.3.1) satisfies also
n(u) + divyg(u) =0 (4.3.4)

d d
(e = V(e = V() (= Y- Vb)) = = Vay(0) s, = —divsq(u).

This means that, for any entropy pair (7, ¢), the additional conservation law (4.3.4)
holds.

Definition 4.3.5. A function u € L®(R%™;R™) is an weak entropy solution of
(4.3.1) if
n(u); + diveq(u) <0 (4.3.5)
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holds in the sense of distributions for any convex entropy pair (7, ¢); that is,

+oo
/ / n(u)y + q(u) - Vo dxdt >0
0 R4

for any ¢ € C®(RE™) with ¢ > 0.

Remark 4.3.1. Condition (4.3.5) implies that, for any convex entropy pair, the
distribution div( ) (n(u), ¢(u)) = div( . F.} is nonpositive. Therefore, a corollary of
the Riesz representation theorem (Lemma 1.1.3) shows that there exists a positive
Radon measure on RE™ 4, such that

div(gz) Fl = —piy.

u

This is one of the main reasons of the original interest in the theory of divergence-
measure fields by Chen and Frid (see [CF1], [CF2|, [CF3]). Indeed, it is easy to
show that F7 € DM (R RIMY): since u € L®(RE™R™) and 7 and ¢ are

loc

continuously differentiable, F7 € L>(R%™), and Remark 4.3.1 shows that its di-
vergence is actually a (nonpositive) Radon measure, though it is not necessarily
finite.

4.3.2 Traces on hyperplanes

We will now present a result concerning the possibility of recovering traces for
solution of hyperbolic systems of conservation laws on hyperplanes, following the
paper [CT?2].

We fix some notation: given 7 > 0, we set
"= {(t,2) € R : t > 7},
BT ((7,y), 7”) B((r,y),r)n1II",
B'(y,r) := B((r,y),7) N O™ = {(r,2) € R™" : [ —y| <1},
CH(r,y),r) ={(t,x) eR™ 0 <t —7 <r |z —y| <r}
We denote by @,(T,y) the average of u over the half ball B*((7,y),r).

Definition 4.3.6. We say that u satisfies the vanishing mean oscillation property
for half balls on OII7 if, for any continuous function ¢ € C(R™; RY),
1 _
lim —— lq(u(t,z)) — q(u),.(1,y)|dtde =0 (4.3.6)

d+1
r=0 7 B+ (ry) )

for He%a.e. (1,y) € OII", where q(u),(7,y) is the average of ¢(u) over the half ball
B*((r,y), 7).

We need the following result from measure theory.
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Lemma 4.3.1. Let p be a positive Radon measure in ]R‘_f’l. Then, for any T > 0
and for H-a.e. y € R,

w(C*((7,y),7))

lgg rd =0
Proof. Let
Jr
Ap =<y € R : limsup mCr((ry).r)) > =
r—0 rd k
and, for R > 0,
+ 1
Al = {y € B(0,R) : limsup e ((2’ y).r)) > —} :

r—0 r k

where we denote here by B(0, R) the open ball of radius R in R?. Tt is sufficient
to show that H4(AL) = 0 for each k € N and for each R > 0, since then

HU(Ap) = lim HYAF) =0 Vk

R—+o00

He (DOA ) =0
k .
k=1

Given y € AF and € > 0, there exists a number r, < € such that

and so

WO (m)my) > 5o

We can choose a sequence y; € Ay, such that B(y;,r,, ) N\ B(y;,ry,) = 0 if j # i and
AR C Uj2, B(y;,3ry;) (see [G], Lemma 2.2, where we multiply p by €). Then

HUAY) <wa Y (3r)* < 2kwa3® Y p(CH((7,5),my,))-

j=1 Jj=1
Since 7, < € and y; € B(0, R), then
C+((T,yj),ryj) - Lf ={(t,y) € R 0<t—7T <e, |(t—T1,y)| < R+ \/56}

and hence
HYAR) < 2kwy3u(LE) Ve > 0.

Since 4 is a Radon measure, it is finite on the compact set L and so u(LF) — 0
as € — 0, which implies H¥(AR) = 0. O
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Theorem 4.3.1. Let (n,q) be any convex entropy pair and let T > 0. If u €
L=®REYR™) s a weak entropy solution of (4.3.1) and satisfies the vanishing
mean oscillation property on OII7, then n(u) has a trace on OUT; that is, there
exists a function n(u)y, € L0 HN 1) such that, for He-a.e. (1,y) € OII",

lim — / n(u(t, 2)) dt dz = n(w)e(r,y). (4.3.7)
CT((r,y),r)

r—0 wgrdtl
In particular, if we choose n(u) = u;, j = 1,...,m, we obtain the trace for each
component of u.

Proof. By Remark 4.3.1, F = (n(u), ¢(u)) € DM (RE; R and so F7 €
DM>(C*((1,0),2R); R**!) for any R > 0. Therefore, by Theorem 3.2.1 there
exists a function Fg-v € L>®(9*C*((1,0), R); H) Which is the interior normal

trace of F)7 on
o*CH((1,0),R) = B"(0, R)U{(t,z) e R : 0 <t—7 < R, |z| = R}UB™™(0, R).

Let y € R? and 7 > 0 such that C*((r,y),r) C CT((r,0), R), then we have that
the interior normal trace to C*((7,y),r) satisfies (F,, - v)(7,z) = (Fg - v)(7, )
H%-a.e. (1,2) € B"(y,r). Indeed, by the Gauss-Green formula (Theorem 3.2.2),
we have that, for any ¢ € C(RIH1),

/ ¢ ddivF" + / FM.NVodr = — / O(Fr - v) dH?
C*t((r,0),R) Ct+((r,0),R) o*C*((7,0),R)

and

/ ¢ ddivF" + / F"-Vodr = — / O(Fyr - v) dHY,
CH((r9)7) CH((ry)7) o-C+((ry).7)

since (C*((1,y),7))t = C*((1,y),r) for any (,y) € R** and r > 0. Now we can
take ¢ with compact support in B((1,y),r), then C*((7,0), R) N B((,y),r) =
C*((r,y)7) 0 B((r,y).r) = B*((r.y).r) and 9°C*((,0), R) N B((7.y),7) =
8*0*((T,y),r) OB(( y),r) = B™(y,r), and so

/ ¢ ddivF]! —i—/ El-Vodr = —/ O(Fgr-v) dH?
BF((m,y),7) BH((1,9),r) BT (y,r)
= —/ (b(]-"y,r V) dHe.
B7(y,r)

Since ¢ € C(B((1,y),r)) is arbitrary, one obtains the desired result.

Moreover, since R itself is arbitrary, the above argument shows the existence
of an interior normal trace F - vpr over the whole hyperplane OII", such that
(Fyr - v)(1,2) = (F - vnr ) (7, 2) H%a.e. (1,2) € B7(y,r) and for any (1,y) € OII".
We also notice that this implies ||F - v || oo (57 (0,m):10) < || F|| oo 0+ ((r.0), R)RE+) <
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||Fg||Lm(Ri+1;Rd+l) for any R (Theorem 3.2.1), we can conclude that (F - vp-) €
L(OT17; HY).

Let G C OI1" be the set of Lebesgue points of F - vy for which Lemma 4.3.1 and
property (4.3.6) hold; then we have H¢(OII7\ G) = 0. Therefore, for any (7,y) € G,
we can choose a representative of the interior normal trace to C*((r,y),r) for
which (7,y) is a Lebesgue point, since (F,, - v)(7,z) = (F - v )(7,7) Hea.e.
(1,2) € B"(y,r). Without loss of generality, we may assume (7,0) € G.

Having taken r > 0 and the interior normal trace as above (whose selected
representative we shall denote simply by F - vy~ on B7(0, 7)), we apply the Gauss-
Green formula with the test function

olt,2) = o (2) plt =)+ 7 — 1)

such that ¢ € C°(B7(0,1)) and p € C°([—1,2R)), ||p|lec <1, p=1o0n [0, R].
Since

i

or.a)=re ().

o7 +71,2) =0,
Blt.a) =0 if fo| =,

and

a¢gt,x) . (g) (=) +7— 1) — p(t— 7)) = — (;) Vt € (1,7 +71),

,
recalling that F" = (n(u), ¢(u)), we have

/ ¢ ddivF" + / (—n(ult, z))¢ (f) +q(u(t, 1)) - Vod(t, ) dt dz
CH(r0)) CH(r0)) r

_ x . d

— /BT(W) rQ <T> (F - vr) (7, ) dH ().

Now we divide both sides by %! and we show that

1
rdt1

q(u) - Voo dtdr — 0, (4.3.8)
C*((,0),r)

1

prd+1

¢ ddivE" — 0. (4.3.9)
C*t((r,0),r)

We observe that

/ V.o(t, o) dt do — / / p(t)r — 1)V (%) drdi =0 (43.10)
C+((r,0),r) 0 T(0,r) r
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since ¢(>) € C(B7(0,7)). Therefore, if g(u),, denotes the average of q(u) on the
half ball B*((r,0),2r), then (4.3.10) implies

1 / 1 —_
— q(u) - Voo dtdr| = —/ q(u) —q(u),,) - Voo dtdx
r J et (ro)m) ) it c+((T,o),r)( ) )
1 _
S—ngboo/ q(u) — q(u),,| dt dzx
111 Va9l c+((7,0),r)| (u) = q(u),, |
1 -
S—quﬁoo/ q(u) — q(u),,| dtdv — 0,
il Vadll B+((T,0),zr)| (u) = q(u),, ]

by property (4.3.6).
On the other hand, (4.3.9) follows from Lemma 4.3.1:

=y
- ¢ ddivF
ritl Ct((r,0),r)

Thus, we have

. 1 x .1 x d
tim 7 [ @ () e e = i / 2 () F i)

for any ¢ € C°(B7(0,1)).
Since C>°(B7(0,1)) is dense in L'(B7(0,1)), Ve > 0, there exists ¢ such that
|l — de”Ll(BT(OJ)) < €. Hence, performing the change of variable x = r¢, we have

1 T 1
— t, (—)—— dt d
=5 5 (cp : wd) .

< ()] 7 o pa+1 r
LR prd41 Br(0.1)

= [0}l gty e — () acom 0y < 170 etonye

T
< Melloe gz IAVEZICT((7,0),7) = 0 as r — 0.

0
)

We can repeat the same kind of argument with (F - vyy-), obtaining

1 T 1
e /BT(OM(}". v ) (T, ) ((p (;) — Jd) dt dx

1 1
< ||F - vir [l Lo Br0.)) 3 o(§) — Iy

= ré d¢

B7(0,1)
< oo et gy 1 — (@) 21 (B0 < HET poo it sy €
Since (7,0) is a Lebesgue point for F - vy-, we have
1
lim — (F -vor) (1, 2) de = (F - vp-) (7, 0). (4.3.11)

r—0 (,dd’l"d BT (077,)
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Since € is arbitrary, and using (4.3.11), we find

1
lim L / n(ult,2)) dt dz = (F - vipe) (7, 0)
C+((r,0),r)

r—0 wWgrdtl

and we conclude that the desired trace is () (7,0) := (F - vp-)(7,0). O
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