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Chapter 1

Introduction

The Calculus of Variations is the mathematical discipline which studies extrema and
critical points of functions

F : A → R

on an ∞-dimensional subset A of a (normed) function space X . One usually calls A the
admissible (function) class or the class of competitors, and F a functional (which is short
for ‘function of functions’). Since the discipline with classical origins in the 17th century has
developed into a huge and very diverse field, for the purposes of this lecture we necessarily have
to single out specific topics. Hence, as a matter of fact we mostly dispense with classical (field)
theory, geometric variational problems, and various applications, but rather we focus on the
fundamental case of a first-order integral functional or first-order variational integral

F [w] ..=

∫
Ω
F ( · , w,Dw) dx ..=

∫
Ω
F (x,w(x),Dw(x)) dx

for (weakly) differentiable w : Ω→ RN ,

where the dimensions n,N ∈ N of domain and target, an open set Ω ⊂ Rn, and a suitable
integrand F : Ω×RN×RN×n → R are given data. We will mostly consider F on first-order
Sobolev spaces and develop theory which covers general dimensions n.

Basic conventions. In these notes we use the conventions N ..= {1, 2, 3, . . .}, N0
..= N∪{0}, and R ..= [−∞,∞].

Matrices. Given n,N ∈ N we write RN×n for the space of real matrices with N rows and n columns and
L(Rn,RN ) for the space of R-linear maps Rn → RN , but we often identify (matrices and linear maps in) these
spaces. By default we use on Rn the Euclidean inner product · and the Euclidean norm | · |, and we carry this
over to RN×n = L(Rn,RN ) by identification with RNn. The latter convention results in fact in the usage of the
Hilbert-Schmidt inner product z · ξ = trace(ztξ) =

∑N
`=1

∑n
i=1 z`iξ`i for z, ξ ∈ RN×n and the Frobenius norm

|z| =
√

trace(ztz) =
√∑N

`=1

∑n
i=1 z

2
`i for z ∈ RN×n.

Derivatives. For (weakly) differentiable w : Ω → RN on open Ω ⊂ Rn, we generally write ∂iw with index
i ∈ {1, 2, . . . , n}, ∂αw with multi-index α ∈ Nn0 of order |α| ..=

∑n
i=1 αi, and ∂vw with direction vector v ∈ Rn

for the partial and directional derivatives of w (which are all mappings Ω → RN ). Moreover, we denote by
Dw : Ω → RN×n the Jacobi matrix or total derivative of w, while the gradient ∇w : Ω → Rn is used for scalar
functions w : Ω→ R only.

Integration with no specific measure indicated is understood as integration with respect to the Lebesgue measure.

Weak derivatives. For open Ω ⊂ Rn and α ∈ Nn0 , one calls v ∈ L1
loc(Ω,RN ) the weak ∂α partial derivative of

w ∈ L1
loc(Ω,RN ) on Ω if

∫
Ω
w · ∂αϕdx = (−1)|α|

∫
Ω
v · ϕ dx holds for all ϕ ∈ C∞cpt(Ω,R

N ) (where the subscript

cpt stands for ‘compact support’ and requires the existence of a compact K ⊂ Ω with ϕ ≡ 0 on Ω \K). If such
v happens to exist, it is uniquely determined as an L1

loc function. One then writes ∂αw for v and says that ∂αw
exists weakly on Ω. As for classical derivatives, one understands ∂i = ∂ei also for weak ones.
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4 CHAPTER 1. Introduction

As we will later verify in large generality, the investigation of the integral F is closely
connected, in case N = 1, to a scalar second-order PDE or, in case N ≥ 2, to a system of N
second-order PDEs. For the sake of illustration, we first make this connection precise in the
prominent exemplary case of the Dirichlet integral or Dirichlet energy E2, which is given
by

E2[w] ..= 1
2

∫
Ω
|Dw|2 dx for w ∈W1,2(Ω,RN )

and corresponds to the choice of the integrand F (x, y, z) ..= 1
2 |z|

2 above. Clearly, E2 reaches its
minimum on all of X = W1,2(Ω,RN ) exactly on the constant functions, but a more interesting
principle is at hand if the admissible class A is taken as a Dirichlet class

W1,2
u0

(Ω,RN ) ..= u0+W1,2
0 (Ω,RN ) = {u0+w : w ∈W1,2

0 (Ω,RN )}

in W1,2(Ω,RN ) with boundary values prescribed by a fixed u0 ∈ W1,2(Ω,RN ). The principle
applies if a (candidate for a) minimizing u in a Dirichlet class — which can then clearly be
written as W1,2

u (Ω,RN ) — is already at hand and reads as follows:

Theorem (Dirichlet principle). For open Ω ⊂ RN and u ∈W1,2(Ω,RN ), we have:

u minimizes E2 in W1,2
u (Ω,RN ) , that is, E2[u] ≤ E2[w] for all w ∈W1,2

u (Ω,RN )

⇐⇒ u is weakly harmonic on Ω , that is,

∫
Ω

Du ·Dϕdx = 0 for all ϕ ∈ C∞cpt(Ω,R
N ) .

The weak harmonicity of u in this principle means in fact that u is a weak solution to the
Laplace equation ∆u ≡ 0 on Ω (which involves the Laplace operator ∆ = div∇ =

∑n
i=1 ∂

2
i

and decouples to N scalar Laplace equations for the components of u). It follows from the
well-known Weyl lemma on harmonic functions that even weak solutions of this model elliptic
equation are automatically analytic on Ω and thus are classical solutions. Therefore, we have:

Corollary. If u ∈W1,2(Ω,RN ) minimizes E2 in W1,2
u (Ω,RN ), then u is analytic.

Next we turn to the proof of the principle, which will later be widely generalized.

Proof of the Dirichlet principle. From the definitions of E2 and W1,2
u (Ω,RN ) together with the

elementary equality 1
2 |D(u+tϕ)|2 = 1

2 |Du|
2 + tDu ·Dϕ+ t2 1

2 |Dϕ|
2 we infer

E2[u] ≤ E2[w] for all w ∈W1,2
u (Ω,RN )

⇐⇒ E2[u] ≤ E2[u+tϕ] for all t ∈ R and all ϕ ∈W1,2
0 (Ω,RN )

⇐⇒ 0 ≤ t
∫

Ω
Du ·Dϕdx+ t2E2[ϕ] for all t ∈ R and all ϕ ∈W1,2

0 (Ω,RN ) .

Sobolev spaces. For m ∈ N0, p ∈ [1,∞], one introduces the (localized) Sobolev space Wm,p
(loc)(Ω,R

N ) as

Wm,p(Ω,RN ) ..= {w ∈ Lp(Ω,RN ) : ∂αw ∈ Lp(Ω,RN ) exists weakly for all α ∈ Nn0 , |α| ≤ m} ,

Wm,p
loc (Ω,RN ) ..= {w ∈ Lploc(Ω,RN ) : ∂αw ∈ Lploc(Ω,RN ) exists weakly for all α ∈ Nn0 , |α| ≤ m} ,

where the former is a Banach space with norm ‖w‖m,p;Ω ..=
∑
|α|≤m ‖∂

αw‖p;Ω, for instance. The subspace

Wm,p
0 (Ω,RN ) of functions with zero boundary values is defined, for p < ∞, as the closure of C∞cpt(Ω,R

N ) in
Wm,p(Ω,RN ) with its norm.
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Here, the last line means that the quadratic polynomials in t ∈ R given there have a minimum
at t = 0. Since we have E2[ϕ] ≥ 0, this happens precisely if the linear term vanishes (To see this,
either take d

dt t=0
or take into account that the linear term dominates for |t| � 1.), and we can

continue the preceding chain of equivalences by

. . . ⇐⇒
∫

Ω
Du ·Dϕdx = 0 for all ϕ ∈W1,2

0 (Ω,RN ) .

Since C∞cpt(Ω,R
N ) is dense in W1,2

0 (Ω,RN ) (by definition) and ϕ 7→
∫

Ω Du ·Dϕdx is continuous

on W1,2(Ω,RN ) (by the Cauchy-Schwarz inequality |
∫

Ω Du ·Dϕdx| ≤ ‖Du‖2;Ω‖Dϕ‖2;Ω), we
conclude

. . . ⇐⇒
∫

Ω
Du ·Dϕdx = 0 for all ϕ ∈ C∞cpt(Ω,R

N ) ,

and the proof is complete.

Before entering more seriously into the theory of variational problems, we first provide three
series of examples. The first two series provide model examples of variational integrals F (where
sometimes we also mention the associated PDE without yet proving any relation however) and of
admissible classes A, respectively. In the third series we discuss some classical one-dimensional
variational problems and analytical frameworks for their investigation.

Examples (of variational integrals). Consider n,N ∈ N and open Ω ⊂ Rn. Then the
following are model examples of variational integrals.

(1) A first generalization of the Dirichlet integral E2 are quadratic integrals

1
2

∫
Ω
A(Dw,Dw) dx = 1

2

N∑
`,m=1

n∑
i,j=1

A`mij

∫
Ω
∂iw` ∂jwm dx for w ∈W1,2(Ω,RN )

(integrand F (x, y, z) = 1
2A(z, z)), where A is a bilinear form on (N×n)-matrices and the

numbersA`mij ∈ R are the components ofA. IfA is symmetric or, in other words, A`mij = Am`ji ,
this integral is connected with the linear PDE system

N∑
`=1

n∑
i,j=1

A`mij ∂j∂iu` ≡ 0 on Ω , for m = 1, 2, . . . , N .

(1’) A second generalization of E2, for simplicity discussed only in the scalar case N = 1, are
integrals of the type∫

Ω

(
1
2

n∑
i,j=1

aij∂iw ∂jw − 1
2cw

2 + fw

)
dx for w ∈W1,2(Ω)

(integrand F (x, y, z) = 1
2

∑n
i,j=1 aij(x)zizj − 1

2c(x)y2 + f(x)y), where aij , c ∈ L∞(Ω) and

f ∈ L2(Ω) are (coefficient) functions on Ω. In the symmetric case aij = aji this integral is
connected with the linear PDE of comparably general form

n∑
i,j=1

∂j(aij∂iu) + cu = f on Ω .

5



6 CHAPTER 1. Introduction

(2) Yet another generalization of E2 is the p-Dirichlet integral or p-energy

Ep[w] ..= 1
p

∫
Ω
|Dw|p dx for w ∈W1,p(Ω,RN )

(integrand F (x, y, z) = 1
p |z|

p), typically considered for p ∈ [1,∞), where specifically the
1-energy E1 is also called the total variation or the T V functional. The p-energy is
connected with the PDE system (linear for p = 2, non-linear in all other cases)

div(|Du|p−2Du) ≡ 0 on Ω ,

known as the p-Laplace system and, in case N = 1, simply as the p-Laplace equation.

(2’) Variants of the p-energy, usually considered for p ∈ (1,∞), are the non-degenerate p-
energy

1
p

∫
Ω

(
1 + |Dw|2

) p
2 dx for w ∈W1,p(Ω,RN )

(integrand F (x, y, z) = 1
p(1 + |z|2)

p
2 ) with its PDE system div((1 + |Du|2)

p−2
2 Du) ≡ 0 and

the Riemannian p-energy (motivated by geometric situations with Riemannian metric
on domain and target)

1
p

∫
Ω

( N∑
`,m=1

n∑
i,j=1

aijg
`m(w)∂iw` ∂jwm

) p
2

dx for w ∈W1,p(Ω,RN )

(integrand F (x, y, z) = 1
p

[∑N
`,m=1

∑n
i,j=1 aij(x)g`m(y)z`izmj

] p
2 ), where the bounded coeffi-

cients (aij)i,j=1,2,...,n : Ω → Rn×n and (g`m)`,m=1,2,...,N : RN → RN×N take values in non-
negative symmetric matrices.

(3) One more important model integral is the non-parametric area integral or area integral
for graphs

S[w] ..=

∫
Ω

√
1 + |M(Dw)|2 dx for w ∈W1,min{N,n}(Ω,RN )

(integrand F (x, y, z) =
√

1 + |M(z)|2), where M(z) ∈ Rτ , τ ..=
∑min{N,n}

k=1

(
N
k

)(
n
k

)
, denotes

the vector of all minors of the matrix z ∈ RN×n, that is,M(z) contains the Nn entries of z as
(1×1)-minors, the

(
N
2

)(
n
2

)
numbers obtained as (2×2)-minors, the

(
N
3

)(
n
3

)
numbers obtained

as (3×3)-minors, and then all minors of higher orders up to the maximal order min{N,n}.
The interest in this integral stems from the fact that S[w] equals, at least for w ∈ C1(Ω,RN ),
the n-dimensional surface area Hn(Graphw) of Graphw ..= {(x,w(x)) : x ∈ Ω} ⊂ Rn+N .

Hausdorff measure. For n ∈ N0, M ∈ N, the n-dimensional (spherical) Hausdorff measure of a set A ⊂ RM is
defined as

Hn(A) ..= lim
δ↘0

(
inf

{ ∞∑
i=1

ωnr
n
i : A ⊂

∞⋃
i=1

Bri(xi) with ri ∈ [0, δ)

})
,

where we used Br(x) = {y ∈ RM : |y−x| < r} for balls in RM and ωn for the n-dimensional Lebesgue measure
of the unit ball B1(0) in Rn. It can be shown that Hn is σ-additive on the Borel σ-algebra of RM and naturally
measures the n-dimensional surface area on (mildly regular) n-dimensional surfaces in RM .
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In the scalar case N = 1, where the graph of w is a hypersurface in Rn, the non-parametric
area integral takes the simpler form

S[w] =

∫
Ω

√
1 + |∇w|2 dx for w ∈W1,1(Ω)

and is connected with the non-linear PDE known as the minimal surface equation, that
is

div
∇u√

1 + |∇u|2
≡ 0 on Ω .

(4) Finally, our last model integral is the quantity

V[w] ..=

∫
Ω
|Mmin{N,n}(Dw)|dx for w ∈W1,min{N,n}(Ω,RN ) ,

(integrand F (x, y, z) = |Mmin{N,n}(z)|), whereMmin{N,n}(z)∈Rη, η ..=
(

N
min{N,n}

)(
n

min{N,n}
)
,

denotes the vector of all minors of z ∈ RN×n of the maximal order min{N,n}. The integral
can be rewritten in a different form by checking (with some multilinear algebra)

|Mmin{N,n}(z)| =


√

det(ztz) if N ≥ n
| det z| if N = n√

det(zzt) if N ≤ n
for z ∈ RN×n .

In case N ≥ n, the quantity V[w] equals, at least for injective w ∈ C1(Ω,RN ), the surface
area Hn(Imagew) of the n-dimensional surface parametrized by w and is known as the
parametric area integral. In the non-scalar two-dimensional case N ≥ 2 = n the
integral reads V[w] =

∫
Ω

√
|∂1w|2|∂2w|2−(∂1w·∂2w)2 dx for w ∈ W1,2(Ω,RN ), and in the

classical case N = 3, n = 2 it can also be expressed as T V[w] =
∫

Ω |∂1w×∂2w| dx with the
vector product × on R3.

In case N ≤ n, we have V[w] =
∫
RN
Hn−N ({w = y}) dy, at least for w ∈ C1(Ω,RN ).

Finally, in case min{N,n} = 1, that is, in both the scalar and the one-dimensional
situation, the integral V coincides with the total variation E1.

Examples (of admissible classes and side conditions/constraints for competitors). Here
we comment on typical choices of the admissible class A or, in other words on additional side
conditions which can be (reasonably) imposed on the competitors w ∈ A.

(i) The most common side conditions are certainly boundary conditions, and the most
basic one is the Dirichlet boundary condition w = ϕ on ∂Ω. In the context of Sobolev
functions on Ω, which a priori do not have well-defined pointwise values, one can give
the Dirichlet boundary condition a precise meaning by relying on Sobolev trace theory.
However, one can often get around such issues if one avoids the mentioning of the datum ϕ
as a function on ∂Ω and only expresses that the competitors share the ‘boundary values’ of
a given Sobolev function u0 on Ω. In fact, this means that one chooses — precisely as done
in connection with the Dirichlet principle — the admissible class A as a Dirichlet class

W1,p
u0

(Ω,RN ) ..= u0+W1,p
0 (Ω,RN ) = {u0+w : w ∈W1,p

0 (Ω,RN )}

in W1,p(Ω,RN ) with given fixed u0 ∈W1,p(Ω,RN ).

7



8 CHAPTER 1. Introduction

In principle, one may also work with competitors satisfying Neumann boundary conditions,
Plateau boundary conditions, or more general free boundary conditions, but the treatment
of such cases goes beyond the scope of this lecture.

(ii) Other typical conditions are holonomic side conditions, that is, equality constraints

g(x,w(x)) = 0 for x ∈ Ω

with a given function g : Ω×RN → Rk, k ∈ N. These side conditions include, as a regular
case, manifold constraints

w(x) ∈M for x ∈ Ω

with a given (n−k)-dimensional submanifold M in Rn. In the context of Sobolev functions
such conditions are usually implemented by choosing A as a subclass of W1,p(Ω,RN ) which
satisfies the conditions almost-everywhere with respect to the Lebesgue measure.

(iii) One also considers non-holonomic side conditions such as inequality constraints

g(x,w(x)) ≥ 0 for x ∈ Ω

with given g : Ω×RN → R. Typical cases are obstacle conditions

w(x) /∈ O for x ∈ Ω

and in the scalar case N = 1 also

w(x) ≥ ψ(x) for x ∈ Ω ,

where the ‘obstacle’ is an open set O ⊂ RN and a scalar function ψ : Ω → R, respectively.
In the Sobolev context also such conditions are typically imposed almost-everywhere.

(iv) A last common type of side conditions are integral constraints∫
Ω
g(x,w(x)) dx = 0 ,

with given g : Ω×RN → Rk, k ∈ N, and specifically volume constraints. For instance, in
the scalar case N = 1 one may require∫

Ω
|w(x)| dx = V ,

which means that the (n+1)-dimensional volume enclosed by Graphw and Ω×{0} coincides
with a given V ∈ [0,∞). Since they have a decisive role in the classical isoperimetric problem
(see Example (II) below), integral and volume constraints are often called isoperimetric
side conditions.

(v) Clearly one can combine the above constraints, and indeed one often imposes conditions
of either type (ii), type (iii), or type (iv) together with a Dirichlet boundary condition.

(vi) In principle, holonomic, non-holonomic, or integral side conditions may involve also the
derivative Dw and take the form of (ii), (iii), or (iv) with h(x,w(x),Dw(x)) in place of
g(x,w(x)). Such constraints are, however, much more difficult to handle and can usually be
treated only in very particular cases. Thus, we mostly dispense with Dw-dependent versions
of (ii), (iii), (iv).

8
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Examples (of basic variational problems). Now we introduce and partially discuss some
classical variational problems. Though the focus of the lecture is on a general theory in arbitrary
dimension n, at this stage we take the opportunity to mention for once some more basic problems
with geometric flavor in the one-dimensional case n = 1.

In order to give a proper description in the Sobolev framework, we recall that, in the single-
variable case, every function in W1,1((α, β),RN ) with −∞ < α < β < ∞ has a unique
representative in C0([α, β],RN ) (which in fact is even absolutely continuous). In particular, the
same is true for every w ∈W1,p((α, β),RN ) with p ∈ [1,∞]. In the sequel, we widely identify
W1,p functions with the continuous representative and always use this representative to
make sense of values in points from [α, β] or pointwise concepts. With this understanding
we introduce, for p ∈ [1,∞], y1, y2 ∈ RN , the notations

W1,p
per((α, β),RN ) ..= {w ∈W1,p((α, β),RN ) : w(β) = w(α)} ,

W1,p
y1,y2

((α, β),RN ) ..= {w ∈W1,p((α, β),RN ) : w(α) = y1 , w(β) = y2} .

(I) The planar geodesic problem is the one of finding the shortest curve which connects
two given points in the plane R2. Evidently the solution is the straight line segment
from the one point to the other, and one may view this problem as a more or less trivial one.
Nonetheless we proceed to specify two different variational settings for this problem, and we
remark that similar frameworks can serve as a basis also for more interesting variants: For
instance, one can add an obstacle (‘curves may not enter a certain region O ⊂ R2’) or pose
the problem in a non-Euclidean space instead of R2. We will partially cover such variants
later on but for the moment restrict the discussion to the plain version initially mentioned:

(a) In the first framework, curves are, as usual, images of functions w : [α, β] → R2

on a fixed interval [α, β] with −∞ < α < β < ∞, and their length is given by the
parametric length integral (case N = 2, n = 1 of the parametric area)

V[w] =

∫ β

α
|w′| dt for w ∈W1,1((α, β),R2) .

The problem of the shortest curve from y1 ∈ R2 to y2 ∈ R2 then results in the mini-
mization problem for V[w] among w ∈W1,1

y1,y2((α, β),R2) (i.e. with boundary conditions
w(α) = y1, w(β) = y2). In fact it can be shown (see the exercises):

Mini Theorem (planar geodesic problem with parametric curves). Fix α, β,
y1, y2 as above. Then, for u ∈W1,1

y1,y2((α, β),R2), it holds:

u minimizes V in W1,1
y1,y2

((α, β),R2) , i.e. V[u] ≤ V[w] for all w ∈W1,1
y1,y2

((α, β),R2)

⇐⇒

{
u is a monotone parametrization of the line segment from y1 to y2 , that is,

u(t) = (1−τ(t))y1 + τ(t)y2 for t ∈ [α, β] with non-decreasing τ ∈W1,1
0,1((α, β)) .

Since the same curve can evidently be parametrized1 in different ways, this is the
expected solution.

1The fact that only the geometric solution but not its parametrization is unique is closely connected with
the (re)parametrization invariance of the parametric length integral. This type of invariance is, in fact, a basic
difficulty in the theory of parametric variational problems.

9



10 CHAPTER 1. Introduction

(b) In the second framework, curves are graphs of functions w : [x1, x2]→ R on a fixed
interval [x1, x2] with −∞ < x1 < x2 < ∞, and their length is given by the non-
parametric length integral (case N = n = 1 of the non-parametric area)

L[w] ..=

∫ x2

x1

√
1 + (w′)2 dx for w ∈W1,1((x1, x2)) .

The minimization of L[w] among functions w ∈ W1,1
y1,y2((x1, x2)) with fixed y1, y2 ∈ R

(i.e. with boundary conditions w(x1) = y1, w(x2) = y2) then models the problem of the
shortest curve from (x1, y1) to (x2, y2), and it can be shown (see again the exercises):

Mini Theorem (planar geodesic problem with non-parametric curves). Fix
x1, x2, y1, y2 as above. Then, for u ∈W1,1

y1,y2((x1, x2)), it holds:

u minimizes L in W1,1
y1,y2

((x1, x2)) , that is, L[u] ≤ L[w] for all w ∈W1,1
y1,y2

((x1, x2))

⇐⇒ u is affine, that is, u(x) =
y2−y1

x2−x1
x+

y1x2−y2x1

x2−x1
for x ∈ [x1, x2] .

As affine functions have line segments as graphs, this is again the expected solution.

(II) The planar isoperimetric problem is the problem to establish (any of) the following
three principles for simple closed curves in R2 with the length L of such a curve and
the area A of the region enclosed by it:

(Iso1) For fixed length L, the largest possible area A is A = 1
4πL

2, with equality if and only
if the curve is a circle.

(Iso2) For fixed area A, the shortest possible length L is L =
√

4πA, with equality if and
only if the curve is a circle.

(Iso3) There holds the isoperimetric inequality A ≤ 1
4πL

2, with equality if and only if
the curve is a circle.

In fact, a bit of elementary reasoning shows that the three statements are equivalent. While
(Iso1), which fixes the perimeter of the enclosed region, is responsible for the name of the
problem, we here prefer to discuss (Iso2), which is a bit easier to access. Again we provide
two frameworks in which the principle (or slight variants thereof) can be made precise:

(a) In the parametric framework, we work once more with curves w : [α, β]→ R2 with
length given by the parametric length integral V[w]. The closedness of the curves is
taken into account by working in W1,1

per((α, β),R2), and for the enclosed oriented area
(which is, roughly speaking, positive if the curve runs counter-clockwise and negative
if it runs clockwise) one deduces, by either geometric considerations or the divergence

theorem, the formulas
∫ β
α w1w

′
2 dt = −

∫ β
α w2w

′
1 dt = 1

2

∫ β
α (w1w

′
2−w2w

′
1) dt. All in all,

the isoperimetric principle of type (Iso2) thus asks to minimize V[w] in the admissible
class

AA ..=
{
w ∈W1,1

per((α, β),R2) :
∫ β
α w1w

′
2 dt = A

}
,

and one can then prove (compare with the exercises) the claimed optimality of the
circle:

10
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Theorem (planar isoperimetric problem with parametric curves). Fix −∞ <
α < β <∞ and A ∈ R. Then, for u ∈ AA, it holds:

u minimizes V in AA , that is, V[u] ≤ V[w] for all w ∈ AA

⇐⇒

{
u is a simple parametrization of a circle Sr(y0) , r ≥ 0 , y0 ∈ R2 , that is,

u(t) = y0+r
( cos τ(t)

sin τ(t)

)
with monotone τ ∈W1,1((α, β)) , |τ(β)−τ(α)| = 2π .

We remark that in the situation of the theorem, the constraint necessarily implies
|A| = πr2, in case A > 0 with non-decreasing τ (i.e. counter-clockwise parametrization),
and in case A < 0 with non-increasing τ (i.e. clockwise parametrization).

A well-known variant of the isoperimetric problem is the Dido problem2 in which
the curves w are not required to be closed but to have both endpoints on the first-
coordinate axis, that is, to satisfy w2(β) = w2(α) = 0. In this situation, the above
integrals describe the area enclosed by the curve and the first-coordinate axis, and — in
a sense analogous to the theorem — the solutions are simply parametrized semi-circles.

(b) If we try to phrase the planar isoperimetric problem in the non-parametric frame-
work, we encounter into the obvious problem that the graph of a function w : [x1, x2]→
R cannot be a closed curve. Thus, the original isoperimetric problem cannot be treated
in this framework. However, one can consider variants which seek to minimize the non-
parametric length integral L[w] under the constraint

∫ x2

x1
w dx = A for the oriented

area enclosed between the graph of w and the x-axis. If we add boundary conditions
w(x1) = y1, w(x2) = y2 to this problem (Otherwise the only solution is the constant
A

x2−x1
, and it is less interesting.), we arrive at the minimization problem for L in the

admissible class

ÂA ..=
{
w ∈W1,1

y1,y2((x1, x2)) :
∫ x2

x1
w dx = A

}
.

For this version of the problem, one gets again the (more or less) expected answer (with
a proof treated later in the exercises):

Theorem (planar isoperimetric problem with non-parametric curves). Fix
−∞ < x1 < x2 <∞, and y1, y2, A ∈ R. Then, for u ∈ ÂA, it holds:

u minimizes L in ÂA , that is, L[u] ≤ L[w] for all w ∈ ÂA
⇐⇒ Graphu is the straight line or a circular arc from (x1, y1) to (x2, y2) in R2 .

In connection with this statement it is interesting to observe that for A too large or
too small there exists no3 line segment or circular arc from (x1, y1) to (x2, y2) which

2The Dido variant of the isoperimetric problem is connected with the saga of the founding of ancient Carthage
by Queen Dido. In short summary, the saga says that the queen was granted as much territory for the founding
of the city as she could enclose with an oxhide (the skin of an ox). She cut the oxhide into thin stripes and made
a long cord out of these. Then in order to acquire as much as possible territory adjacent to the sea — with the
coast idealized as the straight axis in the mathematical problem — she stretched out the cord in roughly the
shape of a semi-circle with endpoints on the coast, thus solving the corresponding variant of the isoperimetric
problem in our first formulation.

3In order to better understand the non-existence cases, one can think of the constraint as a constraint for
the area between a circular arc and the straight line from (x1, y1) to (x2, y2). Then, a given area 6= 0 is always
realized by a circular arc from (x1, y1) to (x2, y2) (around a center on the perpendicular bisector of the straight
line), but in case of too large or too small area the arc does not stay in [x1, x2]×R and is not representable as a
graph. Reasoning in this way one can identify the limit cases (reached if the arc gets vertical at either (x1, y1) or
(x2, y2)) and compute explicit bounds for the admissible A in terms of x1, x2, y1, y2.

11



12 CHAPTER 1. Introduction

encloses the correct area and is a graph over the x-axis. Thus, the theorem also shows
that in these cases there exists no solution of the minimization problem.

Finally, we remark that the case y2 = y1 = 0 of the theorem is, of course, related to
the Dido problem but does not describe completely the same geometric situation. The
essential difference is that in the Dido problem there are no fixed quantities comparable
to x1, x2 but rather such quantities are also optimized in such a way that the semi-
circle with radius 1

2(x2−x1) encloses the area A. This is the reason why the solutions
in the Dido problem are precisely the semi-circles, while in the last theorem we also
get more general circular arcs.

(III) The brachistochrone problem4 is the problem to determine the shape of a curve with
given endpoints (x1, y1), (x2, y2) ∈ R2 such that an idealized point mass which starts at
(x1, y1) with zero speed and then slides on the curve (under the influence of gravity and
without any friction) reaches (x2, y2) in the shortest time.

In order to set up a mathematical model for this problem, we can reasonably assume y2 ≤ y1

(since otherwise the conservation-of-energy principle implies that there is no solution) and
x1 < x2 (since x1 = x2 is covered by free vertical fall and x1 > x2 can be reduced to
x1 < x2 by reflection). It is then usual to pass directly to a non-parametric framework,
in which the relevant curves are graphs of functions w ∈ W1,1

y1,y2((x1, x2)), and derive a
model with the help of energy conservation. Indeed, if one views the first coordinate
of the position vector of the point mass as a C1 function q : [α, β] → [x1, x2] of time with
q(α) = x1, q(β) = x2 (where α < β in R), then the full position vector and the velocity

vector of a point mass sliding on Graphw are
( q
w(q)

)
and

( q′

w′(q)q′
)
, respectively, and the

scalar velocity is
√

1+w′(q)2 q′. Thus, the conservation of the sum of kinetic and potential
energy means that 1

2(1+w′(q)2)(q′)2 + gw(q) is constant on (α, β) and equals gy1 (where
g > 0 is the gravitational acceleration and the mass has already canceled out). If we add
the physically obvious assumption that q′ is positive on (α, β), then q has a continuous
inverse τ : [x1, x2] → [α, β], which is C1 with τ ′ > 0 on (x1, x2) and represents the time
as a function of the first coordinate of position vector. The conservation of energy now

means 1+(w′)2

2(τ ′)2 + gw = gy1 (and in particular w < y1) on (x1, x2). Solving this equation

for τ , we arrive at τ ′ =
√

1+(w′)2

2g(y1−w) and can finally compute the total time to slide from

(x1, y1) to (x2, y2) as τ(x2)−τ(x1) =
∫ x2

x1
τ ′(x) dx = 1√

2g

∫ x2

x1

√
1+w′(x)2

y1−w(x) dx. All in all, the

brachistochrone problem thus reduces to the minimization of the total time functional

T [w] ..=

∫ x2

x1

√
1+(w′)2

y1−w
dx among all w ∈W1,1

y1,y2
((x1, x2))

(where we understand T [w] =∞ if w ≥ y1 holds on a set of positive Lebesgue measure).

4Johann Bernoulli set out the brachistochrone problem as public problem for the mathematical community as
early as in 1696. While no solutions were received within the original time limit of six month, the mathematicians
Newton, Jakob Bernoulli (Johann’s brother), Leibniz, von Tschirnhaus, and de L’Hospital provided solutions in
the following year. It is said that Newton solved the problem, once it came to his knowledge, during a single
night and sent in the solution anonymously, but Bernoulli recognized “the lion from his claw mark”.
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The brachistochrone problem can then be solved in the following sense of the following
theorem (whose proof is omitted for the moment but will be discussed later in the exercises):

Theorem (on the brachistochrone problem). Fix x1 < x2 and y2 ≤ y1 in R. Then, for
u ∈W1,1

y1,y2((x1, x2)), it holds:

u minimizes T in W1,1
y1,y2

((x1, x2)) , that is, T [u] ≤ T [w] for all w ∈W1,1
y1,y2

((x1, x2))

⇐⇒ Graphu is a cycloidal arc with upward-pointing cusp at
( x1
y1

)
but no interior cusp.

Here a standard cycloid in R2 is the trajectory described by a point on the outer rim of
circular wheel which rolls without slipping along a straight line. The cycloids with upward-
pointing cusps at height y1, as relevant in the theorem, can actually be thought to originate
from a wheel rolling on a horizontal ceiling at height y1 (i.e. touching R×{y1} from below).
An arc of such a cycloid with cusp at the left endpoint (x1, y1) ∈ R2 and no cusp in the
interior can be parametrized as{( x1

y1

)
+R

( ϕ− sinϕ
−1+ cosϕ

)
: ϕ ∈ [0, ϕ2]

}
with radius R ∈ (0,∞) and right-endpoint parameter ϕ2 ∈ (0, 2π]. In the situation of the
theorem, R and ϕ2 are then uniquely determined by the requirements x2 = x1+R(ϕ2− sinϕ2),
y2 = y1+R(−1+ cosϕ2) for the right endpoint (x2, y2). We remark that (x2, y2) can be
reached with slope ≤ 0 (in which case it is the lowest point of the curve) but can also be
reached with slope > 0 (in which case the lowest point was before) and can even be reached
with slope +∞ (in which case it is a second cusp). The last-mentioned alternative occurs if
and only if y2 equals y1 (and, as one should expect, the arc is then symmetric with respect
to the line {x1+x2

2 }×R).

13
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Chapter 2

Existence of minimizers
(via the direct method)

In the remainder of these notes, whenever nothing else is said, we consider two
arbitrary numbers n,N ∈ N as given and fixed.

2.1 The direct method

An important issue in the calculus of variations — just as in finite-dimensional calculus — is
the proof that minima or maxima exist at all. In the early days of the discipline the necessity
of such proofs has not always been recognized, and indeed it became generally accepted only in
the 19th century when striking examples for the non-existence of minima were found and the
need for a more solid foundation of the theory became apparent. In this lecture we postpone
the discussion of such examples to a later point but rather concentrate — for the moment —
on the most common method for proving existence of extrema. This method, known as the
direct method in the calculus of variations, is based on the same basic arguments which
are commonly used to prove the extreme value theorem in finite-dimensional calculus, and it
requires certain abstract compactness and semicontinuity properties as its two main
ingredients.

To fix ideas, we return to a (very) general functional F and focus on the existence problem
for its minimizers (always keeping in mind that maximizers can be treated analogously). In this
setting the following theorem summarizes the core principle of the direct method:

Theorem (abstract existence theorem for minimizers). Consider a Hausdorff topological
space A 6= ∅ and a function F : A → R.

(I) Topological statement : If

(a) the sublevel sets {w ∈ A : F [w] ≤ s} with s ∈ R are relatively compact in A

and

(b) the functional F is lower semicontinuous on A,

then there exists some u ∈ A such that F [u] ≤ F [w] for all w ∈ A.

15



16 CHAPTER 2. Existence of minimizers (via the direct method)

(II) Sequential statement : If

(a) every sequence (wk)k∈N in A with supk∈NF [wk] < ∞ has a subsequence
converging to a limit in A (what can be taken as a definition of {w ∈ A : F [w] ≤ s}
with s ∈ R being relatively sequentially compact in A)

and

(b) the functional F is sequentially lower semicontinuous on A,

then there exists some u ∈ A such that F [u] ≤ F [w] for all w ∈ A.

Remarks (on the abstract existence theorem and its assumptions).

(1) The verification of the abstract assumptions (Ia), (Ib) or (IIa), (IIb) for more concrete
functionals F requires theory in its own right and will be addressed at length in the
subsequent sections.

(2) One often requires in the definition of a minimizer u ∈ A that it satisfies, in addition to
F [u] ≤ F [w] for all w ∈ A, also F [u] < ∞. Clearly, the last condition is at hand in the
existence result as soon as some v ∈ A with F [v] < ∞ exists at all and thereby the trivial
case F ≡ ∞ on A is excluded. This is the reason why F 6≡ ∞ is sometimes added as a
third assumption in statements of the above type.

(3) The compactness requirements (Ia), (IIa)1 are trivially satisfied for (sequentially) com-
pact A (what however is usually not at hand) and otherwise compensate for the lack of
compactness of A by requiring that F tends to +∞ ‘away from all compacts’2. For inte-
gral functionals the compactness requirements will eventually be obtained from com-
pactness results in Sobolev spaces together with growth assumptions on the
integrand F .

(4) The decisive semicontinuity requirements (Ib), (IIb) mean by very definition that the
sublevel sets F−1([−∞, s]) = {w ∈ A : F [w] ≤ s} with s ∈ R are (sequentially) closed in
A. An equivalent characterization is that the supergraph {(w, s) ∈ A×R : F [w] ≤ s} of
F is (sequentially) closed in A×R with the product topology, and the sequential notion is
also characterized by the inequality F [w] ≤ lim infk→∞F [wk] for every convergent sequence
(wk)k∈N in A with limit w ∈ A. For integral functionals F (with suitable assumptions on the
integrand F ), the verification of the semicontinuity requirements is the main concern
of the present chapter and will be discussed at length.

(5) For metric spaces or at least metrizable topologies, the topological and sequential notions
fully coincide. For general topologies, closedness still implies sequential closedness and

1We briefly recall the background definitions: Compactness of a set means that every open cover of the set
contains a finite subcover of the set, and relative compactness of a set in A means that its closure in A is compact.
Sequential compactness of a set means that every sequence in the set contains a subsequence convergent to a limit
in the set, while in general topologies it may be debatable what is the right definition of relative sequential
compactness.

2The relevant behavior of F can also be expressed in the one-point compactification A ∪̇ {ωA} of A, where
(Ia) means limA3w→ωA F [w] = +∞ and (IIa) means limk→∞ F [wk] = +∞ for all sequences (wk)k∈N in A with
limk→∞ wk = ωA.
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2.1. The direct method 17

semicontinuity implies sequential semicontinuity, but not vice versa3. Moreover, there is
no universal relationship between compactness and sequential compactness. All in all, one
often prefers to use the sequential notions, since the setting with sequences is slightly
less abstract and sequential semicontinuity is sometimes easier to obtain.

We now implement the core reasoning of the direct method and prove the statements in the
above existence theorem

Proof of (I) by topological implementation of the direct method. In case F ≡ ∞, every
competitor is a minimizer. Thus, we can assume M ..= infAF < ∞. Then, by definition of
the infimum, all sublevel sets {w ∈ A : F [w] ≤ s} with s ∈ (M,∞) are non-empty. Moreover,
since s ≤ s̃ implies {w ∈ A : F [w] ≤ s} ⊂ {w ∈ A : F [w] ≤ s̃}, also finite intersections of
these sets are non-empty. Most importantly, by (Ia) and (Ib), the sublevel sets are closed and
relatively compact in A, thus indeed compact in A. All in all, with Cantor’s intersection
theorem4 we conclude that {w ∈ A : F [w] ≤ M} =

⋂
s∈(M,∞){w ∈ A : F [w] ≤ s} is still

non-empty and contains some u ∈ A. This, however, means F [u] ≤ infAF <∞. So, u is indeed
a minimizer.

Proof of (II) by implementation of the direct method with sequences. We assume once
more M ..= infAF <∞. Then the definition of the infimum yields a ‘minimizing sequence’
(uk)k∈N in A with limk→∞F [uk] = M . In particular, this means supk≥k0

F [uk] < ∞ for
sufficiently large k0, and (IIa) implies the existence of a subsequence (uk`)`∈N which converges
to some u ∈ A. By (IIb) we then get

F [u] ≤ lim inf
`→∞

F [uk` ] = lim
k→∞

F [uk] = M .

This means F [u] ≤ infAF <∞, and thus u is a minimizer.

Remark (on suitable topologies for the direct method). In practical applications of
the abstract existence theorem, one has the freedom to choose the topology on the
admissible class A, and choosing a suitable one is absolutely crucial. Indeed, one has to
cope with opposing requirements, since for (Ia), (IIa) to be satisfied the topology should be
rather coarse/weak (few open and closed sets, many convergent sequences), while for (Ib), (IIb)
it should be fine/strong (many open and closed sets, few convergent sequences). It turns out
that the norm topology on subsets A of an∞-dimensional normed space is too strong,
since, in this topology, compact sets need to be totally bounded5 and stay in ε-neighborhoods of

3Indeed, the following pathological example shows that sequential closedness does not imply closedness in
general. Consider the space A = (N×N) ∪̇ {ω} equipped with the Hausdorff topology in which all point of N×N
are isolated and the open neighborhoods of ω are all sets of the form A\

⋃
i∈N

(
{i}×Si

)
with Si ⊂ N and all but

finitely many Si finite. Then N×N is sequentially closed in A (since every sequence in N×N has a subsequence
in some

⋃∞
i=1

(
{i}×Si

)
with Si as before) but obviously not closed in A. As a consequence, the characteristic

function 1{ω} is sequentially lower semicontinuous but not lower semicontinuous on A.
4Cantor’s intersection theorem is the following statement (which is dual to the covering definition of com-

pactness and easy to deduce from this definition): Consider a family (Ki)i∈I of compact sets in a Hausdorff
topological space with arbitrary index set I. If

⋂
i∈J Ki 6= ∅ holds for every finite subset J of I, then one also has⋂

i∈I Ki 6= ∅.
5A set in a metric space is said to be totally bounded if, for every ε > 0, the set can be covered by finitely many

balls with radii smaller than ε. The significance of this notion lies in the fact (which generalizes the Heine-Borel
theorem) that a set in a metric space is compact if and only if it is complete and totally bounded.
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18 CHAPTER 2. Existence of minimizers (via the direct method)

finite-dimensional subspaces, while balls and all sets with non-empty interior cannot be compact.
Rather the right topology to choose is usually the weak topology (and sometimes the
weak∗ topology) of a normed space, since this topology comes with good compactness
properties (without being too weak to be meaningful).

(By the way, the necessity to work with the weak topology also motivates the formulation
of the above existence theorem in Hausdorff topological spaces rather than merely metric ones.
Indeed, since the weak topology of an ∞-dimensional normed space is Hausdorff and on norm-
bounded sets also metrizable, but non-metrizable on the whole space, a metric-space version
would not be general enough — at least if one aims at applying the theorem without any further
ado.)

In the sequel we come back to integral functionals F and aim at verifying the hypotheses of
the abstract existence theorem for them. We start with the semicontinuity requirement, which
we deal with in the next section.

2.2 Weak lower semicontinuity

We first recall that in every normed space X , the Hahn-Banach theorem implies that closed
balls {x ∈ X : ‖x‖X ≤ s} are also weakly closed and thus the norm ‖ · ‖X : X → [0,∞)
is lower semicontinuous with respect to the weak topology on X . Since semicon-
tinuity generally implies the corresponding sequential semicontinuity, the norm is then also
sequentially weakly lower semicontinuous, that is, weak convergence xk −⇁

k→∞
x in X implies

‖x‖X ≤ lim infk→∞ ‖xk‖X .
From this general fact, one can directly read off weak lower semicontinuity in simple cases.

For instance, for open Ω ⊂ Rn and p ∈ [1,∞), one gets the sequential weak lower semicontinuity
properties

wk −⇁
k→∞

w weakly in Lp(Ω,RN ) =⇒
∫

Ω
|w|p dx ≤ lim inf

k→∞

∫
Ω
|wk|p dx ,

wk −⇁
k→∞

w weakly in W1,p(Ω,RN ) =⇒ Ep[w] ≤ lim inf
k→∞

Ep[wk]

with the p-energy Ep introduced earlier.

However, here we aim at a theory which includes more general functionals. We start with:

Terminology (measures, measurability, standard σ-algebras). By a measure, a measurable set
or function, and the a.e.-‘quantor’ with no measure specified we usually mean the Lebesgue

Weak topology. The weak topology of a normed space X is the coarsest/weakest topology on X in which all
elements of X ∗ are continuous. In other words, sets of the form {y ∈ X : |〈x∗k ; y−x〉| < ε for k = 1, 2, . . . , `} with
` ∈ N, x∗1, x

∗
2, . . . , x

∗
` ∈ X ∗, ε > 0 are weakly open basis neighborhoods of a point x ∈ X , and every weakly open

set in X is a union of such sets.

Weak convergence. The convergence of a sequence (xk)k∈N in a normed space X to a limit x ∈ X in the weak
topology of X means limk→∞〈x∗;xk〉 = 〈x∗;x〉 for all x∗ ∈ X ∗. It is expressed by writing xk ⇁ x weakly in X .

Weak convergence in Lp and W1,p. Consider a measurable Ω ⊂ Rn and p ∈ [1,∞). Weak convergence

wk ⇁ w in Lp(Ω,RN ) is characterized by limk→∞
∫

Ω
wk · v dx =

∫
Ω
w · v dx for all v ∈ Lp

′
(Ω,RN ), where

p′ ..= p
p−1
∈ (1,∞] is the conjugate exponent to p. Weak convergence wk ⇁ w in W1,p(Ω,RN ) is equivalent to

the weak convergences wk ⇁ w and ∂iwk ⇁ ∂iw in Lp(Ω,RN ) for all i ∈ {1, 2, . . . , n}.
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2.2. Weak lower semicontinuity 19

measure, a Lebesgue measurable set or function, and the Lebesgue-a.e.-‘quantor’, respectively.
We sometimes write |Ω| for the Lebesgue measure of a measurable set Ω ⊂ Rn. We denote by
Mn the σ-algebra of measurable subsets of Rn and by B(A) the Borel-σ-algebra of a topological
space A. Finally, we write S1⊗S2 for the product-σ-algebra of σ-algebras S1 and S2 (which is
the σ-algebra generated by Cartesian products S1×S2 with S1 ∈ S1 and S2 ∈ S2).

Proposition (strong lower semicontinuity). Consider an open subset Ω of Rn and an
Mn⊗B(RN )-measurable function G : Ω×RN → [0,∞] such that G(x, · ) : RN → [0,∞] is lower
semicontinuous on RN for a.e. x ∈ Ω. Then the functional G : L1(Ω,RN )→ [0,∞], defined by

G[w] ..=

∫
Ω
G( · , w) dx for w ∈ L1(Ω,RN ) ,

is lower semicontinuous on L1(Ω,RN ) with its norm topology.

Remarks.

(1) The proposition does not provide weak lower semicontinuity, which — as explained
before — is the property we really aim at, but only strong lower semicontinuity. Still
it will turn out to be a useful preliminary result.

(2) The functional G can also be defined, by the same formula, on L1
loc(Ω,R

N ) and is then lower
semicontinuous with respect to L1

loc-convergence. This can be shown easily by exhausting Ω

with open Ω̃ b Ω and applying the proposition on the Ω̃.

In view of Hölder’s inequality, G can also be regarded, for every p ∈ [1,∞], as a functional
on the subspace Lp(loc)(Ω,R

N ) of L1
loc(Ω,R

N ) and is there lower semicontinuous with respect

to Lp(loc)-convergence.

Analogous extensions can be formulated for many subsequent results but from
now on will not be explicitly mentioned in most cases.

(3) TheMn⊗B(RN )-measurability of G is required in order to guarantee that the composition
G( · , w) : Ω → [0,∞] remains measurable for measurable w : Ω → RN . (Indeed, in order
to understand this assumption, recall that a measurable w maps, by definition, measurably
from (Ω,Mn) to (RN ,B(RN )). Consequently, ( · , w) maps measurably from (Ω,Mn) to
(Ω×RN ,Mn⊗B(RN )) and fits together with the Mn⊗B(RN )-measurable G.)

Proof of the proposition. Consider a strongly convergent sequence wk −→
k→∞

w in L1(Ω,RN ). For

a suitable subsequence, we have lim`→∞ G[wk` ] = lim infk→∞ G[wk] ∈ [0,∞], and by a standard
result on Lp-convergent sequences, for a further subsequence, we get wk`m −→

m→∞
w a.e. on Ω.

With the lower semicontinuity assumption on the integrand G, we infer

G( · , w) ≤ lim inf
m→∞

G( · , wk`m ) a.e. on Ω .

By the previous choices and Fatou’s lemma (which relies on the non-negativity ofG), we conclude

G[w] =

∫
Ω
G( · , w) dx ≤ lim inf

m→∞

∫
Ω
G
(
· , wk`m

)
dx = lim

m→∞
G
[
wk`m

]
= lim inf

k→∞
G[wk] .

This proves (sequential) lower semicontinuity of G on L1(Ω,RN ), where ‘sequential’ can also be
omitted, since we are dealing as yet with the norm topology.
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Before coming to more relevant semicontinuity results, we introduce and discuss a technically
convenient standard class of integrands:

Definition (Carathéodory functions). A function G : Ω×RN → Z with measurable Ω ⊂ Rn
and a metric space Z is called a Carathéodory function or a Carathéodory integrand if,
for a.e. x ∈ Ω, the function G(x, · ) : RN → Z is continuous on RN and, for every y ∈ RN , the
function G( · , y) : Ω→ Z is measurable.

Roughly speaking, the definition means that a Carathéodory function of (x, y) ∈ Ω×RN is
measurable in x ∈ Ω and continuous in y ∈ RN . In order to contextualize and prove a
convenient property of Carathéodory functions we next recall two results from general measure
theory, which we here state for the Lebesgue measure only:

• Lusin’s theorem: Consider an open Ω ⊂ Rn with |Ω| < ∞, a metric space Z, and a
measurable function f : Ω→ Z. Then, for every ε > 0, there exists a compact A ⊂ Ω with
|Ω \A| < ε such that f A is continuous.

• Egoroff’s theorem: Consider a measurable Ω ⊂ Rn with |Ω| < ∞, a metric space Z,
and measurable functions fk, f : Ω → Z such that fk −→

k→∞
f a.e. on Ω. Then, for every

ε > 0, there exists a compact B ⊂ Ω with |Ω \B| < ε such that fk −→
k→∞

f uniformly on B.

In fact, a Lusin-type statement applies also for Carathéodory functions:

Lemma (Scorza-Dragoni lemma). Consider an open Ω ⊂ Rn with |Ω| <∞, a metric space
Z, and a Carathéodory function G : Ω×RN → Z. Then, for every ε > 0, there exists a compact
A ⊂ Ω with |Ω \A| < ε such that G A×RN is continuous.

Remarks.

(1) Lusin’s theorem and the Scorza-Dragoni lemma extend to the case |Ω| =∞, in which A ⊂ Ω
can, however, be taken just closed in Rn not compact. This can be shown by applying the
preceding statements on Ω∩ (Bk(0) \Bk−1(0)), k ∈ N, and taking the union of the resulting
compacts.

For Egoroff’s theorem, in contrast, the requirement |Ω| <∞ cannot be dropped.

(2) The Scorza-Dragoni lemma implies that Carathéodory integrands G : Ω×RN → Z are
Mn⊗B(RN)-measurable, and this then ensures that G( · , w) : Ω → Z stays measurable
for all measurable w : Ω→ RN .

Proof of the Mn⊗B(RN )-measurability. By applying the lemma for ε = 1, 1
2 ,

1
3 , . . ., we find

compact (or, in case |Ω| =∞, at least closed) Ak ⊂ Ω with limk→∞ |Ω \ Ak| = 0 such that
G Ak×RN is continuous for all k ∈ N. We write Gk for a function which coincides with G

on Ak×RN and is elsewhere constant with an arbitrary value, and we observe that Gk is
even B(Rn)⊗B(RN )-measurable. Possibly replacing Ak with

⋃k
j=1Aj , we now additionally

assume A1 ⊂ A2 ⊂ A3 ⊂ . . .. Then we have G = limk→∞Gk on
(⋃∞

j=1Aj
)
×RN , and

in view of |Ω \
⋃∞
j=1Aj | = 0 the B(Rn)⊗B(RN )-measurability of Gk implies Mn⊗B(RN )-

measurability of G.
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2.2. Weak lower semicontinuity 21

(3) The Scorza-Dragoni lemma and Lusin’s and Egoroff’s theorems all apply in the case of
the target space Z = R, since the topology of R can be metrized (for instance by setting
dR(x, y) ..= |arctan y − arctanx| with the understanding arctan(±∞) ..= ±π

2 ).

Proof of the Scorza-Dragoni lemma. For the moment, we fix ε > 0 and M ∈ N. For every
k ∈ N, by setting

δk(x) ..= sup

{
d(G(x, y), G(x, ỹ)) : y, ỹ ∈ BM (0) , |ỹ−y| < 1

k

}
for x ∈ Ω

(where BM (0) stands for the ball with radius M and center 0 in RN and d = dZ denotes
the metric of Z) we obtain a measurable6 function δk : Ω → [0,∞]. Since the Carathéodory
property gives uniform continuity of G(x, · )

BM (0)
for a.e. x ∈ Ω, we infer limk→∞ δk = 0 a.e. on

Ω. Egoroff’s theorem then yields a compact B ⊂ Ω with |Ω \B| < ε
2 such that the convergence

limk→∞ δk = 0 is uniform on B. Next we choose a countable dense subset D = {ỹi : i ∈ N}
of BM (0), and from Lusin’s theorem we obtain, for every i ∈ N, a compact Ai ⊂ Ω with
|Ω \ Ai| < 2−i−1ε such that G( · , ỹi) Ai

is continuous. Consequently, for Ã ..= B ∩
⋂∞
i=1Ai, we

get |Ω \ Ã| < ε, and we now aim at showing that

G
Ã×BM (0)

is continuous. (∗)

In order to verify (∗) we consider a convergent sequence (xk, yk) −→
k→∞

(x, y) in Ã×BM (0) and

an arbitrary γ > 0. In view of the uniform convergence of δk on B ⊃ Ã, we can fix k0 ∈ N with
δk0 ≤ γ on Ã and in the next step then ỹ ∈ D with |ỹ−y| < 1

k0
. For all sufficiently large k we

have |yk−y| < 1
k0

and, thanks to continuity of G( · , ỹ)
Ã

, also d(G(xk, ỹ), G(x, ỹ)) < γ. Putting
together all these choices, we end up with the estimate

d(G(xk, yk), G(x, y))

≤ d(G(xk, yk), G(xk, y)) + d(G(xk, y), G(xk, ỹ)) + d(G(xk, ỹ), G(x, ỹ)) + d(G(x, ỹ), G(x, y))

< 2δk0(xk) + γ + δk0(x) ≤ 4γ .

Since γ > 0 is arbitrary, this means limk→∞G(xk, yk) = G(x, y) and establishes the continuity
claim (∗).

To obtain the full claim of the lemma, we consider only ε > 0 (but no longer M) as fixed. The
previous reasoning can then be applied to obtain, for every M ∈ N, a compact set Ã(M) ⊂ Ω
with

∣∣Ω\Ã(M)
∣∣ < 2−Mε such thatG

Ã(M)×BM (0)
is continuous. It follows that A ..=

⋂∞
M=1 Ã(M)

is still compact with |Ω \A| < ε and that G A×RN is continuous. This finishes the proof.

At this stage we return to the main semicontinuity question and provide the first truly useful
semicontinuity result:

6In order to establish measurability of δk, observe that the continuity of G(x, · ) for a.e. x ∈ Ω together with
the continuity of the metric d yields δk(x) = sup

{
d(G(x, y), G(x, ỹ)) : y, ỹ ∈ QN ∩ BM (0) , |ỹ−y| < 1

k

}
for a.e.

x ∈ Ω. Thus, δk coincides a.e. with a countable supremum of measurable functions and inherits measurability.
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22 CHAPTER 2. Existence of minimizers (via the direct method)

Theorem (weak lower semicontinuity of convex zero-order functionals). Consider an
open Ω ⊂ Rn and a Carathéodory function G : Ω×RN → [0,∞] such that G(x, · ) : RN → [0,∞]
is convex on RN for a.e. x ∈ Ω. Then the functional G : L1(Ω,RN )→ [0,∞], defined by

G[w] ..=

∫
Ω
G( · , w) dx for w ∈ L1(Ω,RN ) ,

is lower semicontinuous on L1(Ω,RN ) with the weak topology.

The proof of this theorem rests on the following functional analysis principle:

Lemma (Mazur lemma, topological version). Every closed convex set A in a normed space
X is even weakly closed in X .

Specifically, the lemma shows that every closed subspace in a normed space X is even
weakly closed in X .

Proof of the lemma. For x0 ∈ X \A, the Hahn-Banach theorem in the separation version yields
an x∗ ∈ X ∗ and an s ∈ R such that 〈x∗ ;x0〉 < s ≤ 〈x∗ ; a〉 for all a ∈ A. This means
x0 ∈ {x ∈ X : 〈x∗ ;x〉 < s} ⊂ X \ A, and thus the weakly open set {x ∈ X : 〈x∗ ;x〉 < s} is in
fact a weakly open neighborhood of x0 in X \A. Consequently, X \A is weakly open in X , and
A is weakly closed in X .

Proof of the theorem. By the earlier proposition on strong lower semicontinuity, we know that
G is lower semicontinuous on L1(Ω,RN ), and by Remark (4) in Section 2.1 this means that
the supergraph SG ..= {(w, s) ∈ L1(Ω,RN ) × R : G[w] ≤ s} of G is closed in L1(Ω,RN ) × R.
In addition, we find7 that the functional G is convex on L1(Ω,RN ), and this means that the
supergraph SG is also convex. By a decisive application of the Mazur lemma, the closed convex
set SG in L1(Ω,RN )×R is then even weakly closed. Relying on Remark (4) in Section 2.1 once
more, we obtain that G is weakly lower semicontinuous.

We also mention a sequential version of the lemma, which leads to similar conclusions:

Lemma (Mazur lemma, sequential version). If a sequence (x`)`∈N converges weakly in a
normed space X to a limit x, then for every k ∈ N there exist an upper bound m(k) ∈ N≥k and

coefficients λk,k, λk,k+1, . . . , λk,m(k)−1, λk,m(k) ∈ [0, 1] with
∑m(k)

`=k λk,` = 1 such that the sequence

(yk)k∈N of the convex combinations yk ..=
∑m(k)

`=k λk,`x` converges strongly in X to x.

Proof. For every k ∈ N, the set

Ak ..=

{ m∑
`=k

λ`x` : m ∈ N≥k , λk, λk+1, . . . , λm ∈ [0, 1] ,
m∑
`=k

λ` = 1

}
,

(that is, the convex hull of the end-piece {x` : ` ∈ N≥k} of (x`)`∈N) is easily seen to be convex.
Therefore, the closure Ak (that is, the closed convex hull) is closed and convex in X and by the
first version of Mazur’s lemma also weakly closed in X . In view of {x` : ` ∈ N≥k} ⊂ Ak ⊂ Ak, it
follows that also the weak limit x is in Ak. By definition of the closure, this implies the existence
of some yk ∈ Ak with ‖yk−x‖X < 1

k , and the sequence (yk)k∈N satisfies the claim.
7For w, w̃ ∈ L1(Ω,RN ) and λ ∈ [0, 1], the convexity assumption on the integrand G gives G( · , λw+(1−λ)w̃) ≤

λG( · , w)+(1−λ)G( · , w̃) a.e. on Ω, which then implies G[λw+(1−λ)w̃] ≤ λG[w]+(1−λ)G[w̃] and thus convexity of
the functional G. For (w, s), (w̃, s̃) ∈ SG and λ ∈ [0, 1], we infer G[λw+(1−λ)w̃] ≤ λG[w]+(1−λ)G[w̃] ≤ λs+(1−λ)s̃
and thus λ(w, s)+(1−λ)(w̃, s̃) = (λw+(1−λ)w̃, λs+(1−λ)s̃) ∈ SG , which proves the claimed convexity of SG .
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2.2. Weak lower semicontinuity 23

Remark. The sequential version of the Mazur lemma can be equivalently recast8 by saying
that every closed convex set A in a normed space X is also sequentially weakly closed in
X and thus turns out to be a slightly weaker variant of the earlier topological statement.

The sequential version of the Mazur lemma can be applied to prove a version of the last the-
orem with exactly the same assumptions but merely sequential weak lower semicontinuity
on L1(Ω,RN ) as the slightly weaker outcome. We emphasize that this slightly weaker version
is fully sufficient in connection with the direct method and leads to the same existence
theory for minimizers. We now give the alternative proof.

Alternative proof of the theorem with merely sequential weak lower semicontinuity as outcome.
We consider a weakly convergent sequence

wj −⇁
j→∞

w weakly in L1(Ω,RN ) .

By definition of lim inf, we have lim`→∞ G[wj` ] = lim infj→∞ G[wj ] ∈ [0,∞] for a suitable
subsequence. By the sequential Mazur lemma, we find m(k) ∈ N≥k and λk,` ∈ [0, 1] with∑m(k)

`=k λk,` = 1 such that

m(k)∑
`=k

λk,`wj` −→
k→∞

w strongly in L1(Ω,RN ) .

With the proposition on strong lower semicontinuity and the convexity of the functional G, we
then estimate

G[w] ≤ lim inf
k→∞

G

[
m(k)∑
`=k

λk,`wj`

]
≤ lim inf

k→∞

m(k)∑
`=k

λk,`G
[
wj`
]

≤ lim inf
k→∞

sup
`∈N≥k

G
[
wj`
]

= lim
`→∞

G
[
wj`
]

= lim inf
j→∞

G[wj ] .

This proves sequential weak lower semicontinuity of G on L1(Ω,RN ).

Our true aim in this lecture in the treatment of first-order functionals. For these, we directly
infer from the previous zero-order theorem:

Corollary (weak lower semicontinuity of convex 1st-order functionals). Consider an
open subset Ω of Rn and a Carathéodory9 function F : Ω×RN×RN×n → [0,∞] such that
F (x, · , · ) : RN×RN×n → [0,∞] is convex on RN×RN×n for a.e. x ∈ Ω. Then the functional
F : W1,1(Ω,RN )→ [0,∞], defined by

F [w] ..=

∫
Ω
F ( · , w,Dw) dx for w ∈W1,1(Ω,RN ) ,

is lower semicontinuous on W1,1(Ω,RN ) with the weak topology.
8Indeed, the sequential weak closedness of closed convex sets implies the sequential Mazur lemma by the

reasoning in the proof of the lemma, where sequential weak closedness of Ak suffices. Conversely, the sequential
Mazur lemma implies the sequential weak closedness of closed convex sets as follows: Consider a closed convex A
and a sequence (x`)`∈N in A which converges weakly in X to x. Then, the sequence (yk)k∈N of convex combinations
from the lemma remains in the convex A, and, by closedness of A, the strong limit x of (yk)k∈N is still in A.
Thus, A is sequentially weakly closed.

9Here we understand the Carathéodory property the way that, for a.e. x ∈ Ω, the function F (x, · , · ) is
continuous on RN×RN×n and, for all (y, z) ∈ RN×RN×n, the function F ( · , y, z) is measurable. In the sequel a
similar understanding goes without saying.
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24 CHAPTER 2. Existence of minimizers (via the direct method)

Proof. We abbreviate L1 ..= L1(Ω,RN )×L1(Ω,RN×n), W1,1 ..= W1,1(Ω,RN ) and write F = G◦J
as composition of the zero-order functional G : L1 → [0,∞], given by G[w,w] ..=

∫
Ω F ( · , w, w) dx,

and the continuous linear mapping J : W1,1 → L1, given by Jw ..= (w,Dw). Since L1 can be
identified with L1(Ω,RN+Nn), the last theorem gives weak lower semicontinuity of G, that is,
weak closedness of G−1([−∞, s]) in L1 for all s ∈ R. Moreover, the continuous linear J is also
weak-weak continuous10, that is, continuous with respect to the weak topology on both W1,1

and L1. Thus, we conclude that F−1([−∞, s]) = J−1(G−1([−∞, s])) is weakly closed in W1,1

for all s ∈ R, which means that F is weakly lower semicontinuous.

Remark. The preceding weak lower semicontinuity results for integral functionals G and F of
order zero and one, respectively, involve convexity assumptions for the integrands G and F . In
fact, it has been crucial that these assumptions are strong enough to guarantee convexity of
G and F as functionals. Next we will show — as it seems reasonable in view of the initial
strong lower semicontinuity statement — that convexity in lower-order variables (and
more generally in variables of strong convergence) can actually be dropped. Since
in such cases the functionals as a whole are no longer convex, this cannot be proved with the
Mazur lemma alone, but rather it will require additional estimates.

Theorem (weak-strong lower semicontinuity). Consider an open subset Ω of Rn and a

Carathéodory function G : Ω×RN×RÑ → [0,∞] such that G(x, y, · ) : RÑ → [0,∞] is convex on

RÑ for all (x, y) ∈ (Ω \ E)×RN with a null set E ⊂ Ω. Then the functional G : L1(Ω,RN ) ×
L1(Ω,RÑ )→ [0,∞], defined by

G[w, w̃] ..=

∫
Ω
G( · , w, w̃) dx for w ∈ L1(Ω,RN ) , w̃ ∈ L1(Ω,RÑ ) ,

is sequentially lower semicontinuous on L1(Ω,RN )× L1(Ω,RÑ ) with the strong topology on

the first factor L1(Ω,RN ) and the weak topology on the second factor L1(Ω,RÑ ).

Proof. Exhausting Ω, if necessary, with open Ω̃ b Ω, we can assume |Ω| < ∞. We consider
convergent sequences

wk −→
k→∞

w strongly in L1(Ω,RN ) , w̃k −→
k→∞

w̃ weakly in L1(Ω,RÑ )

with lim infk→∞ G[wk, w̃k] < ∞. We pass to a subsequence such that lim`→∞ G[wk` , w̃k` ] =
lim infk→∞ G[wk, w̃k] and sup`∈N G[wk` , w̃k` ] <∞. We now claim:

For every ε > 0 there is an ` ∈ N and a measurable A ⊂ Ω with |Ω \A| < ε such that

|G( · , wk` , w̃k`)−G( · , w, w̃k`)| < ε on A .
(∗∗)

In order to verify (∗∗), we fix ε > 0 and construct the set A in four steps. In a preliminary step
(which is needed only if G takes the value ∞) we fix L ∈ N large enough that

Ã0,`
..= {x ∈ Ω : G(x,wk`(x), w̃k`(x)) < L}

10To see that J is weak-weak continuous, one first observes that J−1({x∗ < s}) = {x∗ ◦ J < s} is weakly open
in W1,1 for all x∗ ∈ (L1)

∗
and s ∈ R (since x∗ ◦ J ∈ (W1,1)

∗
). Since weakly open sets in (L1)

∗
can be written as

unions of finite intersections of sets of form {x∗ < s} and preimage commutes with both union and intersection,
one can conclude that J−1(O) is weakly open for all weakly open O. This is the claimed continuity
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2.2. Weak lower semicontinuity 25

satisfies |Ω \ Ã0,`| < ε
4 for all ` ∈ N. Indeed, choosing a single L, which works for all `, is

possible here, since |{x ∈ Ω : G(x,wk`(x), w̃k`(x)) ≥ L}| ≤ 1
LG[wk` , w̃k` ] converges for L → ∞

uniformly in ` ∈ N to 0 by the initial choice of a subsequence. In the next step, we infer from
the Scorza-Dragoni lemma the existence of a compact set Ã1 ⊂ Ω with

∣∣Ω \ Ã1

∣∣ < ε
4 such that

G
Ã1×RN×RÑ

is continuous. In a further step we fix M ∈ N large enough that

Ã2,`
..= {x ∈ Ω : |w̃k`(x)| < M , |wk`(x)| < M , |w(x)| < M}

satisfies
∣∣Ω\Ã2,`

∣∣ < ε
4 for all ` ∈ N. Again, choosing a single M , which works for all `, is possible

here, but now this results from the observation that |{x ∈ Ω : |w̃k`(x)| ≥ M}| ≤ 1
M ‖w̃k`‖1;Ω

converges for M → ∞ uniformly in ` ∈ N to 0 thanks to the boundedness of the weakly
convergent sequence (w̃k)k∈N and from an analogous treatment of |{x ∈ Ω : |wk`(x)| ≥M}| and
|{x ∈ Ω : |w(x)| ≥ M}|. As a preparation for the last step we exploit uniform continuity of G

on the compact set {(x, y, ỹ) ∈ Ã1×RN×RÑ : |ỹ| ≤ M , |y| ≤ M} to fix δ > 0 such that we
have the implication

x ∈ Ã1 , |ỹ| < M , |y| < M , |y′| < M ,

G(x, y, ỹ) < L , |y−y′| < δ

}
=⇒ |G(x, y, ỹ)−G(x, y′, ỹ)| < ε

(where the L-bound ensures that the values of G stay away from ∞ and their distance can be
measured in the usual Euclidean way). Then, observing that |{x ∈ Ω : |wk`(x)−w(x)| ≥ δ}| ≤
1
δ‖wk`−w‖1;Ω tends for ` → ∞ to 0 by strong convergence, we finally fix ` ∈ N large enough
that

Ã3,`
..= {x ∈ Ω : |wk`(x)−w(x)| < δ}

satisfies
∣∣Ω \ Ã3,`

∣∣ < ε
4 . With these choices and the ` fixed in the last step, we introduce

A ..= Ã0,` ∩ Ã1 ∩ Ã2,` ∩ Ã3,`

and observe |Ω \ A| < ε. Moreover, for x ∈ A the construction ensures x ∈ Ã1, |w̃k`(x)| < M ,
|wk`(x)| < M , |w(x)| < M , G(x,wk`(x), w̃k`(x)) < L, |wk`(x)−w(x)| < δ, and the choice of δ
then gives |G(x,wk`(x), w̃k`(x))−G(x,w(x), w̃k`(x))| < ε. Thus, we have verified the claim (∗∗).

Starting again from an arbitrary ε > 0, we next apply (∗∗) iteratively to find `1 < `2 < . . .
in N and measurable A1, A2, . . . ⊂ Ω such that, for every m ∈ N, we have |Ω \ Am| < 2−mε
and

∣∣G( · , wk`m , w̃k`m)−G( · , w, w̃k`m)∣∣ < 2−mε on Am. Introducing B ..=
⋂∞
m=1Am, we record

|Ω \B| < ε and limm→∞
[
G
(
· , wk`m , w̃k`m

)
−G
(
· , w, w̃k`m

)]
= 0 uniformly on B. We obtain

lim
`→∞

G[wk` , w̃k` ] ≥ lim inf
m→∞

∫
B
G( · , wk`m , w̃k`m ) dx = lim inf

m→∞

∫
B
G( · , w, w̃k`m ) dx .

Next we notice that G̃(x, ỹ) ..= 1B(x)G(x,w(x), ỹ) gives a Carathéodory integrand G̃ with
G̃(x, · ) convex for a.e. x ∈ Ω. Applying the last theorem to the corresponding functional and
exploiting its weak lower semicontinuity along the weakly convergent (sub)sequence

(
wk`m

)
m∈N

on the right-hand side of the last estimate, we arrive at

lim
`→∞

G[wk` , w̃k` ] ≥
∫
B
G( · , w, w̃) dx .
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26 CHAPTER 2. Existence of minimizers (via the direct method)

In order to get back from B to Ω on the right-hand side, we now apply the result of the preceding
reasoning to find, for every i ∈ N, a measurable set Bi ⊂ Ω with |Ω \Bi| < 2−i such that

lim
`→∞

G[wk` , w̃k` ] ≥
∫
Bi

G( · , w, w̃) dx .

holds. Introducing B̃i ..=
⋂∞
j=iBj ⊂ Bi with |Ω \ B̃i| < 21−i, we get that 1

B̃i
converges, for

i → ∞, a.e. on Ω monotonously from below to 1. Therefore, putting together the above and
using the monotone convergence theorem in the last step, we arrive at

lim inf
k→∞

G[wk, w̃k] = lim
`→∞

G[wk` , w̃k` ]

≥ lim sup
i→∞

∫
Bi

G( · , w, w̃) dx ≥ lim
i→∞

∫
B̃i

G( · , w, w̃) dx = G[w, w̃] .

This finally proves the claimed sequential weak-strong lower semicontinuity of G.

As its most important feature, the weak-strong lower semicontinuity theorem yields a very
natural result when applied to first-order functionals. This result is the culmination point
of a long historical development, which ranges from the treatment of specific convex functionals
by Tonelli [16] over an early general result by Morrey [12] and the weak-strong semicontinuity
approach of De Giorgi [5] to modern and recent refinements.

Corollary (weak lower semicontinuity of convex-in-the-gradient 1st-order functionals).
Consider an open set Ω ⊂ Rn and a Carathéodory function F : Ω×RN×RN×n → [0,∞] such
that F (x, y, · ) : RN×n → [0,∞] is convex on RN×n for all (x, y) ∈ (Ω \ E)×RN with a null set
E ⊂ Ω. Then the functional F : W1,1(Ω,RN )→ [0,∞], defined by

F [w] ..=

∫
Ω
F ( · , w,Dw) dx for w ∈W1,1(Ω,RN ) ,

is sequentially lower semicontinuous on W1,1(Ω,RN ) with the weak topology.

Proof. First assume that Ω is bounded with a Lipschitz boundary ∂Ω and consider a weakly
convergent sequence wk −⇁

k→∞
w in W1,1(Ω,RN ). By Rellich’s theorem, we infer strong con-

vergence wk −→
k→∞

w in L1(Ω,RN ), and clearly we have weak convergence Dwk −⇁
k→∞

Dw in

L1(Ω,RN×n). Identifying RN×n with RNn, we can thus apply the weak-strong semicontinuity
theorem to deduce

F [w] =

∫
Ω
F ( · , w,Dw) dx ≤ lim inf

k→∞

∫
Ω
F ( · , wk,Dwk) dx = lim inf

k→∞
F [wk]

and obtain the claim.

Compact operators. A linear map L : X → Y between normed spaces X and Y is called compact if the image
of the open unit ball in X under L is relatively compact in Y (with respect to the norm topology on Y). For
compact linear L : X → Y, weak convergence xk −⇁

k→∞
x in X implies strong convergence Lxk −→

k→∞
Lx in Y.

Rellich’s theorem. Rellich’s theorem asserts the following: For every bounded open set Ω ⊂ Rn with Lipschitz
boundary and p ∈ [1,∞], the inclusion W1,p(Ω,RN )→ Lp(Ω,RN ) is a compact linear map. Moreover, in case of
zero boundary values, the Lipschitz assumption can be dropped, that is, for every bounded open set Ω ⊂ Rn and
p ∈ [1,∞), the inclusion W1,p

0 (Ω,RN ) → Lp(Ω,RN ) is a compact linear map (where the case p = ∞ has been
excluded in the second assertion only for the technical reason that a definition of W1,∞

0 has not been given here).
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2.2. Weak lower semicontinuity 27

If Ω is an arbitrary open set, we can find an exhaustion Ω =
⋃∞
`=1 Ω̃` of Ω, where Ω̃` b Ω are

open sets with Lipschitz boundaries ∂Ω̃` (e.g. each Ω̃` the interior of a finite union of closed axi-
parallel cubes) and satisfy Ω̃1 ⊂ Ω̃2 ⊂ Ω̃3 ⊂ . . .. If wk −⇁

k→∞
w converges weakly in W1,1(Ω,RN ),

the same is true in W1,1(Ω̃`,R
N ), and the preceding reasoning ensures∫

Ω̃`

F ( · , w,Dw) dx ≤ lim inf
k→∞

∫
Ω̃`

F ( · , wk,Dwk) dx ≤ lim inf
k→∞

F [wk]

for all ` ∈ N. Monotone convergence then implies F [w] ≤ lim infk→∞F [wk] and gives the claim
in the general case.

Finally, we show that convexity is, at least for zero-order functionals, not only sufficient
but also necessary for weak lower semicontinuity in Lp spaces. While clearly the neces-
sity statement is not needed in order to prove existence of minimizers, it still clarifies the role
of convexity as the optimal assumption in order to ensure the required semicontinuity property.

Theorem (necessity of convexity for weak lower semicontinuity in zero-order case).
Consider an open subset Ω of Rn and a Carathéodory integrand G : Ω×RN → [0,∞] with
G( · , y) ∈ L1(Ω) for all y ∈ RN . If the functional G, given by

G[w] ..=

∫
Ω
G( · , w) dx for w ∈ L∞(Ω,RN ) ,

is sequentially weakly∗ lower semicontinuous on L∞(Ω,RN ), then G(x, · ) : RN → [0,∞] is
convex on RN for a.e. x ∈ Ω.

Remark (on convexity as an optimal assumption). Consider a zero-order functional G
with non-negative Carathéodory integrand G and G( · , y) ∈ L1(Ω) for y ∈ RN as above. Then,
from the above theorem on the necessity and the earlier result on the sufficiency of convexity
for weak lower semicontinuity, we have:

G sequentially weakly∗ lower semicontinuous on L∞(Ω,RN )

=⇒ G(x, · ) convex on RN for a.e. x ∈ Ω

=⇒ G weakly lower semicontinuous on L1(Ω,RN ) .

However, at least for |Ω| < ∞, weak∗ convergence in L∞(Ω,RN ) implies weak convergence
in L1(Ω,RN ), thus weak lower semicontinuity on L1(Ω,RN ) implies sequential weak∗ lower

Weak∗ topology. The weak∗ topology on the dual X ∗ of a normed space X is the coarsest/weakest topology on
X ∗ in which all evaluation functionals 〈 · ;x〉 : X ∗ → R with x ∈ X are continuous. In other words, sets of the
form {y∗ ∈ X ∗ : |〈y∗−x∗;xk〉| < ε for k = 1, 2, . . . , `} with ` ∈ N, x1, x2, . . . , x` ∈ X , ε > 0 are weakly open basis
neighborhoods of a point x∗ ∈ X ∗, and every weakly∗ open set in X ∗ is a union of such sets.

Weak∗ convergence. The convergence of a sequence (x∗k)k∈N in the dual X ∗ of a normed space X to a limit
x∗ ∈ X ∗ in the weak∗ topology of X ∗ means limk→∞〈x∗k ;x〉 = 〈x∗;x〉 for all x ∈ X . It is expressed by writing

xk
∗
⇁ x weakly∗ in X ∗.

Weak∗ convergence in L∞ and W1,∞. Consider a measurable Ω ⊂ Rn. Weak∗ convergence wk
∗
⇁ w in

L∞(Ω,RN ), which is understood as the dual of L1(Ω,RN ), is characterized by limk→∞
∫

Ω
wk · v dx =

∫
Ω
w · v dx

for all v ∈ L1(Ω,RN ). Weak∗ convergence wk
∗
⇁ w in W1,∞(Ω,RN ) is defined as weak∗ convergences wk

∗
⇁ w in

L∞(Ω,RN ) together with weak∗ convergence ∂iwk
∗
⇁ ∂iw in L∞(Ω,RN ) for all i ∈ {1, 2, . . . , n}.
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28 CHAPTER 2. Existence of minimizers (via the direct method)

semicontinuity on L∞(Ω,RN ), and the three statements are actually equivalent. Moreover,
(sequential) weak lower semicontinuity of G on any intermediate space Lp(Ω,RN ), p ∈ [1,∞),
is also equivalent, and the convexity assumption on G is indeed a necessary and sufficient
criterion for any of these weak semicontinuity properties.

The proof the theorem can be based on the following weak convergence lemma:

Lemma. We write Q for the unit cube (0, 1)n in Rn and consider p ∈ [1,∞] and w ∈ Lp(Q,RN ).
If w is Q-periodically extended to Rn (which means that w is defined a.e. on Rn by the setting
w(z+x) ..= w(x) for z ∈ Zn, x ∈ Q) and wk ∈ Lp(Q,RN ), k ∈ N, are given by

wk(x) ..= w(kx) for x ∈ Q ,

then with wQ ..= −
∫
Qw dx =

∫
Qw dx we have

wk −⇁
k→∞

wQ weakly in Lp(Q,RN ) if p <∞ ,

wk
∗−⇁

k→∞
wQ weakly∗ in L∞(Q,RN ) if p =∞ .

A proof of the lemma has been discussed in the exercise class.

Proof of the theorem. Set Q ..= (0, 1)n. For measurable A ⊂ Ω ∩ Q, we first claim that the
semicontinuity assumption transfers to the subset in the form

wk
∗−⇁

k→∞
w weakly∗ in L∞(Q,RN ) =⇒

∫
A
G( · , w) dx ≤ lim inf

k→∞

∫
A
G( · , wk) dx .

Indeed, from wk
∗−⇁

k→∞
w weakly∗ in L∞(Q,RN ) and A ⊂ Ω∩Q we deduce first 1Awk

∗−⇁
k→∞

1Aw

weakly∗ in L∞(Ω,RN ) and then by assumption G[1Aw] ≤ lim infk→∞ G[1Awk]. In other words,
this means

∫
AG( · , w) dx+

∫
Ω\AG( · , 0) dx ≤ lim infk→∞

∫
AG( · , wk) dx+

∫
Ω\AG( · , 0) dx, and

the subtraction of
∫

Ω\AG( · , 0) dx (which is finite by the L1 assumption) on both sides gives the
first claim.

Now we fix a measurable A ⊂ Ω ∩ Q, y1, y2 ∈ RN , and λ ∈ [0, 1]. Then we choose a
decomposition Q = Q1 ∪ Q2 of Q into disjoint measurable sets Q1 and Q2 with |Q1| = λ and
|Q2| = 1−λ (which can be taken simply as Q1 = (0, λ)×(0, 1)n−1, Q2 = [λ, 1)×(0, 1)n−1). We
introduce first

w ..= 1Q1y1 + 1Q2y2 ∈ L∞(Q,RN )

with wQ = |Q1|y1+|Q2|y2 = λy1+(1−λ)y2. Then, using the Q-periodic extension of w to
Rn, we set wk(x) ..= w(kx) for x ∈ Q. By the preceding lemma we have weak∗ convergence

wk
∗−⇁

k→∞
λy1+(1−λ)y2 in L∞(Q,RN ), and by the semicontinuity discussed above we get∫

A
G(x, λy1+(1−λ)y2) dx ≤ lim inf

k→∞

∫
A
G(x,w(kx)) dx .

Observing that w(kx) equals y1 and y2, respectively, for kx ∈ Zn+Q1 and kx ∈ Zn+Q2, we
rewrite this as∫
A
G(x, λy1+(1−λ)y2) dx ≤ lim inf

k→∞

[ ∫
A
1Zn+Q1(kx)G(x, y1) dx+

∫
A
1Zn+Q2(kx)G(x, y2) dx

]
.
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2.3. Coercivity, weak compactness, and existence 29

Since 1Zn+Q1 and 1Zn+Q2 are the Q-periodic extensions of 1Q1 and 1Q2 on Q, the lemma implies
that x 7→ 1Zn+Q1(kx) and x 7→ 1Zn+Q2(kx) weak∗ converge in L∞(Q) to (1Q1)Q = |Q1| = λ
and (1Q2)Q = |Q2| = 1−λ, respectively. Using these convergences together with the assumption
that G( · , y1), G( · , y2) ∈ L1(Ω), we end up with∫

A
G(x, λy1+(1−λ)y2) dx ≤ λ

∫
A
G(x, y1) dx+ (1−λ)

∫
A
G(x, y2) dx .

Since A is an arbitrary measurable subset of Ω ∩Q, we conclude

G( · , λy1+(1−λ)y2) ≤ λG( · , y1) + (1−λ)G( · , y2) a.e. on Ω ∩Q .

By translation or an analogous reasoning, one can replace the unit cube Q with a cube z+Q,
z ∈ Zn, and obtain the same inequality a.e. on Ω ∩ (z+Q). Then, since the countable union⋃
z∈Zn(Ω ∩ (z+Q)) coincides with Ω up to a null set, we get the inequality a.e. on Ω, and we

also get it simultaneously for all y1, y2 ∈ QN and λ ∈ [0, 1] ∩ Q on Ω \ E with a common null
set E. Relying on continuity of G(x, · ) for all x ∈ Ω \ Ẽ with another null set Ẽ, we finally end
up with still the same inequality for all y1, y2 ∈ RN and λ ∈ [0, 1] on Ω \ (E ∪ Ẽ). This proves
convexity of G(x, · ) for all x ∈ Ω \ (E ∪ Ẽ) and in view of |E ∪ Ẽ| = 0 yields the claim.

Remark. For first-order functionals

F [w] ..=

∫
Ω
F ( · , w,Dw) dx

(with open Ω ⊂ Rn and RN -valued ws on Ω as usual), it will eventually turn out that convexity
of F in the gradient variable is necessary for weak(∗) lower semicontinuity of F only in
case min{N,n} = 1, which means that the setting is either one-dimensional or scalar.
In case min{N,n} ≥ 2, in contrast, there is room for improvement on the semicontinuity results
of this section, and indeed we will prove at a later stage that weak lower semicontinuity of F is
still valid if the integrand satisfies a generalized convexity condition known as quasiconvexity;
see the later Section 5.2

2.3 Coercivity, weak compactness, and existence

We introduce one more notion which is needed to complete the existence program.

Definition (coercivity). Consider a normed space X , a subset A of X , and a functional
F : A → R on A. We call F coercive on A, or more precisely X -coercive on A, if it holds

lim
‖w‖X→∞
w∈A

F [w] =∞

(which means by the very definition of the limit that, for every ε > 0, there exists some δ > 0
such that every w ∈ A with ‖w‖X > 1

δ satisfies F [w] > 1
ε ).

Remark (on characterizations of coercivity). For a normed space X , a subset A of X , and
a functional F : A → R, we have:

F is X -coercive on A .
⇐⇒ Every sequence (wk)k∈N in A with sup

k∈N
F [wk] <∞ satisfies sup

k∈N
‖wk‖X <∞ .

⇐⇒ Every sublevel set {w ∈ A : F [w] ≤ s} with s ∈ R is bounded.

The proof is elementary and will be discussed in the exercises.
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30 CHAPTER 2. Existence of minimizers (via the direct method)

Thus, coercivity actually ensures boundedness of the sublevel sets of F , while indeed, as
discussed in Section 2.1, we need relative compactness of these sublevel sets in order to complete
the existence proof. If we involve — what is crucial at this point — the weak topology (on a
slightly restricted class of spaces X ), however, then the next result shows that closed balls
are weakly compact, and as a consequence all bounded sets are weakly relatively compact as
required. In this way coercivity, though the notion itself depends only on the norm and does not
involve any weak topology whatsoever, gives exactly the required weak compactness condition(s),
and on this basis the existence program can then be completed. We now work this out:

Theorem (Banach-Alaoglu theorem, weak compactness).

Weak version: Every closed ball in a reflexive Banach space is weakly compact.

Weak∗ version: Every closed ball in a dual of a normed space is weakly∗ compact.

Theorem (sequential weak compactness).

Weak version: Every closed ball in a reflexive Banach space is sequentially weakly compact,
which means that every bounded sequence in a reflexive Banach space
has a weakly convergent subsequence.

Weak∗ version: Every closed ball in a dual of a separable11 normed space is sequentially weakly∗
compact, which means that every bounded sequence in a dual of a separable
normed space has a weakly∗ convergent subsequence.

We will not discuss the proofs of these compactness statements, which are a matter of
functional analysis. We mention, however, that the proof of the sequential statements is more
elementary and can essentially be based on the choice of a countable dense subset and a diagonal
sequence.

Corollary (Coercivity gives weak compactness.). Consider a reflexive Banach space X ,
a subset A ⊂ X , and a functional F : A → R.

(I) If A is weakly closed in X , we have:

F is X -coercive on A . ⇐⇒
Every sublevel set {w ∈ A : F [w] ≤ s} with s ∈ R is weakly
relatively compact in A, that is, condition (Ia) of Section 2.1
holds for the weak topology.

(II) If A is merely sequentially weakly closed in X , we still have:

F is X -coercive on A . ⇐⇒
Every sequence (wk)k∈N in A with supk∈NF [wk] < ∞ has
a weakly convergent subsequence with limit in A, that is,
condition (IIa) of Section 2.1 holds for the weak topology.

Moreover, if A ⊂ X ∗ lies in the dual X ∗ of a separable Banach space X , then X ∗-coercivity of
F : A → R is characterized in the same way with X ∗ replacing X and weakly∗ replacing weakly
everywhere in (I) and (II).

11While both weak∗ compactness and sequential weak compactness do not require any separability assumption,
somewhat surprisingly, the separability assumption on the predual cannot be dropped from the sequential weak∗
compactness theorem. The latter can be seen at hand of the functionals ek ∈

(
`∞
)∗

on the non-separable space

`∞ given by 〈ek ; (xj)j∈N〉 = xk. Indeed, (ek)k∈N stays in the unit ball of
(
`∞
)∗

, but for every subsequence

(ek`)`∈N, the limit lim`→∞〈ek` ; (xj)j∈N〉 does not exist for a sequence (xj)j∈N ∈ `∞ with xk` = (−1)` (and xj
arbitrary for j /∈ {k` : ` ∈ N}).
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2.3. Coercivity, weak compactness, and existence 31

Proof. Since coercivity is characterized by boundedness of sublevel sets (as remarked above), in
order to derive the statement (I) we only need to show for S ⊂ A the equivalence

S bounded ⇐⇒ S weakly relatively compact in A .

We now prove the forward implication of this. We assume S is bounded and get S ⊂ B for a
suitably large closed ball B in X . By the Banach-Alaoglu theorem, B is weakly compact, and
then the weak closure of S in X is a weakly closed subset of B and thus also weakly compact.
Since A is weakly closed, the weak closure of S in A is actually the same as its closure in X ,
and thus S is weakly relatively compact in A. Turning to the backward implication, we assume
that S is weakly relatively compact in A. Then, since every fixed x∗ ∈ X ∗ is weakly continuous,
the image {〈x∗;x〉 : x ∈ S} is relatively compact in R and thus supx∈S |〈x∗;x〉| < ∞ for all
x∗ ∈ X ∗. The last property is known as weak boundedness of S and implies its boundedness
by the uniform boundedness principle from functional analysis. All in all, we have proved the
above equivalence and statement (I).

In order to establish the statement (II), it suffices (since coercivity still means boundedness
of sublevel sets and the condition supk∈NF [wk] < ∞ means that (wk)k∈N stays in a sublevel
set) to prove for S ⊂ A the equivalence

S bounded ⇐⇒ Every sequence in S has a weakly convergent subsequence with limit in A.

Here, the forward implication follows by observing that a sequence (wk)k∈N in the bounded set
S has a weakly convergent subsequence by the sequential Banach-Alaoglu theorem and that, by
sequential weak closedness of A, the limit stays in A. For the backward implication, assume
that every sequence in S has a weakly convergent subsequence. In particular, since the uniform
boundedness principle ensures boundedness of weakly convergent sequences, every sequence in
S has a bounded subsequence. This implies boundedness of S (since in every unbounded set
there exists a sequence (wk)k∈N with limk→∞ ‖wk‖X =∞).

The weak∗ versions of the statements for A ⊂ X ∗ can be obtained analogously (where
the completeness of the Banach space X is needed in order to suitably apply the uniform
boundedness principle in the proof of the backward implications).

At this stage, we are finally left with the task to verify coercivity of a given (integral)
functional. However, this is possible in many relevant cases and usually not too difficult:

Proposition (coercivity criteria). Consider a non-empty open set Ω in Rn.

(0) Assume, for an Mn⊗B(RN )-measurable G : Ω×RN → R, that

G(x, y) ≥ γ|y|p −Ψ(x) holds for all (x, y) ∈ (Ω \ E)×RN ,

where γ > 0, Ψ ∈ L1(Ω), p ∈ [1,∞), and a null set E ⊂ Ω are fixed. Then, the zero-order
functional G given by

G[w] ..=

∫
Ω
G( · , w) dx

is Lp-coercive on every subset A of Lp(Ω,RN ).

Uniform boundedness principle. The general uniform boundedness principle says, for a Banach space X , a
normed space Y, and F ⊂ L(X ,Y), that supT∈F ‖Tx‖Y <∞ for all x ∈ X implies supT∈F ‖T‖L(X ,Y) <∞.

Specifically, if X is a Banach space and S ⊂ X ∗ is weakly∗ bounded in the sense of supx∗∈S |〈x∗;x〉| < ∞ for
all x ∈ X , this applies with Y = R and gives boundedness of S.

Moreover, if X is a normed space and S ⊂ X is weakly bounded in the sense of supx∈S |〈x∗;x〉| < ∞ for all
x∗ ∈ X ∗, then the image JX (S) under the canonical isometric embedding JX : X → X ∗∗ is weakly∗ bounded in
X ∗∗ and the above result with the Banach space X ∗ in place of X gives boundedness of JX (S) and thus of S.
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32 CHAPTER 2. Existence of minimizers (via the direct method)

(1) Assume, for anMn⊗B(RN )⊗B(RN×n)-measurable F : Ω×RN×RN×n → R, that one of the
following conditions holds (where γ > 0, p ∈ [1,∞), Ψ ∈ L1(Ω), and a null set E ⊂ Ω are
always fixed):

(a) A is an arbitrary subset of W1,p(Ω,RN ) and

F (x, y, z) ≥ γ(|y|p+|z|p)−Ψ(x) for all (x, y, z) ∈ (Ω \ E)×RN×RN×n,

(b) Ω is a bounded Lipschitz domain, A is an arbitrary subset of W1,p(Ω,RN ), and

F (x, y, z) ≥ γ(|y|+|z|p)−Ψ(x) for all (x, y, z) ∈ (Ω \ E)×RN×RN×n,

(c) Ω is contained in a strip12 of finite width, A is a subset of a Dirichlet class W1,p
u0 (Ω,RN )

with u0 ∈W1,p(Ω,RN ), and

F (x, y, z) ≥ γ|z|p −Ψ(x) for all (x, y, z) ∈ (Ω \ E)×RN×RN×n,

(d) Ω is a bounded Lipschitz domain, A is a subset of {w ∈W1,p(Ω,RN ) : |wΩ| ≤M} with
M ∈ R, and

F (x, y, z) ≥ γ|z|p −Ψ(x) for all (x, y, z) ∈ (Ω \ E)×RN×RN×n.

In each of these cases, the first-order functional F given by

F [w] ..=

∫
Ω
F ( · , w,Dw) dx

is then W1,p-coercive on A.

Remarks (on the coercivity criteria).

(1) In case |Ω| <∞, the proposition can be applied and is often applied with a constant Ψ.

(2) In basic cases with F (x, y, z) = F̃ (x, z) finite-valued and independent of y, the conditions in
(1a) and (1b) can never be satisfied (since the right-hand side grows to ∞, when |y| tends
to∞ with (x, z) fixed, while the left-hand side stays constant). This is the main motivation
for considering (1c) and (1d), which are actually designed for such cases.

(3) The proposition provides coercivity in Lp or W1,p in many reasonable cases. Nonetheless,
the above list of cases is far from being complete and could be extended in many ways.

Proof of the proposition, part (0). For w ∈ A ⊂ Lp(Ω,RN ), we estimate

G[w] =

∫
Ω
G( · , w) dx ≥

∫
Ω

(γ|w|p−Ψ) dx ≥ γ‖w‖pLp;Ω − ‖Ψ‖L1;Ω −→
‖w‖Lp;Ω→∞

∞

and gain coercivity of G.

12By saying that Ω lies in a strip of finite width we mean that there exists a direction vector ν ∈ Rn, |ν| = 1
and a < b in R such that a < ν · x < b for all x ∈ Ω, that is, Ω lies in the strip {x ∈ Rn : a < ν · x < b} of width
b−a.
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In the first-order situation (1), a similar reasoning applies, but this additionally involves
in all but the simplest cases a Poincaré inequality:

Proof of the proposition, part (1). Under the assumption (1a), for w ∈ A ⊂ W1,p(Ω,RN ), we
get

F [w] ≥ γ
∫

Ω
(|w|p+|Dw|p) dx−

∫
Ω

Ψ dx ≥ γ c(n, p)‖w‖p
W1,p;Ω

− ‖Ψ‖L1;Ω .

Under (1b), for w ∈ A ⊂W1,p(Ω,RN ), we have

F [w] ≥ γ
∫

Ω
(|w|+|Dw|p) dx−

∫
Ω

Ψ dx

≥ γ(‖Dw‖Lp;Ω+|Ω||wΩ|)− γ − ‖Ψ‖L1;Ω ≥ γ c(n, p,Ω)‖w‖W1,p;Ω − γ − ‖Ψ‖L1;Ω ,

where in addition to the estimates |w|Ω ≥ |wΩ| and ‖Dw‖pLp;Ω ≥ ‖Dw‖Lp;Ω−1 we also used
‖w‖W1,p;Ω ≤ C(n, p,Ω)(‖Dw‖Lp;Ω+|Ω||wΩ|) thanks to the Poincaré inequality for the zero-mean
case.

Under (1c), for w ∈ A ⊂W1,p
u0 (Ω,RN ), we find

F [w] ≥ γ
∫

Ω
|Dw|p dx−

∫
Ω

Ψ dx

= γ‖Dw‖pLp;Ω − ‖Ψ‖L1;Ω ≥ γ(c(n, p,Ω)‖w‖p
W1,p;Ω

− ‖u0‖pW1,p;Ω
)− ‖Ψ‖L1;Ω ,

where we used that ‖w‖p
W1,p;Ω

≤ C(n, p,Ω)(‖Dw‖pLp;Ω+‖u0‖pW1,p;Ω
) thanks to the Poincaré in-

equality for the zero-boundary-values case.

Under (1d), finally, the functions w ∈ A satisfy
∣∣∣ 1
|Ω|
∫

Ωw dx
∣∣∣ ≤M , and we infer

F [w] ≥ γ
∫

Ω
|Dw|p dx−

∫
Ω

Ψ dx

= γ‖Dw‖pLp;Ω − ‖Ψ‖L1;Ω ≥ γ(c(n, p,Ω)‖w‖p
W1,p;Ω

−Mp)− ‖Ψ‖L1;Ω ,

where we used that ‖w‖p
W1,p;Ω

≤ C(n, p,Ω)(‖Dw‖pLp;Ω+Mp) thanks to the Poincaré inequality
for the zero-mean case.

In all cases, W1,p-coercivity is then easily read off from the given estimate.

Finally, we are ready to state the decisive existence result, which requires a coercivity
criterion and a convexity hypothesis as its principal assumptions:

Poincaré inequalities. If an open subset Ω of Rn is contained in a strip of finite width `, the Poincaré inequality
in the zero-boundary-values case

‖w‖Lp;Ω ≤ C(n, p)`‖Dw‖Lp;Ω holds for all w ∈W1,p
0 (Ω,RN ) .

If Ω is a non-empty bounded Lipschitz domain in Rn, the Poincaré inequality in the zero-mean-value case

‖w−wΩ‖Lp;Ω ≤ C(n, p,Ω)‖Dw‖Lp;Ω holds for all w ∈W1,p(Ω,RN ) .
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Corollary (general existence theorem). Fix a non-empty open set Ω ⊂ Rn.

(0) Consider a Carathéodory integrand G : Ω×RN → [0,∞] and a non-empty sequentially weakly
closed set A ⊂ Lp(Ω,RN ) such that G(x, · ) is convex for a.e. x ∈ Ω and such that the
assumption of part (0) in the preceding proposition is satisfied with 1 < p <∞. Then, for
the functional G given by

G[w] ..=

∫
Ω
G( · , w) dx ,

there exists a minimizer u ∈ A with G[u] ≤ G[w] for all w ∈ A.

(1) Consider a Carathéodory integrand F : Ω×RN×RN×n → [0,∞] and a non-empty sequen-
tially weakly closed set A ⊂ W1,p(Ω,RN ) such that F (x, y, · ) is convex for all (x, y) ∈
(Ω \ S)×RN with a null set S and such that one set of assumptions on F and A from part
(1) of the preceding proposition is satisfied with 1 < p < ∞. Then, for the functional F
given by

F [w] ..=

∫
Ω
F ( · , w,Dw) dx ,

there exists a minimizer u ∈ A with F [u] ≤ F [w] for all w ∈ A.

Proof. The previous proposition guarantees that G and F are Lp- and W1,p-coercive on A, re-
spectively. Therefore, the reflexivity of Lp and W1,p in case 1 < p <∞ and statement (II) in the
previous corollary “Coercivity gives weak compactness.” yield that G and F satisfy condition
(IIa) of Section 2.1 for the weak topology on Lp(Ω,RN ) and W1,p(Ω,RN ), respectively. More-
over, from Section 2.2 we know that G and F are sequentially weakly lower semicontinuous on
Lp(Ω,RN ) and W1,p(Ω,RN ), respectively, that is, condition (IIb) of Section 2.1 is also satisfied.
In view of (IIa) and (IIb), the abstract existence theorem of Section 2.1 then applies and gives
the claim.

Remarks (on the general existence theorem and its proof).

(1) Even though the proof has been presented as a very abstract composition of the previously
collected ingredients, it is absolutely important to keep in mind that the core reasoning
of the direct method is in fact quite simple. We briefly recall this reasoning in the first-
order case (1): One assumes infAF < ∞ and starts with a minimizing sequence (uk)k∈N
in A such that limk→∞F [uk] = infAF . Then coercivity yields boundedness of (uk)k∈N in
W1,p(Ω,RN ), and weak compactness together with sequential weak closedness of A gives
weak convergence of a subsequence (uk`)`∈N to a limit u ∈ A. Finally, the weak lower
semicontinuity of Section 2.2 ensures

F [u] ≤ lim inf
`→∞

F
[
uk`
]

= inf
A
F

and thus the minimality of u.

(2) In most cases, one can alternatively apply the abstract existence theorem on the basis of
(Ia) and (Ib). Indeed, the availability of (Ia) has been provided above in large generality,
while (Ib) has been obtained in Section 2.2 for a general class of zero-order functionals and a
class of first-order functionals with a stronger convexity assumption. However, for the most
general class of first-order functionals with convexity only in the gradient variable, we have
checked only (IIb) not (Ib). This is a reason to prefer the sequence-based version (II) of the
direct method.
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2.3. Coercivity, weak compactness, and existence 35

(3) In particular, part (1) of the general existence theorem applies to quadratic integrals
1
2

∫
ΩA(Dw,Dw) dx (with positive bilinear forms A on RN×n which satisfy A(z, z) ≥ γ|z|2

for all z ∈ RN×n with fixed γ > 0) and the p-energies Ep with 1 < p < ∞, at least

if minimization in Dirichlet classes W1,2
u0 (Ω,RN ) and W1,p

u0 (Ω,RN ) on bounded open
Ω ⊂ Rn is concerned. Indeed, the relevant hypotheses are satisfied, since the Dirichlet
classes are sequentially weakly closed by Mazur’s lemma, convexity of the integrands follows
from the Cauchy-Schwarz and Hölder inequalities, respectively, and the coercivity criterion
(1c) applies. Moreover, the existence theorem covers many variants of these model
integrals (for instance with additional coefficients or lower-order terms) and also cases
with additional side constraints.

On the contrary, the existence theorem does not apply to integrals of 1-energy and
area type with merely W1,1-coercivity at hand, since the lack of suitable compact-
ness results prevents the application of the direct method in the Sobolev space W1,1.

(4) In case |Ω| <∞ the inequality in the coercivity criteria (1c) and (1d) can be weak-
ened to

F (x, y, z) ≥ γ|z|p − Γ|y|q −Ψ(x) for all (x, y, z) ∈ (Ω \ E)×RN×RN×n,

with fixed q ∈ (0, p) and Γ ∈ R, since this inequality still implies W1,p-coercivity of the
integral functional F on the same classes A as before (see the exercises for the proof of this
claim). In addition, even q = p can be admitted if Γ is small enough, precisely Γ < C−poptγ
with the optimal constant Copt in the Poincaré inequality ‖w‖Lp;Ω ≤ Copt‖Dw‖Lp;Ω for

w ∈ W1,p
0 (Ω,RN ) (case of (1c)) and ‖w−wΩ‖Lp;Ω ≤ Copt‖Dw‖Lp;Ω for w ∈ W1,p(Ω,RN )

(case of (1d)), respectively.

(5) One can allow in the existence result and on bounded Ω also in the generalization of
Remark (4), that G and F take values in R ∪ {∞} instead of [0,∞]. (However, some
coercivity inequality is still in force and ensures G−( · , w), F−( · , w,Dw) ∈ L1(Ω) so that
G[w],F [w] ∈ R ∪ {∞} exists for all w ∈ A.) In fact, non-negativity of the integrand has
been assumed only for the application of the weak lower semicontinuity results from Section
2.2, but can be removed from these results under the present assumptions: For instance, if
the inequality in (4) holds, the new integrand F̃ (x, y, z) ..= F (x, y, z) + Γ|y|q + Ψ(x) is non-
negative, and thus F̃ [w] ..=

∫
Ω F̃ (·, w,Dw) dx is sequentially weakly lower semicontinuous

on W1,p(Ω,RN ). However, under the assumptions of either (1c) or (1d) with Ω bounded,
Rellich’s theorem gives even weak continuity of the term

∫
Ω |w|

q dx on A ⊂ W1,p(Ω,RN ).

Consequently, also F [w] = F̃ [w]−Γ
∫

Ω |w|
q dx−

∫
Ω Ψ dx is weakly lower semicontinuous on

A ⊂W1,p(Ω,RN )

Next we show by basic examples that coercivity and convexity, the two principal as-
sumptions above, are essentially inevitable in a general existence theory:

Examples (for necessity of coercivity and convexity). We consider, in the 1-dimensional
scalar case, first-order variational integrals F [w] =

∫ x2

x1
F (·, w, w′) dx on the Dirichlet class

W1,1
y1,y2((x1, x2)), which encodes the Dirichlet boundary condition w(x1) = y1, w(x2) = y2

with x1 < x2 in R and y1, y2 ∈ R. Specifically, we mention the following cases and examples,
which are treated in detail in the exercises (see Sheets 1 and 5):
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36 CHAPTER 2. Existence of minimizers (via the direct method)

(1) If F (x, y, z) =̂ F (z) depends on z only, we know: For convex F ∈ C0(R), there is
always a minimizer of

∫ x2

x1
F (w′) dx in W1,1

y1,y2((x1, x2)), namely the unique affine function
with the given boundary values. So — what is rather untypical in view of the subsequent
examples — convexity alone suffices for existence in this basic case, and no explicit
coercivity requirement13 is needed. However, in absence of convexity and coercivity
minimizers may still fail to exist, as it happens e.g. for

∫ x2

x1

1
1+w′2 dx on W1,1

0 ((x1, x2)).

(2) The famous Weierstraß example14 from 1869 with integrand of type F (x, y, z) =̂ F (x, z)
is given by

1
2

∫ 1

0
xw′(x)2 dx for w ∈W1,1((0, 1)) .

This integral is convex but not W1,p-coercive on W1,p
1,0((0, 1)) for any p ∈ [1,∞] and

has no minimizer in W1,p
1,0((0, 1)) for any p ∈ [1,∞] (since the infimum on W1,p

1,0((0, 1))
can shown to be 0 and cannot be realized). So, this is a basic example for the failure of
existence in the absence of coercivity.

(3) An example with integrand of type F (x, y, z) =̂ F (y, z) is given by∫ x2

x1

√
w2 + w′2 dx for w ∈W1,1((x1, x2)) .

This integral is convex and W1,1-coercive on W1,1
0,1((x1, x2)), but not W1,p-coercive

on W1,p
0,1((x1, x2)) for any p ∈ (1,∞], and it has no minimizer in W1,p

0,1((x1, x2)) for any

p ∈ [1,∞] (since the infimum on W1,p
0,1((x1, x2)) can shown to be 1 and cannot be realized).

So, this example shows that merely W1,1-coercivity does not suffice for existence.

(4) Another example with integrand of type F (x, y, z) =̂ F (y, z) and parameter Γ ∈ R is given
by ∫ x2

x1

(
w′2 − Γw2

)
dx for w ∈W1,2((x1, x2)) .

This integral is convex in the w′-variable and satisfies the inequality from Remark (4) above
with q = p = 2, γ = 1, the parameter Γ occurring in the integral, and Ψ ≡ 0. For the
minimization in W1,1

y1,y2((x1, x2)) it is decisive if or not the inequality Γ < C−2
opt from Remark

(4) is satisfied, where Copt is the optimal constant in the Poincaré inequality ‖w‖L2((x1,x2)) ≤
Copt‖w′‖L2((x1,x2)) for w ∈W1,2

0 ((x1, x2)). Indeed in the 1d situation one can determine Copt

by a Fourier expansion method as Copt = x2−x1
π , and we have:

• In the subcritical case Γ <
(

π
x2−x1

)2
, the integral is W1,2-coercive on W1,2

y1,y2((x1, x2))

and has a minimizer in W1,2
y1,y2((x1, x2)).

• In the supercritical case Γ >
(

π
x2−x1

)2
, the integral is unbounded from below on

W1,2
y1,y2((x1, x2)), and thus it is not W1,2-coercive on W1,2

y1,y2((x1, x2)) and has no
minimizer in W1,2

y1,y2((x1, x2)).

13However, one can show, for convex F ∈ C0(R), that either F is affine or it holds F (z) ≥ γ|z|−L−Mz for
z ∈ R with constants L,M ∈ R and

∫ x2
x1
F (w′) dx is W1,1-coercive on W1,1

y1,y2((x1, x2)). So, convexity comes at

least close to implying a kind of coercivity in the basic case F (x, y, z) =̂ F (z).
14In fact, the original Weierstraß example is 1

2

∫ 1

0
x2 w′(x)2 dx (with x2 in place of x, but analogous properties).
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• In the critical case Γ =
(

π
x2−x1

)2
, finally, the integral is not W1,2-coercive on

W1,2
y1,y2((x1, x2)). For y1+y2 6= 0 it is even unbounded from below on W1,2

y1,y2((x1, x2))
and has no minimizer in W1,2

y1,y2((x1, x2)), while for y1+y2 = 0 it has minimizers
and actually a 1-dimensional affine space of minimizers in W1,2

y1,y2((x1, x2)).

Proof. In the subcritical case, the verification of coercivity with the help of the mentioned Poincaré inequality is
straightforward, and existence then follows.

For the treatment of the other cases we assume, for simplicity of notation, x1 = 0, x2 = π, and we abbreviate
FΓ[w] =

∫ π
0

(
w′2−Γw2

)
dx. For an arbitrary w ∈W1,1

y1,y2 ((x1, x2)) and α ∈ R, we observe w+α sin ∈W1,1
y1,y2 ((x1, x2))

and compute

FΓ[w+α sin] = FΓ[w] + 2α

∫ π

0

(
w′cos−Γw sin

)
dx+ α2(1−Γ)

π

2
.

In the supercritical case Γ > 1, this gives limα→±∞ FΓ[w+α sin] = −∞, and thus FΓ is unbounded from below

on W1,1
y1,y2 ((x1, x2)) (which entails all claims in this case). In the critical case Γ = 1, integration by parts shows∫ π

0

(
w′cos−w sin

)
dx = w(0)+w(π) = y1+y2, and the above reduces to FΓ[w+α sin] = FΓ[w]+2α(y1+y2). Hence, for

±(y1+y2) > 0 we get limα→∓∞ F1[w+α sin] = −∞ and infer that F1 is unbounded from below also in this case (which
again entails all claims). In the remaining case Γ = 1, y1+y2 = 0, finally, we now prove that y1cos with F1[y1cos] = 0

is indeed a minimizer of F1 in W1,1
y1,y2 ((x1, x2)). To this end we still consider an arbitrary w ∈W1,1

y1,y2 ((x1, x2)) and

choose α ∈ R such that v ..= w+α sin ∈ W1,1
y1,y2 ((x1, x2)) satisfies v(0,π) = 0. Under the assumption v(0,π) = 0,

another version of the optimal Poincaré inequality15 implies ‖v‖L2((0,π)) ≤ ‖v′‖L2((0,π)), and this combines with the

preceding to F1[w] = F1[v] ≥ 0. Since we have F1[y1cos+α sin] = F1[y1cos] = 0 for all α ∈ R, this means that all

y1cos+α sin with α ∈ R are minimizers of F1 in W1,1
y1,y2 ((x1, x2)). Since the space of minimizers is unbounded, it also

clear that even in this case with existence, F1 is not W1,2-coercive on W1,1
y1,y2 ((x1, x2)).

(5) The famous Bolza example from 1902 with integrand of type F (x, y, z) =̂ F (y, z) is given
by ∫ x2

x1

[
(w′2−1)2 + w4

]
dx for w ∈W1,4((x1, x2)) .

This integral is W1,4-coercive on W1,4, but is not convex in the w′-variable and has no
minimizer in W1,4

0 ((x1, x2)) (since the infimum on W1,4
0 ((x1, x2)) can be shown to be 0

and cannot be realized). So, this is a basic example for the failure of existence in the
absence of convexity. It has many variants, in which the role of z 7→ (z2−1)2 can be
taken by another ‘double-well potential’ with two minimum points, and is also related to
physical models for the sailing of a boat into the wind.

2.4 Uniqueness of minimizers

In order to treat the uniqueness problem for minimizers, we first recall a precise definition of
strict convexity:

Definition (strictly convex functions). A function F : A → R∪{∞} on a subset A of a real
vector space X is strictly convex on A, if A is a convex set and the strict convexity inequality

F [λw+(1−λ)w̃] < λF [w] + (1−λ)F [w̃] holds whenever w̃ 6= w in A and λ ∈ (0, 1) .

15In fact, the common root of the Poincaré inequalities relevant here is the Poincaré-Wirtinger inequality
‖w‖L2((−π,π)) ≤ ‖w′‖L2((−π,π)) for all w ∈ W1,1

per((−π, π)) with w(−π,π) = 0. Applying this inequality to odd

extensions one infers ‖w‖L2((0,π)) ≤ ‖w′‖L2((0,π)) for all w ∈ W1,1
0 ((0, π)), and applying it to even extensions

one gets ‖w‖L2((0,π)) ≤ ‖w′‖L2((0,π)) for all w ∈ W1,1((0, π)) with w(0,π) = 0. Clearly, one can also pass these
inequalities to intervals (x1, x2) with x1 < x2 in R by scaling.
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We remark that, if F takes the value ∞ at an interior point of A, then evidently F cannot
be strictly convex on A. Since function(al)s with value ∞ are sometimes useful and shall not
be ruled out completely, in the sequel we work with the assumption that F is strictly convex on
A ∩ {F < ∞} only (which still implies that F is non-strictly convex on all of a convex set A,
since the weak convexity inequality is trivially satisfied if one of w, w̃ lies in A∩{F =∞}). On
the basis of this assumption, the following simple but central uniqueness principle holds:

Proposition (uniqueness from strict convexity, abstract version). Consider a real vector
space X . If a function F : A → R ∪ {∞} with F 6≡ ∞ is strictly convex on A ∩ {F < ∞},
then there is at most one minimum point for F in A.

Proof. Suppose that F has two minimum points ũ 6= u in A. In view of the assumption
F 6≡ ∞, this means F [ũ] = F [u] = infAF < ∞. Hence, strict convexity gives u+ũ

2 ∈ A and

F
[
u+ũ

2

]
< 1

2F [u] + 1
2F [ũ] = infAF . This contradiction completes the proof.

The abstract principle applies to integral functionals as follows:

Corollary (uniqueness from strict convexity, integral version). Fix an open set Ω ⊂ Rn.

(0) Consider a convex A ⊂ L1
loc(Ω,R

N ) and anMn⊗B(RN )-measurable G : Ω×RN → R∪{∞}
such that

G[w] ..=

∫
Ω
G( · , w) dx ∈ R ∪ {∞}

exists for all w ∈ A. If G(x, · ) is strictly convex on {G(x, · ) < ∞} for a.e. x ∈ Ω,
then G is strictly convex on A ∩ {G <∞}, and in case G 6≡ ∞ on A there is at most one
minimizer of G in A.

(1) Consider a convex A ⊂ W1,1
loc(Ω,RN ) and an Mn⊗B(RN )⊗B(RN×n)-measurable integrand

F : Ω×RN×RN×n → R ∪ {∞} such that

F [w] ..=

∫
Ω
F ( · , w,Dw) dx ∈ R ∪ {∞}

exists for all w ∈ A. If F (x, · , · ) is strictly convex on {F (x, · , · ) <∞} for a.e. x ∈ Ω,
then F is strictly convex on A ∩ {F < ∞}, and in case F 6≡ ∞ there is at most one
minimizer of F in A.

Proof. We only deal with the case (1), since the case (0) can be treated analogously. In order
to establish the strict convexity claim, we consider w̃ 6= w in A ∩ {F < ∞}. We observe
F ( · , w,Dw) < ∞, F ( · , w̃,Dw̃) < ∞ a.e. on Ω and |{w̃ 6= w}| > 0. For λ ∈ (0, 1), we infer by
strict convexity

F ( · , λ(w,Dw)+(1−λ)(w̃,Dw̃)) ≤ λF ( · , w,Dw) + (1−λ)F ( · , w̃,Dw̃) a.e. on Ω

with the strict inequality ‘<’ valid on the non-negligible set {w̃ 6= w}. Integrating both sides of
the inequality and crucially exploiting F [w] <∞, F [w̃] <∞, we end up with

F [λw+(1−λ)w̃] < λF [w] + (1−λ)F [w̃] <∞ .

In particular, taking into account the convexity of A we read off λw+(1−λ)w̃ ∈ A ∩ {F <∞}.
This proves convexity of A ∩ {F < ∞} and strict convexity of F on A ∩ {F < ∞}. Once this
is established, the uniqueness claim is clear from the proposition.
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Unfortunately, the preceding corollary does not apply in the basic case of a first-order
variational integral without zero-order dependence on w, that is

F [w] =

∫
Ω
F̃ ( · ,Dw) dx ,

since in this case the integrand F (x, y, z) = F̃ (x, z) as a function of (x, y, z) ∈ Ω×RN×RN×n is
never strictly convex in y-variable. Therefore, in the following we also provide a variant of
the corollary, which applies to minimization problems for such integrals in Dirichlet classes and
is based on the following notion:

Definition (partially strict convexity). A function F : K → R ∪ {∞} on a subset K of
Y×Z with real vector spaces Y and Z is strictly-in-z convex on K if K is a convex set, the
convexity inequality

F (λy+(1−λ)ỹ, λz+(1−λ)z̃) ≤ λF (y, z) + (1−λ)F (ỹ, z̃) holds for (y, z), (ỹ, z̃) ∈ K , λ ∈ [0, 1] ,

and this inequality is strict whenever z̃ 6= z and λ ∈ (0, 1).

Corollary (uniqueness from strict convexity, 2nd integral version). Consider an open
set Ω ⊂ Rn, a convex set A ⊂ u0+W1,p

0 (Ω,RN ) with u0 ∈W1,1
loc(Ω,RN ) and p ∈ [1,∞), and an

Mn⊗B(RN )⊗B(RN×n)-measurable F : Ω×RN×RN×n → R ∪ {∞} such that

F [w] ..=

∫
Ω
F ( · , w,Dw) dx ∈ R ∪ {∞}

exists for all w ∈ A. If F (x, · , · ) is strictly-in-z convex on {F (x, · , · ) <∞} for a.e. x ∈ Ω,
then F is strictly convex on A∩{F <∞}, and in case F 6≡ ∞ there is at most one minimizer
of F in A.

Proof. In order to establish the strict convexity claim, we consider w̃ 6= w in A ∩ {F < ∞} ⊂
u0+W1,p

0 (Ω,RN ), and we first show |{Dw̃ 6= Dw}| > 0. Indeed, if we had |{Dw̃ 6= Dw}| = 0,

then w̃−w would equal a constant 6= 0 on at least one connected component Ω̃ (which is also
open in Rn) of Ω. However, we would also have w̃−w ∈W1,p

0 (Ω̃,RN ) and would thus arrive at a
contradiction. This proves |{Dw̃ 6= Dw}| > 0. Observing F ( · , w,Dw) < ∞, F ( · , w̃,Dw̃) < ∞
a.e. on Ω, for λ ∈ (0, 1) the assumed convexity then gives

F ( · , λ(w,Dw)+(1−λ)(w̃,Dw̃)) ≤ λF ( · , w,Dw) + (1−λ)F ( · , w̃,Dw̃) a.e. on Ω ,

and this inequality is strict on the non-negligible set {Dw̃ 6= Dw}. Integrating this inequality,
strict convexity of F follows exactly as in the proof of the previous corollary. Once strict
convexity of F is established, the proposition gives uniqueness of its minimizers.

Remarks (on the uniqueness principles).

(1) The latter corollary applies to basic model integrals and shows that they have at
most one minimizer in every Dirichlet class. For instance, it covers quadratic integrals∫

ΩA(Dw,Dw) dx (with a positive bilinear forms A on RN×n) on W1,2
u0 (Ω,RN ), the p-energy

Ep with p > 1 on W1,p
u0 (Ω,RN ), and — though we do not have existence for this last case

— the scalar non-parametric area
∫

Ω

√
1+|∇w|2 dx on W1,1

u0 (Ω), where the required strict
convexity of the integrands can be checked in all three cases with the Cauchy-Schwarz and
Hölder inequalities or related elementary computations.
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(2) Clearly, strict convexity of the integrand F in the z-variable is inevitable for the
uniqueness principles. This can be seen already in the one-dimensional case at hand of the
parametric length integral

∫ x2

x1
|w′|dx (with x1 < x2 in R) whose integrand F (x, y, z) = |z|

is non-strictly convex in z. Actually, in view of the parametrization invariance of the length
this integral has multiple minimizers in every Dirichlet class W1,1

y1,y2((x1, x2)) with y2 6= y1

in RN .

(3) We emphasize that the latter corollary, in which the strictness of convexity regards z only,
still requires convexity also in y. Indeed, also this non-strict convexity in y cannot be
dropped, as the integral FΓ[w] ..=

∫ π
0

(
w′2 − Γw2

)
dx from Example (4) in the previous

section (here for simplicity only on (0, π)) shows: The integrand FΓ(x, y, z) = |z|2 − Γ|y|2
in this example is strictly convex in z for all Γ ∈ R, convex in y only for Γ ≤ 0, and in the
critical case Γ = 1 there are multiple minimizers of F1 in W1,2

0 ((0, π)). Indeed, the critical
case is also the first one with a chance for non-uniqueness in the sense that the functional
FΓ turns out to be strictly convex on W1,2

0 ((0, π)) if and only if Γ < 1 (and convex if and
only if Γ ≤ 1).

In order to check the last claim on FΓ, one looks at the symmetric bilinear form BΓ[w, w̃] ..=
∫ π
0 (w′w̃′ − Γww̃) dx

on w, w̃ ∈ W1,2
0 ((0, π)), which induces the quadratic functional FΓ[w] = BΓ[w,w]. Thanks to the earlier-mentioned

optimal Poincaré inequality on W1,2
0 ((0, π)) one then finds that BΓ is non-negative and thus FΓ convex precisely for

Γ ≤ 1, while BΓ is positive and thus FΓ strictly convex precisely for Γ < 1.

(4) If uniqueness does not follow from the above principles based on strict convexity, then —
at least in the view of the lecturer — it holds only rarely and can sometimes be quite hard
to prove.

2.5 Semi-classical existence theory

For general first-order integral functionals with merely W1,1-coercivity at hand (e.g. the
1-energy

∫
Ω |Dw| dx and the non-degenerate 1-energy

∫
Ω

√
1+|Dw|2 dx) there is a well-developed

existence theory based on weak∗ compactness in the space BV(Ω,RN ) of functions of bounded
variation. However, this theory requires additional background machinery and (at least in the
first instance) gives solutions which satisfy a Dirichlet boundary condition only in a certain
weakened sense. However, we do not enter into the BV theory here. Rather we explicate an
alternative comparison-principle-based approach, which, in basic scalar cases, allows to
bypass this theory and prove existence directly in the space W1,∞(Ω) (or C0,1(Ω)). To
this end, we start in fact with a finer discussion of the space W1,∞(Ω):

Remarks and Definitions (W1,∞
(u0)(Ω) and WM

(u0)(Ω)). Consider an open set Ω ⊂ Rn.

(1) We first recall that (a representative of) a function w ∈W1,∞(Ω) satisfies

|w(y)−w(x)| ≤ ‖∇w‖L∞(Ω,Rn)dΩ(x, y) for all x, y ∈ Ω ,

where the inner metric dΩ(x, y) of Ω is the infimum of the lengths of C1-curves from x to y in
Ω, that is, dΩ(x, y) ..= inf{

∫ 1
0 |c
′| dt : c ∈ C1([0, 1],Rn) , c([0, 1]) ⊂ Ω , c(0) = x , c(1) = y}.

In particular, this implies for w ∈W1,∞(Ω) . . .

• that w is always dΩ-Lipschitz continuous on Ω and locally Lipschitz continuous on Ω,

• that, in case of a bounded Lipschitz domain Ω, w is Lipschitz continuous on Ω,
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2.5. Semi-classical existence theory 41

• that, in case of a convex Ω, w is Lipschitz continuous on Ω with precisely ‖∇w‖L∞(Ω,Rn)

as the Lipschitz constant.

(where all Lipschitz properties with no particular metric mentioned are meant with respect
to the standard distance on Rn). In particular, if Ω is either a bounded Lipschitz domain
or convex, every w ∈W1,∞(Ω) extends to a Lipschitz continuous function on Ω, and we can
understand W1,∞(Ω) ⊂ C0(Ω).

(2) The weak∗ convergence of a sequence (wk)k∈N in W1,∞(Ω) to a limit w ∈W1,∞(Ω) is
most conveniently defined (without actually discussing if W1,∞(Ω) itself is a dual space or

not) by requiring weak∗ convergence wk
∗−⇁

k→∞
w in L∞(Ω) =

(
L1(Ω)

)∗
and ∇wk

∗−⇁
k→∞

∇w in

L∞(Ω,Rn) =
(
L1(Ω,Rn)

)∗
.

(3) In case of W1,∞ we define the subspace of functions with zero boundary values as

W1,∞
0 (Ω) ..=

{
w ∈W1,∞(Ω) : lim

Ω3x→∂Ω∪{∞}
w(x) = 0

}
,

where the limit is in fact taken for the Lipschitz representative and the addition of {∞}
is relevant for unbounded Ω only. It is not difficult to see that functions in W1,∞

0 (Ω) are
always (i.e. for an arbitrary open set Ω) Lipschitz continuous on Ω and can be extended
by zero to Lipschitz continuous functions on all of Rn with precisely ‖∇w‖L∞(Ω,Rn) as the
Lipschitz constant. Using this on one hand and Rademacher’s theorem on the other hand,
one can also write

W1,∞
0 (Ω) =

{
w ∈ C0,1(Ω) : w ∂Ω ≡ 0 , lim

Ω3x→∞
w(x) = 0

}
.

Once the subspace of functions with zero boundary values is defined we can also introduce,
for u0 ∈W1,∞(Ω), the Dirichlet class

W1,∞
u0

(Ω) ..= u0 + W1,∞
0 (Ω) .

(4) With the preceding definitions, it follows from the Arzelà-Ascoli theorem (or, what is the
same, the case p =∞ of Rellich’s theorem) that in case of bounded Ω the subspace W1,∞

0 (Ω)

and the classes W1,∞
u0 (Ω) with u0 ∈W1,∞(Ω) are sequentially weakly∗ closed in W1,∞(Ω).

(5) Given M ∈ [0,∞] and u0 ∈W1,∞(Ω), we also introduce the classes

WM (Ω) ..= {w ∈W1,∞(Ω) : ‖∇w‖L∞(Ω,Rn) ≤M} , WM
u0

(Ω) ..= WM (Ω) ∩W1,∞
u0

(Ω)

with bound M on the derivative.

(6) For bounded Ω, M ∈ [0,∞), and u0 ∈W1,∞(Ω), it follows from weak∗ compactness in L∞,
the well-known fact that the gradient is a weak∗-closed operator, and (4) above that

WM
u0

(Ω) is sequentially weakly∗ compact.

Rademacher’s theorem asserts that a Lipschitz continuous function w : Ω → RN on an open subset Ω of Rn

is classically totally differentiable at a.e. point of Ω, that it is also weakly differentiable on Ω, and that its weak
derivative is bounded and represented a.e. by the classical one.
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42 CHAPTER 2. Existence of minimizers (via the direct method)

In the remainder of this section, we develop the announced existence theory for basic varia-
tional integrals

F [w] ..=

∫
Ω
F (∇w) dx ∈ R on scalar functions w ∈W1,∞(Ω) (∗)

with bounded open Ω ⊂ Rn and continuous F : Rn → R. In view of the sequential weak∗
compactness of WM

u0
(Ω) (which results from the ‘artificially introduced’ bound M) we can first

apply the direct method as developed in the previous sections:

Proposition (existence in the restricted class). Consider a bounded open set Ω ⊂ Rn,
F ∈ C0(Rn), F from (∗), M ∈ [0,∞), u0 ∈WM (Ω), and assume that F is convex on Rn. Then
there exists a minimizer of F in WM

u0
(Ω).

Proof. Since the passage from the integrand F to the new integrand max{F,min
BM (0)

F} pre-

serves convexity and continuity and does not change the values of the functional F on WM (Ω),
we can assume that F is bounded from below on Rn. In fact, after addition of a constant, we
can then even assume F ≥ 0 on Rn. In this situation we record that WM

u0
(Ω) is non-empty (it

contains u0) and sequentially weakly∗ compact (see Remark (6) above) and that F is sequen-
tially weakly∗ lower semicontinuous on W1,∞(Ω) ⊃ WM

u0
(Ω) (see Section 2.2 where F ≥ 0 was

assumed). On this basis, the direct method applies and produces the desired minimizer.

Lemma (‘from restricted back to unrestricted minimizers’). Consider a bounded open
set Ω ⊂ Rn, F ∈ C0(Rn), F from (∗), M ∈ [0,∞), and assume that F is convex on Rn. If a
minimizer u ∈WM (Ω) of F in WM

u (Ω) satisfies the strict inequality ‖∇u‖L∞(Ω,Rn) < M ,
then it is also a minimizer of F in W1,∞

u (Ω).

Proof. For arbitrary w ∈ W1,∞
u (Ω) and sufficiently small λ ∈ (0, 1) we first record the bound

‖Du+λ(Dw−Du)‖L∞(Ω,Rn) ≤ M (for which we need in fact λ <
M−‖Du‖L∞(Ω,Rn)

‖Dw−Du‖L∞(Ω,Rn)
). With the

help of this bound, we infer (1−λ)u+λw = u+λ(w−u) ∈WM
u (Ω). The assumed minimality of

u in WM
u (Ω) together with the convexity of F and thus F then gives, still for sufficiently small

λ ∈ (0, 1),

F [u] ≤ F [(1−λ)u+λw] ≤ (1−λ)F [u] + λF [w] .

Rearranging terms and dividing by the positive factor λ, we arrive at F [u] ≤ F [w]. Since
w ∈W1,∞

u (Ω) is arbitrary, this is the claim.

In view of the last lemma, we now aim at verifying the strict inequality ‖∇u‖L∞(Ω,Rn) < M

for a minimizer u ∈WM (Ω) of F in the restricted class WM
u (Ω). This will be achieved with the

help of a comparison principle, which is truly needed only for minimizers but will be recorded
even for the more general case of sub- and super-minimizers in the following sense:

Definition (sub- and super-minimizers). Fix an open Ω ⊂ Rn, F ∈ C0(Rn), F from (∗),
M ∈ [0,∞]. We call u ∈WM (Ω) a sub-minimizer of F in WM

u (Ω) if F [u] ≤ F [w] holds for
all w ∈ WM

u (Ω) with w ≤ u a.e. on Ω. Analogously, we call u ∈ WM (Ω) a super-minimizer
of F in WM

u (Ω) if F [u] ≤ F [w] holds for all w ∈WM
u (Ω) with w ≥ u a.e. on Ω.
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2.5. Semi-classical existence theory 43

Remarks (on sub-minimizers and super-minimizers).

(1) Sub- and and super-minimizer are made up as analoga to sub-/superharmonic func-
tions and, more generally, to sub-/super-solutions of PDEs. For instance, following the
proof of the Dirichlet principle one finds that a function u ∈ W1,∞(Ω) is a sub-minimizer
of the Dirichlet integral E2 in W1,∞

u (Ω) = W∞
u (Ω) if and only if it is weakly subharmonic

(where the latter means ∆u ≥ 0 in D ′(Ω), that is,
∫

Ω∇u · ∇ϕdx ≤ 0 for all non-negative
ϕ ∈ C∞cpt(Ω)).

(2) It turns out that a function u ∈ WM (Ω) is a minimizer of F in WM
u (Ω) if and only if u is

simultaneously a sub-minimizer and a super-minimizer of F in WM
u (Ω). Indeed, the forward

implication of this claim is trivially satisfied, while the backward implication requires a short
comparison argument and will be explicated in the exercises.

Lemma. Consider a bounded open set Ω ⊂ Rn, F ∈ C0(Rn), F from (∗), M ∈ [0,∞], and
assume that F is strictly convex on Rn. If u ∈WM (Ω) is a sub-minimizer of F in WM

u (Ω) and
v ∈WM (Ω) is a super-minimizer of F in WM

v (Ω), then we have the comparison principle

lim sup
Ω3x→∂Ω

(u(x)−v(x)) ≤ 0 =⇒ u ≤ v on Ω

and the weak maximum principle

sup
Ω

(u−v) ≤ lim sup
Ω3x→∂Ω

(u(x)−v(x)) .

If u and v are even minimizers of F in WM
u (Ω) and WM

v (Ω), respectively, we also have the
maximum principle for the modulus supΩ |u−v| ≤ lim supΩ3x→∂Ω |u(x)−v(x)|.

The proofs of these principles will be treated in the exercises.

Remarks (on the comparison principle and the maximum principle).

(1) The inequality in the maximum principle is in fact an equality, since the opposite inequality
is trivially satisfied.

(2) The above principles apply even in situations with quite irregular domains and boundary
data, for instance they include functions u and v on Ω = (−1, 1)2 \ ((0, 1)×{0}) ⊂ R2 with
different boundary values on the opposite sides of the ‘cut’ (0, 1)×{0}.

(3) Nevertheless, the above principles are usually needed for functions u, v ∈ C0(Ω)
only (which, as discussed earlier, follows automatically from mild assumptions on Ω). In
this standard case, the comparison principle and the maximum principle take the more
common forms

u ≤ v on ∂Ω =⇒ u ≤ v on Ω ,

sup
Ω

(u−v) ≤ max
∂Ω

(u−v)

(where again the last inequality is in fact an equality).

Though not needed explicitly for the existence proof, we record (what in principle is known
from Section 2.4, but also comes out in the present context):
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44 CHAPTER 2. Existence of minimizers (via the direct method)

Corollary (uniqueness of minimizers). Consider a bounded open set Ω ⊂ Rn, F ∈ C0(Rn),
F from (∗), M ∈ [0,∞], u0 ∈ W1,∞(Ω), and assume that F is strictly convex on Rn. Then
there is at most one minimizer of F in WM

u0
(Ω).

Proof. If u and v are minimizers of F in WM
u0

(Ω), the maximum principle and the fact that

u−v ∈W1,∞
0 (Ω) yield

sup
Ω
|u−v| ≤ lim sup

Ω3x→∂Ω
|u(x)−v(x)| = 0 .

We thus obtain u = v on Ω, which ends the proof.

With regard to the existence proof, a main conclusion from the maximum principle is:

Lemma ((partial) reduction to the boundary). Consider a bounded open set Ω ⊂ Rn,
F ∈ C0(Rn), F from (∗), M ∈ [0,∞], and assume that F is strictly convex on Rn. Then, if
u ∈WM (Ω) ∩ C0(Ω) is a minimizer of F in WM

u (Ω), there holds

sup
x,y∈Ω
y 6=x

|u(y)−u(x)|
|y−x|

≤ sup
q∈Ω , p∈∂Ω

|u(q)−u(p)|
|q−p|

.

Remarks.

(1) Once more, the inequality in the lemma is in fact an equality, since the opposite inequality
is valid for every u ∈ C0(Ω).

(2) A closer inspection of the following proof shows that without the assumption u ∈ C0(Ω) the
conclusion of the lemma stays valid in the form

sup
x,y∈Ω
y 6=x

|u(y)−u(x)|
|y−x|

≤ lim sup
Ω3p→∂Ω

sup
q∈Ω

|u(q)−u(p)|
|q−p|

.

Proof of the lemma. We consider arbitrary x, y ∈ Ω with y 6= x and abbreviate τ ..= y−x 6= 0.
Setting uτ (z) ..= u(z+τ) for z ∈ Ω−τ , we obtain a minimizer uτ ∈ WM (Ω−τ) ∩ C0(Ω−τ) of
Fτ [w] ..=

∫
Ω−τ F (∇w) dx among w ∈ WM

uτ (Ω−τ). We next introduce Ω̃ ..= Ω ∩ (Ω−τ), which
clearly contains x = y−τ and is a non-empty subset of both Ω and the shifted domain Ω−τ ,
and we write F̃ [w] ..=

∫
Ω̃
F (∇w) dx. Then it is not difficult to see that (the restrictions to Ω̃ of)

both u and uτ minimize F̃ in WM
u (Ω̃) and WM

uτ (Ω̃), respectively. Therefore, the definition of uτ
and the weak maximum principle imply

|u(y)−u(x)| = |uτ (x)−u(x)| ≤ max
∂Ω̃
|uτ−u| .

Since ∂Ω̃ is non-empty and compact, the maximum on the right-hand side is attained at some
b ∈ ∂Ω̃, and we get

|u(y)−u(x)| ≤ |u(b+τ)−u(b)| .

After division by |y−x| = |τ | > 0, this can be recast as

|u(y)−u(x)|
|y−x|

≤ |u(b+τ)−u(b)|
|b+τ−b|

.
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Taking into account ∂Ω̃ ⊂ Ω ∩ (Ω−τ) and ∂Ω̃ ⊂ ∂Ω ∪ (∂Ω−τ) we next observe that we have
b, b+τ ∈ Ω and in addition b ∈ ∂Ω or b+τ ∈ ∂Ω. In other words, one of the points b, b+τ is in
∂Ω and the other one is in Ω at least. Therefore, we have in fact shown

|u(y)−u(x)|
|y−x|

≤ sup
q∈Ω , p∈∂Ω

q 6=p

|u(q)−u(p)|
|q−p|

.

Since we assumed u ∈ C0(Ω), the right-hand side stays unchanged if we pass from q ∈ Ω to
q ∈ Ω (and then q 6= p is automatic and need not be required explicitly). After this modification,
we finally take the supremum over x and y and arrive at the claim.

In order to acquire (a very basic class of) useful comparison functions we also provide:

Lemma (‘Affine functions minimize basic convex integrals.’). Consider a bounded open
set Ω ⊂ Rn, F ∈ C0(Rn), F from (∗), and assume that F is convex on Rn. Then every affine
function a : Rn → R minimizes F in W1,∞

a (Ω) (and thus also in WM
a (Ω) with M ≥ |∇a|).

As a preparation for the proof of the lemma we record for open Ω ⊂ Rn that generally∫
Ω
∇ϕdx = 0 for all ϕ ∈W1,1

0 (Ω) . (∗∗)

Indeed, for ϕ ∈ C1
cpt(Ω), one can take an open ball B with sptϕ ⊂ B and infer from the

divergence theorem that
∫

Ω ∂iϕdx =
∫
B div(ϕei) dx = 0 for all i ∈ {1, 2, . . . , n}. From this one

deduces (∗∗) first for ϕ ∈ C1
cpt(Ω), then for arbitrary ϕ ∈W1,1

0 (Ω). In particular, (∗∗) holds for

ϕ ∈W1,∞
0 (Ω) on bounded open Ω, since in this case one has the inclusion W1,∞

0 (Ω) ⊂W1,1
0 (Ω)

(as approximation of w ∈W1,∞
0 (Ω) with mollifications of (w−ε)+−(w+ε)− ∈W1,∞

cpt (Ω) shows).

Proof of the lemma. We assume that the open set Ω is non-empty and thus |Ω| > 0, and we
observe that ∇a is constant with a value A ∈ Rn on Rn. For arbitrary w ∈W1,∞

a (Ω), we have
ϕ ..= w−a ∈W1,∞

0 (Ω), and via (∗), Jensen’s inequality for the convex function F , and (∗∗) we
get

F [w] =

∫
Ω
F (A+∇ϕ) dx ≥ |Ω|F

(
1

|Ω|

∫
Ω

(A+∇ϕ) dx

)
= |Ω|F (A) = F [a] .

This establishes the claimed minimality of a.

Remark. The last lemma extends to cases with RN -valued functions, where (∗∗) holds in the
form

∫
Ω Dϕdx = 0 for all ϕ ∈W1,1

0 (Ω,RN ) and the proof of the lemma works in the same way.

As the final preparatory step in this section, we now single out and discuss a class of
suitable boundary data, for which the existence program can be completed in a particularly
simple way.

Definition (bounded slope condition). We say that a pair (Ω, u0) of a bounded open set
Ω in Rn and a function u0 : ∂Ω → R satisfies the bounded slope condition with constant

45



46 CHAPTER 2. Existence of minimizers (via the direct method)

L ∈ [0,∞) if, for every x0 ∈ ∂Ω, there exist two affine functions a+
x0
, a−x0

: Rn → R with the
properties

a−x0
(x0) = u0(x0) = a+

x0
(x0) ,

a−x0
≤ u0 ≤ a+

x0
on ∂Ω ,

|∇a−x0
| ≤ L , |∇a+

x0
| ≤ L .

Clearly the gradient of each affine function ∇a±x0
is constant, its modulus |∇a±x0

| gives the
maximal slope of a±x0

, and thus the required uniform bound L for these slopes is actually
responsible for the name of the bounded slope condition.

Remarks (on the bounded slope condition).

(1) Necessary criterion: If (Ω, u0) satisfies the bounded slope condition with some constant
L ∈ [0,∞), then, unless u0 is itself affine, Ω is necessarily convex.

Proof. If ∇a+
x0

= ∇a−x0
holds for some x0 ∈ ∂Ω, we get a+

x0
= a−x0

on Rn (since a+
x0

(x0) =
a−x0

(x0) is postulated) and u0 is affine.

Thus, we can assume ∇a+
x0
6= ∇a−x0

for all x0 ∈ ∂Ω. Then we claim

Ω =
⋂

x0∈∂Ω

{a+
x0
> a−x0

} , (∗∗∗)

and once this is verified, Ω is an intersection of half-spaces and thus convex as claimed. It

remains to check (∗∗∗). To this end we observe that a+
x0 ≥ a−x0 on ∂Ω implies first a+

x0 ≥ a−x0 on Ω (since each point

of the bounded Ω can be written as convex combination of two points from ∂Ω) and then even a+
x0 > a−x0 on Ω (since

equality a+
x0 (z) = a−x0 (z) at z ∈ Ω together with ∇a+

x0 6= ∇a
−
x0 would yield the contradiction that a+

x0 < a−x0 on a part
of each neighborhood of z). This shows the inclusion ‘⊂’ in (∗∗∗). To establish the opposite inclusion, we consider
x ∈ Rn with x /∈ Ω. We fix an arbitrary z ∈ Ω and observe that the closed line segment from x to z contains some
x0 ∈ ∂Ω. If we had a+

x0 (x) > a−x0 (x), then with the information a+
x0 (z) > a+

x0 (z) from the previous reasoning we

would get a+
x0 (x0) > a+

x0 (x0) as well. Since this contradicts one requirement of the bounded slope condition, we thus

have x /∈ {a+
x0 > a−x0} and x /∈

⋂
x0∈∂Ω{a

+
x0 > a−x0}. This gives ‘⊂’ in (∗∗∗) and completes the proof.

(2) Sufficient criterion: If a bounded open Ω in Rn is uniformly convex and it holds
u0 ∈ C2(Rn), then (Ω, u0) (or more precisely (Ω, u0 ∂Ω)) satisfies the bounded slope
condition with some constant L ∈ [0,∞).

Idea of proof. The proof can be reduced to the case of the boundary point x0 = 0 with
u0(0) = 0, ∇u0(0) = 0. In this situation, the uniform convexity assumption implies the
existence of an ε > 0 such that xn ≥ ε|x|2 holds for all x = (x, xn) ∈ Ω with |x| � 1. By
Taylor’s theorem we have |u0(x)| ≤ C(|x|2+x2

n) for |x| � 1, and altogether we can conclude
|u0(x)| ≤ C

ε xn for x ∈ Ω with |x| � 1. This shows that a±0 (x) ..= ±Lxn with L = C
ε

satisfies the requirements of the bounded slope condition in a neighborhood of 0, and a finer
analysis of the reasoning shows that the size of the neighborhood can be controlled. Possibly
enlarging L, one can ensure the requirements also away from 0.

Uniformly convex functions. Consider ε > 0. A function f : K → R on a bounded convex set K ⊂ Rn is
called ε-uniformly convex if the function K → R , x 7→ f(x)−ε|x|2 is convex on K.

Uniformly convex sets. A bounded convex open set Ω in Rn is called uniformly convex if there exists some
ε > 0 such that Ω coincides locally near every point of ∂Ω with the rotated supergraph of an ε-uniformly convex
function (defined on a bounded convex set in Rn−1). If Ω has a C2 boundary, uniform convexity is equivalent
with the condition that all principal curvatures (with respect to the inward unit normal) of ∂Ω at all points of
∂Ω are larger than a fixed positive constant.
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2.5. Semi-classical existence theory 47

(3) The sufficient criterion in (2) is quite sharp with regard to the assumptions on both Ω and
u0. This is demonstrated by the non-sufficiency of the following slightly weaker conditions
(with corresponding examples in dimension 2):

• If Ω is convex and u0 ∈ C∞(Rn), it does not suffice for the bounded slope condition.
Indeed, for Ω = {x ∈ R2 : |x| < 1 , x2 > 0} with flat boundary portion (−1, 1)×{0}
and u0(x) = x2

1, there exists no suitable affine function a+
0 .

• If Ω is strictly convex and u0 ∈ C∞(Rn), it does not suffice for the bounded slope
condition. Indeed, for Ω = {x ∈ R2 : x4

1 < x2 < 1} and u0(x) = x2
1, there exists no

suitable affine function a+
0 (essentially since u0(x) =

√
x2 for x ∈ ∂Ω with |x| � 1).

• If Ω is uniformly convex and u0 ∈ C1,α
loc (Rn) with any fixed α ∈ (0, 1), it does not suffice

for the bounded slope condition. Indeed, for Ω = {x ∈ R2 : x2
1 < x2 < 1} and u0(x) =

|x1|1+α, there exists no suitable affine function a+
0 (essentially since u0(x) = x

1+α
2

2 for
x ∈ ∂Ω with |x| � 1 and 1+α

2 < 1).
Alternatively, the last example also works with the ball Ω = {x ∈ R2 : x2

1+(x2−1)2 < 1} and u0(x) = |x1|1+α.

(4) If (Ω, u0) satisfies the bounded slope condition with constant L ∈ [0,∞), then the
pointwise infimum u0

..= infx0∈∂Ω a
+
x0

of the affine functions a+
x0

from the definition extends
u0 to all of Rn. Moreover, since all a+

x0
are in particular Lipschitz with constant L, also u0

is Lipschitz with constant L on Rn. In particular, identifying u0 with its extension u0 Ω

and relying on Rademacher’s theorem, we can understand u0 ∈WM(Ω) ∩ C0(Ω) and
WM

u0
(Ω) ⊂ C0(Ω) for all M ≥ L.

Alternatively, one can arrive at the same conclusions by considering supx0∈∂Ω a
−
x0 .

At this stage, the existence result targeted at can be stated and then quickly proved.

Theorem (existence under the bounded slope condition). Consider a bounded open set
Ω ⊂ Rn, F ∈ C0(Rn), F from (∗), u0 : ∂Ω → R, L ∈ [0,∞), and assume that F is convex
on Rn. If (Ω, u0) satisfies the bounded slope condition with constant L, then there exists a
minimizer of F in W1,∞

u0
(Ω).

Proof. We first implement the proof under the additional assumption that F is strictly convex on
Rn. We fix M > L and record u0 ∈WM (Ω) (and thus WM

u0
(Ω) 6= ∅) according to the preceding

Remark (4). On this basis we employ the initial proposition of this section to find a minimizer u
of F in the restricted class WM

u0
(Ω), where in view of WM

u0
(Ω) ⊂ C0(Ω) the boundary condition

u = u0 on ∂Ω holds in the classical sense. Thus u Ω is bounded by a±p from the bounded slope
condition in the sense that

a−p ≤ u ≤ a+
p on ∂Ω

for every fixed p ∈ ∂Ω. Since u is a minimizer of F in WM
u (Ω) and by a previous lemma the

affine functions a±p are minimizers F in WM
a±p

(Ω), the comparison principle applies and gives

a−p ≤ u ≤ a+
p on Ω

for every fixed p ∈ ∂Ω. As the bounded slope condition also requires a±p (p) = u0(p) = u(p), we
infer

a−p (q)− a−p (p) ≤ u(q)− u(p) ≤ a+
p (q)− a+

p (p) for all q ∈ Ω , p ∈ ∂Ω .
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Finally, we involve the bound |∇a±p | ≤ L, which means that a±p is Lipschitz continuous on Rn

with constant ≤ L. Applying this on both the left-hand and right-hand side, we infer

−L|q−p| ≤ u(q)− u(p) ≤ L|q−p| for all q ∈ Ω , p ∈ ∂Ω .

or in other words

sup
q∈Ω , p∈∂Ω

|u(q)−u(p)|
|q−p|

≤ L .

The reduction-to-the-boundary lemma improves this to

sup
x,y∈Ω
y 6=x

|u(y)−u(x)|
|y−x|

≤ L ,

which means that u is Lipschitz continuous on Ω with Lipschitz constant ≤ L. From this one can
deduce, either by using that ∇u is a.e. a classical derivative thanks to Rademacher’s theorem
or by a more mollification argument, that

‖∇u‖L∞(Ω,Rn) ≤ L .

Since we have taken M > L, an earlier lemma brings us back from restricted to unrestricted
minimality, that is, it ensures that u is a minimizer of F also in W1,∞

u0 (Ω) = W1,∞
u (Ω). This

establishes the claim under the additional strict convexity assumption.
In order to complete the proof for merely convex F , we introduce, for ε > 0, the regular-

izations Fε ∈ C0(Rn), which are given by Fε(z) ..= F (z)+ε|z|2 for z ∈ Rn and are strictly
convex on Rn. By the first part of the proof, for every ε > 0 there exists some uε ∈ WL

u0
(Ω)

which minimizes Fε in W1,∞
u0 (Ω). As observed earlier, WL

u0
(Ω) is sequentially weakly∗ compact,

and thus there is a positive null sequence (εk)k∈N such that uεk
∗−⇁

k→∞
u converges weakly∗ in

W1,∞(Ω) to some limit u ∈WL
u0

(Ω) ⊂W1,∞
u0 (Ω). The using in turn weak∗ lower semicontinuity

of F (which is available thanks to convexity of F and the results of Section 2.2), the minimality
of uεk for Fεk , and limk→∞ εk

∫
Ω |∇w|

2 dx = 0, we conclude

F [u] ≤ lim inf
k→∞

F [uεk ] ≤ lim inf
k→∞

Fεk [uεk ] ≤ lim inf
k→∞

Fεk [w] = F [w]

for all w ∈ W1,∞
u0 (Ω). Thus u minimizes F in W1,∞

u0 (Ω), and we have completed the existence
program also in the general case.

Remarks (on the existence theorem and the semi-classical theory as a whole).

(1) The semi-classical existence theory allows to solve certain variational problems with
scalar functions which cannot be treated directly with the methods of Sections 2.1,
2.2, 2.3. For instance, it applies to the scalar 1-energy

∫
Ω |∇w| dx and the scalar non-

parametric area integral
∫

Ω

√
1 + |∇w|2 dx with a Dirichlet boundary condition (provided

that the boundary datum satisfies a bounded slope condition, of course).

(2) The semi-classical theory can alternatively be implemented by working with the space of
Lipschitz functions on Ω and the subspace of functions with Lipschitz constant ≤M in place
of the spaces W1,∞(Ω) and WM (Ω). In the end, this leads to the same existence theorem
(which is clear, since on convex Ω the spaces coincide up to passage to representatives).
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In these notes, however, after the considerations of the previous sections the above imple-
mentation with Sobolev functions appears quite natural (and it also leads to slightly more
general versions of some of the auxiliary lemmas).

(3) The affine functions in the bounded slope condition play the role of barriers
as commonly used in the theory of PDEs, and in fact the above method can be extended
to more general domains and boundary data without the bounded slope condition if one
can only ensure the existence of barriers with similar properties (but no longer necessarily
affine). In general, the construction of barriers is a non-trivial matter and can be achieved
(only) under severely refined assumptions on the integrand F (in contrast to the case above
where solely convexity of F was needed); see, for instance, [11, Sections 1.3, 1.4].
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Chapter 3

Euler-Lagrange Equations

3.1 The case without constraints (or with linear ones only)

In principle the first-order criteria for minimum and maximum points, as they are known
from calculus for functions in n variables, apply also to functionals on ∞-dimensional
spaces. In order to make this precise in wide generality, one considers, for a real vector space
X and ε > 0, (special) variations

(w+tϕ)t∈(−ε,ε)

of an element w ∈ X in direction ϕ ∈ X and uses directional derivatives, for which the
following terminology is common:

Definition (first variation). Consider a real vector space X and functional F : A → R on a
subset A of X . Suppose, for w ∈ A and ϕ ∈ X , that we have w+tϕ ∈ A and |F [w+tϕ]| < ∞
for |t| � 1 and that the directional derivative

δF [w;ϕ] ..= ∂ϕF [w] =
d

dt t=0
F [w+tϕ]

exists in R. Then δF [w;ϕ] is called the first variation of F at w in direction ϕ.

Remark and Definition (admissible variations). One says that a variation (w+tϕ)t∈(−ε,ε) is
A-admissible if it satisfies w+tϕ ∈ A for |t| � 1 (as required for the existence of δF [w;ϕ]).

With this terminology we state the first-order criterion as follows:

Proposition (first-order criterion for minimizers). Fix a real vector space X and u ∈ A ⊂
X .

(I) Necessary criterion: If u is a minimizer of a functional F : A → R in A, then

δF [u;ϕ] = 0 holds for all ϕ ∈ X such that δF [u;ϕ] exists.

(II) Sufficient criterion: Suppose that A is convex with A ⊂ u+V for some vector subspace
V of X and that F : A → R ∪ {∞} is convex on A. If

δF [u;ϕ] exists with δF [u;ϕ] = 0 for all ϕ ∈ V ,

then u is a minimizer of F in A.
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52 CHAPTER 3. Euler-Lagrange Equations

Proof. To prove (I) consider a minimizer u of F in A. Whenever δF [u;ϕ] exists, the definition
requires u+tϕ ∈ A and |F [u+tϕ]| <∞ for |t| � 1 so that t 7→ F [u+tϕ] is defined and R-valued
on an interval around 0 with a minimum at 0. The first-order criterion for minimum points of
single-variable functions then gives δF [u;ϕ] = d

dt t=0
F [u+tϕ] = 0.

In order to establish (II) we assume A ⊂ u+V and δF [u;ϕ] = 0 for all ϕ ∈ V. For arbitrary
w ∈ A and t ∈ [0, 1], the convexity of A and F guarantees u+t(w−u) = (1−t)u+tw ∈ A and

F [u+t(w−u)] ≤ F [u]+t(F [w]−F [u]) .

Furthermore, in view of the assumptions we have w−u ∈ V, and we get

0 = δF [u;w−u] = lim
t↘0

F [u+t(w−u)]−F [u]

t
≤ F [w]−F [u] .

Hence we have shown F [u] ≤ F [w] for all w ∈ A.

Remark. It is common to call u an extremal of F if δF [u ;ϕ] = 0 holds for suitably many
ϕ. However, this is not a precise definition, and the terminology is also misleading insofar that
extremals are merely critical points of F and in general (i.e. without convexity or concavity of
F) cannot be expected to be local minimum or maximum points.

For integral functionals, the first variation can be computed explicitly:

Proposition (first variation and Euler equation for integral functionals). Given an
open set Ω in Rn and an Mn⊗B(RN )⊗B(RN×n)-measurable F : Ω×RN×RN×n → R, set

F [w] ..=

∫
Ω
F ( · , w,Dw) dx

for w ∈W1,1
loc(Ω,RN ) (whenever the integral exists in R).

(I) First-variation formula: For u ∈ W1,1
loc(Ω,RN ) with F ( · , u,Du) ∈ L1(Ω) and ϕ ∈

W1,1
loc(Ω,RN ), there exist F [u+tϕ] ∈ R with |t| � 1 and

δF [u;ϕ] =

∫
Ω

[
∇zF ( · , u,Du) ·Dϕ+∇yF ( · , u,Du) · ϕ

]
dx ∈ R

provided there exist a majorant Φ ∈ L1(Ω), a null set E ⊂ Ω and ε > 0 such that,
for t ∈ (−ε, ε), the integrand F (x, y, z) is totally differentiable in (y, z) ∈ RN×RN×n at
all points ξt(x) ..= (x, u(x)+tϕ(x),Du(x)+tDϕ(x)), x ∈ Ω \ E, with derivative bounds
|∇zF (ξt(x)) ·Dϕ(x)| ≤ Φ(x) and |∇yF (ξt(x)) · ϕ(x)| ≤ Φ(x).

(II) Euler(-Lagrange) equation: Assume that the requirements of (I) are met for fixed
u ∈W1,1

loc(Ω,RN ) and all ϕ ∈ C∞cpt(Ω,R
N ). Then we have ∇zF ( · , u,Du) ∈ L1

loc(Ω,R
N×n)

and ∇yF ( · , u,Du) ∈ L1
loc(Ω,R

N ), and the first-order criterion

δF [u;ϕ] = 0 for all ϕ ∈ C∞cpt(Ω,R
N )

is satisfied if and only if1 div
[
∇zF ( · , u,Du)

]
exists weakly in L1

loc(Ω,R
N ) with

−div
[
∇zF ( · , u,Du)

]
+∇yF ( · , u,Du) ≡ 0 on Ω . (EL)

1The weak divergence divW ∈ L1
loc(Ω,RN ) of a matrix field W ∈ L1

loc(Ω,RN×n) is taken row-wise, that is,
in the sense of (divW )i = div(Wi1,Wi2, . . . ,Win) for i ∈ {1, 2, . . . , N}. As a result, the weak divergence is
characterized by the equality

∫
Ω
W · Dϕdx = −

∫
Ω

(divW ) · ϕdx for all ϕ ∈ C∞cpt(Ω,R
N ).
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One calls the equation (EL) the Euler(-Lagrange) equation of the integral functional F
and the partial differential operator EF , defined by

EFu ..= −div
[
∇zF ( · , u,Du)

]
+∇yF ( · , u,Du) ,

the Euler(-Lagrange) operator of F .

Proof of (I). For t ∈ (−ε, ε) and x ∈ Ω \ E, we compute with the chain rule

d

dt
F (ξt(x)) = ∇zF (ξt(x)) ·Dϕ(x) +∇yF (ξt(x)) · ϕ(x)

and then from the assumptions obtain the uniform L1-bound∣∣∣ d

dt
F (ξt(x))

∣∣∣ ≤ 2Φ(x) .

In particular, this implies |F (ξt(x))−F (ξ0(x))| ≤ t sups∈(0,t)

∣∣ d
dsF (ξs(x))

∣∣ ≤ 2tΦ(x), and in view

of F (ξ0) = F ( · , u,Du) ∈ L1(Ω) we infer F (ξt) ∈ L1(Ω), that is, F [u+tϕ] ∈ R exists for t ∈
(−ε, ε). On the basis of these observations we may compute by exchange of differentiation
and integration

δF [u;ϕ] =
d

dt t=0

∫
Ω
F (ξt(x)) dx =

∫
Ω
∇zF (ξ0(x)) ·Dϕ(x) +∇yF (ξ0(x)) · ϕ(x) dx ∈ R .

In view of ξ0(x) = (x, u(x),Du(x)) this is the claimed formula.

Proof of (II). We first prove the L1
loc-integrability of ∇zF ( · , u,Du) and ∇yF ( · , u,Du), which clearly follows once we

establish ∂zijF ( · , u,Du) ∈ L1
loc(Ω) and ∂yiF ( · , u,Du) ∈ L1

loc(Ω) for all i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , n}. To verify this,

we first record from the assumptions of (I) with t = 0 that (∇zF ( · , u,Du)·Dϕ)± ∈ L1(Ω) and (∇yF ( · , u,Du)·ϕ)± ∈ L1(Ω)
for all ϕ ∈ C∞cpt(Ω,R

N ). For compact K ⊂ Ω, we then choose ϕ ∈ C∞cpt(Ω,R
N ) with Dϕ ≡ eij on K and ϕ ≡ ei on K,

respectively, to infer (∂zijF ( · , u,Du))± ∈ L1(K) and (∂yiF ( · , u,Du))± ∈ L1(K). This implies the claimed integrability.

Now we turn to the proof of the claimed equivalence. In view of (I), the first-order criterion
δF [u;ϕ] = 0 for all ϕ ∈ C∞cpt(Ω,R

N ) can be rewritten in the form∫
Ω
∇zF ( · , u,Du) ·Dϕdx = −

∫
Ω
∇yF ( · , u,Du) · ϕdx for all ϕ ∈ C∞cpt(Ω,R

N ) ,

and this means precisely that div
[
∇zF ( · , u,Du)

]
= ∇yF ( · , u,Du) exists weakly on Ω.

Remarks (on the Euler equation).

(1) In a way, the proposition identifies the first derivative of the integral functional F as
the differential operator EF and the first-order criterion for minimizers of F as the
second-order differential equation (EL). In case N = 1, (EL) is a single equation, in case
N ≥ 2 it is a system of N equations. In case n = 1 it is an ordinary differential equation, in
case n ≥ 2 a partial differential equation. In general, (EL) is non-linear (but, if ∇zF is C1,
expansion of the divergence shows that (EL) is generally quasi-linear, i.e. linear in D2u).

(2) The connection between an integral functional and its Euler equation is crucially
based on the fundamental lemma in the calculus of variations (that is, the lemma
which says that w ∈ L1

loc(Ω,R
N ) with

∫
Ωw ·ϕdx = 0 for all ϕ ∈ C∞cpt(Ω,R

N ) satisfies w ≡ 0
a.e. on Ω). The lemma is usually used to establish uniqueness of weak derivatives and the
weak divergence and thus plays an implicit rule in the above proof. Most crucially, however,
the lemma ensures, if ∇zF is C1, that C2 weak solutions to (EL) are also classical solutions.
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(3) The proposition is stated for weakly differentiable u and thus (potentially) applies to
minimizers u in Sobolev spaces, as they are provided by the existence theory of Chapter 2.
(In contrast, for the integrand F , the existence of classical derivatives ∇zF , ∇yF has been
assumed. However, since F is not obtained from an existence theory but rather given, this
is also reasonable and can be checked in many concrete cases.)

(4) A zero-order functional G[w] ..=
∫

ΩG( · , w) dx (with suitable measurable G) is connected,
in an analogous way, with its Euler equation ∇yG( · , u) ≡ 0 a.e. on Ω. However, the
information in this equation (which is not a differential equation, as no derivatives of the
unknown u occur) is often rather obvious and less interesting. Indeed, in the unconstrained
case one expects anyway that u ∈ Lp(Ω,RN ) minimizes G in Lp(Ω,RN ) if and only if u(x)
minimizes G(x, · ) for a.e. x ∈ Ω, while the above Euler equation merely shows, for a
minimizer u of G in Lp(Ω,RN ), that u(x) is a critical point of G(x, · ) for a.e. x ∈ Ω.

Next we show that the assumptions of the proposition and particularly the assumption
on the existence of the majorant Φ for quantities involving u (which is clearly difficult to ver-
ify without explicit knowledge of u) can be obtained from growth assumptions on the
integrand F alone. In fact, the subsequent theorem achieves this for minimization
in Dirichlet classes in two slightly different settings. The first one needs weaker localized
assumptions and gives the necessity of the Euler equation in the weak/distributional sense with
C∞cpt test functions. The second one comes with somewhat stronger global assumptions, ensures

that W1,p
0 test functions can be used, and also gives the sufficiency of the Euler equation in

convex situations:

Theorem (on growth conditions and the Euler equation in W1,p). Consider an open set
Ω in Rn and an Mn⊗B(RN )⊗B(RN×n)-measurable F : Ω×RN×RN×n → R, which is totally
differentiable in (y, z) at all points of (Ω \E)×RN×RN×n with a null set E ⊂ Ω. Then, for the
integral functional given by

F [w] ..=

∫
Ω
F ( · , w,Dw) dx

(whenever the integral exists in R), we have the following assertions:

(I) For p ∈ [1,∞], consider u ∈ W1,p
loc(Ω,RN ) with F ( · , u,Du) ∈ L1(Ω), and assume that

∇zF and ∇yF satisfy the growth condition

|∇zF (x, y, z)|+ |∇yF (x, y, z)| ≤


Ψ(x) + C|z|p + C|y|p∗ , if p ≤ n
Ψ(x) + C|z|p + b(|y|) , if n < p <∞
Ψ(x) + b(|z|) + b(|y|) , if p =∞

for all (x, y, z) ∈ (Ω \ E)×RN×RN×n with Ψ ∈ L1
loc(Ω), C ∈ [0,∞), p∗ ..= np

n−p if p < n,
any exponent p∗ ∈ [1,∞) if p = n, and locally bounded b : [0,∞)→ [0,∞). Then δF [u;ϕ]
exists and is given by the first-variation formula for all ϕ ∈ C∞cpt(Ω,R

N ). Moreover, if u

is a minimizer of F in u+C∞cpt(Ω,R
N ), then u weakly solves the Euler equation (EL).
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(II) For p ∈ [1,∞], consider u ∈ W1,p(Ω,RN ) with F ( · , u,Du) ∈ L1(Ω), and assume that Ω
is a bounded Lipschitz domain and ∇zF and ∇yF satisfy the growth conditions

|∇zF (x, y, z)| ≤


Ψ(x)1/p′ + C|z|p/p′ + C|y|p∗/p′ , if p ≤ n
Ψ(x)1/p′ + C|z|p/p′ + b(|y|) , if n < p <∞
Ψ(x) + b(|z|) + b(|y|) , if p =∞

,

|∇yF (x, y, z)| ≤


Ψ(x)1/(p∗)′ + C|z|p/(p∗)′ + C|y|p∗/(p∗)′ , if p ≤ n
Ψ(x) + C|z|p + b(|y|) , if n < p <∞
Ψ(x) + b(|z|) + b(|y|) , if p =∞

for all (x, y, z) ∈ (Ω\E)×RN×RN×n with Ψ ∈ L1(Ω) and C, p∗, b as in (I), where we have
abbreviated p′ ..= p

p−1 ∈ [1,∞], (p∗)′ ..= p∗

p∗−1 ∈ (1,∞] (and understand 1/1′ = 0, 00 = 1).

Then δF [u;ϕ] exists and is given by the first-variation formula for all ϕ ∈W1,p
0 (Ω,RN ).

Moreover, we have

u minimizes F in W1,p
u (Ω,RN ) =⇒ δF [u;ϕ] = 0 holds for all ϕ ∈W1,p

0 (Ω,RN )

⇐⇒ (EL) holds for u ,

and, if F (x, · ) is convex on RN×RN×n for all x ∈ Ω\E, the first ‘=⇒’ is also an ‘⇐⇒’.

Here the exponents in (II) can be written in alternative ways, and most importantly one can
simplify p

p′ = p−1, p∗

(p∗)′ = p∗−1. However, the above statement is intended to showcase that
they occur for a reason and in a systematic way, as will now be further clarified.

Remarks (on the growth conditions).

(1) Model examples of variational integrals and some corresponding Euler equations have
been discussed in Chapter 1 (though at that stage the precise connection and the term
Euler equation were not yet available). In the basic cases and many variants the growth
conditions are satisfied with an obvious choice of the exponent p and both the existence
theory and the above theorem apply in W1,p. In particular, this is true in virtually all
cases with integrand F independent of y, while in y-dependent cases the validity of growth
conditions and the Euler equation can sometimes be an issue.

(2) The growth conditions in the theorem are made up in a way that allows to deduce,

• in (I), that∇zF ( · , w,Dw), ∇yF ( · , w,Dw) are L1
loc on Ω for all w ∈W1,p

loc(Ω,RN )
(uses Sobolev’s embedding on compact K ⊂ Ω with smooth ∂K)

• in (II), that ∇zF ( · , w,Dw)·Dϕ, ∇yF ( · , w,Dw)·ϕ are L1 on Ω for all w,ϕ ∈
W1,p(Ω,RN ) (where, e.g. for the ∇zF -term, one first gets |∇zF ( · , w,Dw)| ∈ Lp

′
(Ω)

and then relies on Hölder’s inequality).

Clearly, these integrability properties come along with quantitative estimates, which are also
needed in order to ensure the validity of the first-variation formula (see the proof below).
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(3) If ∇zF and ∇yF exist and are continuous on Ω×RN×RN×n, the growth condition

in (I) is automatically satisfied2 with p =∞. If one has a minimizer u is in W1,∞
(loc)(Ω,R

N )

(as provided, in some cases, by the semi-classical existence theory of Section 2.5), then this
perfectly suffices to obtain the Euler equation for u. In most cases, however, the existence
theory provides minimizers in a Sobolev space W1,p(Ω,RN ) with p <∞ only, and then the
growth condition with p =∞ is not sufficient for the Euler equation, but rather one needs
p-growth with the same p <∞.

(4) A closer look at the involved exponents shows that the growth requirements in (II) are
stronger than those in (I) but are still comparably general and often satisfied. What is
more restrictive in practice, is the convexity requirement in (y, z), which is needed for the
backward implication in (II) and thus the sufficiency of the Euler equation.

(5) If one can a-priori restrict the class of competitors to a class of bounded W1,p-functions,
then in case p ≤ n one can take into account the boundedness and thus improve on the
(exponents in) the growth assumptions needed for the Euler equation.

Proof of (I) in the theorem. We first consider the case p ≤ n. For the given u ∈ W1,p
loc(Ω,RN ),

arbitrary ϕ ∈ C∞cpt(Ω,R
N ), and t ∈ R, we abbreviate once more ξt ..= ( · , u+tϕ,Du+tDϕ). For

|t| ≤ 1, the growth condition gives

|∇zF (ξt)|+ |∇yF (ξt)| ≤ Ψ + C|Du+tDϕ|p + C|u+tϕ|p∗

≤ Ψ + 2p−1C
(
|Du|p+|Dϕ|p

)
+ 2p

∗−1C
(
|u|p∗+|ϕ|p∗

)
=.. Λ ∈ L1

loc(Ω) ,

where |u|p∗ ∈ L1
loc(Ω) results from the local Sobolev embedding W1,p

loc(Ω,RN ) ⊂ Lp
∗

loc(Ω,R
N ).

Setting Φ ..= Λ(|Dϕ|+|ϕ|), we infer |∇zF (ξt) · Dϕ| ≤ Φ, |∇yF (ξt) · ϕ| ≤ Φ for |t| ≤ 1 with
Φ ∈ L1(Ω) (since |Dϕ|+|ϕ| is bounded and compactly supported). With the majorant Φ at
hand, we may apply (II) in the last proposition, and this gives the Euler equation (EL) in case
u minimizes F in u+C∞cpt(Ω,R

N ).

In case n < p < ∞, from Sobolev’s embedding we get u ∈ W1,p
loc(Ω,RN ) ⊂ L∞loc(Ω,R

N ) and
thus sup|t|≤1 b(|u+tϕ|) ≤ sups≤|u|+|ϕ| b(s) ∈ L∞loc(Ω) (since also b is locally bounded). For |t| ≤ 1,
we then have

|∇zF (ξt)|+ |∇yF (ξt)| ≤ Ψ + C|Du+tDϕ|p + b(|u+tϕ|)
≤ Ψ + 2p−1C

(
|Du|p+|Dϕ|p

)
+ sups≤|u|+|ϕ| b(s) =.. Λ ∈ L1

loc(Ω) ,

and the remainder of the argument works as before.
The adaption of the reasoning to the case p =∞ with two ‘b-terms’ is straightforward.

Proof of (II) in the theorem. Starting once more with the case p ≤ n, we justify the first-
variation formula for the given u ∈ W1,p(Ω,RN ) and arbitrary ϕ ∈ W1,p(Ω,RN ). Indeed,

2Indeed, already from local boundedness of∇zF , ∇yF on Ω×RN×RN×n one obtains the ‘∞-growth’ condition
as follows. Introduce ΩM ..= {x ∈ Ω : dist(x, ∂Ω) ≥ 1/M , |x| ≤M}, KM

..= {(y, z) ∈ RN×RN×n : |z|+|y| ≤M}
for M ∈ N and Ω0

..= K0
..= ∅. Then set Ψ(x) ..= supΩM×KM

(
|∇zF |+|∇yF |

)
<∞ for x ∈ ΩM \ΩM−1 and b(t) ..=

supΩM×KM

(
|∇zF |+|∇yF |

)
<∞ for t ∈

(
M−1

2
, M

2

]
, b(0) ..= b(0+). For arbitrary (x, y, z) ∈ Ω×RN×RN×n there

is a smallest M ∈ N with (x, y, z) ∈ ΩM×KM . Now either x ∈ ΩM \ΩM−1 or M−1 < |z|+|y| ≤M holds (in case
M = 1 with ‘≤’ in place of ‘<’). In the first case, the above choices ensure |∇zF (x, y, z)|+|∇yF (x, y, z)| ≤ Ψ(x),

in the second one they give |∇zF (x, y, z)|+|∇yF (x, y, z)| ≤ b
( |z|+|y|

2

)
≤ b(|z|)+b(|y|). In all cases, it thus comes

out that |∇zF (x, y, z)|+|∇yF (x, y, z)| ≤ Ψ(x)+b(|z|)+b(|y|) holds, and this is the claimed growth condition.
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setting again ξt ..= ( · , u+tϕ,Du+tDϕ), for |t| ≤ 1 we have

|∇zF (ξt)| ≤ Ψ1/p′ + C|Du+tDϕ|p/p′ + C|u+tϕ|p∗/p′

≤ Ψ1/p′ + 2p/p
′
C
(
|Du|p/p′+|Dϕ|p/p′

)
+ 2p

∗/p′C
(
|u|p∗/p′+|ϕ|p∗/p′

)
=.. Λz ∈ Lp

′
(Ω) ,

where we exploited that |u|p∗ , |ϕ|p∗ ∈ L1(Ω) by Sobolev’s embedding. Analogously, we get
|∇yF (ξt)| ≤ Λy for |t| ≤ 1 with Λy ∈ L(p∗)′(Ω). In conclusion, we have |∇zF (ξt)·Dϕ| ≤ Φ,
|∇zF (ξt)·ϕ| ≤ Φ for Φ ..= Λz|Dϕ|+Λy|ϕ| ∈ L1(Ω) (where Λz ∈ Lp

′
(Ω), |Dϕ| ∈ Lp(Ω) implies

Λz|Dϕ| ∈ L1(Ω) and Λy ∈ L(p∗)′(Ω), |ϕ| ∈ Lp
∗
(Ω) implies Λy|ϕ| ∈ L1(Ω) by Hölder’s inequality).

On this basis we may apply (I) in the last proposition (with A = W1,p(Ω,RN )) and get the
existence of

δF [u;ϕ] =

∫
Ω

[
∇zF ( · , u,Du) ·Dϕ+∇yF ( · , u,Du) · ϕ

]
dx for all ϕ ∈W1,p(Ω,RN ) . (∗)

From this formula, the integrabilities |∇zF ( · , u,Du)| ∈ Lp
′
(Ω), |∇yF ( · , u,Du)| ∈ L(p∗)′(Ω), and

Sobolev’s embedding we then obtain that δF [u ; · ] is continuous on W1,p(Ω,RN ). For p > n,
the majorant Φ, the formula (∗), and the continuity property can be obtained, similar as in
the last proof, by technical modification of the reasoning (which we do not explicate here). As
a side benefit, we record that F ( · , w,Dw) ∈ L1(Ω) holds and thus F [w] ∈ R exists for all
w ∈W1,p(Ω,RN ). Indeed, setting ϕ ..= w−u and still using ξt = ( · , u+tϕ,Du+tDϕ), we see

|F ( · , w,Dw)−F ( · , u,Du)| = |F (ξ1)−F (ξ0)| ≤ sup
t∈[0,1]

∣∣∣ d

dt
F (ξt)

∣∣∣
= sup

t∈[0,1]
|∇zF (ξt)·Dϕ+∇yF (ξt)·ϕ| ≤ 2Φ ∈ L1(Ω) .

This implies F ( · , w,Dw) ∈ L1(Ω), since F ( · , u,Du) ∈ L1(Ω) is assumed.
Finally, we turn to the main conclusions of (II). From the deduction of (∗) it is clear

that (II) from the last proposition applies and a minimizing u satisfies δF [u ;ϕ] = 0 for all
ϕ ∈ C∞cpt(Ω,R

N ), which is nothing but the Euler equation (EL). Moreover, in case p < ∞ at

least, C∞cpt(Ω,R
N ) is norm-dense in W1,p

0 (Ω,RN ), and thus, by continuity, having δF [u;ϕ] = 0

for all ϕ ∈ C∞cpt(Ω,R
N ) is equivalent with having δF [u ;ϕ] = 0 for all ϕ ∈ W1,p

0 (Ω,RN ). For
p =∞, the norm-density is no longer at hand, but the resulting equivalence is still true, since,
for each ϕ ∈ W1,∞

0 (Ω,RN ), there are approximations ϕk ∈ C∞cpt(Ω,R
N ) such that ϕk converge

uniformly to ϕ and Dϕk are uniformly bounded and converge a.e. to Dϕ. At this stage it
just remains to establish the additional implication giving the sufficiency of (EL) in case F is
convex in (y, z). However, since F is then a finite-valued convex functional on W1,p

u (Ω,RN ),
this implication comes straightforwardly from part (II) of the first proposition in this section
(applied with W1,p

u (Ω,RN ), V = W1,p
0 (Ω,RN )).

Outlook (on related topics).

(1) Clearly, one may also consider fully unconstrained minimization, that is, minimization
in all of W1,p(Ω,RN ) without requiring any constraint or boundary condition. In this case, it
turns out that the Euler equation (EL) is just a part of the necessary first-order criterion for
minimizers. Indeed, the full necessary criterion for a minimizer u of F in W1,p(Ω,RN ) reads
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(under technical assumptions which ensure ∇zF ( · , u,Du) ∈ Lp
′
(Ω,RN×n), ∇yF ( · , u,Du) ∈

L(p∗)′(Ω,RN ), for instance)

δF [u;ϕ] = 0 for all ϕ ∈W1,p(Ω,RN ) ,

where the point is that ϕ runs in W1,p not W1,p
0 . Clearly, ϕ ∈ W1,p

0 (Ω,RN ) are included,
and therefore the Euler equation (EL) is a part of this condition, but additionally it also
contains∫

Ω

[
∇zF ( · , u,Du) ·Dϕ+∇yF ( · , u,Du) · ϕ

]
dx = 0 for all ϕ ∈ C1(Ω) .

In case of ∇zF ( · , u,Du) ∈ C0(Ω) and a bounded C1-domain Ω, one can use a version of the
divergence theorem to integrate by parts. Also using (EL) in form of div

[
∇zF ( · , u,Du)

]
=

∇yF ( · , u,Du) ∈ L1(Ω,RN ), this results in∫
∂Ω
∇zF ( · , u,Du)νΩ · ϕdHn−1 = 0 for all ϕ ∈ C1(Ω)

with the outward unit normal νΩ to Ω on ∂Ω. The fundamental lemma of the calculus of
variations (in a version for vector measures, for instance) then gives

∇zF ( · , u,Du)νΩ ≡ 0 on ∂Ω . (∗∗)

Hence, unconstrained minimization automatically enforces the condition (∗∗), which is
called a conormal boundary condition. For variants F (x, y, z) = 1

2 |z|
2−V (x)·z+F̃ (x, y)

of the Dirichlet integrand (with a matrix field V ∈ C0(Ω)), this condition reduces to the more
usual Neumann boundary condition ∂νΩu = V νΩ on ∂Ω (where ∂νΩu = ψ with arbitrary
RN -valued ψ can be realized by taking V = ψ ⊗ νΩ with an extension νΩ of νΩ to Ω).

(2) Another central topic in the calculus of variations, again parallel to ideas from finite-
dimensional calculus, are second-order criteria for local minimizers or maximizers
of functionals F in terms of the second variation

δ2F [u;ϕ] ..=
d2

dt2 t=0
F [u+tϕ] .

Since we mostly focus on global rather than local minimizers, in this lecture we refrain from
discussing such criteria any further.

3.2 Convex constraints and obstacle problems

In the sequel we make a first step towards the treatment of admissible classes A ⊂ X which are
defined with non-linear constraints and hence are not affine (sub)spaces of X . In general, the
special variations (w+tϕ)t∈(−ε,ε) of w ∈ A from Section 3.1 are then of little use, since
(w+tϕ)t∈(−ε,ε) is A-admissible only for very few directions ϕ ∈ X (and in strongly non-linear
situations even for no non-zero directions ϕ at all). Therefore, it is a basic guiding principle in
the calculus of variations that non-linear constraints require the usage of more general
variations than (w+tϕ)t∈(−ε,ε).
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3.2. Convex constraints and obstacle problems 59

However, the guiding principle will take full effect only in the subsequent Section 3.3, while
for the treatment of only convex classes A it will be enough to generalize the notion of variation
only marginally: In fact, for a real vector space X and ε > 0, we now use one-sided variations

(w+tϕ)t∈[0,ε)

of an element w ∈ X in direction ϕ ∈ X , where the parameter runs in the one-sided interval
[0, ε) rather than in the both-sided interval (−ε, ε). If the variation is A-admissible for some
A ⊂ X , that is, we have w+tϕ ∈ A for 0 ≤ t � 1, we denote the corresponding one-sided
directional derivative of F : A → R by

δ+F [w;ϕ] ..= ∂+
ϕF [w] ..= lim

t↘0

F [w+tϕ]−F [w]

t

(whenever this exists in R). We emphasize, however, that the one-sided derivative δ+F [w ;ϕ]
simply coincides with the both-sided derivative δF [w;ϕ] whenever the latter exists (possibly after
suitable extension of F outside A). Thus, the usage of δ+F , though technically convenient
in the subsequent statement, can be avoided in most relevant situations, where in fact
both-sided (directional) differentiability is at hand.

Now we provide a necessary criterion and a sufficient criterion for minimizers, which both
stay very close to the criteria at the beginning of Section 3.1.

Proposition (first-order criterion for cases with convex constraints). Fix a real vector
space X and u ∈ A ⊂ X .

(I) Necessary criterion: If u is a minimizer of a functional F : A → R in A, then we have

δ+F [u;w−u] ≥ 0 whenever δ+F [u;w−u] exists for w ∈ A .

(II) Sufficient criterion: Suppose that A is convex and F : A → R ∪ {∞} is convex on A.
If

δ+F [u;w−u] exists with δ+F [u;w−u] ≥ 0 for all w ∈ A ,

then u is a minimizer of F in A.

Proof. The proof follows the corresponding one in Section 3.1.
For (I) we argue: If u minimizes and δ+F [u;ϕ] exists for ϕ = w−u, then F [u+tϕ] is defined

and ≥F [u] for 0 ≤ t� 1. Thus, we get δF [u;ϕ] = limt↘0
F [u+tϕ]−F [u]

t ≥ 0.
For (II) we can repeat the reasoning for the corresponding (II) in Section 3.1, which still

works in the same way with only δ+F [u;w−u] ≥ 0 instead of δF [u;w−u] = 0 at hand.

Remarks (on the preceding criteria).

(1) It is not restrictive to consider δ+F [u;w−u] only for directions w−u with w ∈ A.

(Indeed, for δ+F [u;ϕ] to be defined we have required u+tϕ ∈ A for 0 < t� 1. If we fix such a t and set w = u+tϕ ∈ A,
we get ϕ = 1

t
(w−u) and δ+F [u;ϕ] = 1

t
δ+F [u;w−u]. Therefore, δ+F [u;ϕ] always coincides, up to a positive factor,

with δ+F [u;w−u] for some w ∈ A.)

(2) The usage of δ+F rather than δF in the preceding criteria is, in practice, only of marginal
importance. The more decisive point is indeed that the criteria only yield/require the
inequality δ+F [u;w−u] ≥ 0.

59



60 CHAPTER 3. Euler-Lagrange Equations

(3) It is crucial for the existence theory of Chapter 2 that one minimizes a functional in
sequentially weakly closed A in reflexive X . If A is also convex, A is sequentially weakly
closed in X if and only if A is closed in X , and it may well happen that a minimizer
u is in ∂A. It is in this case that one-sided variations are truly needed and one
may hope at best for δF [u;w−u] ≥ 0 in general, while for u in int(A) one can usually apply
the interior criteria of Section 3.1 and get even δF [u;w−u] = 0.

In case of a first-order integral functional

F [w] ..=

∫
Ω
F ( · , w,Dw) dx for w ∈W1,1

loc(Ω,RN )

the abstract criterion has a more concrete interpretation. In order to address this we first record
that the first-variation formula holds for one-sided directional derivatives in the form

δ+F [u;ϕ] =

∫
Ω

[
∇zF ( · , u,Du) ·Dϕ+∇yF ( · , u,Du) · ϕ

]
dx

under the same assumptions as in Section 3.1 (obvious, since δ+F [u ;ϕ] equals δF [u ;ϕ] if the
latter exists) and in fact even if the same assumptions are only imposed for t ∈ [0, ε) rather than
t ∈ (−ε, ε) (analogous proof). If these assumptions are satisfied for fixed u ∈ A ⊂W1,1

loc(Ω,RN )
and all test functions ϕ = w−u with w ∈ A, we infer that the first-order criterion

δ+F [u;w−u] ≥ 0 for all w ∈ A

can be equivalently recast, for the above integral functional F , in form of the variational
inequality∫

Ω

[
∇zF ( · , u,Du) ·D(w−u) +∇yF ( · , u,Du) · (w−u)

]
dx ≥ 0 for all w ∈ A . (vI)

This inequality can thus seen as a sort-of Euler equation in the presence of convex
constraints.

Finer interpretations of the variational inequality can be given in the specific case of the
obstacle problem for scalar functions. We thus take N = 1 for the remainder of this section
(which means that we can write ∇u and ∂yF in place of Du and ∇yF ) and first consider
ψ : Ω→ R and u0 ∈W1,p(Ω) on open Ω ⊂ Rn with p ∈ (n,∞] or p = n = 1. Then we introduce
the admissible class for the obstacle problem with obstacle ψ and boundary datum u0

as
Kp
u0,ψ

..= {w ∈W1,p
u0

(Ω) : w ≥ ψ on Ω} . (∗)
Here the competitors w have a continuous representative (by the Sobolev embedding and the
assumption that p > n or p = n = 1), and this representative is used to give a pointwise meaning
to the inequality w ≥ ψ even for completely arbitrary ψ. Moreover, it is straightforward to
check that Kp

u0,ψ
is a closed convex subset of W1,p(Ω), and as a consequence the minimization

of reasonable integral functionals in the class Kp
u0,ψ

is covered by our earlier existence theory.

Whenever the variational inequality (vI) holds for u ∈ A = Kp
u0,ψ

, then specifically, for every
non-negative ϕ ∈ C∞cpt(Ω), the competitor w = u+ϕ is admissible in (vI), and therefore (vI)
implies∫

Ω

[
∇zF ( · , u,∇u) ·Dϕ+ ∂yF ( · , u,∇u)ϕ

]
dx ≥ 0 for all non-negative ϕ ∈ C∞cpt(Ω) ,
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3.2. Convex constraints and obstacle problems 61

which is nothing but the (distributional) supersolution property

EFu ≥ 0 in D ′(Ω)

for the Euler-Lagrange operator EFu ..= −div
[
∇zF ( · , u,∇u)

]
+ ∂yF ( · , u,∇u). The next

theorem, however, fully identifies the meaning of the variational inequality in the obstacle case
and shows that the supersolution property is only a part of the information contained:

Theorem (Euler equation for the obstacle problem, case p > n). Consider a bounded
open set Ω in Rn, an upper semicontinuous obstacle ψ : Ω → R∪{−∞}, a boundary datum
u0 ∈W1,p(Ω) with either p ∈ (n,∞] or p = n = 1, and u ∈ Kp

u0,ψ
(for Kp

u0,ψ
defined in (∗)) with

∇zF ( · , u,∇u) ∈ Lp
′
(Ω,Rn), ∂yF ( · , u,∇u) ∈ L1(Ω). Then u solves the variational inequality∫

Ω

[
∇zF ( · , u,∇u) ·∇(w−u) + ∂yF ( · , u,∇u)(w−u)

]
dx ≥ 0 for all w ∈ Kp

u0,ψ

if and only if u satisfies both{
EFu ≥ 0 in D ′(Ω) (supersolution property on full domain) ,

EFu ≡ 0 in D ′({u>ψ}) (solution property on non-contact set) .

We stress that the formulation of this theorem is only reasonable as a consequence of the
Sobolev embedding. Indeed, boundedness of w−u (thanks to W1,p

0 (Ω) ↪→ C0
b(Ω)) ensures that

the variational inequality is well-defined for all competitors w. Much more crucially, however,
continuity of u together with the assumed upper semicontinuity of ψ guarantees that {u>ψ}
is an open subset of Ω and the distributional solution property makes sense at all. We also
mention that we have started to apply common terminology according to which the relatively
closed set {u=ψ} of points in which the obstacle ψ is touched by the solution u is called contact
set or coincidence set, while the open set {u>ψ} is known as the non-contact set.

Remarks (on the Euler equation for the obstacle problem in case p > n).

(1) In the theorem, one can actually replace ∇zF ( · , u,∇u) and ∂yF ( · , u,∇u) by an vector
field V ∈ Lp

′
(Ω,Rn) and an arbitrary function g ∈ L1(Ω) and correspondingly EFu by the

distribution −div V+g. This explains why in the above statement no hypothesis for F itself
have been specified.

(2) The theorem provides a full interpretation of the variational inequality — which, as we recall,
is the basic necessary criterion for minimizers — in case of the obstacle problem: The solu-
tions of the variational inequality are supersolutions to the standard/unconstrained
Euler-Lagrange equation on the full domain Ω and are true solutions to this equation
on the non-contact set {u > ψ}. This confirms and makes precise the very plausible
expectation that the presence of the obstacle takes effect on the first-order criterion only on
the contact set {u=ψ}.

Distributions. The space D ′(Ω,RN ) of RN -valued distributions on open Ω ⊂ Rn is the space of all R-linear
functionals C∞cpt(Ω,R

N )→ R which are continuous along D-convergent sequences. By identifying u ∈ L1
loc(Ω,RN )

with Tu ∈ D ′(Ω,RN ) given by 〈Tu;ϕ〉 ..=
∫

Ω
u · ϕ dx for ϕ ∈ C∞cpt(Ω,R

N ), one understands L1
loc(Ω,RN ) ⊂

D ′(Ω,RN ). In the scalar case N = 1, as usual one writes D ′(Ω) for D ′(Ω,R).

Derivatives in the sense of distributions do always exist. Specifically, every vector field W ∈ L1
loc(Ω,Rn) has a

distributional divergence divW ∈ D ′(Ω) given by 〈divW ;ϕ〉 ..= −
∫

Ω
W ·∇ϕ dx for ϕ ∈ C∞cpt(Ω).

One says that a scalar distribution T ∈ D ′(Ω) is a non-negative distribution and writes T ≥ 0 if 〈T ;ϕ〉 ≥ 0
holds for all non-negative ϕ ∈ C∞cpt(Ω).
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(3) The condition Kp
u0,ψ
6= ∅, which is clearly necessary for u ∈ Kp

u0,ψ
to exist and thus implic-

itly assumed above, implies that the obstacle ψ and the boundary datum u0 satisfy3 the
compatibility condition lim supΩ3x→∂Ω(ψ(x)−u0(x)) ≤ 0. If Ω has the W1,p-extension
property, u0 has a unique C0(Ω) representative, and the compatibility condition means that
there is an upper semicontinuous extension of ψ to Ω with ψ ≤ u0 on ∂Ω.

(4) In the case F = E2 of the Dirichlet integral the obstacle problem and the corresponding
variational inequality yield a model for the shape of an elastic membrane (given by
the graph of a minimizer/solution u) which is spanned over an obstacle (given by the
graph of ψ) and is clamped at the boundary (in a manner specified by u0).

Proof of the forward implication in the theorem. Assume that u satisfies the variational inequal-
ity. Then it has already been explained that the usage of competitors w = u+ϕ with 0 ≤ ϕ ∈
C∞cpt(Ω) yields the supersolution property EFu ≥ 0 in D ′(Ω). In order to verify the solution
property on the non-contact set {u>ψ}, consider now ϕ ∈ C∞cpt({u>ψ}), which we extend by 0
to all of Ω. From continuity of u and upper semicontinuity of ψ we infer that the u−ψ is lower
semicontinuous and thus attains its positive minimum on the compact set sptϕ ⊂ {u−ψ> 0}.
This, together with the boundedness of ϕ, gives the existence of a constant ε > 0 such that
u−ψ ≥ ε|ϕ| holds on sptϕ and then on Ω. Rearranging the inequality, we have u±εϕ ≥ ψ on Ω
and thus u±εϕ ∈ Kp

u0,ψ
. Testing the variational inequality with the competitors u±εϕ, we get

±ε
∫
{u>ψ}

[
∇zF ( · , u,∇u) ·∇ϕ+ ∂yF ( · , u,∇u)ϕ

]
dx ≥ 0 .

Since this holds for both choices of sign, we clearly get∫
{u>ψ}

[
∇zF ( · , u,∇u) ·∇ϕ+ ∂yF ( · , u,∇u)ϕ

]
dx = 0 for all ϕ ∈ C∞cpt({u>ψ}) ,

which is the claimed solution property EFu = 0 in D ′({u>ψ}).

Remark (on an ad-hoc extension to the case p ≤ n). In the case p ≤ n, the same method
yields some version of the forward implication in the theorem at least. Indeed, if one slightly
modifies the definition (∗) of Kp

u0,ψ
by requiring w ≥ ψ only a.e. on Ω, and if u ∈ Kp

u0,ψ

with p ∈ [1, n], ∇zF ( · , u,∇u) ∈ Lp
′
(Ω,Rn), ∂yF ( · , u,∇u) ∈ L(p∗)′(Ω) solves the variational

inequality, one may still conclude EFu ≥ 0 in D ′(Ω) and EFu ≡ 0 in D ′({u�ψ}), where the
notation

{u�ψ} ..= {x ∈ Ω : ∃ε, δ > 0: u ≥ ψ+ε on Bδ(x)}

is used for the open set {u�ψ} on which u and ψ are locally bounded away from each other.
This, however, is only an ad-hoc solution, since in general {u� ψ} is only a part of the non-
contact set and one cannot get the backward implication in this way. The ‘technically correct’
extension of the Euler equation to the case p ≤ n rather needs some more background machinery,
as will be explained below.

For proving the backward implication in the theorem, the following technical lemma on W1,p
0 zero boundary values

and positive/negative parts will be useful. While the statement seems very plausible, it is not that immediate from the

definition of W1,p
0 (Ω), p <∞, as the closure of C∞cpt(Ω).

3Indeed, the compatibility condition follows from the obstacle condition ψ ≤ u on Ω, since the Sobolev
embedding enforces u−u0 ∈ C0

0(Ω) and thus limΩ3x→∂Ω(u(x)−u0(x)) = 0.
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Lemma. Consider an open Ω ⊂ Rn and v ∈W1,p
0 (Ω) with p ∈ (n,∞] or p = n = 1. Then there exist ϕk ∈ C∞cpt({v>0})

with 0 ≤ ϕ1 ≤ ϕ2 ≤ ϕ3 ≤ . . . on Ω such that we have the convergences

ϕk −→
k→∞

v+ uniformly on Ω , ∇ϕk −→
k→∞

∇v+

{
in Lp(Ω,Rn) , if p <∞
a.e. on Ω and uniformly bounded , if p =∞

.

In particular, for every v ∈W1,p
0 (Ω) with p > n or p = n = 1 one has v± ∈W1,p

0 ({±v>0}) ⊂W1,p
0 (Ω).

We remark that v ∈W1,p
0 (Ω) implies v± ∈W1,p

0 (Ω) even for arbitrary p ∈ [1,∞] with a somewhat simpler proof than

the following one. The above approximations from below and the possibility to assert even v± ∈W1,p
0 ({±v>0}) on open

sets {±v>0}, however, draw strongly on the Sobolev embedding into continuous functions in the case p > n.

Proof of the lemma. First assume p <∞. By the chain rule, vk ..= (v−2−k)+ ≥ 0 are weakly differentiable functions, and
it is a standard matter to verify vk −→

k→∞
v+ uniformly on Ω and ∇vk −→

k→∞
∇v+ in Lp(Ω,Rn). In view of the inclusion

W1,p
0 (Ω) ⊂ C0

0(Ω) (which comes with the Morrey-Sobolev embedding), v is continuous with limΩ3x→∂Ω∪{∞} v(x) = 0,

and thus the vk are continuous with spt vk b {vk+1 > 2−k−2} ⊂ {v > 0} for all k ∈ N. For every k ∈ N, by convergence
properties of mollifications we may choose a radius δk > 0 such that the mollification ϕk ..= (vk)δk ≥ 0 satisfies ϕk ∈
C∞cpt({vk+1 > 2−k−2}), supΩ |ϕk−vk| ≤ 2−k−3, and ‖∇ϕk−∇vk‖Lp;Ω ≤ k−1. These properties ensure ϕk ≤ ϕk+1 on Ω

for all k ∈ N (as indeed, on {vk+1 > 2−k−2} we have vk ≤ vk+1−2−k−2 and ϕk ≤ vk+2−k−3 ≤ vk+1−2−k−3 ≤ ϕk+1,
while outside sptϕk we simply have ϕk = 0 ≤ ϕk+1). Moreover, recalling the convergences of vk, we also get ϕk −→

k→∞
v+

uniformly on Ω and ∇ϕk −→
k→∞

∇v+ in Lp(Ω,Rn).

In the case p =∞, the reasoning needs to be changed only with regard to the gradient convergence. Indeed, one gets
∇vk −→

k→∞
∇v+ a.e. on Ω, and the condition on ∇ϕk can be taken as ‖∇ϕk−∇vk‖L1;Ω ≤ k−1 (even for unbounded Ω, as

vk ∈W1,∞
cpt (Ω) has ∇vk ∈ L1(Ω,Rn)). Possibly passing to a subsequence, we find ∇ϕk−∇vk −→

k→∞
0 and ∇ϕk −→

k→∞
∇v+

a.e. on Ω. Finally, the mentioned uniform bound is simply given by ‖∇ϕk‖L∞;Ω ≤ ‖∇vk‖L∞;Ω ≤ ‖∇v+‖L∞;Ω.

We now return to the main line of argument:

Proof of the backward implication in the theorem. Assume that u satisfies EFu ≥ 0 in D ′(Ω)
and EFu = 0 in D ′({u>ψ}), that is,∫

Ω

[
∇zF ( · , u,∇u) ·∇ϕ+ ∂yF ( · , u,∇u)ϕ

]
dx ≥ 0 for all non-negative ϕ ∈ C∞cpt(Ω)

with equality in case ϕ ∈ C∞cpt({u> ψ}). Then the inequality remains valid4 for non-negative

test functions ϕ ∈ W1,p
0 (Ω), and we still get equality in case ϕ ∈ W1,p

0 ({u>ψ}). To verify the
variational inequality, we now consider an arbitrary competitor w ∈ Kp

u0,ψ
, which in particular

satisfies w−u ∈W1,p
0 (Ω). For the positive part of w−u, the lemma gives 0 ≤ (w−u)+ ∈W1,p

0 (Ω),
and the above supersolution property yields∫

Ω

[
∇zF ( · , u,∇u) ·∇(w−u)+ + ∂yF ( · , u,∇u)(w−u)+

]
dx ≥ 0 .

The treatment of the negative part of w−u is slightly more subtle: By the lemma we have
(w−u)− ∈ W1,p

0 ({w < u}), and in view of w ≥ ψ on Ω we get {w < u} ⊂ {u > ψ} and

(w−u)− ∈W1,p
0 ({u>ψ}). Therefore, the solution property even yields∫

Ω

[
∇zF ( · , u,∇u) ·∇(w−u)− + ∂yF ( · , u,∇u)(w−u)−

]
dx = 0

4The passage to W1,p
0 test functions is possible, since C∞cpt(Ω) is dense in W1,p

0 (Ω) with respect to the con-
vergence used in the preparatory lemma and the left-hand side of the inequality is suitably continuous thanks
to the Sobolev embedding W1,p

0 (Ω) ↪→ L∞(Ω) and the integrability assumptions ∇zF ( · , u,∇u) ∈ Lp
′
(Ω,Rn),

∂yF ( · , u,∇u) ∈ L1(Ω). Moreover, the preparatory lemma shows that non-negative C∞cpt(Ω) functions are dense
among non-negative W1,p

0 (Ω) functions in the same sense, i.e. also non-negativity can be preserved.
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Subtracting the integral equality for (w−u)+ from the integral inequality for (w−u)+, we arrive
at the claimed variational inequality for w−u = (w−u)+ − (w−u)−.

Next we discuss the Euler equation for the obstacle problem also in case p ≤ n. Since W1,p

functions need no longer be continuous in this case, some more background machinery is needed
to describe the finer ‘pointwise’ behavior of such functions and suitable classes of ‘negligible’
sets. A basic tool in this regard is the following concept:

Definition (p-capacity). For p ∈ [1,∞), the (Sobolev) p-capacity of a set A ⊂ Rn is defined
as

Capp(A) ..= inf

{∫
Rn

(
|w|p+|∇w|p

)
dx : w ∈W1,p(Rn) , w ≥ 1 a.e. near A

}
∈ [0,∞] ,

where w ≥ 1 a.e. near A is meant to indicate w ≥ 1 a.e. on an open neighborhood of A.

In this definition, one may also add the requirement 0 ≤ w ≤ 1 a.e. on Rn without changing
the infimum, since, for w ∈W1,p(Rn) with w ≥ 1 a.e. near A, the cut-off ŵ ..= min{w+, 1} is still
in W1,p(Rn) with with ŵ ≥ 1 a.e. near A, 0 ≤ ŵ ≤ 1 a.e. on Rn, and

∫
Rn

(
|ŵ|p+|∇ŵ|p

)
dx ≤∫

Rn

(
|w|p+|∇w|p

)
dx.

Remarks (on p-capacities).

(1) By definition, Capp(A) is the minimum value in the obstacle problem for the functional
w 7→

∫
Rn

(
|w|p+|∇w|p

)
dx with obstacle given by the characteristic function 1A (at least if

one disregards the subtlety that the condition w ≥ 1 is required a.e. near A).

(2) A slightly modified variant C̃app of p-capacity is defined with just
∫
Rn
|∇w|p dx in place

of
∫
Rn

(
|w|p+|∇w|p

)
dx. In case p < n or p = n = 1 this does not change much in the

sense that one can show const(n, p, d)Capp(A) ≤ C̃app(A) ≤ Capp(A) for A ⊂ Rn with
diam(A) ≤ d <∞ (where the right-hand inequality is trivial, while the left-hand one results

from cut-off and Sobolev’s embedding). For 1 6= p ≥ n, in contrast, C̃app differs from Capp
in the essential and undesirable way that C̃app vanishes on all bounded sets in Rn. Thus,
even though we consider mostly p ≤ n and the real difference occurs only in the subcase
p = n, we prefer to work with Capp here.

(3) The p-capacity Capp is formally an outer measure (i.e. a merely σ-subadditive measure) on
Rn. However, this measure has very few measurable sets and does not behave like more usual
measures. For instance, one can show Capp(A) = Capp(A) <∞ but still Capp(∂A) > 0 for
smooth bounded domains A in Rn.

(A proof of the outer measure property is given in [8, Chapter 4.7, Theorem 1] for C̃app
with p < n, but works for Capp in a very similar way.)

(4) Zero sets for Capp are trivial in case p > n and related to (n−p)-dimensional sets
in case p < n. More precisely, for A ⊂ Rn, it holds

in case p > n or p = n = 1: Capp(A) = 0 ⇐⇒ A = ∅ ,
in case p < n: A is Hn−p-σ-finite =⇒ Capp(A) = 0 ,

in case p ≤ n: Capp(A) = 0 =⇒ dimH(A) ≤ n−p .
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3.2. Convex constraints and obstacle problems 65

Indeed, for our purposes capacity zero sets will be more relevant than capacity itself, and
in this sense the first statement shows that Capp with p > n is not of much interest.

(For the derivation of these properties compare with [8, Chapter 4.7, Theorems 3 and 4].)

Similar to properties which hold up to a null set for a measure one may also consider
properties which hold up to a capacity zero set. Basically the only difference is that, in the
capacity case, one prefers to use the word ‘quasi’ instead of ‘almost’:

Definition (Capp-quasi everywhere properties). A property (which depends on a variable
from a subset of Rn) is said to hold Capp-quasi everywhere or at Capp-quasi every point, in
short Capp-q.e., if it holds with the exception of a Capp zero set.

Definition (Capp-quasi (semi)continuity). A function ψ : Ω → R on a subset Ω of Rn is
called Capp-quasi continuous (or Capp-quasi lower/upper semicontinuous) on Ω if, for every
ε > 0, there exists a relatively open subset A of Ω with Capp(A) < ε such that ψ Ω\A is continuous
(or lower/upper semicontinuous).

Lemma (on quasi continuous representatives of Sobolev functions). Consider an open
Ω ⊂ Rn and u ∈W1,p

loc(Ω) with p ∈ [1,∞). Then, Capp-quasi every point in Ω is an Lp-Lebesgue
point for u, and the Lebesgue representative u∗ of u is Capp-quasi continuous on Ω.

For a proof of the lemma compare with [8, Chapter 4.8, Theorem 1].
We remark that in case p > n or p = n = 1, both definitions and the lemma trivialize: Capp-

quasi everywhere is then the same as everywhere, quasi (semi)continuity is (semi)continuity, and
the lemma is a direct consequence of the Sobolev embedding. As indicated above, however, our
focus is now on the non-trivial case p ≤ n.

With the preceding concepts and results at hand, we can discuss the Euler equation for the
obstacle problem also in case p ≤ n. To this end it is natural to define the admissible class with
a quasi everywhere obstacle constraint for the Lebesgue representative as

Kp
u0,ψ

..= {w ∈W1,p
u0

(Ω) : w∗ ≥ ψ holds Capp-q.e. on Ω} (∗∗)

(which for p > n or p = n = 1 reduces to the earlier definition (∗)). The statement then reads
as follows:

Theorem (Euler equation for the obstacle problem, case p ≤ n). Consider a bounded
open set Ω in Rn, an upper semicontinuous obstacle ψ : Ω → R∪{−∞}, a boundary datum
u0 ∈ W1,p(Ω) with p ∈ [1, n], and u ∈ Kp

u0,ψ
(for Kp

u0,ψ
defined in (∗∗)) with ∇zF ( · , u,∇u) ∈

Lp
′
(Ω,Rn), ∂yF ( · , u,∇u) ∈ L(p∗)′(Ω) (where as usual we understand p∗ ..= np

n−p for p < n, while
p∗ is arbitrary in [1,∞) for p = n). Then u solves the variational inequality∫

Ω

[
∇zF ( · , u,∇u) ·∇(w−u) + ∂yF ( · , u,∇u)(w−u)

]
dx ≥ 0 for all w ∈ Kp

u0,ψ

One calls x0 ∈ Ω an Lp-Lebesgue point for u ∈ Lploc(Ω,RN ), p ∈ [1,∞), on open Ω ⊂ Rn, if there exists some
y ∈ RN with limr↘0 −

∫
Br(x0)

|u−y|p dx = 0. The (necessarily unique) value y is the Lebesgue value of u at x0,

and the mapping u∗ which associates to Lebesgue points the corresponding Lebesgue values is known as the
Lebesgue representative of u. Given u ∈ Lploc(Ω,RN ), a differentiation theorem for measures yields that the
set of non-Lp-Lebesgue points for u on Ω is negligible for the n-dimensional Lebesgue measure and that u∗ is
indeed an a.e. defined representative of u. For Sobolev functions u, the above lemma goes beyond this and shows
that the set of non-Lp-Lebesgue points for u is indeed negligible even in a stronger capacity sense.
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66 CHAPTER 3. Euler-Lagrange Equations

if and only if there exists a non-negative Radon measure µ on Ω with the absolute-continuity
property Capp(A) = 0 =⇒ µ(A) = 0 for A ∈ B(Ω) such that

EFu = µ in D ′(Ω) and µ({u∗>ψ}) = 0 .

(where µ is identified with the distribution ϕ 7→
∫

Ω ϕdµ).

Remarks (on the Euler equation for the obstacle problem in case p ≤ n).

(1) We emphasize that in the present case we cannot use anymore the earlier definition (∗)
of the admissible class Kp

u0,ψ
with everywhere constraint w ≥ ψ on Ω, since in general

neither w nor w∗ nor any other representative is naturally pointwisely defined on all of Ω.
Clearly, this could be overcome by simply defining the admissible class with the Ln-almost
everywhere constraint w ≥ ψ a.e. on Ω. However, if we would then state the theorem only
for Ln-almost everywhere constraints, admittedly it would appear conceptually simpler, but
it would also be much weaker. Indeed, if ψ = 1S is the characteristic function of a set
S ⊂ Ω with |S| = 0, Capp(S) > 0 (for instance, a regular hypersurface S), then ψ coincides
Ln-a.e. but not Capp-q.e. with the zero function. Thus, the class Kp

u0,ψ
defined in (∗∗)

with the Capp-q.e. constraint ‘sees’ this kind of thin obstacles, while the alternative
definition with Ln-a.e. constraint does not. All in all, the Capp-q.e. constraint is weaker
than an everywhere constraint but stronger than an Ln-a.e. constraint and turns out to be
the optimal notion in the sense that it allows to impose the finest possible constraint
on general W1,p functions.

(2) The absolute-continuity property Capp(A) = 0 =⇒ µ(A) = 0 ensures that, even though u∗

is naturally defined only Capp-q.e., the expression µ({u∗>ψ}) makes perfect sense.

(3) The conditions

EFu = µ in D ′(Ω) and µ({u∗>ψ}) = 0 .

in the theorem still express a supersolution property on the full domain and a so-
lution property on a non-contact set. Indeed, since µ is non-negative, one immediately
reads off the supersolution property EFu ≥ 0 in D ′(Ω). Moreover, the vanishing of µ on the
non-contact set {u∗>ψ} can be understood as a way of expressing ‘EFu ≡ 0 on {u∗>ψ}’
(even though {u∗>ψ} need not be open and therefore this property cannot be understood
in a purely distributional fashion).

(4) In fact, the theorem can be extended to Capp-quasi upper semicontinuous obstacles ψ, but
the proof of this more general version requires additional Capp-q.e. approximation results
and will not be discussed here.

Proof of the theorem. We start with some preliminary steps.

Step 1: We show that the validity of the variational inequality for u implies the existence
of a non-negative Radon measure µ on Ω such that EFu = µ in D ′(Ω), that is,∫

Ω

[
∇zF ( · , u,∇u) ·∇ϕ+ ∂yF ( · , u,∇u)ϕ

]
dx =

∫
Ω
ϕdµ for all ϕ ∈ C∞cpt(Ω) . (+)

As before, the variational inequality implies
∫

Ω

[
∇zF ( · , u,∇u)·∇ϕ+∂yF ( · , u,∇u)ϕ

]
dx ≥ 0

for 0 ≤ ϕ ∈ C∞cpt(Ω), i.e. 〈T ;ϕ〉 ..=
∫

Ω

[
∇zF ( · , u,∇u) ·∇ϕ+∂yF ( · , u,∇u)ϕ

]
dx for ϕ ∈ C∞cpt(Ω)
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3.2. Convex constraints and obstacle problems 67

defines a non-negative distribution T ∈ D ′(Ω). We next establish, for arbitrary ψ ∈ C0
cpt(Ω),

the auxiliary identity

inf{〈T ;ϕ〉 : ϕ ∈ C∞cpt(Ω) , ϕ ≥ ψ on Ω} = sup{〈T ;ϕ〉 : ϕ ∈ C∞cpt(Ω) , ϕ ≤ ψ on Ω}

Indeed, ‘≥’ is immediate from non-negativity and linearity of T . To check ‘≤’, we fix a non-
negative ϕ0 ∈ C∞cpt(Ω) with ϕ0 ≡ 1 on an open neighborhood U of sptψ. Then, for every ε > 0,
mollification of ψ− ε

2 and cut-off in U \sptψ yield some ϕε ∈ C∞cpt(U) such that ψ−ε ≤ ϕε ≤ ψ on
U and hence ϕε ≤ ψ ≤ ϕε+εϕ0 on Ω. We deduce inf{. . .} ≤ 〈T ;ϕε+εϕ0〉 = 〈T ;ϕε〉+ε〈T ;ϕ0〉 ≤
sup{. . .}+ε〈T ;ϕ0〉 and obtain ‘≤’, since ε > 0 is arbitrary and ϕ0 does not depend on ε. We
now define 〈T ;ψ〉 with ψ ∈ C0

cpt(Ω) as the coinciding value of the above supremum and infimum.

Thanks to the coincidence, it is then straightforward to check that T : C0
cpt(Ω) → R is finite-

valued and linear. Moreover, the non-negativity of T easily implies that T is still non-negative
and coincides with T on C∞cpt(Ω). By the Riesz representation theorem for such functionals, there
exists a non-negative Radon measure µ on Ω such that 〈T ;ψ〉 =

∫
Ω ψ dµ for all ψ ∈ C0

cpt(Ω).
Specifically, we have 〈T ;ϕ〉 =

∫
Ω ϕdµ for all ϕ ∈ C∞cpt(Ω), and this is the claim.

Step 2: For a non-negative Radon measure µ on Ω given by (+), we establish the absolute-
continuity property Capp(A) = 0 =⇒ µ(A) = 0 for A ∈ B(Ω).

First we consider a compact A ⊂ Ω with Capp(A) = 0, and exploiting compactness we fix
a non-negative η ∈ C∞cpt(Ω) with η ≡ 1 on A. For arbitrary ε > 0, the definition of p-capacity
yields some wε ∈W1,p(Rn) with wε ≥ 1 a.e. on an open Oε ⊃ A and ‖wε‖W1,p;Rn < ε. Possibly
replacing wε with its positive part, we assume eε ≥ 0 a.e. on Rn. In a next step, which draws
once more on the assumption that A is compact and thus dist(A,Rn \ Oε) > 0 holds, possibly
replacing wε with its mollification and decreasing Oε, we can assume wε ∈ C∞(Rn). Then
ηwε ∈ C∞cpt(Ω) satisfies ηwε ≥ 0 on Ω and ηwε ≡ 1 on A. Via the equation (+), and the
Sobolev(-Poincaré) inequality, we can thus estimate

µ(A) ≤
∫

Ω
ηwεdµ =

∫
Ω

[
∇zF ( · , u,∇u) ·∇(ηwε) + ∂yF ( · , u,∇u)ηwε

]
dx

≤ const
[
‖∇(ηwε)‖Lp;Ω + ‖ηwε‖Lp∗ ;Ω

]
≤ const‖∇(ηwε)‖Lp;Ω

≤ const(η)‖wε‖W1,p(Rn) ≤ const(η)ε ,

where const changes from line to line and depends on n, p, Ω, the Lp
′
-norm of ∇zF ( · , u,∇u),

and the L(p∗)′-norm of ∂yF ( · , u,∇u) (in addition to the indicated dependence on η). Since ε > 0
is arbitrary and η does not depend on ε, this means µ(A) = 0.

For arbitrary A ∈ B(Ω), the inner regularity µ(A) = sup{µ(K) : K compact ⊂ A} of the
Radon measure µ yields the same conclusion.

A version of the Riesz representation theorem asserts that every non-negative linear functional T on C0
cpt(Ω)

(with open Ω ⊂ Rn or more generally with a locally-compact separable metric space Ω) can be represented in the
form 〈T ;ϕ〉 =

∫
Ω
ϕdµ for all ϕ ∈ C0

cpt(Ω) with a unique non-negative Radon measure µ on Ω.
We emphasize that this variant of the representation theorem differs from another well-known variant for

functionals T ∈ C0
0(Ω,RN )∗ on the one hand through the non-negativity hypothesis, on the other hand insofar

that no explicit continuity assumption on T is needed (but rather it turns out in the proof that, locally on Ω,
continuity follows automatically).
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Step 3: We check that (+) suitably extends to Sobolev test functions ϕ. Precisely, we show
that the validity of (+) with a non-negative Radon measure µ on Ω implies

∫
Ω

[
∇zF ( · , u,∇u) ·∇ϕ+ ∂yF ( · , u,∇u)ϕ

]
dx =

∫
Ω
ϕ∗ dµ for all ϕ ∈W1,p

0 (Ω) , (++)

where the right-hand term is well-defined in view of the lemma on quasi-continuous representa-
tives and the result of Step 2.

We first establish (++) in case ϕ is additionally bounded, i.e. for ϕ ∈ W1,p
0 (Ω) ∩ L∞(Ω).

To this end, we aim at constructing, for k ∈ N, approximations ϕk ∈ C∞cpt(Ω) with supΩ |ϕk| ≤
‖ϕ‖L∞;Ω such that limk→∞ ϕk = ϕ in W1,p(Ω) and limk→∞ ϕk(x) = ϕ∗(x) whenever x ∈ Ω is an
Lp-Lebesgue point for ϕ. One possible construction of such ϕk proceeds as follows. One fixes,
for all k ∈ N, cut-off functions ηk ∈ C∞cpt(Ω) such that ηk ≡ 1 on {x ∈ Ω : dist(x,Rn\Ω) > k−1}
and 0 ≤ ηk ≤ 1 on Ω. Moreover, from the definition of W1,p

0 (Ω) one obtains, for ` ∈ N,
approximations ϕ̃` ∈ C∞cpt(Ω) such that lim`→∞ ϕ̃` = ϕ in W1,p(Ω). Possibly applying a cut-off
and mollification procedure, one can additionally achieve supΩ |ϕ̃`| ≤ ‖ϕ‖L∞;Ω for all ` ∈ N.
For mollifications ϕε of ϕ with mollification radius ε > 0, one moreover knows supΩ |ϕε| ≤
‖ϕ‖L∞;Ω for all ε > 0, limε↘0 ϕε = ϕ in W1,p(Ω), and limε↘0 ϕε(x) = ϕ∗(x) whenever x ∈ Ω
is an Lp-Lebesgue point for ϕ. Choosing suitable subsequences `k → ∞ and εk ↘ 0, one can
now achieve limk→∞

(
‖ϕεk−ϕ̃`k‖Lp;spt ηk supΩ |∇ηk|

)
= 0 and then straightforwardly check the

claimed convergence properties for ϕk ..= ηkϕεk+(1−ηk)ϕ̃`k ∈ C∞cpt(Ω). Once the approximations
ϕk are at hand, we use the preceding lemma and the absolute-continuity property from Step 2
to conclude that limk→∞ ϕk = ϕ∗ converges in fact Capp-q.e. and thus also µ-a.e. on Ω. With
this knowledge, we use (+) for ϕk and pass to the limit k → ∞ on both sides. The left-
hand sides converge in view of the W1,p-convergence ϕk → ϕ and the integrability assumptions
∇zF ( · , u,∇u) ∈ Lp

′
(Ω,Rn), ∂yF ( · , u,∇u) ∈ L(p∗)′(Ω) to the the same integral term with ϕ.

For the right-hand sides, using the µ-a.e. convergence and the uniform bound for |ϕk|, we can
apply the dominated convergence theorem to deduce limk→∞

∫
Ω ϕk dµ =

∫
Ω ϕ
∗ dµ. Therefore,

we end up with (++) for ϕ ∈W1,p
0 (Ω) ∩ L∞(Ω).

In order to further extend (++) from ϕ ∈ W1,p
0 (Ω) ∩ L∞(Ω) to arbitrary ϕ ∈ W1,p

0 (Ω),
we can use a considerably simpler approximation procedure: First considering a non-negative
ϕ ∈ W1,p

0 (Ω), we now set ϕk ..= min{ϕ, k} ∈ W1,p
0 (Ω) ∩ L∞(Ω). Then on the left-hand side

(++) we may pass from ϕk to ϕ by dominated convergence, on the right-hand side, using
limk→∞ ϕ

∗
k = ϕ∗ in Lp-Lebesgue points for ϕ∗ and thus µ-a.e., we may pass from ϕ∗k to ϕ∗ by

monotone convergence. Arguing this way we obtain (++) for non-negative ϕ ∈ W1,p
0 (Ω). For

arbitrary ϕ ∈W1,p
0 (Ω), (++) then follows simply by decomposition ϕ = ϕ+−ϕ−.

Step 4: We establish the forward implication in the theorem.

We assume that u satisfies the variational inequality. Then in view of Step 1 and Step 2
we have (+) for a non-negative Radon measure µ with the stated absolute-continuity property,
and it only remains to prove µ({u∗ >ψ}) = 0. To achieve this, we first consider an arbitrary
competitor w ∈ Kp

u0,ψ
with w ≤ u a.e. on Ω. Then we have w∗ ≤ u∗ in every Lp-Lebesgue point,

thus we get Capp({w∗>u∗}) = 0 and then also µ({w∗>u∗}) = 0. Together with (++) and the
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variational inequality this leads to∫
{u∗>w∗}

(w∗−u∗) dµ =

∫
Ω

(w∗−u∗) dµ

=

∫
Ω

[
∇zF ( · , u,∇u) ·∇(w−u) + ∂yF ( · , u,∇u)(w−u)

]
dx ≥ 0 .

From this we read off that we necessarily have µ({u∗>w∗}) = 0. In case ψ ∈ Kp
u0,ψ

we can now

simply conclude by taking w = ψ, but in our general setting ψ need neither be a W1,p function
nor have the right boundary values, and thus we cannot get trough that simply. To solve this,
we consider an arbitrary compact S ⊂ Ω, and in addition we choose a compact S′ ⊂ Ω with
S ⊂ int(S′) and some non-negative η ∈ C∞cpt(int(S′)) with η ≡ 1 on S. Then we use a procedure
sometimes called Moreau-Yosida approximation: In case ψ 6≡ −∞, for all k ∈ N and x ∈ S′,
we define ψk(x) ..= supy∈S′

[
ψ(y)−k|x−y|

]
(and in the exceptional case ψ :≡ −∞ we agree on

ψk ≡ −k instead). We record — without going into the details of the comparably straightforward
verifications — that the compactness of S′ and the upper semicontinuity of ψ lead to supS′ ψ <∞
and the following properties of ψk: Every ψk with fixed k ∈ N is Lipschitz continuous on S′ (with
Lipschitz constant k), there holds ψ1 ≥ ψ2 ≥ ψ3 ≥ . . . on S′, and limk→∞ ψk = ψ converges
pointwisely on S′. Furthermore we set wk ..= ηmin{ψk, u}+(1−η)u and observe that in this way
we indeed obtain a function wk ∈ Kp

u0,ψ
with wk ≤ u a.e. on Ω. Therefore, the previous reasoning

for the competitor w applies for wk and yields µ({u∗>w∗k}) = 0. Since, by construction, w∗k ≤ ψk
holds Capp-q.e. and µ-a.e. on S, this implies specifically µ(S∩{u∗>ψk}) = 0. Via the pointwise
convergence of ψk to ψ, we conclude µ(S ∩ {u∗ > ψ}) = 0. But then, since S is an arbitrary
compact subset of Ω, we finally arrive at the claim µ({u∗>ψ}) = 0.

Step 5: We establish the backward implication in the theorem.

Assume that we have EFu = µ in D ′(Ω) or in other words (+) and also µ({u∗ >ψ}) = 0.
Then, for arbitrary w ∈ Kp

u0,ψ
, we get w−u ∈W1,p

0 (Ω), and Step 3 yields∫
Ω

[
∇zF ( · , u,∇u) ·∇(w−u) + ∂yF ( · , u,∇u)(w−u)

]
dx =

∫
Ω

(w∗−u∗) dµ ,

where we have used that (w−u)∗ = w∗−u∗ holds Capp-q.e. and thanks to Step 2 also µ-a.e. on
Ω. For the right-hand side we get∫

Ω
(w∗−u∗) dµ ≥

∫
{w∗<u∗}

(w∗−u∗) dµ = 0

since w∗ ≥ ψ holds Capp-q.e. and µ-a.e. and thus µ({u∗ >ψ}) = 0 implies µ({w∗ <u∗}) = 0.
Altogether we end up with∫

Ω

[
∇zF ( · , u,∇u) ·∇(w−u) + ∂yF ( · , u,∇u)(w−u)

]
dx ≥ 0 ,

which is the targeted variational inequality.

3.3 Isoperimetric or holonomic constraints

We recall the guiding principle that non-linear constraints require more general vari-
ations than those of the special from (w+tϕ)t∈(−ε,ε). This principle will now take full effect,
and thus we explicitly coin a general notion of variation:
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Definition (general (admissible) variations). Consider a subset X of a topological vector
space and a family (ut)t∈(−ε,ε) of elements of X with ε > 0. If the mapping t 7→ ut, defined on a
possibly smaller neighborhood of 0, is a C1 curve in X , then (ut)t∈(−ε,ε) is called a (general)

variation of u ..= u0 in X in direction ϕ ..= d
dt t=0

ut = limt→0
ut−u

t
. If, for given

A ⊂ X , the variation satisfies ut ∈ A for |t| � 1, it is called A-admissible.

We emphasize that, for a C1 curve (ut)t∈(−ε,ε) in W1,p
(loc)(Ω,R

N ), the four quantities ut, Dut,
d
dtut, D d

dtut are all continuous Lp(loc)-valued functions of t ∈ (−ε, ε). Moreover, as the convergence

limh→0
ut+h−ut

h = d
dtut in W1,p

(loc)(Ω,R
N ) comprises the convergence limh→0

Dut+h−Dut
h = D d

dtut

in Lp(loc)(Ω,R
N×n), we infer that (Dut)t∈(−ε,ε) is a C1 curve in Lp(loc)(Ω,R

N×n) with

d

dt
Dut = D

d

dt
ut in Lp(loc)(Ω,R

N×n) ,

where the left-hand d
dt is taken in W1,p

(loc)(Ω,R
N ), while the right-hand d

dt is taken in Lp(loc)(Ω,R
N×n).

In the sequel, we prefer to use the latter notation for the mixed derivative.
In the setting of general variations, we still have:

Proposition (first-variation formula for general variations). For open Ω ⊂ Rn and
Mn⊗B(RN )⊗B(RN×n)-measurable F : Ω×RN ×RN×n → R, set

F [w] ..=

∫
Ω
F ( · , w,Dw) dx

(whenever this exists in R). Then, for u ∈ W1,1
loc(Ω,RN ) with F ( · , u,Du) ∈ L1(Ω) and a

variation (ut)t∈(−ε,ε) of u in W1,1
loc(Ω,RN ) in direction ϕ ∈W1,1

loc(Ω,RN ), we have

d

dt t=0
F [ut] =

∫
Ω

[
∇zF ( · , u,Du) ·Dϕ+∇yF ( · , u,Du) · ϕ

]
dx ∈ R

provided that, for a null set E and |t| � 1, the integrand F (x, y, z) is totally differentiable
in (y, z) ∈ RN×RN×n at all points (x, ut(x),Dut(x)) with x ∈ Ω \ E, for |t| � 1 one has
F ( · , ut,Dut) ∈ L1(Ω), the derivative (as L1(Ω)-valued curve) d

dtF ( · , ut,Dut) exists and is con-

tinuous at t = 0 with d
dt t=0

F ( · , ut,Dut) = ∇zF ( · , u,Du) ·Dϕ+∇yF ( · , u,Du) · ϕ.

Proof. Under the assumptions made, the auxiliary expression

H(t) ..= F ( · , ut,Dut) ∈ L1(Ω)

is differentiable in t, |t| � 1, and satisfies

lim
t→0

H ′(t) = H ′(0) = ∇zF ( · , u,Du) ·Dϕ+∇yF ( · , u,Du) · ϕ in L1(Ω) .

With the help of the standard derivative estimate for the L1(Ω)-valued differentiable curve
t 7→ H(t)−H ′(0)t, we conclude∣∣∣∣F [ut]−F [u]

t
−
∫

Ω
H ′(0) dx

∣∣∣∣ =

∣∣∣∣ ∫
Ω

H(t)−H ′(0)t−H(0)

t
dx

∣∣∣∣
≤
∥∥∥∥H(t)−H ′(0)t−H(0)

t

∥∥∥∥
L1(Ω)

≤ sup
(−|t|,|t|)

‖H ′−H ′(0)‖L1(Ω) −→
t→0

0 .

This proves d
dt t=0

F [ut] =
∫

ΩH
′(0) dx, which is the claim.
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Remarks and Definitions (on the first-variation formula for general variations).

(1) If ∇zF , ∇yF satisfy growth conditions of the type already discussed in Section 3.1,
then the assumptions of the preceding proposition can be ensured for all variations
in W1,p(Ω,RN ).

More precisely, in full technical detail, we have:

Lemma (on growth conditions and the general first-variation formula). Assume that Ω is a bounded Lipschitz domain
in Rn, that F : Ω×RN ×RN×n → R is Carathéodory with F (x, · , · ) ∈ C1(RN×RN×n) for all x ∈ Ω\E with a null
set E ⊂ Ω, and that ∇zF , ∇yF satisfy the growth conditions

|∇zF (x, y, z)| ≤


Ψ(x)1/p′ + C|z|p/p′ + C|y|p∗/p′ , if p ≤ n
Ψ(x)1/p′ + C|z|p/p′ + b(|y|) , if n < p <∞
Ψ(x) + b(|z|) + b(|y|) , if p =∞

,

|∇yF (x, y, z)| ≤


Ψ(x)1/(p∗)′ + C|z|p/(p∗)′ + C|y|p∗/(p∗)′ , if p ≤ n
Ψ(x) + C|z|p + b(|y|) , if n < p <∞
Ψ(x) + b(|z|) + b(|y|) , if p =∞

for all (x, y, z) ∈ (Ω \ E)×RN×RN×n with Ψ ∈ L1(Ω), C ∈ [0,∞), p∗ ..= np
n−p if p < n, any exponent p∗ ∈ [1,∞) if

p = n, and locally bounded b : [0,∞)→ [0,∞). Consider u ∈W1,p(Ω,RN ) with F ( · , u,Du) ∈ L1(Ω) and a variation
(ut)t∈(−ε,ε) of u in W1,p(Ω,RN ) in direction ϕ ∈W1,p(Ω,RN ). Then, F ( · , ut,Dut) ∈ L1(Ω) is differentiable in t,

|t| � 1 (as L1(Ω)-valued curve) with derivative given by the chain-rule formula

d

dt
F ( · , ut,Dut) = ∇zF ( · , ut,Dut) ·

d

dt
Dut +∇yF ( · , ut,Dut) ·

d

dt
ut in L1(Ω) for |t| � 1 ,

and we have the continuity properties

lim
t→0
∇zF ( · , ut,Dut) ·

d

dt
Dut = ∇zF ( · , u,Du) ·Dϕ , lim

t→0
∇yF ( · , ut,Dut) ·

d

dt
ut = ∇zF ( · , u,Du) · ϕ in L1(Ω) .

In particular, all requirements of the preceding proposition are ensured and the first-variation formula applies.

Proof in case p ≤ n (the other cases being similar). With the abbreviations

H(t) ..= F ( · , ut,Dut) , Gz(t) ..= ∇zF ( · , ut,Dut) ·
d

dt
Dut , Gy(t) ..= ∇yF ( · , ut,Dut) ·

d

dt
ut

(specifically Gz(0) = ∇zF ( · , u,Du) ·Dϕ, Gy(0) = ∇yF ( · , u,Du) ·ϕ) we aim at proving that, for |t| � 1, the quantity
H(t) ∈ L1(Ω) has derivative

H′(t) = Gz(t) +Gy(t) in L1(Ω) (∗)

and that Gz , Gy are continuous at 0.

In order to establish continuity of Gz at 0, we first consider a null sequence (tk)k∈N in R \ {0} such that the
convergences utk → u, Dutk → Du, d

dt t=tk
Dut → Dϕ for k →∞ are valid a.e. on Ω. By continuity of ∇zF in (y, z),

these convergences imply limk→∞Gz(tk) = Gz(0) a.e. on Ω. To obtain the same convergence in L1(Ω), we estimate
with the growth condition for ∇zF and Young’s inequality

|Gz(t)| ≤
(
Ψ1/p′+C|Dut|p/p

′
+C|ut|p

∗/p′)∣∣∣ d

dt
Dut

∣∣∣ ≤ const(n, p, C)

[
Ψ+|Dut|p+|ut|p

∗
+
∣∣∣ d

dt
Dut

∣∣∣p] a.e. on Ω .

We recall Ψ ∈ L1(Ω), and, taking into account that (ut)|t|�1 is a variation of u in W1,p(Ω,RN ), we infer from the

definition and the Sobolev embedding that the L1(Ω)-valued quantities |Dut|p, |ut|p
∗
, | d

dt
Dut|p depend continuously on

t with |t| � 1. Therefore, the below-mentioned variant of the dominated convergence theorem gives limk→∞Gz(tk) =

The following variant of the dominated convergence theorem is proved in the exercises: Consider a measure
space (Ω,A, µ) and fk, f ∈ L1(Ω,RN ;µ), gk, g ∈ L1(Ω;µ) such that |fk| ≤ gk holds µ-a.e. on Ω for all k ∈ N and
the convergences limk→∞ fk = f , limk→∞ gk = g are valid µ-a.e. on Ω. Then limk→∞

∫
Ω
gk dµ = limk→∞

∫
Ω
g dµ

implies limk→∞ fk dµ =
∫

Ω
f dµ.
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Gz(0) also in L1(Ω). At this stage, to conclude even limt→0Gz(t) = Gz(0) in L1(Ω), it suffices to ensure that every
null sequence in R \ {0} contains a subsequence (tk)k∈N with the above convergence properties. However, this is
at hand, since the required convergences hold as Lp-convergences by the definition of the variation, and a standard
measure theory result then gives them a.e. along a subsequence.

The continuity of Gy at 0 follows analogously (by using d
dt t=tk

ut → ϕ instead of d
dt t=tk

Dut → Dϕ) and we do not

repeat the relevant arguments in detail.

In order to derive the formula (∗), we start with an auxiliary observation: Consider some x ∈ Ω\E and convergent

sequences ωk → ω in RN × RN×n, 0 6= tk → 0 in R with ωk−ω
tk

→ ζ for k → ∞. Then it is a routine matter to

verify with the total differentiability of F in (y, z) the convergence
F (x,ωk)−F (x,ω)

tk
→ ∇(y,z)F (x, ω) · ζ for k → ∞.

For the main part of the reasoning, consider a null sequence (tk)k∈N in R \ {0} such that the convergences utk → u,

limk→∞Dutk → Du,
utk
−u
tk

→ ϕ,
Dutk

−Du

tk
→ Dϕ hold a.e. on Ω. Then the auxiliary observation yields

lim
k→∞

H(tk)−H(0)

tk
= Gz(0) +Gy(0) a.e. on Ω

In order to carry over this convergence to L1(Ω), we estimate with the standard estimate |F (x, ω̃)−F (x, ω)| ≤
supλ∈[0,1] |∇(y,z)F (x, λω̃+(1−λ)ω)| |ω̃−ω|, the growth conditions for ∇zF and ∇yF , and Young’s inequality∣∣∣∣H(t)−H(0)

t

∣∣∣∣ ≤ [Ψ1/p′ + C(|Dut|+|Du|)p/p
′

+ C(|ut|+|u|)p
∗/p′

]∣∣∣Dut−Du

t

∣∣∣
+
[
Ψ1/(p∗)′ + C(|Dut|+|Du|)p/(p

∗)′ + C(|ut|+|u|)p
∗/(p∗)′

]∣∣∣∣ut−ut
∣∣∣∣

≤ const(n, p, C)

[
Ψ+|Dut|p+|Du|p+|ut|p

∗
+|u|p

∗
+
∣∣∣Dut−Du

t

∣∣∣p+
∣∣∣ut−u

t

∣∣∣p∗] .
As a side benefit, since we assumed H(0) = F ( · , u,Du) ∈ L1(Ω) and the right-hand side of this estimate is in
L1(Ω), for |t| � 1, we can read off H(t) ∈ L1(Ω). Moreover, the right-hand side converges, for t → 0, to

const(n, p, C)
[
Ψ+2|Du|p+2|u|p∗+|Dϕ|p+|ϕ|p∗

]
in L1(Ω), and along the subsequence (tk)k∈N we have a.e. conver-

gence to the same limit. Therefore, dominated convergence (again the mentioned variant) applies once more and gives

limk→∞
H(tk)−H(0)

tk
= Gz(0) +Gy(0) also in L1(Ω). Reasoning with subsequences and the definition of the variation

as before, we even obtain

lim
t→0

H(t)−H(0)

t
= Gz(0) +Gy(0) in L1(Ω)

This proves differentiability of H at 0 with H′(0) = Gz(0) + Gy(0) in L1(Ω), and the same reasoning with only
notational changes gives differentiability of H at points t, |t| � 1, with H′(t) = Gz(t) +Gy(t) in L1(Ω).

(2) If all variations (ut)t∈(−ε,ε) of u in a subset X of W1,1
loc(Ω,RN ) in direction ϕ satisfy

the requirements of the proposition, we can read off that d
dt t=0

F [ut] depends only
on u and ϕ and not on the variation (ut)t∈(−ε,ε) as a whole. In this case (and if there is at
least one such variation (ut)t∈(−ε,ε)), we continue to use the (then well-defined) notation
for the first variation

δF [u;ϕ] ..=
d

dt t=0
F [ut] .

If, for A ⊂ X , the requirements of the proposition are satisfied only for all A-admissible
variations (ut)t∈(−ε,ε) of u in direction ϕ and there is one such variation at least, we also
write

δAF [u;ϕ] ..=
d

dt t=0
F [ut]

(which will exist only for u ∈ A and specific choices of ϕ).

Here, in principle both X and A are arbitrary subsets of W1,1
loc(Ω,RN ) and thus there is

no true difference between δF [u ;ϕ] and δAF [u ;ϕ]. However, when using these notations
later on, X will rather be a function class needed for a correct technical implementation
(smooth functions or functions in a Sobolev space, for instance), while the subset A of X
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is specified by a constraint and represents a principal feature of the underlying variational
problem. In this connection, the notation δAF [u;ϕ] will indeed be useful to indicate that
only A-admissible variations are under consideration.

(3) The necessary criterion for minimum points in single-variable calculus immediately implies
that a necessary criterion for a minimizer u of F in A is

δAF [u; · ] ≡ 0

(which is just meant to indicate δAF [u;ϕ] = 0 whenever δAF [u; · ] exists).

In the sequel we will determine a more concrete form of the necessary criterion for varia-
tional problems with either ‘isoperimetric’ constraints or holonomic constraints. We start with
the isoperimetric case, in which the admissible class A is defined by finitely many integral
constraints:

Theorem (necessary criterion for minimizers subject to isoperimetric constraints).
Consider m ∈ N, c1, c2, . . . , cm ∈ R, an open Ω ⊂ Rn, Mn⊗B(RN )⊗B(RN×n)-measurable
integrands F,G1, G2, . . . , Gm : Ω×RN ×RN×n → R, and define the integral functionals

F [w] ..=

∫
Ω
F ( · , w,Dw) dx Gi[w] ..=

∫
Ω
Gi( · , w,Dw) dx for i = 1, 2, . . . ,m

(whenever they exist in R). Furthermore, endow C∞cpt(Ω,R
N ) with D-convergence5, and sup-

pose, for u ∈ W1,1
loc(Ω,RN ) with F ( · , u,Du) ∈ L1(Ω), that the first variations δF [u ;ϕ] and

δGi[u+
∑m

j=0 tjψj ;ϕ], i = 1, 2, . . . ,m, taken in u+C∞cpt(Ω,R
N ), exist, are linear in ϕ, and contin-

uous in (t0, t1, t2, . . . , tm) for all ψ0, ψ1, ψ2, . . . , ψm, ϕ ∈ C∞cpt(Ω,R
N ) and |(t0, t1, t2, . . . , tm)| ≤ ε

with some ε = ε(ψ0, ψ1, ψ2, . . . , ψm, ϕ) > 0. If u with G1[u] = c1, G2[u] = c2, . . . , Gm[u] = cm
minimizes F in the constrained class

A ..= {w ∈ u+C∞cpt(Ω,R
N ) : G1[w] = c1 , G2[w] = c2 , . . . , Gm[w] = cm} ,

the linear functionals δF [u; · ], δG1[u; · ], δG2[u; · ], . . . , δGm[u; · ] on C∞cpt(Ω,R
N)

are linearly dependent, that is, there exist Lagrange multipliers λ1, λ2, . . . , λm ∈ R such
that

δF [u;ϕ] =

m∑
i=1

λiδGi[u;ϕ] for all ϕ ∈ C∞cpt(Ω,R
N ) .

Clearly, the theorem also applies if u minimizes F in an admissible class which contains the
above A. In particular, the theorem applies to problems with an arbitrary type of boundary
conditions (and also to problems with no boundary condition at all).

5Here, D-convergence of a sequence (wk)k∈N in C∞cpt(Ω,R
N ) to w ∈ C∞cpt(Ω,R

N ) means uniform convergence
limk→∞ ∂

αwk = ∂αw on Ω for all α ∈ Nn0 with
⋃∞
k=1 spt(wk) b Ω. This convergence results from a topology on

C∞cpt(Ω,R
N ), where the sets {v ∈ C∞cpt(Ω,R

N ) : supΩ |∂αv−∂αw| < ε for all α ∈ Nn0 , |α| ≤ ` and spt(v) ⊂ K}
with ` ∈ N, ε > 0, and compact K ⊂ Ω are basis open neighborhoods of w ∈ C∞cpt(Ω,R

N ). On u+C∞cpt(Ω,R
N )

we use the u-shifted version of this topology.
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Remarks (on the necessary criterion subject to isoperimetric constraints).

(1) We emphasize that the technical assumptions on the existence, linearity, and continuity
in a parameter of the first variations can be ensured via the preceding proposi-
tion. The requirements needed for the proposition, in turn, can be obtained from growth
conditions on the integrands F , G1, G2, . . . , Gm (where the usage of the quite restric-
tive D-convergence in theorem means that we allow few variations of u and thus need the
requirements of the proposition only for comparably few ‘smooth’ variations).

(2) Whenever the first-variation formula applies, the conclusion of the theorem can be rephrased
by saying that u weakly solves the equation(

EF −
m∑
i=1

λiEGi

)
u ≡ 0 on Ω

with the Euler-Lagrange operators EF and EGi of F and G, respectively. Clearly, this
equation is nothing but the Euler-Lagrange equation of the integral functional F−

∑m
i=1 λiGi.

(3) The constraint
∫

Ωw dx = c (for scalar w in case N = 1) of the actual non-parametric
isoperimetric problem is contained in the theorem as the special case m = 1, G1(x, y, z) = y.
However, since this constraint is in fact linear, a much simpler treatment is possible and has
already been discussed in the exercises.

(4) Still in the scalar case N = 1, the theorem shows that minimizers u ∈ W1,2
0 (Ω) of the

Dirichlet integral E2 in the constrained class{
w ∈W1,2

0 (Ω) :

∫
Ω
w2 dx = 1

}
are necessarily weak solution to the Helmholtz equation

−∆u = λu on Ω .

In other words, this basic minimization problem produces solutions to the eigenvalue prob-
lem for −∆ with zero Dirichlet boundary values on Ω.

(5) The theorem incorporates very general integral constraints with possibly non-linear depen-
dence of the integrands Gi(x, y, z) on z. We remark that the existence theory for minimizers
does not apply in comparable generality, but rather remains restricted (apart from very spe-
cific cases) to integral constraints without z-dependence or with linear z-dependence only.

Proof of the theorem. We can assume that the functionals δG1[u; · ], δG2[u; · ], . . . , δGm[u; · ] are
linearly independent (since otherwise there is nothing to prove). With some linear algebra it
then follows that there exist6 ψ1, ψ2, . . . , ψm ∈ C∞cpt(Ω,R

N ) such that

δGi[u;ψj ] = δij for i, j = 1, 2, . . . ,m .

6Indeed, the above claim on the existence of ψ1, ψ2, . . . , ψm can be verified as follows. Assume first that⋂
i∈{1,2,...,m}\{j} ker(δGi[u ; · ]) ⊂ ker(δGj [u ; · ]) for some j ∈ {1, 2, . . . ,m}. Then, K ..=

⋂m
i=1 ker(δGi[u ; · ]) can

effectively be represented as the intersection of only (m−1) kernels of co-dimension 1 in C∞cpt(Ω,R
N ) and thus

has a co-dimension ` ≤ m−1 in C∞cpt(Ω,R
N ). We consider the m functionals induced by δG1[u; · ], δG2[u; · ], . . . ,

δGm[u ; · ] on the `-dimensional space C∞cpt(Ω,R
N )/K. These m functionals are necessarily linearly dependent

(since there are at most ` ≤ m−1 linearly independent linear functionals on the `-dimensional space), and then it
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Now we fix an arbitrary ϕ ∈ C∞cpt(Ω,R
N ), and we observe that

Γi(t0, t1, t2, . . . , tm) ..= Gi
[
u+ t0ϕ+

m∑
j=1

tjψj

]

for i = 1, 2, . . . ,m defines an Rm-valued C1 function Γ = (Γ1,Γ2, . . . ,Γm) on a neighborhood
of 0 in Rm+1 (where the C1 property results from the assumption that the partial deriva-
tives ∂Γi

∂tk
(t0, t1, t2, . . . , tm) = ∂Gi

[
u+
∑m

j=0 tjψj ;ψk
]

with understanding ψ0
..= ϕ exist and are

continuous in (t0, t1, t2, . . . , tm) with |(t0, t1, t2, . . . , tm)| � 1). We record Γ(0, 0, 0, . . . , 0) =
(c1, c2, . . . , cm) (since u satisfies the constraints) and ∂Γ

∂(t1,t2,...,tm)(0, 0, 0, . . . , 0) = Im×m (by the

above choice of ψj). At this point we decisively apply the implicit function theorem to con-
clude that Γ−1(c1, c2, . . . , cm) is near 0 the graph of C1 function. In particular, we obtain a
number δ > 0 and a C1 function τ = (τ1, τ2, . . . , τm) : (−δ, δ) → Rm with τ(0) = 0 such that
Γ(t, τ(t)) = (c1, c2, . . . , cm) for all t ∈ (−δ, δ) or equivalently

Gi
[
u+ tϕ+

m∑
j=1

τj(t)ψj

]
= ci for i = 1, 2, . . . ,m and all t ∈ (−δ, δ) .

At this stage we have constructed the A-admissible variation
(
u+tϕ+

∑m
j=1 τj(t)ψj

)
t∈(−δ,δ) of u

in u+C∞cpt(Ω,R
N ) in direction ϕ+

∑m
j=1 τ

′
j(0)ψj . Since the functions in A satisfy the constraints,

since δGi is linear in the direction (here by assumption), and since we have δGi[u;ψj ] = δij , we
infer

0 = δAGi
[
u;ϕ+

m∑
j=1

τ ′j(0)ψj

]
= δGi[u;ϕ] +

m∑
j=1

τ ′j(0) δGi[u;ψj ] = δGi[u;ϕ] + τ ′i(0)

for i = 1, 2, . . . ,m. Thus, we have determined τ ′j(0) = −δGj [u ;ϕ] for j = 1, 2, . . . ,m. Finally,
using the necessary criterion for the minimality of u, we conclude

0 = δAF
[
u;ϕ+

m∑
j=1

τ ′j(0)ψj

]
= δF [u;ϕ] +

m∑
j=1

τ ′j(0) δF [u;ψj ] = δF [u;ϕ]−
m∑
j=1

λj δGj [u;ϕ]

with Lagrange multipliers λj ..= δF [u;ψj ] (which do not depend on the arbitrary ϕ ∈ C∞cpt(Ω,R
N )

but only on the initially fixed choices of ψj). We have thus proved the claim.

Next we turn to admissible classes (of RN -valued functions on open Ω ⊂ Rn) defined by
finitely many holonomic constraints

g1(w) ≡ c1 , g2(w) ≡ c2 , . . . , gm(w) ≡ cm a.e. on Ω

follows that δG1[u; · ], δG2[u; · ], . . . , δGm[u; · ] themselves are also linearly dependent. Thus, the above assumption
must have been wrong, and indeed we have

⋂
i∈{1,2,...,m}\{j} ker(δGi[u ; · ]) 6⊂ ker(δGj [u ; · ]) for j = 1, 2, . . . ,m.

This means that there exist ψj ∈
⋂
i∈{1,2,...,m}\{j} ker(δGi[u; · ]) \ ker(δGj [u; · ]) for j = 1, 2, . . . ,m, and these ψj

consequently satisfy δGi[u;ψj ] = 0 for j 6= i and δGi[u;ψj ] 6= 0 for j = i in {1, 2, . . . ,m}. Normalizing the ψj by
multiplication with suitable non-zero scalar factors and using the assumed linearity of δGi[u; · ], we end up with
the claimed property δGi[u;ψj ] = δij .
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with c1, c2, . . . , cm ∈ R and g = (g1, g2, . . . , gm) : RN → Rm. One typically assumes that the
constraints are independent in the sense that g1, g2, . . . , gm are C1 on RN with ∇g1(x), ∇g2(x),
. . . , ∇gm(x) linearly independent in RN for every x ∈

⋂m
i=1{gi = ci}, or equivalently that g is

C1 on RN with rank(Dg) ≡ m on
⋂m
i=1{gi = ci} (clearly possible in case m ≤ N only). In fact,⋂m

i=1{gi = ci} is then a submanifold and thus holonomic constraints of the described type are a
special case of a manifold constraint

w ∈M a.e. on Ω

with a general (N−m)-dimensional C1-submanifold M in RN . In fact, in order to obtain a
necessary criterion for problems with this type of constraints, we need and work with a certain
technical retraction property. In order to set this clear and single out the core variational
statement, we introduce:

Definition (strong C2-neighborhood retracts). We say that a subsetM of RN is a strong
C2-neighborhood retract in RN if there exist and open set U ⊂ RN and a function R ∈ C2(U ,RN )
with DR, D2R bounded on U such that we have

dist(M,RN \ U) > 0 , R(U) ⊂M , R M = idM .

Remarks (on strong C2-neighborhood retracts).

(1) A strong C2-neighborhood retract M in RN is always closed in RN , since, for U and R
as in the definition, the third, first, and second condition (applied in this order) yield
M = R(M) ⊂ R(U) ⊂M.

(2) Most importantly, every closed (i.e. compact without-boundary) C2-submanifold
M in RN is a strong C2-neighborhood retract in RN . If M is even C3, this is
comparably straightforward to check by choosing the required mapping R as the nearest-
point projection onto M on a suitably small neighborhood U of M in RN (where the C3

assumption is needed to have a C2 normal vector and then a C2 projection). In the general
C2 case a more delicate construction of R is based on the idea to representM locally as a C2

graph and ‘glue together’ the C2 graph projections. A detailed account on this construction
— even though not at all relevant for the main purposes of this chapter — follows:

We start by fixing the terminology that a C2 retraction from an open set U in RN to an arbitrary set K in RN is a
map R ∈ C2(U ,RN ) such that R(x) ∈ K for all x ∈ U and R(x) = x for all x ∈ K.

Now, if M is an (N−m)-dimensional without-boundary C2-submanifold in RN , for every fixed x ∈ M, there exist
f ∈ C2(P,Rm), defined on an open cube P ⊂ RN−m and with values in an open cube Q ⊂ Rm, and a rotation
T ∈ O(RN ) such that x ∈ T (P×Q) and M has, locally near x, the rotated-graph representation

M∩ T (P×Q) = T (Graph(f)) .

Using this representation, one easily obtains a C2 retraction R from the open neighborhood U ..= T (P×Q) of x to
M∩U : It suffices to simply set R(T (p, q)) ..= T (p, f(p)) for (p, q) ∈ P×Q. Moreover, for later convenience we record
that U is convex by construction.

If M is additionally compact, the definition of compactness then yields a finite cover M ⊂
⋃k
i=1 Ui, k ∈ N, with

convex open sets Ui, each of which comes with a C2 retraction from Ui to M∩Ui, for i = 1, 2, . . . , k. With the help
of the subsequent lemma, it is then possible to glue or patch these retractions together in an iterative way: In a first
step the lemma, applied with U1, U2, and the remainder neighborhood V =

⋃k
i=3 Ui, allows to replace U1 and U2 with

a new open set U12, which again comes with a C2 retraction from U12 toM∩U12, such that stillM⊂ U12 ∪
⋃∞
i=3 Ui.

In a second step, the resulting U12 and the original (and thus still convex) U3 are then replaced with a new open set
U123 (again with corresponding retraction) such thatM⊂ U123 ∪

⋃∞
i=4 Ui, and so on. Ultimately, one ends up with a

single open neighborhood U123...k ofM and with a C2 retraction from U toM. SinceM is compact, the requirements
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from the definition are met on a possibly smaller neighborhood, and M — which, as we recall, is assumed only C2

itself — turns out to be a strong C2-neighborhood retract as claimed.

At this point, to complete the argument, it is enough to establish the following lemma:

Lemma (gluing glemma for retractions). Consider a compact set M and open sets U1,U2,V in RN with M ⊂
U1 ∪ U2 ∪ V, where U2 is convex. Assume that there exist C2 retractions R1 from U1 to M∩U1 and R2 from U2 to
M∩U2. Then there also exist an open set U in RN with M⊂ U ∪ V and a C2 retraction from U to M∩U .

In order to approach the proof of the lemma we introduce, for open U ⊂ RN , arbitrary M ⊂ RN , and ε > 0, the
notations Uε ..= {x ∈ RN : dist(x,RN\U) > ε} ⊂ U and Nε(M) ..= {x ∈ RN : dist(x,M) < ε} ⊃ M.

Proof of the lemma. Using the definition of compactness (for the open cover of M which consists of all U2ε
1 , ε > 0,

all Uε2 , ε > 0, and V), we can fix some ε > 0 such that M ⊂ U2ε
1 ∪ Uε2 ∪ V. We then observe that R1 ∈ C2(U1,RN )

is in particular Lipschitz continuous on Uε/21 and write L for its optimal Lipschitz constant there. Moreover, we set
δ ..= ε/(L+2), and we next verify the auxiliary claim

R1(x) ∈ U2 for all x ∈ Uε1 ∩ Uε2 ∩Nδ(M) .

Indeed, for such x there exists y ∈ M with |y−x| < δ, and in view of x ∈ Uε1 and δ ≤ ε/2 we infer y ∈ Uε/21 .
Via the retraction property and the Lipschitz continuity of R1 we get |R1(x)−x| ≤ |R1(x)−R1(y)|+|R1(y)−x| ≤
(L+1)|y−x| < (L+1)δ < ε. Thus, taking into account x ∈ Uε2 , we conclude R1(x) ∈ U2 as claimed.

We now introduce the open set U∗ ..= U2ε
1 ∪ (Uε2 ∩ Nδ(M)) and record that M ⊂ U∗ ∪ V holds by the initial choice

of ε. We also choose a cut-off function η ∈ C∞cpt(R
N ) with 0 ≤ η ≤ 1 on RN , η ≡ 1 on U2ε

1 , and spt η ⊂ Uε1 , which

in particular allows us to understand ηR1 ∈ C2
cpt(R

N ,RN ) as globally defined (clearly with ηR1 ≡ 0 outside Uε1 ). At

this stage, we finally define R ∈ C2(U∗,RN ) by setting

R(x) ..=
{
R2

(
ηR1(x)+(1−η(x))x

)
if x ∈ Uε2 ∩Nδ(M)

R1(x) if x ∈ U2ε
1

.

Indeed, for R to be well-defined, we need to be sure in the first case x ∈ Uε2 ∩ Nδ(M) that ηR1(x)+(1−η(x))x ∈ U2.
In the subcase x /∈ U2

1 ε this is obvious, since we get η(x) = 0 and thus ηR1(x)+(1−η(x))x = x ∈ U2. In the other
subcase x ∈ Uε1 , however, the auxiliary claim established above yields R1(x) ∈ U2, and then the assumed convexity of
U2 ensures that with x and R1(x) also the convex combination ηR1(x)+(1−η(x))x is again in U2. Moreover, in the
overlap case x ∈ U2ε

1 ∩ Uε2 ∩ Nδ(M), we have η(x) = 1 and, still by the auxiliary claim, R1(x) ∈ U2. Therefore, with
R1(x) ∈M∩U2 and R2

(
ηR1(x)+(1−η(x))x

)
= R2(R1(x)) = R1(x) we obtain the consistency of the definition in this

case. In view of these arguments and since Uε2 ∩ Nδ(M) and U2ε
1 are open sets with union U∗, it is now fully verified

that R is well-defined and C2 on U∗. Moreover, it follows straightforwardly from the retraction properties of R1 and
R2 that R(x) ∈ M for all x ∈ U∗ and R(x) = x for all x ∈ M ∩ U∗. But indeed, since we merely get R(x) ∈ M
and not precisely R(x) ∈ M ∩ U∗, this does not yet mean that R is a C2 retraction from U∗ to M∩ U∗. However,
introducing the open set U ..= R−1(U∗) = R−1(M∩U∗) ⊂ U∗, we have M∩U =M∩U∗ and thus M⊂ U ∪ V, and
we can be sure that R is a C2 retraction from U to M∩U .

(3) Unlike manifolds strong C2-neighborhood retracts may consist of connected components of
different dimensions. In such cases, the notion allows to conveniently unify the following
arguments (even though such cases are rare in applications and a separate treatment of the
different components is also possible).

Theorem (necessary criterion for minimizers subject to a manifold constraint). Con-
sider an open Ω ⊂ Rn, an Mn⊗B(RN )⊗B(RN×n)-measurable F : Ω × RN × RN×n → R, and
set

F [w] ..=

∫
Ω
F ( · , w,Dw) dx

(whenever this exists in R). Moreover, consider a strong C2-neighborhood retractM in RN with
a corresponding retraction R as in the definition, fix p ∈ [1,∞), and endow Vp ..= W1,p

cpt(Ω,R
N )∩
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L∞(Ω,RN ) with W1,p
cpt-convergence7. Then, for u ∈ W1,p

loc(Ω,RN ) with F ( · , u,Du) ∈ L1(Ω),
suppose that δF [u;ϕ], taken in u+Vp, exists and is given by the first-variation formula for all
ϕ ∈ Vp. If u with u ∈M a.e. on Ω minimizes F in the constrained class

A ..= {w ∈ u+Vp : w ∈M a.e. on Ω} ,

then u solves the variational equality∫
Ω

[
∇zF ( · , u,Du) ·D(DR(u)ψ) +∇yF ( · , u,Du) ·DR(u)ψ

]
dx = 0 for all ψ ∈ Vp . (vE)

Once more the assumptions on the existence of the first variation and the validity of the
first-variation formula can be obtained from the earlier proposition.

Proof. Consider U , R as in the definition of strong C2-neighborhood retracts, u as in the theorem,
and an arbitrary ψ ∈ Vp. For simplicity of notation assume ‖ψ‖L∞(Ω,RN ) ≤ 1 (which is no restric-

tion, since the claimed variational equality is linear in ψ). Then, for |t| < δ ..= dist(M,RN \ U)
we have u+tψ ∈ U a.e. on Ω, and thus

ut ..= R(u+tψ)

is well-defined. In view of u ∈M a.e. on Ω and R M = idM, we have u0 = u. Furthermore, we
now show that

(ut)t∈(−δ,δ) is a variation of u in u+Vp with
d

dt
ut = DR(u+tψ)ψ for t ∈ (−δ, δ) .

We first observe that ut−u = R(u+tψ)−R(u) is continuous in t ∈ (−δ, δ) as L∞(Ω,RN )-
valued curve (since R is Lipschitz) and that ∂iut = DR(u+tψ)(∂iu+t∂iψ) (derivative computed
with the first chain rule) is continuous in t ∈ (−δ, δ) as Lploc(Ω,R

N )-valued curve for every
i ∈ {1, 2, . . . , n} (by a reasoning with the dominated convergence theorem). Since ut equals u
outside the compact support of ψ, this means that ut is continuous in t ∈ (−δ, δ) as curve in
u+Vp.

To check d
dt t=0

ut = DR(u)ψ in u+Vp we abbreviate ωt(x) ..= supB|t|(u(x)) |DR−DR(u(x))|
and estimate |ut−ut − DR(u)ψ| ≤ ωt a.e. on Ω with the definition of ut and a standard deriva-
tive estimate. Now dominated convergence yields limt→0 ωt = 0 in Lploc(Ω,R

N ), and, as ψ
is compactly supported, we can conclude limt→0

ut−u
t = DR(u)ψ in Lp(Ω,RN ). In a similar

way, with the abbreviation ω2
t (x) ..= supB|t|(u(x)) |D2R−D2R(u(x))| and the estimate |∂iut−∂iut −

∂i(DR(u)ψ)| ≤ ω2
t |∂iu|+ωt|∂iψ| one finds limt→0

∂iut−∂iu
t = ∂i(DR(u)ψ) in Lp(Ω,RN ) also for

the derivatives. This shows d
dt t=0

ut = DR(u)ψ in u+Vp, and for general t ∈ (−δ, δ) one can

check d
dtut = DR(u+tψ)ψ in an analogous way.

Finally, by further applications of the dominated convergence theorem, we obtain that d
dtut =

DR(u+tψ)ψ and ∂i
d
dtut = ∂i(DR(u+tψ)ψ) = D2R(u+tψ)(∂iu+t∂iψ,ψ)+DR(u+tψ)∂iψ are still

continuous in t ∈ (−δ, δ) as Lploc(Ω,R
N )-valued curves. Therefore, ut is finally C1 in t ∈ (−δ, δ)

as curve in u+Vp and is by definition a variation of u in u+Vp in direction DR(u)ψ ∈ Vp.
7By W1,p

cpt-convergence of a sequence (wk)k∈N in W1,p
cpt(Ω,R

N ) to a limit w ∈ W1,p
cpt(Ω,R

N ) we mean Lp-
convergence limk→∞ wk = w and limk→∞Dwk = Dw on Ω with

⋃∞
k=1 spt(wk) b Ω. In the same way as described

earlier for D-convergence, W1,p
cpt-convergence comes with a topology and is also used in a shifted version on

u+W1,p
cpt(Ω,R

N ).
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After these technical details, the essential observation is now that the variation (ut)t∈(−δ,δ)
is indeed A-admissible (since we required R(U) ⊂M). Therefore, the direction DR(u)ψ of the
variation is admissible in the basic necessary criterion for A-constrained minimizers. From this
criterion and the assumed validity of the first-variation formula, we then obtain

0 = δAF [u; DR(u)ψ] =

∫
Ω

[
∇zF ( · , u,Du) ·D(DR(u)ψ) +∇yF ( · , u,Du) ·DR(u)ψ

]
dx

as claimed in (vE).

Remarks (on the necessary criterion for M-constrained minimizers). Using the notations of
the definition and the theorem, the following comments are in order:

(1) From the basic requirements on R we obtain R◦R = R on U , thus DR(R(y))DR(y) = DR(y)
for y ∈ U and in fact

DR(y)2 = DR(y) for y ∈M .

Thus, DR(y) with y ∈ M is in fact a linear projection from RN to the vector
subspace TyM ..= range DR(y) of RN , the (generalized) tangent space toM at y ∈M.

(2) For arbitrary ϕ : Ω→ RN , we have the equivalence

ϕ = DR(u)ψ for some ψ ∈ Vp ⇐⇒ ϕ ∈ Vp with ϕ ∈ TuM a.e. on Ω .

Here, ‘ =⇒ ’ results from DR(u) ∈W1,p
loc(Ω,RN×N )∩L∞(Ω,RN×N ), a product rule, and the

definition of Vp, while for ‘⇐= ’ one simply uses that ϕ ∈ TuM gives ϕ = DR(u)ϕ by the
preceding Remark (1).

This equivalence identifies the test functions in the variational equality of the theorem
as ‘tangential to M at the values of u’, and the variational equality can be equivalently
rewritten in these terms as∫

Ω

[
∇zF ( · , u,Du) ·Dϕ+∇yF ( · , u,Du) · ϕ

]
dx = 0

for all ϕ ∈ Vp with ϕ ∈ TuM a.e. on Ω .

(3) In regular cases (e.g. if ∇zF ( · , u,Du) ∈ Lp
′

loc(Ω,R
N×n), ∇yF ( · , u,Du) ∈ Lp

′

loc(Ω,R
N ), and

div
[
∇zF ( · , u,Du)

]
∈ L1

loc(Ω,R
N )), integration by parts transforms the variational equality

(vE) into

0 =

∫
Ω

EFu ·DR(u)ψ dx =

∫
Ω

DR(u)∗EFu · ψ dx for all ψ ∈ Vp ,

where EF , given by EFu = −div
[
∇zF ( · , u,Du)

]
+ ∇yF ( · , u,Du), is the Euler-Lagrange

operator of F and DR(y)∗ is the adjoint linear map or transpose matrix of DR(y). By the
fundamental lemma of the calculus of variations, one then finds that the variational equality
is also equivalent to the pointwise equation

DR(u)∗EFu ≡ 0 a.e. on Ω ,
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and in view of the elementary identity ker(DR(y)∗) = (range DR(y))⊥ = (TyM)⊥ for y ∈
M, it can finally be recast in form of the pointwise perpendicularity relation

EFu ⊥ TuM a.e. on Ω ,

Sometimes this is further shortened to (EFu)tan ≡ 0 a.e. on Ω, where (EFu)tan stands for
the component of EFu tangent to M at the values of u.

In less regular cases, the variation equality (vE) should be seen as a weak formulation of
the perpendicularity relation.

(4) We now come back to the initially discussed case that M is (at least locally) given in the
form M =

⋃m
i=1{gi = ci} with c1, c2, . . . , cm ∈ R and g = (g1, g2, . . . , gm) ∈ C2(RN ,Rm)

such that rank(Dg) ≡ m on RN . In this case one obtains the tangent spaces as (TyM)⊥ =
Span{∇gi(y) : i = 1, 2, . . . ,m} for y ∈ M. Therefore, the perpendicularity relation is then
equivalent to the requirement that

EFu =
m∑
i=1

λi∇gi(u) holds a.e. on Ω

with certain functions λi : Ω→ R as Lagrange multipliers. Solving for the RN -valued u and
the m scalar Lagrange multiplier functions at the same time is reasonable, since the above
RN -valued equation is complemented with the m scalar constraints gi(u) = ci.

(5) A version of the theorem remains valid if the C2 regularity of R is weakened to W2,∞
loc

regularity (with DR, D2R still bounded).

(6) Holonomic constraints gi( · , w) ≡ ci a.e. on Ω and manifold constraints w(x) ∈ Mx for a.e.
x ∈ Ω with x-dependence can be covered in a similar way under the technical assumption
that there exist suitable retractions R(x, · ) from a neighborhood U toMx with DyR, D2

yR,
DxDyR bounded. One then obtains the variational equality with the help of admissible
variations ut = R( · , u+tψ) of u in direction ϕ = DyR( · , u)ψ.

Example (harmonic mappings into spheres). As a basic example consider the mini-
mization8 of the Dirichlet integral among unit-sphere-valued mappings, that is, take
F = E2 and M = SN−1 = {y ∈ RN : |y| = 1}. Then a suitable retraction R is given by
R(y) ..= y

|y| for |y| > δ with arbitrary δ ∈ (0, 1) (which is only needed to define the neighborhood

U = {y ∈ RN : |y| > δ}). The derivative DR(y) =
IN×N
|y| −

y⊗y
|y|3

y∈SN−1

= IN×N − y⊗y of R at

y ∈ SN−1 gives the linear projection onto {y}⊥ = TyS
N−1. Thus, for u ∈ W1,2

loc(Ω,RN ) with
|u| ≡ 1 a.e. on Ω, we can record:

• The variational equality (vE) here reads∫
Ω

Du ·D(ψ−(ψ · u)u) dx = 0 for all ψ ∈W1,2
cpt(Ω,R

N ) ∩ L∞(Ω,RN ) .

or equivalently∫
Ω

Du ·Dϕdx = 0 for all ϕ ∈W1,2
cpt(Ω,R

N ) ∩ L∞(Ω,RN ) with ϕ ⊥ u a.e. on Ω .

8As it is the case already in the unconstrained case, the minimization is a non-trivial problem with non-constant
solutions only if boundary conditions are imposed. However, such conditions do not take effect on the necessary
criterion under consideration. Thus, it is not necessary to discuss or specify them at this point.
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• In case ∆u ∈ L1
loc(Ω,R

N ), the variational equality is equivalent to the perpendicularity
relation ∆u ⊥ TuSN−1 = {u}⊥ a.e. on Ω, which here means in fact that ∆u is a.e.
parallel to u, that is ∆u = λu a.e. on Ω with a Lagrange multiplier function λ : Ω → R.
In the given case, one can in fact eliminate λ from the equation, since |u| ≡ 1 implies
0 = ∆(|u|2) = 2u ·∆u + 2|Du|2. Combining this with ∆u = λu and using |u| ≡ 1 again,
we find λ = −|Du|2 a.e. on Ω. Therefore, the necessary criterion for minimizers of E2

with SN−1-manifold constraint is in fact (a weak formulation of) the PDE (system) for
harmonic maps into spheres

∆u = −|Du|2u a.e. on Ω .

This PDE system exhibits a quadratic first-order non-linearity in Du, which makes its
theory quite a bit more difficult and subtle than the theory of linear elliptic systems.
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