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Multiple zeta values

o For integers k1 > 2, ko, ... kg > 1, we call

Cky,. .. kg) = Z - 1

kd
m>->mg>0 M my

a multiple zeta value (MZV) of weight k; + - - - + k4 and depth d.

o Let
Z:(C(kl,...,kd)|d20,k1Z2,k2,...,kd21>Q,

where (() = 1, be the Q-vector space spanned by the MZVs.
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Multiple zeta values - EDS relations

Products of MZVs are Q-linear combinations of MZVs, so the space Z is
an algebra. There are two kinds of such formulas, e.g., in depth 2, we
have

C(k, ko) + Clka, k1) + C(ki + ko) (stuffle product)
C(h)C(ke) = ko1, -
> () + (£75) ki + ko — ) (shuffle product).
=
We get the double shuffle relations.

Actually, the MZVs satisfy the extended double shuffle relations
(EDS) obtained by regularization. Conjecturally, these are all relations
between MZVs.
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Formal multiple zeta values

Definition

Let Zf be the algebra of formal multiple zeta values, i.e., the formal
symbols (f(ki, ..., kq) satisfy the extended double shuffle relations and
no other relations.

o The algebra Z is graded for the weight.
@ We have a surjective algebra homomorphism

zf 5z,
ke, ..o kg) = ke, kg).

Conjecturally, this morphism is an isomorphism.
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Formal multiple zeta values

Racinet introduced a pro-unipotent affine group scheme DMy with values
in a graded Hopf algebra, such that we have for all Q-algebras R

Homg.aig <Zf/(<f(2)), R) ~ DMo(R).

By a deep theorem of Racinet, there is a bijection between DMg and its
Lie algebra omg, from which we obtain

Theorem (Ecalle, Racinet)

The algebra Z7 of formal MZVs is a free polynomial algebra.
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Formal multiple zeta values

Racinet introduced a pro-unipotent affine group scheme DMy with values
in a graded Hopf algebra, such that we have for all Q-algebras R

Homg.aig <Zf/(<f(2)), R) ~ DMo(R).

By a deep theorem of Racinet, there is a bijection between DMg and its
Lie algebra omg, from which we obtain

Theorem (Ecalle, Racinet)
The algebra Z7 of formal MZVs is a free polynomial algebra.

It is conjectured by lhara-Deligne that dmy is a free Lie algebra with
exactly one generator in each odd degree > 3. From this, we can deduce

Zagier's conjecture for formal MZVs

The dimensions of the homogeneous subspaces (w.r.t. the weight) of Zf

are given by
. 1
>_dimg(Z0)t" = T—5——-

k>0
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Multiple g-zeta values

g-analog

A g-analog of an expression is a generalization involving the variable g,
which returns the original expression by taking the limit g — 1.

For a natural number n > 1, the g-analog is given by
1—-q"

-1 n—1 _
{ntg=1+q+ - +gq -

Schlesinger-Zudilin multiple g-zeta values
For k1 > 1, ko, ..., kg > 0, a (modified) g-analog of the MZVs is given by

q
ks ka) = >

my>->mg>0 (I—gm)a  (1—qm)t’

We obtain for ky > 2, ko,... kg >1

my kl qmd kd

qm1 kl qmd kd

lim (1 — q)fat+ka¢3Z(ky, ... ky) = lim e -
g—1 q g—1 > Sy >0 {ml}ql {md}qd

= ((k1,- .., kq)-
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Multiple g-zeta values

@ For integers ki, ..., k¢ > 1 and polynomials Ri(t), R2(t), ..., Ra(t) € Q[t],
R1(0) = 0, define the multiple g-zeta value (QMZV)

Ri(¢™) Ra(q™)
C (klw--,kd;Rl,.-.,Rd): )
? m1>-§md>0 (1 - qml)kl (1 - qmd)kd
@ Define the Q-vector space generated by the qMZVs
Zq — (Cq(kl, ceey kd; Rl, ceey Rd)|d Z 07 kl, ceny kd 2 ].7 deg(Rj) S kj)Q,

where (q(0;0) = 1.

For k; > 1, we obtain

lim (1 — q) ™ Fk ¢ (ky, oo kg Ry, ooy Rg) = R1(1) - - Ra(1)C( Ky, -, kd)-

q—1
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Multiple g-zeta values

@ For integers ki, ..., k¢ > 1 and polynomials Ri(t), R2(t), ..., Ra(t) € Q[t],
R1(0) = 0, define the multiple g-zeta value (QMZV)

Ri(g™ Ry(q™
Caolkty oo kii Riy s R) = (1_(Zm1;k1"'(1j(gmd))kd'

my> - >mg>0
@ Define the Q-vector space generated by the qMZVs
Zq = (Cq(kiy ..., ka; Riy ...y Ra)|d > 0, ku, ..., ka > 1,deg(R;) < kj)a,
where (q(0;0) = 1.

The power series multiplication (g-stuffle product) endows Z, with the
structure of an algebra. For example, we have

Cqlki; R1)Cq(k2; R2) = (q(ka, kai Ry, R2) + Cqlka, ki; Ro, Ry)
+ Cq(ki + ko; RiRy)

Since deg(R1R2) < ki + ko, the product is indeed an element in Z,.
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Bi-brackets (Bachmann)

For integers ki, ..., kg > 1,n1,...,ng > 0, define

ki, oo k m Py (q™)
[ R i e o

my>-->mg>0 j=1

where the Eulerian polynomials Py (t) are defined by

Pk(t) _ rk_l r
1 o) _Z(k—l)!t'

r>1

For a bi-bracket :1""’ﬁd}wecall ki+- 4+ ky+nm+---+ngits
153 Nd

weight and d its depth.
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Filtrations on Z,

Theorem (Bachmann-Kiihn)

The space Z, is spanned by the bi-brackets.

We define a weight filtration

FI (2,) = <[k1,...,kd]

OSdSk,k1+-~-+kd+n1+~-~+nd§k>
ny,...,Nyg

/<)
Q

Q

and a depth filtration

FI(2,) - <[k1, k,]

ny,...,n

on the algebra Z,.
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g-stuffle product of bi-brackets

Define the generating series of bi-brackets of depth d > 1 by

X7...7Xd k?"'akd _ B i .,
g(yi’.’yd>— Z |:n1,...,nd:|x]{<1 1...Xcli(d 1Y11"'Ydd.
kiy...,kg>1

ni,...,ng>0

The g-stuffle product of the bi-brackets in depth 2 can be expressed as

X1 X2\ _ (X1, X2 X2, X1 1 X1 _ X2
g(\ﬁ)g(\’z) g(Y17Y2)+g<Y2,Y1>+X1—X2 f\vity) ¢

Yi+ Y2
X1 Xo 1 X1 X2
2006 =) (Q(Yl + Y2) _9<Y1 + Yz)) "2 (9<Y1 + Yz) “’(Yl + Y2>>
where 5
_ Pk yk—1

9/24



g-stuffle product of bi-brackets

Define the generating series of bi-brackets of depth d > 1 by

X7...7Xd k?"'akd _ _ N ,
g(yi’.’yd>— Z |:n1,...,nd:|x]{<1 1...Xcli(d 1Y11"'Ydd.
k1. kg >1

ni,...,ng>0

The g-stuffle product of the bi-brackets in depth 2 can be expressed as

X1 X2\ _ (X1, X2 X2, X1 1 X1 B X2
g<y1>g<yz> g<Y17Y2>+g<Y2,Y1>+X1—X2 T \vity) ¢

Yi+ Y2
X1 Xo 1 X1 X2
+2506 — ) (Q(Yl + Y2) _9<Y1 h Y2>) 2 (9<Y1 + Yz) “’(Yl h Y2>>
where 5
_ Pk yk—1
AX) = I
k>2

We call a sequence of power series satisfying the blue coloured formula
symmetril, their coefficients fulfill the (weight-)graded g-stuffle product.
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g-stuffle product of bi-brackets

In depth 3 the g-stuffle product of the bi-brackets can be described as
X1 X2, X3\ [ X1,X2, X3 " X2, X1, X3 " X2, X3, X1
)8\ vevs) T8, ve, vs) T8 e v vs) T e, v
X1, X3 . Xz, X3 XZ, Xl o X27 X3
Tvi+ve,vs) it vy, +9 vovi+vs) v vi+vs
X1 — X2 Xl - X3
X1, X3 X2, X3
_ X b _ b
+28(% ) <g<Y1 + Yo, Y3> g<Y1 + Yo, Y3)>
Xo, X1 X2, X3
+26(% = %) <g<Y2,Y1+ Y3) g(yz,Y1+Y3>>

1 Xl, X3 )<27 X3 X2, X1 XZ, X3
2 (g(yl + Y2, Y3> +g(Yl + Y2, Y3) Jrg<Y2, Y1+ Y3) Jrg(yz, Y1+ Ya))
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g-stuffle product of bi-brackets

In depth 3 the g-stuffle product of the bi-brackets can be described as
X1 X2, X3\ (X1, X2, X3 i X2, X1, X3 n X2, X3, X1
Ny 8\ v vs) 9 v, vs) T8 e v vs) T e, va v
X1, X3 o )(27 X3 XQ, Xl _ X27 X3
\vi+vevs) A\ vit vy +9 vovi+vs) N\ vevitys
X1 — X2 Xl - X3
X1, X3 X2, X3
28(Xa — X ’ — ’
+28(% 1) <g<Y1+ Y2, Y3> g<Y1+Y2,Y3))
XQ X1 X2 X3
26(X3 — X; ) — )
+2806 - %) <g<Y2,Y1+Y3> g(yz,Y1+Y3>)

. 1 X1,X3 + X2,X3 + X2,X1 + XZ,X3
2 \8 Yi+ Y2, Y3 § Yi+ Y2, Y3 § Y2, Y1+ Y3 g Y2, Y1+ Y3

We call a sequence of power series satisfying the blue coloured formula
symmetril, their coefficients fulfill the (weight-)graded g-stuffle product.
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Swap invariance of bi-brackets

Proposition (Bachmann)

For all d > 1, the generating series of the bi-brackets is swap invariant,
i.e., we have

(Xl,...,Xd> _ <Y1+"'+Yd,Y1+"'+Yd1,...7Y1>
Yi,..., Yy Xdy Xg—1— Xdy oo, X1 — X '

The relations between bi-brackets obtained from the swap invariance of g
are homogeneous w.r.t. the weight.

E.g., in depth < 2, we have

X _ Y XlaXQ _ Yl + Y2a Yl
Ily) 78 x) \vi,v,) T8 x - X))

which leads to the following relations between bi-brackets:

Nl

ki, ko ikzzl( 1 1+k n+n\|m+n+1ln—n+1
ny, ny n ko —1—k ki —1+ k|~

n=0 k=0 11/24



Relations between qMZV

Conjecture (Bachmann)

All algebraic relations in the algebra Z; of multiple g-zeta values can be
obtained from combining the g-stuffle product and the swap invariance of
bi-brackets.
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Relations between qMZV

Conjecture (Bachmann)

All algebraic relations in the algebra Z; of multiple g-zeta values can be
obtained from combining the g-stuffle product and the swap invariance of
bi-brackets.

Inspired by the classical MZVs, we expect the following:

Conjecture

There is a spanning set of the space Z;, which satisfies the graded
g-stuffle product formula and whose generating series is swap invariant.

In the following, we will construct such a spanning set of Z, up to depth
3, we will call these the combinatorial multiple Eisenstein series.
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Combinatorial multiple Eisenstein series

The multiplication of quasi-modular forms is graded, therefore we make
the following ansatz:

G(ﬁ) =6n,o( le) .

{k
@ For k > 2 even, the elements G ) are the Eisenstein series of

] k>n+12>1.
n

weight k (with rational coefficients),

@ For k + n > 2 even, the elements G<n> are the derivatives of
Eisenstein series.

Let G<k(1)’ gz> , ki1 > 3, ko > 2 even, be the combinatorial double

Eisenstein series of Gangl-Kaneko-Zagier, then we obtain the graded
g-stuffle product formula:

ky ko\ (ki ko ko, ky ki + ko
o(5)s(5)=c(as) re(55) +o("5")
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Combinatorial multiple Eisenstein series

Proposition (Drinfeld+Furusho, Racinet)

There is a (non-unique) sequence 5(X1), (X1, X2), . .. with rational
coefficients satisfying the stuffle and shuffle product.

Explicit formulas for 8 in low depths are given by Gangl-Kaneko-Zagier,
Brown and Ecalle.

Proposition (Bachmann-Matthes-Kiihn)

We can lift every series 5(X1), 8(X1, X2), . .. with coefficients satisfying

the stuffle and shuffle product to a sequence 5()\2) 5()\2)\2) ,...of

power series, which is symmetril and swap invariant.

X1, X2
Y1, Y2
series with rational coefficients. In particular, we have in depth 1:

B
ﬁ(iﬁi) = p(X1) +B(Y1) = — 2_kk|(X1k_1 4y,
k>2 7

In the following, we fix such a sequence ﬁ(ﬁ) ,ﬁ( ) ,... of power
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Combinatorial multiple Eisenstein series

Theorem (Bachmann-Kiihn-Matthes d = 2, Bachmann-B. d = 3)

There is an explicit symmetril sequence

g<i</1> o <>2§</§) o (Q%é) € Z,[[X1, Xo, Xs, Y, Ya, Y],
such that the following sequence is symmetril and swap invariant:
() =s() +4(%).
(i) = () +o(32) 2 () + (%)
o(vvw) =o' (o)~ (5%) (%)

X]_ XZ; X3 X17 X2; X3
+g<Y1> 5<Y2, Y3) +5<Y17 s Y3) '
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Combinatorial multiple Eisenstein series

Definition
The combinatorial multiple Eisenstein series (CMES) G in depth
d < 3 are defined to be the coefficients of the series &:

X1, Xg Kiy.ooskd\ k-1 k-1 Y1 vy
(¢5) = G XM=t .o XeT L.
(Ylv"'ayd> K .Zk:d>1 <n1)"'7nd 1 d ny! ny!

ny,...,ng>0

Towards the conjecture about a spanning set of Z,, we have:

@ The CMES satisfy the graded g-stuffle product and their generating
series is swap invariant.

e For d =1,2,3, the CMES of depth d span the space FiIdD(Zq).
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Combinatorial multiple Eisenstein series

@ The Q-vector space generated by the CMES of depth d < 2 contains
the quasi-modular forms with rational coefficients.
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Combinatorial multiple Eisenstein series

@ The Q-vector space generated by the CMES of depth d < 2 contains
the quasi-modular forms with rational coefficients.

@ The space generated by the CMES is closed under taking the
derivative qdiq.
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Combinatorial multiple Eisenstein series

@ The Q-vector space generated by the CMES of depth d < 2 contains
the quasi-modular forms with rational coefficients.

@ The space generated by the CMES is closed under taking the
derivative qdiq.

@ The CMES can be seen as a bi-version of the multiple Eisenstein

series, since they are constructed analogously to the Fourier
expansion of the multiple Eisenstein series.
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Combinatorial multiple Eisenstein series

@ The Q-vector space generated by the CMES of depth d < 2 contains
the quasi-modular forms with rational coefficients.

@ The space generated by the CMES is closed under taking the
derivative qdiq.
@ The CMES can be seen as a bi-version of the multiple Eisenstein

series, since they are constructed analogously to the Fourier
expansion of the multiple Eisenstein series.

@ The CMES are linear combinations of g-analogs of MZVs. In
particular, we have:

. ki, k
lim (1 — g)k™ +k"G< 6 Od) = ((k1, ..., kq)

qg—1

fork122,k2,...,kd21, d§3

17/24



Combinatorial multiple Eisenstein series

@ The Q-vector space generated by the CMES of depth d < 2 contains
the quasi-modular forms with rational coefficients.

@ The space generated by the CMES is closed under taking the
derivative qdiq.

@ The CMES can be seen as a bi-version of the multiple Eisenstein
series, since they are constructed analogously to the Fourier
expansion of the multiple Eisenstein series.

@ The CMES are linear combinations of g-analogs of MZVs. In
particular, we have:

. ki, k
lim (1 — g)k™ +k"G< 6 Od) = ((k1, ..., kq)

qg—1
for k122,k2,...,kd21, d§3
@ The elements lim G X X

q—0 0, ey 0
satisfying the stuffle and shuffle product.

, d < 3, are rational numbers
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Combinatorial multiple Eisenstein series

The CMES satisfy the bi-version of the double shuffle relations. E.g., in
depth 2 they are given by

o)) () o213
n ny ny, ny ny, m ny+

MO (k4 ky—k—1\ [+ ny—n oon kit ko — kK

n n,ny-+n—n
k=1 n=0 1 e 2

kz m
ki+ ko — k-1 n+ny—n _ ki + ko — k, k
_1\yn—nrgG )
i Z( ko~ k )( )() <

k=1 n=0 n2 MM+ N2 =N
ki+ ko —2 ki + ko —1
G .
+< kg —1 ) (n1+n2+1

If n; = np = 0, taking the limit ¢ — 1 (and multiplying with (1 — g)kit%)
yields the classical double shuffle relations for double zeta values.
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Proof: Construction of the g’

Before we indicate the proof, recall:

Theorem (Bachmann-Kiihn-Matthes d = 2, Bachmann-B. d = 3)

There is an explicit symmetril sequence

X\ i XX\ i X1, X2, X3
g<y1> " <y1, y2) » g Y17 y27 y3 € Zq[[XlaX2aX3, Yla Yz, Y3]]7

such that the following sequence is symmetril and swap invariant:
o(33) =o(d) (%)
(i) =o' (i) ro () 1)+ ().
o(wwnv) =o' (o) o (5%) (%)
+o(%) o)+ (%)
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Construction of the g/

The generating series of bi-brackets of depth d > 1 can also be written as
X1, Xa X1 Xy
= L oL,
9<Y1,...,Yd) > 1<Y1 i\ y,
my>ee>mg>0
Lm X _ eX+qum.
Y 1— qum
In order to build from the series g a symmetril series g/, we will define a
symmetril multiple version of the L,,.

where
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Construction of the g/

For d, m > 1, define the power series

(_1)Iﬂ _Xi+17 sy —Xq
2ij! Yla"'a Yd*i ’

Proposition (Bachmann-B.)
o The series 3R are swap invariant up to signs.
o Up to depth 3, the 3R are symmetril up to signs.
o Up to depth 3, the L,,, m > 1, are symmetril.

21/24



Construction of the g/

The symmetrility of the L,,, m > 1, implies:

(Poposion ]

The following sequence of power series is symmetril

o(3) =2 (}).

m>0
i (X1, X2\ _ X1 X2 X1, X2
g <Y17Y2)_ Z Lm1<yl) Lm2<y2 +ZLm Y1,Y2)’
my;>mp>0 m>0
i (X1, X2, X3\ _ X1 Xo X3
. (Y1,Y27Y3)_ Z Lml(Yl L, Y, L, Y3
my>my>m3>0
X1, X2 X3 X1 X2, X3
+ > (Lml(YhYQ) L"’?(»@)*L"’l(n) L'”Z(\@,\g))
m;>mp>0
X1, X2, X3
* z>:0Lm(Y17 Y2, Y3) ’

This conclusion works for all depths. The crucial point in arbitrary depths
is to show that the L,,, m > 1, are symmetril and that the & are swap
invariant.
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Outlook: Formal graded multiple g-zeta values

Definition

Let ZC'; be the graded Q-algebra of formal multiple g-zeta values, i.e.,
Ki,... kg
ny,...,ng
invariant and symmetril and there are no other relations among these
formal symbols.

the generating series of the formal symbols CZ;( ) are swap

Goal

@ Construct a surjective algebra morphism Zg — 2.

@ Show that this morphism is an isomorphism.

Conjecturally, the previously given construction of the generating series &
works for all depths. Thus, the association

C:g(kl,u"kd)’—)G(k17’”7kd>, d§3,

n,...,Ngq n,...,Nq

should extend to a surjective algebra morphism ZS — Zq4.

Injectivity in general depths seems to be out of reach for the moment,

though it is expected to be a lot easier as for MZVs.
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Outlook: Formal graded multiple g-zeta values

Having a surjective algebra morphism Zg — Zgq, we can hopefully
continue analogously to Racinet's work on MZVs:

o Construct dual graded Hopf algebras and reformulate the relations
satisfied by the formal qMZV
~~ Obtain an affine group scheme and a corresponding Lie algebra.

@ Prove that the algebra ZS of formal g-MZVs is a free polynomial
algebra.

@ Show that the dimension conjectures on qMZVs (Bachmann-Kiihn)
hold for the formal qMZV.
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