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Multiple zeta values

Definition

For integers k1 ≥ 2, k2, . . . , kd ≥ 1, we call

ζ(k1, . . . , kd) =
∑

m1>···>md>0

1

mk1
1 · · ·m

kd
d

a multiple zeta value (MZV) of weight k1 + · · ·+ kd and depth d .

Let
Z = 〈ζ(k1, . . . , kd)|d ≥ 0, k1 ≥ 2, k2, . . . , kd ≥ 1〉Q ,

where ζ(∅) = 1, be the Q-vector space spanned by the MZVs.
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Multiple zeta values - EDS relations

Products of MZVs are Q-linear combinations of MZVs, so the space Z is
an algebra. There are two kinds of such formulas, e.g., in depth 2, we
have

ζ(k1)ζ(k2) =


ζ(k1, k2) + ζ(k2, k1) + ζ(k1 + k2) (stuffle product)

k1+k2−1∑
j=2

((
j−1
k1−1

)
+
(
j−1
k2−1

))
ζ(j , k1 + k2 − j) (shuffle product).

We get the double shuffle relations.

Actually, the MZVs satisfy the extended double shuffle relations
(EDS) obtained by regularization. Conjecturally, these are all relations
between MZVs.
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Formal multiple zeta values

Definition

Let Z f be the algebra of formal multiple zeta values, i.e., the formal
symbols ζ f (k1, . . . , kd) satisfy the extended double shuffle relations and
no other relations.

The algebra Z f is graded for the weight.

We have a surjective algebra homomorphism

Z f → Z,
ζ f (k1, . . . , kd) 7→ ζ(k1, . . . , kd).

Conjecturally, this morphism is an isomorphism.
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Formal multiple zeta values

Racinet introduced a pro-unipotent affine group scheme DM0 with values
in a graded Hopf algebra, such that we have for all Q-algebras R

HomQ-alg

(
Z f
�(ζ f (2)),R

)
' DM0(R).

By a deep theorem of Racinet, there is a bijection between DM0 and its
Lie algebra dm0, from which we obtain

Theorem (Ecalle, Racinet)

The algebra Z f of formal MZVs is a free polynomial algebra.

It is conjectured by Ihara-Deligne that dm0 is a free Lie algebra with
exactly one generator in each odd degree ≥ 3. From this, we can deduce

Zagier’s conjecture for formal MZVs

The dimensions of the homogeneous subspaces (w.r.t. the weight) of Z f

are given by ∑
k≥0

dimQ(Z f
k )tk =

1

1− t2 − t3
.
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Multiple q-zeta values

q-analog

A q-analog of an expression is a generalization involving the variable q,
which returns the original expression by taking the limit q → 1.

For a natural number n ≥ 1, the q-analog is given by

{n}q = 1 + q + · · ·+ qn−1 =
1− qn

1− q
.

Schlesinger-Zudilin multiple q-zeta values

For k1 ≥ 1, k2, . . . , kd ≥ 0, a (modified) q-analog of the MZVs is given by

ζSZq (k1, . . . , kd) =
∑

m1>···>md>0

qm1k1

(1− qm1)k1
· · · qmdkd

(1− qmd )kd
,

We obtain for k1 ≥ 2, k2, . . . kd ≥ 1

lim
q→1

(1− q)k1+···+kd ζSZq (k1, . . . , kd) = lim
q→1

∑
m1>···>md>0

qm1k1

{m1}k1q
· · · qmdkd

{md}kdq
= ζ(k1, . . . , kd).
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Multiple q-zeta values

Definition

For integers k1, ..., kd ≥ 1 and polynomials R1(t),R2(t), ...,Rd(t) ∈ Q[t],
R1(0) = 0, define the multiple q-zeta value (qMZV)

ζq(k1, ..., kd ;R1, ...,Rd) =
∑

m1>···>md>0

R1(qm1)

(1− qm1)k1
· · · Rd(qmd )

(1− qmd )kd
.

Define the Q-vector space generated by the qMZVs

Zq = 〈ζq(k1, ..., kd ;R1, ...,Rd)|d ≥ 0, k1, ..., kd ≥ 1, deg(Rj) ≤ kj〉Q,

where ζq(∅; ∅) = 1.

For k1 > 1, we obtain

lim
q→1

(1− q)k1+···+kd ζq(k1, ..., kd ;R1, ...,Rd) = R1(1) · · ·Rd(1)ζ(k1, ..., kd).
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Zq = 〈ζq(k1, ..., kd ;R1, ...,Rd)|d ≥ 0, k1, ..., kd ≥ 1, deg(Rj) ≤ kj〉Q,

where ζq(∅; ∅) = 1.

The power series multiplication (q-stuffle product) endows Zq with the
structure of an algebra. For example, we have

ζq(k1;R1)ζq(k2;R2) = ζq(k1, k2;R1,R2) + ζq(k2, k1;R2,R1)

+ ζq(k1 + k2;R1R2)

Since deg(R1R2) ≤ k1 + k2, the product is indeed an element in Zq.
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Bi-brackets (Bachmann)

Definition

For integers k1, ..., kd ≥ 1, n1, ..., nd ≥ 0, define[
k1, ..., kd
n1, ..., nd

]
=

∑
m1>···>md>0

d∏
j=1

m
nj
j

nj !

Pkj (q
mj )

(1− qmj )kj

where the Eulerian polynomials Pk(t) are defined by

Pk(t)

(1− t)k
=
∑
r≥1

rk−1

(k − 1)!
tr .

For a bi-bracket

[
k1, . . . , kd
n1, . . . , nd

]
, we call k1 + · · ·+ kd + n1 + · · ·+ nd its

weight and d its depth.
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Filtrations on Zq

Theorem (Bachmann-Kühn)

The space Zq is spanned by the bi-brackets.

We define a weight filtration

FilWk (Zq) =

〈[
k1, ..., kd
n1, ..., nd

]∣∣∣∣ 0 ≤ d ≤ k , k1 + · · ·+ kd + n1 + · · ·+ nd ≤ k

〉
Q

and a depth filtration

FilDd (Zq) =

〈[
k1, ..., kl
n1, ..., nl

]∣∣∣∣ l ≤ d

〉
Q

on the algebra Zq.
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q-stuffle product of bi-brackets

Define the generating series of bi-brackets of depth d ≥ 1 by

g

(
X1, . . . ,Xd

Y1, . . . ,Yd

)
=

∑
k1,...,kd≥1
n1,...,nd≥0

[
k1, . . . , kd
n1, . . . , nd

]
X k1−1
1 · · ·X kd−1

d Y n1
1 · · ·Y

nd
d .

The q-stuffle product of the bi-brackets in depth 2 can be expressed as

g

(
X1

Y1

)
g

(
X2

Y2

)
= g

(
X1,X2

Y1,Y2

)
+ g

(
X2,X1

Y2,Y1

)
+

1

X1 − X2

(
g

(
X1

Y1 + Y2

)
− g

(
X2

Y1 + Y2

))
+ 2β(X2 − X1)

(
g

(
X1

Y1 + Y2

)
− g

(
X2

Y1 + Y2

))
−

1

2

(
g

(
X1

Y1 + Y2

)
+ g

(
X2

Y1 + Y2

))
where

β(X ) = −
∑
k≥2

Bk

2k!
X k−1.

We call a sequence of power series satisfying the blue coloured formula
symmetril, their coefficients fulfill the (weight-)graded q-stuffle product.
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q-stuffle product of bi-brackets

In depth 3 the q-stuffle product of the bi-brackets can be described as

g

(
X1

Y1

)
g

(
X2,X3

Y2,Y3

)
= g

(
X1,X2,X3

Y1,Y2,Y3

)
+ g

(
X2,X1,X3

Y2,Y1,Y3

)
+ g

(
X2,X3,X1

Y2,Y3,Y1

)

+

g

(
X1,X3

Y1 + Y2,Y3

)
− g

(
X2,X3

Y1 + Y2,Y3

)
X1 − X2

+

g

(
X2,X1

Y2,Y1 + Y3

)
− g

(
X2,X3

Y2,Y1 + Y3

)
X1 − X3

+ 2β(X2 − X1)

(
g

(
X1,X3

Y1 + Y2,Y3

)
− g

(
X2,X3

Y1 + Y2,Y3

))
+ 2β(X3 − X1)

(
g

(
X2,X1

Y2,Y1 + Y3

)
− g

(
X2,X3

Y2,Y1 + Y3

))
− 1

2

(
g

(
X1,X3

Y1 + Y2,Y3

)
+ g

(
X2,X3

Y1 + Y2,Y3

)
+ g

(
X2,X1
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(
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Swap invariance of bi-brackets

Proposition (Bachmann)

For all d ≥ 1, the generating series of the bi-brackets is swap invariant,
i.e., we have

g

(
X1, . . . ,Xd

Y1, . . . ,Yd

)
= g

(
Y1 + · · ·+ Yd ,Y1 + · · ·+ Yd−1, . . . ,Y1

Xd ,Xd−1 − Xd , . . . ,X1 − X2

)
.

The relations between bi-brackets obtained from the swap invariance of g
are homogeneous w.r.t. the weight.

E.g., in depth ≤ 2, we have

g

(
X
Y

)
= g

(
Y
X

)
, g

(
X1,X2

Y1,Y2

)
= g

(
Y1 + Y2,Y1

X2,X1 − X2

)
,

which leads to the following relations between bi-brackets:[
k
n

]
=

[
n + 1
k − 1

]
,[

k1, k2
n1, n2

]
=

n1∑
n=0

k2−1∑
k=0

(−1)k
(
k1 − 1 + k

k

)(
n2 + n

n

)[
n2 + n + 1, n1 − n + 1
k2 − 1− k, k1 − 1 + k

]
.
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Relations between qMZV

Conjecture (Bachmann)

All algebraic relations in the algebra Zq of multiple q-zeta values can be
obtained from combining the q-stuffle product and the swap invariance of
bi-brackets.

Inspired by the classical MZVs, we expect the following:

Conjecture

There is a spanning set of the space Zq, which satisfies the graded
q-stuffle product formula and whose generating series is swap invariant.

In the following, we will construct such a spanning set of Zq up to depth
3, we will call these the combinatorial multiple Eisenstein series.
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Combinatorial multiple Eisenstein series

The multiplication of quasi-modular forms is graded, therefore we make
the following ansatz:

G

(
k
n

)
= δn,0

(
− Bk

2k!

)
+ n!

[
k
n

]
, k > n + 1 ≥ 1.

For k ≥ 2 even, the elements G

(
k
0

)
are the Eisenstein series of

weight k (with rational coefficients),

For k + n ≥ 2 even, the elements G

(
k
n

)
are the derivatives of

Eisenstein series.

Let G

(
k1, k2
0, 0

)
, k1 ≥ 3, k2 ≥ 2 even, be the combinatorial double

Eisenstein series of Gangl-Kaneko-Zagier, then we obtain the graded
q-stuffle product formula:

G

(
k1
0

)
G

(
k2
0

)
= G

(
k1, k2
0, 0

)
+ G

(
k2, k1
0, 0

)
+ G

(
k1 + k2

0

)
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Combinatorial multiple Eisenstein series

Proposition (Drinfeld+Furusho, Racinet)

There is a (non-unique) sequence β(X1), β(X1,X2), . . . with rational
coefficients satisfying the stuffle and shuffle product.

Explicit formulas for β in low depths are given by Gangl-Kaneko-Zagier,
Brown and Écalle.

Proposition (Bachmann-Matthes-Kühn)

We can lift every series β(X1), β(X1,X2), . . . with coefficients satisfying

the stuffle and shuffle product to a sequence β

(
X1

Y1

)
, β

(
X1,X2

Y1,Y2

)
, . . . of

power series, which is symmetril and swap invariant.

In the following, we fix such a sequence β

(
X1

Y1

)
, β

(
X1,X2

Y1,Y2

)
, . . . of power

series with rational coefficients. In particular, we have in depth 1:

β

(
X1

Y1

)
= β(X1) + β(Y1) = −

∑
k≥2

Bk

2k!
(X k−1

1 + Y k−1
1 ).
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Combinatorial multiple Eisenstein series

Theorem (Bachmann-Kühn-Matthes d = 2, Bachmann-B. d = 3)

There is an explicit symmetril sequence

g

(
X1

Y1

)
, gil
(
X1,X2

Y1,Y2

)
, gil
(
X1,X2,X3

Y1,Y2,Y3

)
∈ Zq[[X1,X2,X3,Y1,Y2,Y3]],

such that the following sequence is symmetril and swap invariant:

G

(
X1

Y1

)
= g

(
X1

Y1

)
+ β

(
X1

Y1

)
,

G

(
X1,X2

Y1,Y2

)
= gil

(
X1,X2

Y1,Y2

)
+ g

(
X1

Y1

)
β

(
X2

Y2

)
+ β

(
X1,X2

Y1,Y2

)
,

G

(
X1,X2,X3

Y1,Y2,Y3

)
= gil

(
X1,X2,X3

Y1,Y2,Y3

)
+ gil

(
X1,X2

Y1,Y2

)
β

(
X3

Y3

)
+ g

(
X1

Y1

)
β

(
X2,X3

Y2,Y3

)
+ β

(
X1,X2,X3

Y1,Y2,Y3

)
.
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Combinatorial multiple Eisenstein series

Definition

The combinatorial multiple Eisenstein series (CMES) G in depth
d ≤ 3 are defined to be the coefficients of the series G:

G

(
X1, . . . ,Xd

Y1, . . . ,Yd

)
=

∑
k1,...,kd≥1
n1,...,nd≥0

G

(
k1, . . . , kd
n1, . . . , nd

)
X k1−1
1 · · ·X kd−1

d

Y n1
1

n1!
· · ·

Y nd
d

nd !

Towards the conjecture about a spanning set of Zq, we have:

Theorem

The CMES satisfy the graded q-stuffle product and their generating
series is swap invariant.

For d = 1, 2, 3, the CMES of depth d span the space FilDd (Zq).
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Combinatorial multiple Eisenstein series

The Q-vector space generated by the CMES of depth d ≤ 2 contains
the quasi-modular forms with rational coefficients.

The space generated by the CMES is closed under taking the
derivative q d

dq .

The CMES can be seen as a bi-version of the multiple Eisenstein
series, since they are constructed analogously to the Fourier
expansion of the multiple Eisenstein series.

The CMES are linear combinations of q-analogs of MZVs. In
particular, we have:

lim
q→1

(1− q)k1+···+kdG

(
k1, . . . , kd
0, . . . , 0

)
= ζ(k1, . . . , kd)

for k1 ≥ 2, k2, . . . , kd ≥ 1, d ≤ 3.

The elements lim
q→0

G

(
X1, . . . ,Xd

0, . . . , 0

)
, d ≤ 3, are rational numbers

satisfying the stuffle and shuffle product.
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Combinatorial multiple Eisenstein series

The CMES satisfy the bi-version of the double shuffle relations. E.g., in
depth 2 they are given by

G

(
k1
n1

)
G

(
k2
n2

)
= G

(
k1, k2
n1, n2

)
+ G

(
k2, k1
n2, n1

)
+ G

(
k1 + k2
n1 + n2

)
=

k1∑
k=1

n2∑
n=0

(
k1 + k2 − k − 1

k1 − k

)(
n1 + n2 − n

n1

)
(−1)n2−nG

(
k1 + k2 − k, k
n, n1 + n2 − n

)

+
k2∑
k=1

n1∑
n=0

(
k1 + k2 − k − 1

k2 − k

)(
n1 + n2 − n

n2

)
(−1)n1−nG

(
k1 + k2 − k, k
n, n1 + n2 − n

)
+

(
k1 + k2 − 2

k1 − 1

)
G

(
k1 + k2 − 1
n1 + n2 + 1

)
.

If n1 = n2 = 0, taking the limit q → 1 (and multiplying with (1− q)k1+k2)
yields the classical double shuffle relations for double zeta values.

18 / 24



Proof: Construction of the gil

Before we indicate the proof, recall:

Theorem (Bachmann-Kühn-Matthes d = 2, Bachmann-B. d = 3)

There is an explicit symmetril sequence

g

(
X1

Y1

)
, gil
(
X1,X2

Y1,Y2

)
, gil
(
X1,X2,X3

Y1,Y2,Y3

)
∈ Zq[[X1,X2,X3,Y1,Y2,Y3]],

such that the following sequence is symmetril and swap invariant:

G

(
X1

Y1

)
= g

(
X1

Y1

)
+ β

(
X1

Y1

)
,

G

(
X1,X2

Y1,Y2

)
= gil

(
X1,X2

Y1,Y2

)
+ g

(
X1

Y1

)
β

(
X2

Y2

)
+ β

(
X1,X2

Y1,Y2

)
,

G

(
X1,X2,X3

Y1,Y2,Y3

)
= gil

(
X1,X2,X3

Y1,Y2,Y3

)
+ gil

(
X1,X2

Y1,Y2

)
β

(
X3

Y3

)
+ g

(
X1

Y1

)
β

(
X2,X3

Y2,Y3

)
+ β

(
X1,X2,X3

Y1,Y2,Y3

)
.
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Construction of the gil

The generating series of bi-brackets of depth d ≥ 1 can also be written as

g

(
X1, . . . ,Xd

Y1, . . . ,Yd

)
=

∑
m1>···>md>0

Lm1

(
X1

Y1

)
· · · Lmd

(
Xd

Yd

)
where

Lm

(
X
Y

)
=

eX+mY qm

1− eXqm
.

In order to build from the series g a symmetril series gil , we will define a
symmetril multiple version of the Lm.

20 / 24



Construction of the gil

Definition

For d ,m ≥ 1, define the power series

βR

(
X1, . . . ,Xd

Y1, . . . ,Yd

)
=

d∑
i=0

(−1)i

2i i !
β

(
−Xi+1, . . . ,−Xd

Y1, . . . ,Yd−i

)
,

Lm

(
X1, . . . ,Xd

Y1, . . . ,Yd

)
=

d∑
j=1

β

(
X1 − Xj , . . . ,Xj−1 − Xj

Y1, . . . ,Yj−1

)
Lm

(
Xj

Y1 + · · ·+ Yd

)

· βR

(
Xj − Xd , . . . ,Xj − Xj+1

−Yd , . . . ,−Yi+1

)
.

Proposition (Bachmann-B.)

The series βR are swap invariant up to signs.

Up to depth 3, the βR are symmetril up to signs.

Up to depth 3, the Lm, m ≥ 1, are symmetril.
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Construction of the gil

The symmetrility of the Lm, m ≥ 1, implies:

Proposition

The following sequence of power series is symmetril

g

(
X1

Y1

)
=
∑
m>0

Lm

(
X1

Y1

)
,

gil
(
X1,X2

Y1,Y2

)
=

∑
m1>m2>0

Lm1

(
X1

Y1

)
Lm2

(
X2

Y2

)
+
∑
m>0

Lm

(
X1,X2

Y1,Y2

)
,

gil
(
X1,X2,X3

Y1,Y2,Y3

)
=

∑
m1>m2>m3>0

Lm1

(
X1

Y1

)
Lm2

(
X2

Y2

)
Lm3

(
X3

Y3

)

+
∑

m1>m2>0

(
Lm1

(
X1,X2

Y1,Y2

)
Lm2

(
X3

Y3

)
+ Lm1

(
X1

Y1

)
Lm2

(
X2,X3

Y2,Y3

))

+
∑
m>0

Lm

(
X1,X2,X3

Y1,Y2,Y3

)
.

This conclusion works for all depths. The crucial point in arbitrary depths
is to show that the Lm, m ≥ 1, are symmetril and that the G are swap
invariant.
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Outlook: Formal graded multiple q-zeta values

Definition

Let Z f
q be the graded Q-algebra of formal multiple q-zeta values, i.e.,

the generating series of the formal symbols ζfq

(
k1, . . . , kd
n1, . . . , nd

)
are swap

invariant and symmetril and there are no other relations among these
formal symbols.

Goal

Construct a surjective algebra morphism Z f
q → Zq.

Show that this morphism is an isomorphism.

Conjecturally, the previously given construction of the generating series G
works for all depths. Thus, the association

ζ fq

(
k1, . . . , kd
n1, . . . , nd

)
7→ G

(
k1, . . . , kd
n1, . . . , nd

)
, d ≤ 3,

should extend to a surjective algebra morphism Z f
q → Zq.

Injectivity in general depths seems to be out of reach for the moment,
though it is expected to be a lot easier as for MZVs.
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Outlook: Formal graded multiple q-zeta values

Having a surjective algebra morphism Z f
q → Zq, we can hopefully

continue analogously to Racinet’s work on MZVs:

Construct dual graded Hopf algebras and reformulate the relations
satisfied by the formal qMZV
 Obtain an affine group scheme and a corresponding Lie algebra.

Prove that the algebra Z f
q of formal q-MZVs is a free polynomial

algebra.

Show that the dimension conjectures on qMZVs (Bachmann-Kühn)
hold for the formal qMZV.
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